diff options
Diffstat (limited to 'gnu/llvm/lib/Target/Mips/MipsISelLowering.cpp')
| -rw-r--r-- | gnu/llvm/lib/Target/Mips/MipsISelLowering.cpp | 3962 |
1 files changed, 3962 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Target/Mips/MipsISelLowering.cpp b/gnu/llvm/lib/Target/Mips/MipsISelLowering.cpp new file mode 100644 index 00000000000..5680130b91b --- /dev/null +++ b/gnu/llvm/lib/Target/Mips/MipsISelLowering.cpp @@ -0,0 +1,3962 @@ +//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that Mips uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// +#include "MipsISelLowering.h" +#include "InstPrinter/MipsInstPrinter.h" +#include "MCTargetDesc/MipsBaseInfo.h" +#include "MipsCCState.h" +#include "MipsMachineFunction.h" +#include "MipsSubtarget.h" +#include "MipsTargetMachine.h" +#include "MipsTargetObjectFile.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <cctype> + +using namespace llvm; + +#define DEBUG_TYPE "mips-lower" + +STATISTIC(NumTailCalls, "Number of tail calls"); + +static cl::opt<bool> +LargeGOT("mxgot", cl::Hidden, + cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false)); + +static cl::opt<bool> +NoZeroDivCheck("mno-check-zero-division", cl::Hidden, + cl::desc("MIPS: Don't trap on integer division by zero."), + cl::init(false)); + +static const MCPhysReg Mips64DPRegs[8] = { + Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, + Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64 +}; + +// If I is a shifted mask, set the size (Size) and the first bit of the +// mask (Pos), and return true. +// For example, if I is 0x003ff800, (Pos, Size) = (11, 11). +static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { + if (!isShiftedMask_64(I)) + return false; + + Size = countPopulation(I); + Pos = countTrailingZeros(I); + return true; +} + +SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const { + MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>(); + return DAG.getRegister(FI->getGlobalBaseReg(), Ty); +} + +SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag); +} + +SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); +} + +SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); +} + +SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); +} + +SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), + N->getOffset(), Flag); +} + +const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((MipsISD::NodeType)Opcode) { + case MipsISD::FIRST_NUMBER: break; + case MipsISD::JmpLink: return "MipsISD::JmpLink"; + case MipsISD::TailCall: return "MipsISD::TailCall"; + case MipsISD::Hi: return "MipsISD::Hi"; + case MipsISD::Lo: return "MipsISD::Lo"; + case MipsISD::GPRel: return "MipsISD::GPRel"; + case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; + case MipsISD::Ret: return "MipsISD::Ret"; + case MipsISD::ERet: return "MipsISD::ERet"; + case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN"; + case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; + case MipsISD::FPCmp: return "MipsISD::FPCmp"; + case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; + case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; + case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP"; + case MipsISD::MFHI: return "MipsISD::MFHI"; + case MipsISD::MFLO: return "MipsISD::MFLO"; + case MipsISD::MTLOHI: return "MipsISD::MTLOHI"; + case MipsISD::Mult: return "MipsISD::Mult"; + case MipsISD::Multu: return "MipsISD::Multu"; + case MipsISD::MAdd: return "MipsISD::MAdd"; + case MipsISD::MAddu: return "MipsISD::MAddu"; + case MipsISD::MSub: return "MipsISD::MSub"; + case MipsISD::MSubu: return "MipsISD::MSubu"; + case MipsISD::DivRem: return "MipsISD::DivRem"; + case MipsISD::DivRemU: return "MipsISD::DivRemU"; + case MipsISD::DivRem16: return "MipsISD::DivRem16"; + case MipsISD::DivRemU16: return "MipsISD::DivRemU16"; + case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; + case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; + case MipsISD::Wrapper: return "MipsISD::Wrapper"; + case MipsISD::DynAlloc: return "MipsISD::DynAlloc"; + case MipsISD::Sync: return "MipsISD::Sync"; + case MipsISD::Ext: return "MipsISD::Ext"; + case MipsISD::Ins: return "MipsISD::Ins"; + case MipsISD::LWL: return "MipsISD::LWL"; + case MipsISD::LWR: return "MipsISD::LWR"; + case MipsISD::SWL: return "MipsISD::SWL"; + case MipsISD::SWR: return "MipsISD::SWR"; + case MipsISD::LDL: return "MipsISD::LDL"; + case MipsISD::LDR: return "MipsISD::LDR"; + case MipsISD::SDL: return "MipsISD::SDL"; + case MipsISD::SDR: return "MipsISD::SDR"; + case MipsISD::EXTP: return "MipsISD::EXTP"; + case MipsISD::EXTPDP: return "MipsISD::EXTPDP"; + case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H"; + case MipsISD::EXTR_W: return "MipsISD::EXTR_W"; + case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W"; + case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W"; + case MipsISD::SHILO: return "MipsISD::SHILO"; + case MipsISD::MTHLIP: return "MipsISD::MTHLIP"; + case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH"; + case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL"; + case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR"; + case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL"; + case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR"; + case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL"; + case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR"; + case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL"; + case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR"; + case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH"; + case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH"; + case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W"; + case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W"; + case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH"; + case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH"; + case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH"; + case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH"; + case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH"; + case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH"; + case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH"; + case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH"; + case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH"; + case MipsISD::MULT: return "MipsISD::MULT"; + case MipsISD::MULTU: return "MipsISD::MULTU"; + case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP"; + case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP"; + case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP"; + case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP"; + case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP"; + case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP"; + case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP"; + case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP"; + case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP"; + case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO"; + case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO"; + case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO"; + case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO"; + case MipsISD::VCEQ: return "MipsISD::VCEQ"; + case MipsISD::VCLE_S: return "MipsISD::VCLE_S"; + case MipsISD::VCLE_U: return "MipsISD::VCLE_U"; + case MipsISD::VCLT_S: return "MipsISD::VCLT_S"; + case MipsISD::VCLT_U: return "MipsISD::VCLT_U"; + case MipsISD::VSMAX: return "MipsISD::VSMAX"; + case MipsISD::VSMIN: return "MipsISD::VSMIN"; + case MipsISD::VUMAX: return "MipsISD::VUMAX"; + case MipsISD::VUMIN: return "MipsISD::VUMIN"; + case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT"; + case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT"; + case MipsISD::VNOR: return "MipsISD::VNOR"; + case MipsISD::VSHF: return "MipsISD::VSHF"; + case MipsISD::SHF: return "MipsISD::SHF"; + case MipsISD::ILVEV: return "MipsISD::ILVEV"; + case MipsISD::ILVOD: return "MipsISD::ILVOD"; + case MipsISD::ILVL: return "MipsISD::ILVL"; + case MipsISD::ILVR: return "MipsISD::ILVR"; + case MipsISD::PCKEV: return "MipsISD::PCKEV"; + case MipsISD::PCKOD: return "MipsISD::PCKOD"; + case MipsISD::INSVE: return "MipsISD::INSVE"; + } + return nullptr; +} + +MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM, + const MipsSubtarget &STI) + : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) { + // Mips does not have i1 type, so use i32 for + // setcc operations results (slt, sgt, ...). + setBooleanContents(ZeroOrOneBooleanContent); + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA + // does. Integer booleans still use 0 and 1. + if (Subtarget.hasMips32r6()) + setBooleanContents(ZeroOrOneBooleanContent, + ZeroOrNegativeOneBooleanContent); + + // Load extented operations for i1 types must be promoted + for (MVT VT : MVT::integer_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); + } + + // MIPS doesn't have extending float->double load/store. Set LoadExtAction + // for f32, f16 + for (MVT VT : MVT::fp_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); + } + + // Set LoadExtAction for f16 vectors to Expand + for (MVT VT : MVT::fp_vector_valuetypes()) { + MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements()); + if (F16VT.isValid()) + setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand); + } + + setTruncStoreAction(MVT::f32, MVT::f16, Expand); + setTruncStoreAction(MVT::f64, MVT::f16, Expand); + + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + // Used by legalize types to correctly generate the setcc result. + // Without this, every float setcc comes with a AND/OR with the result, + // we don't want this, since the fpcmp result goes to a flag register, + // which is used implicitly by brcond and select operations. + AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); + + // Mips Custom Operations + setOperationAction(ISD::BR_JT, MVT::Other, Custom); + setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); + setOperationAction(ISD::BlockAddress, MVT::i32, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); + setOperationAction(ISD::JumpTable, MVT::i32, Custom); + setOperationAction(ISD::ConstantPool, MVT::i32, Custom); + setOperationAction(ISD::SELECT, MVT::f32, Custom); + setOperationAction(ISD::SELECT, MVT::f64, Custom); + setOperationAction(ISD::SELECT, MVT::i32, Custom); + setOperationAction(ISD::SETCC, MVT::f32, Custom); + setOperationAction(ISD::SETCC, MVT::f64, Custom); + setOperationAction(ISD::BRCOND, MVT::Other, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); + + if (Subtarget.isGP64bit()) { + setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); + setOperationAction(ISD::BlockAddress, MVT::i64, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); + setOperationAction(ISD::JumpTable, MVT::i64, Custom); + setOperationAction(ISD::ConstantPool, MVT::i64, Custom); + setOperationAction(ISD::SELECT, MVT::i64, Custom); + setOperationAction(ISD::LOAD, MVT::i64, Custom); + setOperationAction(ISD::STORE, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); + setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); + setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); + setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); + } + + if (!Subtarget.isGP64bit()) { + setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); + setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); + setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); + } + + setOperationAction(ISD::ADD, MVT::i32, Custom); + if (Subtarget.isGP64bit()) + setOperationAction(ISD::ADD, MVT::i64, Custom); + + setOperationAction(ISD::SDIV, MVT::i32, Expand); + setOperationAction(ISD::SREM, MVT::i32, Expand); + setOperationAction(ISD::UDIV, MVT::i32, Expand); + setOperationAction(ISD::UREM, MVT::i32, Expand); + setOperationAction(ISD::SDIV, MVT::i64, Expand); + setOperationAction(ISD::SREM, MVT::i64, Expand); + setOperationAction(ISD::UDIV, MVT::i64, Expand); + setOperationAction(ISD::UREM, MVT::i64, Expand); + + // Operations not directly supported by Mips. + setOperationAction(ISD::BR_CC, MVT::f32, Expand); + setOperationAction(ISD::BR_CC, MVT::f64, Expand); + setOperationAction(ISD::BR_CC, MVT::i32, Expand); + setOperationAction(ISD::BR_CC, MVT::i64, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + if (Subtarget.hasCnMips()) { + setOperationAction(ISD::CTPOP, MVT::i32, Legal); + setOperationAction(ISD::CTPOP, MVT::i64, Legal); + } else { + setOperationAction(ISD::CTPOP, MVT::i32, Expand); + setOperationAction(ISD::CTPOP, MVT::i64, Expand); + } + setOperationAction(ISD::CTTZ, MVT::i32, Expand); + setOperationAction(ISD::CTTZ, MVT::i64, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); + setOperationAction(ISD::ROTL, MVT::i32, Expand); + setOperationAction(ISD::ROTL, MVT::i64, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); + + if (!Subtarget.hasMips32r2()) + setOperationAction(ISD::ROTR, MVT::i32, Expand); + + if (!Subtarget.hasMips64r2()) + setOperationAction(ISD::ROTR, MVT::i64, Expand); + + setOperationAction(ISD::FSIN, MVT::f32, Expand); + setOperationAction(ISD::FSIN, MVT::f64, Expand); + setOperationAction(ISD::FCOS, MVT::f32, Expand); + setOperationAction(ISD::FCOS, MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + setOperationAction(ISD::FPOWI, MVT::f32, Expand); + setOperationAction(ISD::FPOW, MVT::f32, Expand); + setOperationAction(ISD::FPOW, MVT::f64, Expand); + setOperationAction(ISD::FLOG, MVT::f32, Expand); + setOperationAction(ISD::FLOG2, MVT::f32, Expand); + setOperationAction(ISD::FLOG10, MVT::f32, Expand); + setOperationAction(ISD::FEXP, MVT::f32, Expand); + setOperationAction(ISD::FMA, MVT::f32, Expand); + setOperationAction(ISD::FMA, MVT::f64, Expand); + setOperationAction(ISD::FREM, MVT::f32, Expand); + setOperationAction(ISD::FREM, MVT::f64, Expand); + + // Lower f16 conversion operations into library calls + setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); + setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); + + setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); + + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction(ISD::VAARG, MVT::Other, Custom); + setOperationAction(ISD::VACOPY, MVT::Other, Expand); + setOperationAction(ISD::VAEND, MVT::Other, Expand); + + // Use the default for now + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + + if (!Subtarget.isGP64bit()) { + setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); + setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); + } + + setInsertFencesForAtomic(true); + + if (!Subtarget.hasMips32r2()) { + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); + } + + // MIPS16 lacks MIPS32's clz and clo instructions. + if (!Subtarget.hasMips32() || Subtarget.inMips16Mode()) + setOperationAction(ISD::CTLZ, MVT::i32, Expand); + if (!Subtarget.hasMips64()) + setOperationAction(ISD::CTLZ, MVT::i64, Expand); + + if (!Subtarget.hasMips32r2()) + setOperationAction(ISD::BSWAP, MVT::i32, Expand); + if (!Subtarget.hasMips64r2()) + setOperationAction(ISD::BSWAP, MVT::i64, Expand); + + if (Subtarget.isGP64bit()) { + setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom); + setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom); + setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom); + setTruncStoreAction(MVT::i64, MVT::i32, Custom); + } + + setOperationAction(ISD::TRAP, MVT::Other, Legal); + + setTargetDAGCombine(ISD::SDIVREM); + setTargetDAGCombine(ISD::UDIVREM); + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::AND); + setTargetDAGCombine(ISD::OR); + setTargetDAGCombine(ISD::ADD); + + setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2); + + // The arguments on the stack are defined in terms of 4-byte slots on O32 + // and 8-byte slots on N32/N64. + setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4); + + setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP); + + MaxStoresPerMemcpy = 16; + + isMicroMips = Subtarget.inMicroMipsMode(); +} + +const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM, + const MipsSubtarget &STI) { + if (STI.inMips16Mode()) + return llvm::createMips16TargetLowering(TM, STI); + + return llvm::createMipsSETargetLowering(TM, STI); +} + +// Create a fast isel object. +FastISel * +MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) const { + if (!funcInfo.MF->getTarget().Options.EnableFastISel) + return TargetLowering::createFastISel(funcInfo, libInfo); + return Mips::createFastISel(funcInfo, libInfo); +} + +EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, + EVT VT) const { + if (!VT.isVector()) + return MVT::i32; + return VT.changeVectorElementTypeToInteger(); +} + +static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + EVT Ty = N->getValueType(0); + unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64; + unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64; + unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 : + MipsISD::DivRemU16; + SDLoc DL(N); + + SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue, + N->getOperand(0), N->getOperand(1)); + SDValue InChain = DAG.getEntryNode(); + SDValue InGlue = DivRem; + + // insert MFLO + if (N->hasAnyUseOfValue(0)) { + SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty, + InGlue); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); + InChain = CopyFromLo.getValue(1); + InGlue = CopyFromLo.getValue(2); + } + + // insert MFHI + if (N->hasAnyUseOfValue(1)) { + SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL, + HI, Ty, InGlue); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); + } + + return SDValue(); +} + +static Mips::CondCode condCodeToFCC(ISD::CondCode CC) { + switch (CC) { + default: llvm_unreachable("Unknown fp condition code!"); + case ISD::SETEQ: + case ISD::SETOEQ: return Mips::FCOND_OEQ; + case ISD::SETUNE: return Mips::FCOND_UNE; + case ISD::SETLT: + case ISD::SETOLT: return Mips::FCOND_OLT; + case ISD::SETGT: + case ISD::SETOGT: return Mips::FCOND_OGT; + case ISD::SETLE: + case ISD::SETOLE: return Mips::FCOND_OLE; + case ISD::SETGE: + case ISD::SETOGE: return Mips::FCOND_OGE; + case ISD::SETULT: return Mips::FCOND_ULT; + case ISD::SETULE: return Mips::FCOND_ULE; + case ISD::SETUGT: return Mips::FCOND_UGT; + case ISD::SETUGE: return Mips::FCOND_UGE; + case ISD::SETUO: return Mips::FCOND_UN; + case ISD::SETO: return Mips::FCOND_OR; + case ISD::SETNE: + case ISD::SETONE: return Mips::FCOND_ONE; + case ISD::SETUEQ: return Mips::FCOND_UEQ; + } +} + + +/// This function returns true if the floating point conditional branches and +/// conditional moves which use condition code CC should be inverted. +static bool invertFPCondCodeUser(Mips::CondCode CC) { + if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) + return false; + + assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && + "Illegal Condition Code"); + + return true; +} + +// Creates and returns an FPCmp node from a setcc node. +// Returns Op if setcc is not a floating point comparison. +static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) { + // must be a SETCC node + if (Op.getOpcode() != ISD::SETCC) + return Op; + + SDValue LHS = Op.getOperand(0); + + if (!LHS.getValueType().isFloatingPoint()) + return Op; + + SDValue RHS = Op.getOperand(1); + SDLoc DL(Op); + + // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of + // node if necessary. + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + + return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS, + DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32)); +} + +// Creates and returns a CMovFPT/F node. +static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True, + SDValue False, SDLoc DL) { + ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2)); + bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue()); + SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); + + return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, + True.getValueType(), True, FCC0, False, Cond); +} + +static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue SetCC = N->getOperand(0); + + if ((SetCC.getOpcode() != ISD::SETCC) || + !SetCC.getOperand(0).getValueType().isInteger()) + return SDValue(); + + SDValue False = N->getOperand(2); + EVT FalseTy = False.getValueType(); + + if (!FalseTy.isInteger()) + return SDValue(); + + ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False); + + // If the RHS (False) is 0, we swap the order of the operands + // of ISD::SELECT (obviously also inverting the condition) so that we can + // take advantage of conditional moves using the $0 register. + // Example: + // return (a != 0) ? x : 0; + // load $reg, x + // movz $reg, $0, a + if (!FalseC) + return SDValue(); + + const SDLoc DL(N); + + if (!FalseC->getZExtValue()) { + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); + SDValue True = N->getOperand(1); + + SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), + SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); + + return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); + } + + // If both operands are integer constants there's a possibility that we + // can do some interesting optimizations. + SDValue True = N->getOperand(1); + ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True); + + if (!TrueC || !True.getValueType().isInteger()) + return SDValue(); + + // We'll also ignore MVT::i64 operands as this optimizations proves + // to be ineffective because of the required sign extensions as the result + // of a SETCC operator is always MVT::i32 for non-vector types. + if (True.getValueType() == MVT::i64) + return SDValue(); + + int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue(); + + // 1) (a < x) ? y : y-1 + // slti $reg1, a, x + // addiu $reg2, $reg1, y-1 + if (Diff == 1) + return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False); + + // 2) (a < x) ? y-1 : y + // slti $reg1, a, x + // xor $reg1, $reg1, 1 + // addiu $reg2, $reg1, y-1 + if (Diff == -1) { + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); + SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), + SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); + return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True); + } + + // Couldn't optimize. + return SDValue(); +} + +static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2); + + ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse); + if (!FalseC || FalseC->getZExtValue()) + return SDValue(); + + // Since RHS (False) is 0, we swap the order of the True/False operands + // (obviously also inverting the condition) so that we can + // take advantage of conditional moves using the $0 register. + // Example: + // return (a != 0) ? x : 0; + // load $reg, x + // movz $reg, $0, a + unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F : + MipsISD::CMovFP_T; + + SDValue FCC = N->getOperand(1), Glue = N->getOperand(3); + return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(), + ValueIfFalse, FCC, ValueIfTrue, Glue); +} + +static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + // Pattern match EXT. + // $dst = and ((sra or srl) $src , pos), (2**size - 1) + // => ext $dst, $src, size, pos + if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) + return SDValue(); + + SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1); + unsigned ShiftRightOpc = ShiftRight.getOpcode(); + + // Op's first operand must be a shift right. + if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL) + return SDValue(); + + // The second operand of the shift must be an immediate. + ConstantSDNode *CN; + if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1)))) + return SDValue(); + + uint64_t Pos = CN->getZExtValue(); + uint64_t SMPos, SMSize; + + // Op's second operand must be a shifted mask. + if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || + !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) + return SDValue(); + + // Return if the shifted mask does not start at bit 0 or the sum of its size + // and Pos exceeds the word's size. + EVT ValTy = N->getValueType(0); + if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) + return SDValue(); + + SDLoc DL(N); + return DAG.getNode(MipsISD::Ext, DL, ValTy, + ShiftRight.getOperand(0), + DAG.getConstant(Pos, DL, MVT::i32), + DAG.getConstant(SMSize, DL, MVT::i32)); +} + +static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + // Pattern match INS. + // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), + // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 + // => ins $dst, $src, size, pos, $src1 + if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) + return SDValue(); + + SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); + uint64_t SMPos0, SMSize0, SMPos1, SMSize1; + ConstantSDNode *CN; + + // See if Op's first operand matches (and $src1 , mask0). + if (And0.getOpcode() != ISD::AND) + return SDValue(); + + if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || + !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) + return SDValue(); + + // See if Op's second operand matches (and (shl $src, pos), mask1). + if (And1.getOpcode() != ISD::AND) + return SDValue(); + + if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || + !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) + return SDValue(); + + // The shift masks must have the same position and size. + if (SMPos0 != SMPos1 || SMSize0 != SMSize1) + return SDValue(); + + SDValue Shl = And1.getOperand(0); + if (Shl.getOpcode() != ISD::SHL) + return SDValue(); + + if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) + return SDValue(); + + unsigned Shamt = CN->getZExtValue(); + + // Return if the shift amount and the first bit position of mask are not the + // same. + EVT ValTy = N->getValueType(0); + if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) + return SDValue(); + + SDLoc DL(N); + return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0), + DAG.getConstant(SMPos0, DL, MVT::i32), + DAG.getConstant(SMSize0, DL, MVT::i32), + And0.getOperand(0)); +} + +static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt)) + + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue Add = N->getOperand(1); + + if (Add.getOpcode() != ISD::ADD) + return SDValue(); + + SDValue Lo = Add.getOperand(1); + + if ((Lo.getOpcode() != MipsISD::Lo) || + (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable)) + return SDValue(); + + EVT ValTy = N->getValueType(0); + SDLoc DL(N); + + SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0), + Add.getOperand(0)); + return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo); +} + +SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) + const { + SelectionDAG &DAG = DCI.DAG; + unsigned Opc = N->getOpcode(); + + switch (Opc) { + default: break; + case ISD::SDIVREM: + case ISD::UDIVREM: + return performDivRemCombine(N, DAG, DCI, Subtarget); + case ISD::SELECT: + return performSELECTCombine(N, DAG, DCI, Subtarget); + case MipsISD::CMovFP_F: + case MipsISD::CMovFP_T: + return performCMovFPCombine(N, DAG, DCI, Subtarget); + case ISD::AND: + return performANDCombine(N, DAG, DCI, Subtarget); + case ISD::OR: + return performORCombine(N, DAG, DCI, Subtarget); + case ISD::ADD: + return performADDCombine(N, DAG, DCI, Subtarget); + } + + return SDValue(); +} + +bool MipsTargetLowering::isCheapToSpeculateCttz() const { + return Subtarget.hasMips32(); +} + +bool MipsTargetLowering::isCheapToSpeculateCtlz() const { + return Subtarget.hasMips32(); +} + +void +MipsTargetLowering::LowerOperationWrapper(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + SDValue Res = LowerOperation(SDValue(N, 0), DAG); + + for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) + Results.push_back(Res.getValue(I)); +} + +void +MipsTargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + return LowerOperationWrapper(N, Results, DAG); +} + +SDValue MipsTargetLowering:: +LowerOperation(SDValue Op, SelectionDAG &DAG) const +{ + switch (Op.getOpcode()) + { + case ISD::BR_JT: return lowerBR_JT(Op, DAG); + case ISD::BRCOND: return lowerBRCOND(Op, DAG); + case ISD::ConstantPool: return lowerConstantPool(Op, DAG); + case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG); + case ISD::BlockAddress: return lowerBlockAddress(Op, DAG); + case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG); + case ISD::JumpTable: return lowerJumpTable(Op, DAG); + case ISD::SELECT: return lowerSELECT(Op, DAG); + case ISD::SETCC: return lowerSETCC(Op, DAG); + case ISD::VASTART: return lowerVASTART(Op, DAG); + case ISD::VAARG: return lowerVAARG(Op, DAG); + case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG); + case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); + case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); + case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG); + case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG); + case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG); + case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true); + case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false); + case ISD::LOAD: return lowerLOAD(Op, DAG); + case ISD::STORE: return lowerSTORE(Op, DAG); + case ISD::ADD: return lowerADD(Op, DAG); + case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG); + } + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Lower helper functions +//===----------------------------------------------------------------------===// + +// addLiveIn - This helper function adds the specified physical register to the +// MachineFunction as a live in value. It also creates a corresponding +// virtual register for it. +static unsigned +addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) +{ + unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); + MF.getRegInfo().addLiveIn(PReg, VReg); + return VReg; +} + +static MachineBasicBlock *insertDivByZeroTrap(MachineInstr *MI, + MachineBasicBlock &MBB, + const TargetInstrInfo &TII, + bool Is64Bit) { + if (NoZeroDivCheck) + return &MBB; + + // Insert instruction "teq $divisor_reg, $zero, 7". + MachineBasicBlock::iterator I(MI); + MachineInstrBuilder MIB; + MachineOperand &Divisor = MI->getOperand(2); + MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ)) + .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill())) + .addReg(Mips::ZERO).addImm(7); + + // Use the 32-bit sub-register if this is a 64-bit division. + if (Is64Bit) + MIB->getOperand(0).setSubReg(Mips::sub_32); + + // Clear Divisor's kill flag. + Divisor.setIsKill(false); + + // We would normally delete the original instruction here but in this case + // we only needed to inject an additional instruction rather than replace it. + + return &MBB; +} + +MachineBasicBlock * +MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *BB) const { + switch (MI->getOpcode()) { + default: + llvm_unreachable("Unexpected instr type to insert"); + case Mips::ATOMIC_LOAD_ADD_I8: + return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu); + case Mips::ATOMIC_LOAD_ADD_I16: + return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu); + case Mips::ATOMIC_LOAD_ADD_I32: + return emitAtomicBinary(MI, BB, 4, Mips::ADDu); + case Mips::ATOMIC_LOAD_ADD_I64: + return emitAtomicBinary(MI, BB, 8, Mips::DADDu); + + case Mips::ATOMIC_LOAD_AND_I8: + return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND); + case Mips::ATOMIC_LOAD_AND_I16: + return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND); + case Mips::ATOMIC_LOAD_AND_I32: + return emitAtomicBinary(MI, BB, 4, Mips::AND); + case Mips::ATOMIC_LOAD_AND_I64: + return emitAtomicBinary(MI, BB, 8, Mips::AND64); + + case Mips::ATOMIC_LOAD_OR_I8: + return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR); + case Mips::ATOMIC_LOAD_OR_I16: + return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR); + case Mips::ATOMIC_LOAD_OR_I32: + return emitAtomicBinary(MI, BB, 4, Mips::OR); + case Mips::ATOMIC_LOAD_OR_I64: + return emitAtomicBinary(MI, BB, 8, Mips::OR64); + + case Mips::ATOMIC_LOAD_XOR_I8: + return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR); + case Mips::ATOMIC_LOAD_XOR_I16: + return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR); + case Mips::ATOMIC_LOAD_XOR_I32: + return emitAtomicBinary(MI, BB, 4, Mips::XOR); + case Mips::ATOMIC_LOAD_XOR_I64: + return emitAtomicBinary(MI, BB, 8, Mips::XOR64); + + case Mips::ATOMIC_LOAD_NAND_I8: + return emitAtomicBinaryPartword(MI, BB, 1, 0, true); + case Mips::ATOMIC_LOAD_NAND_I16: + return emitAtomicBinaryPartword(MI, BB, 2, 0, true); + case Mips::ATOMIC_LOAD_NAND_I32: + return emitAtomicBinary(MI, BB, 4, 0, true); + case Mips::ATOMIC_LOAD_NAND_I64: + return emitAtomicBinary(MI, BB, 8, 0, true); + + case Mips::ATOMIC_LOAD_SUB_I8: + return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu); + case Mips::ATOMIC_LOAD_SUB_I16: + return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu); + case Mips::ATOMIC_LOAD_SUB_I32: + return emitAtomicBinary(MI, BB, 4, Mips::SUBu); + case Mips::ATOMIC_LOAD_SUB_I64: + return emitAtomicBinary(MI, BB, 8, Mips::DSUBu); + + case Mips::ATOMIC_SWAP_I8: + return emitAtomicBinaryPartword(MI, BB, 1, 0); + case Mips::ATOMIC_SWAP_I16: + return emitAtomicBinaryPartword(MI, BB, 2, 0); + case Mips::ATOMIC_SWAP_I32: + return emitAtomicBinary(MI, BB, 4, 0); + case Mips::ATOMIC_SWAP_I64: + return emitAtomicBinary(MI, BB, 8, 0); + + case Mips::ATOMIC_CMP_SWAP_I8: + return emitAtomicCmpSwapPartword(MI, BB, 1); + case Mips::ATOMIC_CMP_SWAP_I16: + return emitAtomicCmpSwapPartword(MI, BB, 2); + case Mips::ATOMIC_CMP_SWAP_I32: + return emitAtomicCmpSwap(MI, BB, 4); + case Mips::ATOMIC_CMP_SWAP_I64: + return emitAtomicCmpSwap(MI, BB, 8); + case Mips::PseudoSDIV: + case Mips::PseudoUDIV: + case Mips::DIV: + case Mips::DIVU: + case Mips::MOD: + case Mips::MODU: + return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false); + case Mips::PseudoDSDIV: + case Mips::PseudoDUDIV: + case Mips::DDIV: + case Mips::DDIVU: + case Mips::DMOD: + case Mips::DMODU: + return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true); + case Mips::SEL_D: + return emitSEL_D(MI, BB); + + case Mips::PseudoSELECT_I: + case Mips::PseudoSELECT_I64: + case Mips::PseudoSELECT_S: + case Mips::PseudoSELECT_D32: + case Mips::PseudoSELECT_D64: + return emitPseudoSELECT(MI, BB, false, Mips::BNE); + case Mips::PseudoSELECTFP_F_I: + case Mips::PseudoSELECTFP_F_I64: + case Mips::PseudoSELECTFP_F_S: + case Mips::PseudoSELECTFP_F_D32: + case Mips::PseudoSELECTFP_F_D64: + return emitPseudoSELECT(MI, BB, true, Mips::BC1F); + case Mips::PseudoSELECTFP_T_I: + case Mips::PseudoSELECTFP_T_I64: + case Mips::PseudoSELECTFP_T_S: + case Mips::PseudoSELECTFP_T_D32: + case Mips::PseudoSELECTFP_T_D64: + return emitPseudoSELECT(MI, BB, true, Mips::BC1T); + } +} + +// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and +// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) +MachineBasicBlock * +MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, + unsigned Size, unsigned BinOpcode, + bool Nand) const { + assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + unsigned LL, SC, AND, NOR, ZERO, BEQ; + + if (Size == 4) { + if (isMicroMips) { + LL = Mips::LL_MM; + SC = Mips::SC_MM; + } else { + LL = Subtarget.hasMips32r6() ? Mips::LL_R6 : Mips::LL; + SC = Subtarget.hasMips32r6() ? Mips::SC_R6 : Mips::SC; + } + AND = Mips::AND; + NOR = Mips::NOR; + ZERO = Mips::ZERO; + BEQ = Mips::BEQ; + } else { + LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD; + SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD; + AND = Mips::AND64; + NOR = Mips::NOR64; + ZERO = Mips::ZERO_64; + BEQ = Mips::BEQ64; + } + + unsigned OldVal = MI->getOperand(0).getReg(); + unsigned Ptr = MI->getOperand(1).getReg(); + unsigned Incr = MI->getOperand(2).getReg(); + + unsigned StoreVal = RegInfo.createVirtualRegister(RC); + unsigned AndRes = RegInfo.createVirtualRegister(RC); + unsigned Success = RegInfo.createVirtualRegister(RC); + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = ++BB->getIterator(); + MF->insert(It, loopMBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + // thisMBB: + // ... + // fallthrough --> loopMBB + BB->addSuccessor(loopMBB); + loopMBB->addSuccessor(loopMBB); + loopMBB->addSuccessor(exitMBB); + + // loopMBB: + // ll oldval, 0(ptr) + // <binop> storeval, oldval, incr + // sc success, storeval, 0(ptr) + // beq success, $0, loopMBB + BB = loopMBB; + BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0); + if (Nand) { + // and andres, oldval, incr + // nor storeval, $0, andres + BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr); + BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes); + } else if (BinOpcode) { + // <binop> storeval, oldval, incr + BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr); + } else { + StoreVal = Incr; + } + BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0); + BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB); + + MI->eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg( + MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, + unsigned SrcReg) const { + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + if (Subtarget.hasMips32r2() && Size == 1) { + BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg); + return BB; + } + + if (Subtarget.hasMips32r2() && Size == 2) { + BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg); + return BB; + } + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::i32); + unsigned ScrReg = RegInfo.createVirtualRegister(RC); + + assert(Size < 32); + int64_t ShiftImm = 32 - (Size * 8); + + BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm); + BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm); + + return BB; +} + +MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword( + MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode, + bool Nand) const { + assert((Size == 1 || Size == 2) && + "Unsupported size for EmitAtomicBinaryPartial."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::i32); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Ptr = MI->getOperand(1).getReg(); + unsigned Incr = MI->getOperand(2).getReg(); + + unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); + unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); + unsigned Mask = RegInfo.createVirtualRegister(RC); + unsigned Mask2 = RegInfo.createVirtualRegister(RC); + unsigned NewVal = RegInfo.createVirtualRegister(RC); + unsigned OldVal = RegInfo.createVirtualRegister(RC); + unsigned Incr2 = RegInfo.createVirtualRegister(RC); + unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); + unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); + unsigned MaskUpper = RegInfo.createVirtualRegister(RC); + unsigned AndRes = RegInfo.createVirtualRegister(RC); + unsigned BinOpRes = RegInfo.createVirtualRegister(RC); + unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); + unsigned StoreVal = RegInfo.createVirtualRegister(RC); + unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); + unsigned SrlRes = RegInfo.createVirtualRegister(RC); + unsigned Success = RegInfo.createVirtualRegister(RC); + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = ++BB->getIterator(); + MF->insert(It, loopMBB); + MF->insert(It, sinkMBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + BB->addSuccessor(loopMBB); + loopMBB->addSuccessor(loopMBB); + loopMBB->addSuccessor(sinkMBB); + sinkMBB->addSuccessor(exitMBB); + + // thisMBB: + // addiu masklsb2,$0,-4 # 0xfffffffc + // and alignedaddr,ptr,masklsb2 + // andi ptrlsb2,ptr,3 + // sll shiftamt,ptrlsb2,3 + // ori maskupper,$0,255 # 0xff + // sll mask,maskupper,shiftamt + // nor mask2,$0,mask + // sll incr2,incr,shiftamt + + int64_t MaskImm = (Size == 1) ? 255 : 65535; + BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2) + .addReg(Mips::ZERO).addImm(-4); + BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr) + .addReg(Ptr).addReg(MaskLSB2); + BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); + if (Subtarget.isLittle()) { + BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); + } else { + unsigned Off = RegInfo.createVirtualRegister(RC); + BuildMI(BB, DL, TII->get(Mips::XORi), Off) + .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); + BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); + } + BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) + .addReg(Mips::ZERO).addImm(MaskImm); + BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) + .addReg(MaskUpper).addReg(ShiftAmt); + BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); + BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt); + + // atomic.load.binop + // loopMBB: + // ll oldval,0(alignedaddr) + // binop binopres,oldval,incr2 + // and newval,binopres,mask + // and maskedoldval0,oldval,mask2 + // or storeval,maskedoldval0,newval + // sc success,storeval,0(alignedaddr) + // beq success,$0,loopMBB + + // atomic.swap + // loopMBB: + // ll oldval,0(alignedaddr) + // and newval,incr2,mask + // and maskedoldval0,oldval,mask2 + // or storeval,maskedoldval0,newval + // sc success,storeval,0(alignedaddr) + // beq success,$0,loopMBB + + BB = loopMBB; + unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL; + BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0); + if (Nand) { + // and andres, oldval, incr2 + // nor binopres, $0, andres + // and newval, binopres, mask + BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2); + BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes) + .addReg(Mips::ZERO).addReg(AndRes); + BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); + } else if (BinOpcode) { + // <binop> binopres, oldval, incr2 + // and newval, binopres, mask + BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2); + BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); + } else { // atomic.swap + // and newval, incr2, mask + BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask); + } + + BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0) + .addReg(OldVal).addReg(Mask2); + BuildMI(BB, DL, TII->get(Mips::OR), StoreVal) + .addReg(MaskedOldVal0).addReg(NewVal); + unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC; + BuildMI(BB, DL, TII->get(SC), Success) + .addReg(StoreVal).addReg(AlignedAddr).addImm(0); + BuildMI(BB, DL, TII->get(Mips::BEQ)) + .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB); + + // sinkMBB: + // and maskedoldval1,oldval,mask + // srl srlres,maskedoldval1,shiftamt + // sign_extend dest,srlres + BB = sinkMBB; + + BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1) + .addReg(OldVal).addReg(Mask); + BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes) + .addReg(MaskedOldVal1).addReg(ShiftAmt); + BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes); + + MI->eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI, + MachineBasicBlock *BB, + unsigned Size) const { + assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + unsigned LL, SC, ZERO, BNE, BEQ; + + if (Size == 4) { + if (isMicroMips) { + LL = Mips::LL_MM; + SC = Mips::SC_MM; + } else { + LL = Subtarget.hasMips32r6() ? Mips::LL_R6 : Mips::LL; + SC = Subtarget.hasMips32r6() ? Mips::SC_R6 : Mips::SC; + } + ZERO = Mips::ZERO; + BNE = Mips::BNE; + BEQ = Mips::BEQ; + } else { + LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD; + SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD; + ZERO = Mips::ZERO_64; + BNE = Mips::BNE64; + BEQ = Mips::BEQ64; + } + + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Ptr = MI->getOperand(1).getReg(); + unsigned OldVal = MI->getOperand(2).getReg(); + unsigned NewVal = MI->getOperand(3).getReg(); + + unsigned Success = RegInfo.createVirtualRegister(RC); + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = ++BB->getIterator(); + MF->insert(It, loop1MBB); + MF->insert(It, loop2MBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + // thisMBB: + // ... + // fallthrough --> loop1MBB + BB->addSuccessor(loop1MBB); + loop1MBB->addSuccessor(exitMBB); + loop1MBB->addSuccessor(loop2MBB); + loop2MBB->addSuccessor(loop1MBB); + loop2MBB->addSuccessor(exitMBB); + + // loop1MBB: + // ll dest, 0(ptr) + // bne dest, oldval, exitMBB + BB = loop1MBB; + BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0); + BuildMI(BB, DL, TII->get(BNE)) + .addReg(Dest).addReg(OldVal).addMBB(exitMBB); + + // loop2MBB: + // sc success, newval, 0(ptr) + // beq success, $0, loop1MBB + BB = loop2MBB; + BuildMI(BB, DL, TII->get(SC), Success) + .addReg(NewVal).addReg(Ptr).addImm(0); + BuildMI(BB, DL, TII->get(BEQ)) + .addReg(Success).addReg(ZERO).addMBB(loop1MBB); + + MI->eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +MachineBasicBlock * +MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI, + MachineBasicBlock *BB, + unsigned Size) const { + assert((Size == 1 || Size == 2) && + "Unsupported size for EmitAtomicCmpSwapPartial."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::i32); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Ptr = MI->getOperand(1).getReg(); + unsigned CmpVal = MI->getOperand(2).getReg(); + unsigned NewVal = MI->getOperand(3).getReg(); + + unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); + unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); + unsigned Mask = RegInfo.createVirtualRegister(RC); + unsigned Mask2 = RegInfo.createVirtualRegister(RC); + unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC); + unsigned OldVal = RegInfo.createVirtualRegister(RC); + unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); + unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC); + unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); + unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); + unsigned MaskUpper = RegInfo.createVirtualRegister(RC); + unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC); + unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC); + unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); + unsigned StoreVal = RegInfo.createVirtualRegister(RC); + unsigned SrlRes = RegInfo.createVirtualRegister(RC); + unsigned Success = RegInfo.createVirtualRegister(RC); + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = ++BB->getIterator(); + MF->insert(It, loop1MBB); + MF->insert(It, loop2MBB); + MF->insert(It, sinkMBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + BB->addSuccessor(loop1MBB); + loop1MBB->addSuccessor(sinkMBB); + loop1MBB->addSuccessor(loop2MBB); + loop2MBB->addSuccessor(loop1MBB); + loop2MBB->addSuccessor(sinkMBB); + sinkMBB->addSuccessor(exitMBB); + + // FIXME: computation of newval2 can be moved to loop2MBB. + // thisMBB: + // addiu masklsb2,$0,-4 # 0xfffffffc + // and alignedaddr,ptr,masklsb2 + // andi ptrlsb2,ptr,3 + // sll shiftamt,ptrlsb2,3 + // ori maskupper,$0,255 # 0xff + // sll mask,maskupper,shiftamt + // nor mask2,$0,mask + // andi maskedcmpval,cmpval,255 + // sll shiftedcmpval,maskedcmpval,shiftamt + // andi maskednewval,newval,255 + // sll shiftednewval,maskednewval,shiftamt + int64_t MaskImm = (Size == 1) ? 255 : 65535; + BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2) + .addReg(Mips::ZERO).addImm(-4); + BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr) + .addReg(Ptr).addReg(MaskLSB2); + BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); + if (Subtarget.isLittle()) { + BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); + } else { + unsigned Off = RegInfo.createVirtualRegister(RC); + BuildMI(BB, DL, TII->get(Mips::XORi), Off) + .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); + BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); + } + BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) + .addReg(Mips::ZERO).addImm(MaskImm); + BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) + .addReg(MaskUpper).addReg(ShiftAmt); + BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); + BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal) + .addReg(CmpVal).addImm(MaskImm); + BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal) + .addReg(MaskedCmpVal).addReg(ShiftAmt); + BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal) + .addReg(NewVal).addImm(MaskImm); + BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal) + .addReg(MaskedNewVal).addReg(ShiftAmt); + + // loop1MBB: + // ll oldval,0(alginedaddr) + // and maskedoldval0,oldval,mask + // bne maskedoldval0,shiftedcmpval,sinkMBB + BB = loop1MBB; + unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL; + BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0); + BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0) + .addReg(OldVal).addReg(Mask); + BuildMI(BB, DL, TII->get(Mips::BNE)) + .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB); + + // loop2MBB: + // and maskedoldval1,oldval,mask2 + // or storeval,maskedoldval1,shiftednewval + // sc success,storeval,0(alignedaddr) + // beq success,$0,loop1MBB + BB = loop2MBB; + BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1) + .addReg(OldVal).addReg(Mask2); + BuildMI(BB, DL, TII->get(Mips::OR), StoreVal) + .addReg(MaskedOldVal1).addReg(ShiftedNewVal); + unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC; + BuildMI(BB, DL, TII->get(SC), Success) + .addReg(StoreVal).addReg(AlignedAddr).addImm(0); + BuildMI(BB, DL, TII->get(Mips::BEQ)) + .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB); + + // sinkMBB: + // srl srlres,maskedoldval0,shiftamt + // sign_extend dest,srlres + BB = sinkMBB; + + BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes) + .addReg(MaskedOldVal0).addReg(ShiftAmt); + BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes); + + MI->eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI, + MachineBasicBlock *BB) const { + MachineFunction *MF = BB->getParent(); + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + DebugLoc DL = MI->getDebugLoc(); + MachineBasicBlock::iterator II(MI); + + unsigned Fc = MI->getOperand(1).getReg(); + const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID); + + unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass); + + BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2) + .addImm(0) + .addReg(Fc) + .addImm(Mips::sub_lo); + + // We don't erase the original instruction, we just replace the condition + // register with the 64-bit super-register. + MI->getOperand(1).setReg(Fc2); + + return BB; +} + +//===----------------------------------------------------------------------===// +// Misc Lower Operation implementation +//===----------------------------------------------------------------------===// +SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + SDValue Table = Op.getOperand(1); + SDValue Index = Op.getOperand(2); + SDLoc DL(Op); + auto &TD = DAG.getDataLayout(); + EVT PTy = getPointerTy(TD); + unsigned EntrySize = + DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); + + Index = DAG.getNode(ISD::MUL, DL, PTy, Index, + DAG.getConstant(EntrySize, DL, PTy)); + SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table); + + EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); + Addr = + DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr, + MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), + MemVT, false, false, false, 0); + Chain = Addr.getValue(1); + + if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || ABI.IsN64()) { + // For PIC, the sequence is: + // BRIND(load(Jumptable + index) + RelocBase) + // RelocBase can be JumpTable, GOT or some sort of global base. + Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr, + getPICJumpTableRelocBase(Table, DAG)); + } + + return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr); +} + +SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { + // The first operand is the chain, the second is the condition, the third is + // the block to branch to if the condition is true. + SDValue Chain = Op.getOperand(0); + SDValue Dest = Op.getOperand(2); + SDLoc DL(Op); + + assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); + SDValue CondRes = createFPCmp(DAG, Op.getOperand(1)); + + // Return if flag is not set by a floating point comparison. + if (CondRes.getOpcode() != MipsISD::FPCmp) + return Op; + + SDValue CCNode = CondRes.getOperand(2); + Mips::CondCode CC = + (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); + unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T; + SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32); + SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); + return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode, + FCC0, Dest, CondRes); +} + +SDValue MipsTargetLowering:: +lowerSELECT(SDValue Op, SelectionDAG &DAG) const +{ + assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); + SDValue Cond = createFPCmp(DAG, Op.getOperand(0)); + + // Return if flag is not set by a floating point comparison. + if (Cond.getOpcode() != MipsISD::FPCmp) + return Op; + + return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), + SDLoc(Op)); +} + +SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { + assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); + SDValue Cond = createFPCmp(DAG, Op); + + assert(Cond.getOpcode() == MipsISD::FPCmp && + "Floating point operand expected."); + + SDLoc DL(Op); + SDValue True = DAG.getConstant(1, DL, MVT::i32); + SDValue False = DAG.getConstant(0, DL, MVT::i32); + + return createCMovFP(DAG, Cond, True, False, DL); +} + +SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + EVT Ty = Op.getValueType(); + GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = N->getGlobal(); + + if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) { + const MipsTargetObjectFile *TLOF = + static_cast<const MipsTargetObjectFile *>( + getTargetMachine().getObjFileLowering()); + if (TLOF->IsGlobalInSmallSection(GV, getTargetMachine())) + // %gp_rel relocation + return getAddrGPRel(N, SDLoc(N), Ty, DAG); + + // %hi/%lo relocation + return getAddrNonPIC(N, SDLoc(N), Ty, DAG); + } + + if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV))) + return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); + + if (LargeGOT) + return getAddrGlobalLargeGOT( + N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16, + DAG.getEntryNode(), + MachinePointerInfo::getGOT(DAG.getMachineFunction())); + + return getAddrGlobal( + N, SDLoc(N), Ty, DAG, + (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16, + DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction())); +} + +SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op, + SelectionDAG &DAG) const { + BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); + EVT Ty = Op.getValueType(); + + if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) + return getAddrNonPIC(N, SDLoc(N), Ty, DAG); + + return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); +} + +SDValue MipsTargetLowering:: +lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const +{ + // If the relocation model is PIC, use the General Dynamic TLS Model or + // Local Dynamic TLS model, otherwise use the Initial Exec or + // Local Exec TLS Model. + + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + if (DAG.getTarget().Options.EmulatedTLS) + return LowerToTLSEmulatedModel(GA, DAG); + + SDLoc DL(GA); + const GlobalValue *GV = GA->getGlobal(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + TLSModel::Model model = getTargetMachine().getTLSModel(GV); + + if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { + // General Dynamic and Local Dynamic TLS Model. + unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM + : MipsII::MO_TLSGD; + + SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag); + SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, + getGlobalReg(DAG, PtrVT), TGA); + unsigned PtrSize = PtrVT.getSizeInBits(); + IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); + + SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); + + ArgListTy Args; + ArgListEntry Entry; + Entry.Node = Argument; + Entry.Ty = PtrTy; + Args.push_back(Entry); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(DL).setChain(DAG.getEntryNode()) + .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args), 0); + std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); + + SDValue Ret = CallResult.first; + + if (model != TLSModel::LocalDynamic) + return Ret; + + SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_DTPREL_HI); + SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi); + SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_DTPREL_LO); + SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); + SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret); + return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo); + } + + SDValue Offset; + if (model == TLSModel::InitialExec) { + // Initial Exec TLS Model + SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_GOTTPREL); + TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), + TGA); + Offset = DAG.getLoad(PtrVT, DL, + DAG.getEntryNode(), TGA, MachinePointerInfo(), + false, false, false, 0); + } else { + // Local Exec TLS Model + assert(model == TLSModel::LocalExec); + SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_TPREL_HI); + SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_TPREL_LO); + SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi); + SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); + Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); + } + + SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); + return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset); +} + +SDValue MipsTargetLowering:: +lowerJumpTable(SDValue Op, SelectionDAG &DAG) const +{ + JumpTableSDNode *N = cast<JumpTableSDNode>(Op); + EVT Ty = Op.getValueType(); + + if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) + return getAddrNonPIC(N, SDLoc(N), Ty, DAG); + + return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); +} + +SDValue MipsTargetLowering:: +lowerConstantPool(SDValue Op, SelectionDAG &DAG) const +{ + ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); + EVT Ty = Op.getValueType(); + + if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) { + const MipsTargetObjectFile *TLOF = + static_cast<const MipsTargetObjectFile *>( + getTargetMachine().getObjFileLowering()); + + if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(), + getTargetMachine())) + // %gp_rel relocation + return getAddrGPRel(N, SDLoc(N), Ty, DAG); + + return getAddrNonPIC(N, SDLoc(N), Ty, DAG); + } + + return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); +} + +SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); + + SDLoc DL(Op); + SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + getPointerTy(MF.getDataLayout())); + + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), + MachinePointerInfo(SV), false, false, 0); +} + +SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { + SDNode *Node = Op.getNode(); + EVT VT = Node->getValueType(0); + SDValue Chain = Node->getOperand(0); + SDValue VAListPtr = Node->getOperand(1); + unsigned Align = Node->getConstantOperandVal(3); + const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); + SDLoc DL(Node); + unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4; + + SDValue VAListLoad = + DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, VAListPtr, + MachinePointerInfo(SV), false, false, false, 0); + SDValue VAList = VAListLoad; + + // Re-align the pointer if necessary. + // It should only ever be necessary for 64-bit types on O32 since the minimum + // argument alignment is the same as the maximum type alignment for N32/N64. + // + // FIXME: We currently align too often. The code generator doesn't notice + // when the pointer is still aligned from the last va_arg (or pair of + // va_args for the i64 on O32 case). + if (Align > getMinStackArgumentAlignment()) { + assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); + + VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, + DAG.getConstant(Align - 1, DL, VAList.getValueType())); + + VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList, + DAG.getConstant(-(int64_t)Align, DL, + VAList.getValueType())); + } + + // Increment the pointer, VAList, to the next vaarg. + auto &TD = DAG.getDataLayout(); + unsigned ArgSizeInBytes = + TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())); + SDValue Tmp3 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, + DAG.getConstant(RoundUpToAlignment(ArgSizeInBytes, + ArgSlotSizeInBytes), + DL, VAList.getValueType())); + // Store the incremented VAList to the legalized pointer + Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr, + MachinePointerInfo(SV), false, false, 0); + + // In big-endian mode we must adjust the pointer when the load size is smaller + // than the argument slot size. We must also reduce the known alignment to + // match. For example in the N64 ABI, we must add 4 bytes to the offset to get + // the correct half of the slot, and reduce the alignment from 8 (slot + // alignment) down to 4 (type alignment). + if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) { + unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes; + VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList, + DAG.getIntPtrConstant(Adjustment, DL)); + } + // Load the actual argument out of the pointer VAList + return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo(), false, false, + false, 0); +} + +static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, + bool HasExtractInsert) { + EVT TyX = Op.getOperand(0).getValueType(); + EVT TyY = Op.getOperand(1).getValueType(); + SDLoc DL(Op); + SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); + SDValue Const31 = DAG.getConstant(31, DL, MVT::i32); + SDValue Res; + + // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it + // to i32. + SDValue X = (TyX == MVT::f32) ? + DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : + DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), + Const1); + SDValue Y = (TyY == MVT::f32) ? + DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : + DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), + Const1); + + if (HasExtractInsert) { + // ext E, Y, 31, 1 ; extract bit31 of Y + // ins X, E, 31, 1 ; insert extracted bit at bit31 of X + SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); + Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); + } else { + // sll SllX, X, 1 + // srl SrlX, SllX, 1 + // srl SrlY, Y, 31 + // sll SllY, SrlX, 31 + // or Or, SrlX, SllY + SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); + SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); + SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); + SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); + Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); + } + + if (TyX == MVT::f32) + return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); + + SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, + Op.getOperand(0), + DAG.getConstant(0, DL, MVT::i32)); + return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); +} + +static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, + bool HasExtractInsert) { + unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); + unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); + EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); + SDLoc DL(Op); + SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); + + // Bitcast to integer nodes. + SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); + SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); + + if (HasExtractInsert) { + // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y + // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X + SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, + DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1); + + if (WidthX > WidthY) + E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); + else if (WidthY > WidthX) + E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); + + SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, + DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1, + X); + return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); + } + + // (d)sll SllX, X, 1 + // (d)srl SrlX, SllX, 1 + // (d)srl SrlY, Y, width(Y)-1 + // (d)sll SllY, SrlX, width(Y)-1 + // or Or, SrlX, SllY + SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); + SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); + SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, + DAG.getConstant(WidthY - 1, DL, MVT::i32)); + + if (WidthX > WidthY) + SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); + else if (WidthY > WidthX) + SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); + + SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, + DAG.getConstant(WidthX - 1, DL, MVT::i32)); + SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); + return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); +} + +SDValue +MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { + if (Subtarget.isGP64bit()) + return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert()); + + return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert()); +} + +SDValue MipsTargetLowering:: +lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { + // check the depth + assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && + "Frame address can only be determined for current frame."); + + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setFrameAddressIsTaken(true); + EVT VT = Op.getValueType(); + SDLoc DL(Op); + SDValue FrameAddr = DAG.getCopyFromReg( + DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT); + return FrameAddr; +} + +SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + if (verifyReturnAddressArgumentIsConstant(Op, DAG)) + return SDValue(); + + // check the depth + assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && + "Return address can be determined only for current frame."); + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MVT VT = Op.getSimpleValueType(); + unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA; + MFI->setReturnAddressIsTaken(true); + + // Return RA, which contains the return address. Mark it an implicit live-in. + unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT)); + return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT); +} + +// An EH_RETURN is the result of lowering llvm.eh.return which in turn is +// generated from __builtin_eh_return (offset, handler) +// The effect of this is to adjust the stack pointer by "offset" +// and then branch to "handler". +SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) + const { + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + MipsFI->setCallsEhReturn(); + SDValue Chain = Op.getOperand(0); + SDValue Offset = Op.getOperand(1); + SDValue Handler = Op.getOperand(2); + SDLoc DL(Op); + EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; + + // Store stack offset in V1, store jump target in V0. Glue CopyToReg and + // EH_RETURN nodes, so that instructions are emitted back-to-back. + unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1; + unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0; + Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue()); + Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1)); + return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain, + DAG.getRegister(OffsetReg, Ty), + DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())), + Chain.getValue(1)); +} + +SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op, + SelectionDAG &DAG) const { + // FIXME: Need pseudo-fence for 'singlethread' fences + // FIXME: Set SType for weaker fences where supported/appropriate. + unsigned SType = 0; + SDLoc DL(Op); + return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0), + DAG.getConstant(SType, DL, MVT::i32)); +} + +SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; + + SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); + SDValue Shamt = Op.getOperand(2); + // if shamt < (VT.bits): + // lo = (shl lo, shamt) + // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt)) + // else: + // lo = 0 + // hi = (shl lo, shamt[4:0]) + SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, + DAG.getConstant(-1, DL, MVT::i32)); + SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, + DAG.getConstant(1, DL, VT)); + SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not); + SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); + SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); + SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); + SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, + DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); + Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, + DAG.getConstant(0, DL, VT), ShiftLeftLo); + Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or); + + SDValue Ops[2] = {Lo, Hi}; + return DAG.getMergeValues(Ops, DL); +} + +SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, + bool IsSRA) const { + SDLoc DL(Op); + SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); + SDValue Shamt = Op.getOperand(2); + MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; + + // if shamt < (VT.bits): + // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt)) + // if isSRA: + // hi = (sra hi, shamt) + // else: + // hi = (srl hi, shamt) + // else: + // if isSRA: + // lo = (sra hi, shamt[4:0]) + // hi = (sra hi, 31) + // else: + // lo = (srl hi, shamt[4:0]) + // hi = 0 + SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, + DAG.getConstant(-1, DL, MVT::i32)); + SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, + DAG.getConstant(1, DL, VT)); + SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not); + SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); + SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); + SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, + DL, VT, Hi, Shamt); + SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, + DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); + SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi, + DAG.getConstant(VT.getSizeInBits() - 1, DL, VT)); + Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or); + Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, + IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi); + + SDValue Ops[2] = {Lo, Hi}; + return DAG.getMergeValues(Ops, DL); +} + +static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD, + SDValue Chain, SDValue Src, unsigned Offset) { + SDValue Ptr = LD->getBasePtr(); + EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT(); + EVT BasePtrVT = Ptr.getValueType(); + SDLoc DL(LD); + SDVTList VTList = DAG.getVTList(VT, MVT::Other); + + if (Offset) + Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, + DAG.getConstant(Offset, DL, BasePtrVT)); + + SDValue Ops[] = { Chain, Ptr, Src }; + return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, + LD->getMemOperand()); +} + +// Expand an unaligned 32 or 64-bit integer load node. +SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { + LoadSDNode *LD = cast<LoadSDNode>(Op); + EVT MemVT = LD->getMemoryVT(); + + if (Subtarget.systemSupportsUnalignedAccess()) + return Op; + + // Return if load is aligned or if MemVT is neither i32 nor i64. + if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) || + ((MemVT != MVT::i32) && (MemVT != MVT::i64))) + return SDValue(); + + bool IsLittle = Subtarget.isLittle(); + EVT VT = Op.getValueType(); + ISD::LoadExtType ExtType = LD->getExtensionType(); + SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT); + + assert((VT == MVT::i32) || (VT == MVT::i64)); + + // Expand + // (set dst, (i64 (load baseptr))) + // to + // (set tmp, (ldl (add baseptr, 7), undef)) + // (set dst, (ldr baseptr, tmp)) + if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) { + SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef, + IsLittle ? 7 : 0); + return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL, + IsLittle ? 0 : 7); + } + + SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef, + IsLittle ? 3 : 0); + SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL, + IsLittle ? 0 : 3); + + // Expand + // (set dst, (i32 (load baseptr))) or + // (set dst, (i64 (sextload baseptr))) or + // (set dst, (i64 (extload baseptr))) + // to + // (set tmp, (lwl (add baseptr, 3), undef)) + // (set dst, (lwr baseptr, tmp)) + if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) || + (ExtType == ISD::EXTLOAD)) + return LWR; + + assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD)); + + // Expand + // (set dst, (i64 (zextload baseptr))) + // to + // (set tmp0, (lwl (add baseptr, 3), undef)) + // (set tmp1, (lwr baseptr, tmp0)) + // (set tmp2, (shl tmp1, 32)) + // (set dst, (srl tmp2, 32)) + SDLoc DL(LD); + SDValue Const32 = DAG.getConstant(32, DL, MVT::i32); + SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32); + SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32); + SDValue Ops[] = { SRL, LWR.getValue(1) }; + return DAG.getMergeValues(Ops, DL); +} + +static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD, + SDValue Chain, unsigned Offset) { + SDValue Ptr = SD->getBasePtr(), Value = SD->getValue(); + EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType(); + SDLoc DL(SD); + SDVTList VTList = DAG.getVTList(MVT::Other); + + if (Offset) + Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, + DAG.getConstant(Offset, DL, BasePtrVT)); + + SDValue Ops[] = { Chain, Value, Ptr }; + return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, + SD->getMemOperand()); +} + +// Expand an unaligned 32 or 64-bit integer store node. +static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG, + bool IsLittle) { + SDValue Value = SD->getValue(), Chain = SD->getChain(); + EVT VT = Value.getValueType(); + + // Expand + // (store val, baseptr) or + // (truncstore val, baseptr) + // to + // (swl val, (add baseptr, 3)) + // (swr val, baseptr) + if ((VT == MVT::i32) || SD->isTruncatingStore()) { + SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain, + IsLittle ? 3 : 0); + return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3); + } + + assert(VT == MVT::i64); + + // Expand + // (store val, baseptr) + // to + // (sdl val, (add baseptr, 7)) + // (sdr val, baseptr) + SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0); + return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7); +} + +// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr). +static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) { + SDValue Val = SD->getValue(); + + if (Val.getOpcode() != ISD::FP_TO_SINT) + return SDValue(); + + EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits()); + SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy, + Val.getOperand(0)); + + return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(), + SD->getPointerInfo(), SD->isVolatile(), + SD->isNonTemporal(), SD->getAlignment()); +} + +SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { + StoreSDNode *SD = cast<StoreSDNode>(Op); + EVT MemVT = SD->getMemoryVT(); + + // Lower unaligned integer stores. + if (!Subtarget.systemSupportsUnalignedAccess() && + (SD->getAlignment() < MemVT.getSizeInBits() / 8) && + ((MemVT == MVT::i32) || (MemVT == MVT::i64))) + return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle()); + + return lowerFP_TO_SINT_STORE(SD, DAG); +} + +SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const { + if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR + || cast<ConstantSDNode> + (Op->getOperand(0).getOperand(0))->getZExtValue() != 0 + || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET) + return SDValue(); + + // The pattern + // (add (frameaddr 0), (frame_to_args_offset)) + // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to + // (add FrameObject, 0) + // where FrameObject is a fixed StackObject with offset 0 which points to + // the old stack pointer. + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + EVT ValTy = Op->getValueType(0); + int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false); + SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy); + SDLoc DL(Op); + return DAG.getNode(ISD::ADD, DL, ValTy, InArgsAddr, + DAG.getConstant(0, DL, ValTy)); +} + +SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op, + SelectionDAG &DAG) const { + EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits()); + SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy, + Op.getOperand(0)); + return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc); +} + +//===----------------------------------------------------------------------===// +// Calling Convention Implementation +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// TODO: Implement a generic logic using tblgen that can support this. +// Mips O32 ABI rules: +// --- +// i32 - Passed in A0, A1, A2, A3 and stack +// f32 - Only passed in f32 registers if no int reg has been used yet to hold +// an argument. Otherwise, passed in A1, A2, A3 and stack. +// f64 - Only passed in two aliased f32 registers if no int reg has been used +// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is +// not used, it must be shadowed. If only A3 is available, shadow it and +// go to stack. +// +// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. +//===----------------------------------------------------------------------===// + +static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, + CCState &State, ArrayRef<MCPhysReg> F64Regs) { + const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>( + State.getMachineFunction().getSubtarget()); + + static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; + static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 }; + + // Do not process byval args here. + if (ArgFlags.isByVal()) + return true; + + // Promote i8 and i16 + if (ArgFlags.isInReg() && !Subtarget.isLittle()) { + if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) { + LocVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExtUpper; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExtUpper; + else + LocInfo = CCValAssign::AExtUpper; + } + } + + // Promote i8 and i16 + if (LocVT == MVT::i8 || LocVT == MVT::i16) { + LocVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExt; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExt; + else + LocInfo = CCValAssign::AExt; + } + + unsigned Reg; + + // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following + // is true: function is vararg, argument is 3rd or higher, there is previous + // argument which is not f32 or f64. + bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 || + State.getFirstUnallocated(F32Regs) != ValNo; + unsigned OrigAlign = ArgFlags.getOrigAlign(); + bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); + + if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { + Reg = State.AllocateReg(IntRegs); + // If this is the first part of an i64 arg, + // the allocated register must be either A0 or A2. + if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) + Reg = State.AllocateReg(IntRegs); + LocVT = MVT::i32; + } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { + // Allocate int register and shadow next int register. If first + // available register is Mips::A1 or Mips::A3, shadow it too. + Reg = State.AllocateReg(IntRegs); + if (Reg == Mips::A1 || Reg == Mips::A3) + Reg = State.AllocateReg(IntRegs); + State.AllocateReg(IntRegs); + LocVT = MVT::i32; + } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { + // we are guaranteed to find an available float register + if (ValVT == MVT::f32) { + Reg = State.AllocateReg(F32Regs); + // Shadow int register + State.AllocateReg(IntRegs); + } else { + Reg = State.AllocateReg(F64Regs); + // Shadow int registers + unsigned Reg2 = State.AllocateReg(IntRegs); + if (Reg2 == Mips::A1 || Reg2 == Mips::A3) + State.AllocateReg(IntRegs); + State.AllocateReg(IntRegs); + } + } else + llvm_unreachable("Cannot handle this ValVT."); + + if (!Reg) { + unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3, + OrigAlign); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + } else + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + + return false; +} + +static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 }; + + return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); +} + +static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 }; + + return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); +} + +static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, + CCState &State) LLVM_ATTRIBUTE_UNUSED; + +#include "MipsGenCallingConv.inc" + +//===----------------------------------------------------------------------===// +// Call Calling Convention Implementation +//===----------------------------------------------------------------------===// + +// Return next O32 integer argument register. +static unsigned getNextIntArgReg(unsigned Reg) { + assert((Reg == Mips::A0) || (Reg == Mips::A2)); + return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; +} + +SDValue +MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset, + SDValue Chain, SDValue Arg, SDLoc DL, + bool IsTailCall, SelectionDAG &DAG) const { + if (!IsTailCall) { + SDValue PtrOff = + DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, + DAG.getIntPtrConstant(Offset, DL)); + return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false, + false, 0); + } + + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false); + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), + /*isVolatile=*/ true, false, 0); +} + +void MipsTargetLowering:: +getOpndList(SmallVectorImpl<SDValue> &Ops, + std::deque< std::pair<unsigned, SDValue> > &RegsToPass, + bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, + bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, + SDValue Chain) const { + // Insert node "GP copy globalreg" before call to function. + // + // R_MIPS_CALL* operators (emitted when non-internal functions are called + // in PIC mode) allow symbols to be resolved via lazy binding. + // The lazy binding stub requires GP to point to the GOT. + // Note that we don't need GP to point to the GOT for indirect calls + // (when R_MIPS_CALL* is not used for the call) because Mips linker generates + // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs + // used for the function (that is, Mips linker doesn't generate lazy binding + // stub for a function whose address is taken in the program). + if (IsPICCall && !InternalLinkage && IsCallReloc) { + unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP; + EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; + RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty))); + } + + // Build a sequence of copy-to-reg nodes chained together with token + // chain and flag operands which copy the outgoing args into registers. + // The InFlag in necessary since all emitted instructions must be + // stuck together. + SDValue InFlag; + + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + // Add argument registers to the end of the list so that they are + // known live into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + const uint32_t *Mask = + TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + if (Subtarget.inMips16HardFloat()) { + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { + llvm::StringRef Sym = G->getGlobal()->getName(); + Function *F = G->getGlobal()->getParent()->getFunction(Sym); + if (F && F->hasFnAttribute("__Mips16RetHelper")) { + Mask = MipsRegisterInfo::getMips16RetHelperMask(); + } + } + } + Ops.push_back(CLI.DAG.getRegisterMask(Mask)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); +} + +/// LowerCall - functions arguments are copied from virtual regs to +/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. +SDValue +MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc DL = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &IsTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool IsVarArg = CLI.IsVarArg; + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); + MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); + bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + MipsCCState CCInfo( + CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), + MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget)); + + // Allocate the reserved argument area. It seems strange to do this from the + // caller side but removing it breaks the frame size calculation. + CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); + + CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), Callee.getNode()); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NextStackOffset = CCInfo.getNextStackOffset(); + + // Check if it's really possible to do a tail call. + if (IsTailCall) + IsTailCall = isEligibleForTailCallOptimization( + CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>()); + + if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) + report_fatal_error("failed to perform tail call elimination on a call " + "site marked musttail"); + + if (IsTailCall) + ++NumTailCalls; + + // Chain is the output chain of the last Load/Store or CopyToReg node. + // ByValChain is the output chain of the last Memcpy node created for copying + // byval arguments to the stack. + unsigned StackAlignment = TFL->getStackAlignment(); + NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment); + SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true); + + if (!IsTailCall) + Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL); + + SDValue StackPtr = + DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, + getPointerTy(DAG.getDataLayout())); + + // With EABI is it possible to have 16 args on registers. + std::deque< std::pair<unsigned, SDValue> > RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + + CCInfo.rewindByValRegsInfo(); + + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + SDValue Arg = OutVals[i]; + CCValAssign &VA = ArgLocs[i]; + MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); + ISD::ArgFlagsTy Flags = Outs[i].Flags; + bool UseUpperBits = false; + + // ByVal Arg. + if (Flags.isByVal()) { + unsigned FirstByValReg, LastByValReg; + unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); + CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); + + assert(Flags.getByValSize() && + "ByVal args of size 0 should have been ignored by front-end."); + assert(ByValIdx < CCInfo.getInRegsParamsCount()); + assert(!IsTailCall && + "Do not tail-call optimize if there is a byval argument."); + passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg, + FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(), + VA); + CCInfo.nextInRegsParam(); + continue; + } + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + if (VA.isRegLoc()) { + if ((ValVT == MVT::f32 && LocVT == MVT::i32) || + (ValVT == MVT::f64 && LocVT == MVT::i64) || + (ValVT == MVT::i64 && LocVT == MVT::f64)) + Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); + else if (ValVT == MVT::f64 && LocVT == MVT::i32) { + SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, + Arg, DAG.getConstant(0, DL, MVT::i32)); + SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, + Arg, DAG.getConstant(1, DL, MVT::i32)); + if (!Subtarget.isLittle()) + std::swap(Lo, Hi); + unsigned LocRegLo = VA.getLocReg(); + unsigned LocRegHigh = getNextIntArgReg(LocRegLo); + RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); + RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); + continue; + } + } + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); + break; + case CCValAssign::SExtUpper: + UseUpperBits = true; + // Fallthrough + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg); + break; + case CCValAssign::ZExtUpper: + UseUpperBits = true; + // Fallthrough + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg); + break; + case CCValAssign::AExtUpper: + UseUpperBits = true; + // Fallthrough + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg); + break; + } + + if (UseUpperBits) { + unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); + unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); + Arg = DAG.getNode( + ISD::SHL, DL, VA.getLocVT(), Arg, + DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); + } + + // Arguments that can be passed on register must be kept at + // RegsToPass vector + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + continue; + } + + // Register can't get to this point... + assert(VA.isMemLoc()); + + // emit ISD::STORE whichs stores the + // parameter value to a stack Location + MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(), + Chain, Arg, DL, IsTailCall, DAG)); + } + + // Transform all store nodes into one single node because all store + // nodes are independent of each other. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); + + // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every + // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol + // node so that legalize doesn't hack it. + bool IsPICCall = (ABI.IsN64() || IsPIC); // true if calls are translated to + // jalr $25 + bool GlobalOrExternal = false, InternalLinkage = false, IsCallReloc = false; + SDValue CalleeLo; + EVT Ty = Callee.getValueType(); + + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + if (IsPICCall) { + const GlobalValue *Val = G->getGlobal(); + InternalLinkage = Val->hasInternalLinkage(); + + if (InternalLinkage) + Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64()); + else if (LargeGOT) { + Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16, + MipsII::MO_CALL_LO16, Chain, + FuncInfo->callPtrInfo(Val)); + IsCallReloc = true; + } else { + Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, + FuncInfo->callPtrInfo(Val)); + IsCallReloc = true; + } + } else + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, + getPointerTy(DAG.getDataLayout()), 0, + MipsII::MO_NO_FLAG); + GlobalOrExternal = true; + } + else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + const char *Sym = S->getSymbol(); + + if (!ABI.IsN64() && !IsPIC) // !N64 && static + Callee = DAG.getTargetExternalSymbol( + Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG); + else if (LargeGOT) { + Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16, + MipsII::MO_CALL_LO16, Chain, + FuncInfo->callPtrInfo(Sym)); + IsCallReloc = true; + } else { // N64 || PIC + Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, + FuncInfo->callPtrInfo(Sym)); + IsCallReloc = true; + } + + GlobalOrExternal = true; + } + + SmallVector<SDValue, 8> Ops(1, Chain); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage, + IsCallReloc, CLI, Callee, Chain); + + if (IsTailCall) + return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops); + + Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops); + SDValue InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node. + Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal, + DAG.getIntPtrConstant(0, DL, true), InFlag, DL); + InFlag = Chain.getValue(1); + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, + InVals, CLI); +} + +/// LowerCallResult - Lower the result values of a call into the +/// appropriate copies out of appropriate physical registers. +SDValue MipsTargetLowering::LowerCallResult( + SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals, + TargetLowering::CallLoweringInfo &CLI) const { + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(), + RVLocs[i].getLocVT(), InFlag); + Chain = Val.getValue(1); + InFlag = Val.getValue(2); + + if (VA.isUpperBitsInLoc()) { + unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits(); + unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); + unsigned Shift = + VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; + Val = DAG.getNode( + Shift, DL, VA.getLocVT(), Val, + DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); + } + + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); + break; + case CCValAssign::AExt: + case CCValAssign::AExtUpper: + Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); + break; + case CCValAssign::ZExt: + case CCValAssign::ZExtUpper: + Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, + DAG.getValueType(VA.getValVT())); + Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); + break; + case CCValAssign::SExt: + case CCValAssign::SExtUpper: + Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, + DAG.getValueType(VA.getValVT())); + Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); + break; + } + + InVals.push_back(Val); + } + + return Chain; +} + +static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA, + EVT ArgVT, SDLoc DL, SelectionDAG &DAG) { + MVT LocVT = VA.getLocVT(); + EVT ValVT = VA.getValVT(); + + // Shift into the upper bits if necessary. + switch (VA.getLocInfo()) { + default: + break; + case CCValAssign::AExtUpper: + case CCValAssign::SExtUpper: + case CCValAssign::ZExtUpper: { + unsigned ValSizeInBits = ArgVT.getSizeInBits(); + unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); + unsigned Opcode = + VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; + Val = DAG.getNode( + Opcode, DL, VA.getLocVT(), Val, + DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); + break; + } + } + + // If this is an value smaller than the argument slot size (32-bit for O32, + // 64-bit for N32/N64), it has been promoted in some way to the argument slot + // size. Extract the value and insert any appropriate assertions regarding + // sign/zero extension. + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::AExtUpper: + case CCValAssign::AExt: + Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); + break; + case CCValAssign::SExtUpper: + case CCValAssign::SExt: + Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT)); + Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); + break; + case CCValAssign::ZExtUpper: + case CCValAssign::ZExt: + Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT)); + Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); + break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); + break; + } + + return Val; +} + +//===----------------------------------------------------------------------===// +// Formal Arguments Calling Convention Implementation +//===----------------------------------------------------------------------===// +/// LowerFormalArguments - transform physical registers into virtual registers +/// and generate load operations for arguments places on the stack. +SDValue +MipsTargetLowering::LowerFormalArguments(SDValue Chain, + CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) + const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + MipsFI->setVarArgsFrameIndex(0); + + // Used with vargs to acumulate store chains. + std::vector<SDValue> OutChains; + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); + const Function *Func = DAG.getMachineFunction().getFunction(); + Function::const_arg_iterator FuncArg = Func->arg_begin(); + + if (Func->hasFnAttribute("interrupt") && !Func->arg_empty()) + report_fatal_error( + "Functions with the interrupt attribute cannot have arguments!"); + + CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg); + MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(), + CCInfo.getInRegsParamsCount() > 0); + + unsigned CurArgIdx = 0; + CCInfo.rewindByValRegsInfo(); + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (Ins[i].isOrigArg()) { + std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx); + CurArgIdx = Ins[i].getOrigArgIndex(); + } + EVT ValVT = VA.getValVT(); + ISD::ArgFlagsTy Flags = Ins[i].Flags; + bool IsRegLoc = VA.isRegLoc(); + + if (Flags.isByVal()) { + assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit"); + unsigned FirstByValReg, LastByValReg; + unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); + CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); + + assert(Flags.getByValSize() && + "ByVal args of size 0 should have been ignored by front-end."); + assert(ByValIdx < CCInfo.getInRegsParamsCount()); + copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg, + FirstByValReg, LastByValReg, VA, CCInfo); + CCInfo.nextInRegsParam(); + continue; + } + + // Arguments stored on registers + if (IsRegLoc) { + MVT RegVT = VA.getLocVT(); + unsigned ArgReg = VA.getLocReg(); + const TargetRegisterClass *RC = getRegClassFor(RegVT); + + // Transform the arguments stored on + // physical registers into virtual ones + unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC); + SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); + + ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); + + // Handle floating point arguments passed in integer registers and + // long double arguments passed in floating point registers. + if ((RegVT == MVT::i32 && ValVT == MVT::f32) || + (RegVT == MVT::i64 && ValVT == MVT::f64) || + (RegVT == MVT::f64 && ValVT == MVT::i64)) + ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue); + else if (ABI.IsO32() && RegVT == MVT::i32 && + ValVT == MVT::f64) { + unsigned Reg2 = addLiveIn(DAG.getMachineFunction(), + getNextIntArgReg(ArgReg), RC); + SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT); + if (!Subtarget.isLittle()) + std::swap(ArgValue, ArgValue2); + ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, + ArgValue, ArgValue2); + } + + InVals.push_back(ArgValue); + } else { // VA.isRegLoc() + MVT LocVT = VA.getLocVT(); + + if (ABI.IsO32()) { + // We ought to be able to use LocVT directly but O32 sets it to i32 + // when allocating floating point values to integer registers. + // This shouldn't influence how we load the value into registers unless + // we are targeting softfloat. + if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat()) + LocVT = VA.getValVT(); + } + + // sanity check + assert(VA.isMemLoc()); + + // The stack pointer offset is relative to the caller stack frame. + int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, + VA.getLocMemOffset(), true); + + // Create load nodes to retrieve arguments from the stack + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue ArgValue = DAG.getLoad( + LocVT, DL, Chain, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), + false, false, false, 0); + OutChains.push_back(ArgValue.getValue(1)); + + ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); + + InVals.push_back(ArgValue); + } + } + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + // The mips ABIs for returning structs by value requires that we copy + // the sret argument into $v0 for the return. Save the argument into + // a virtual register so that we can access it from the return points. + if (Ins[i].Flags.isSRet()) { + unsigned Reg = MipsFI->getSRetReturnReg(); + if (!Reg) { + Reg = MF.getRegInfo().createVirtualRegister( + getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32)); + MipsFI->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); + break; + } + } + + if (IsVarArg) + writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo); + + // All stores are grouped in one node to allow the matching between + // the size of Ins and InVals. This only happens when on varg functions + if (!OutChains.empty()) { + OutChains.push_back(Chain); + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); + } + + return Chain; +} + +//===----------------------------------------------------------------------===// +// Return Value Calling Convention Implementation +//===----------------------------------------------------------------------===// + +bool +MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv, + MachineFunction &MF, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + LLVMContext &Context) const { + SmallVector<CCValAssign, 16> RVLocs; + MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); + return CCInfo.CheckReturn(Outs, RetCC_Mips); +} + +bool +MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { + if (Subtarget.hasMips3() && Subtarget.useSoftFloat()) { + if (Type == MVT::i32) + return true; + } + return IsSigned; +} + +SDValue +MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, + SDLoc DL, SelectionDAG &DAG) const { + + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + MipsFI->setISR(); + + return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps); +} + +SDValue +MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + SDLoc DL, SelectionDAG &DAG) const { + // CCValAssign - represent the assignment of + // the return value to a location + SmallVector<CCValAssign, 16> RVLocs; + MachineFunction &MF = DAG.getMachineFunction(); + + // CCState - Info about the registers and stack slot. + MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); + + // Analyze return values. + CCInfo.AnalyzeReturn(Outs, RetCC_Mips); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + SDValue Val = OutVals[i]; + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + bool UseUpperBits = false; + + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val); + break; + case CCValAssign::AExtUpper: + UseUpperBits = true; + // Fallthrough + case CCValAssign::AExt: + Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val); + break; + case CCValAssign::ZExtUpper: + UseUpperBits = true; + // Fallthrough + case CCValAssign::ZExt: + Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val); + break; + case CCValAssign::SExtUpper: + UseUpperBits = true; + // Fallthrough + case CCValAssign::SExt: + Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val); + break; + } + + if (UseUpperBits) { + unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); + unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); + Val = DAG.getNode( + ISD::SHL, DL, VA.getLocVT(), Val, + DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); + } + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag); + + // Guarantee that all emitted copies are stuck together with flags. + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + // The mips ABIs for returning structs by value requires that we copy + // the sret argument into $v0 for the return. We saved the argument into + // a virtual register in the entry block, so now we copy the value out + // and into $v0. + if (MF.getFunction()->hasStructRetAttr()) { + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + unsigned Reg = MipsFI->getSRetReturnReg(); + + if (!Reg) + llvm_unreachable("sret virtual register not created in the entry block"); + SDValue Val = + DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); + unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0; + + Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout()))); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + // ISRs must use "eret". + if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt")) + return LowerInterruptReturn(RetOps, DL, DAG); + + // Standard return on Mips is a "jr $ra" + return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps); +} + +//===----------------------------------------------------------------------===// +// Mips Inline Assembly Support +//===----------------------------------------------------------------------===// + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +MipsTargetLowering::ConstraintType +MipsTargetLowering::getConstraintType(StringRef Constraint) const { + // Mips specific constraints + // GCC config/mips/constraints.md + // + // 'd' : An address register. Equivalent to r + // unless generating MIPS16 code. + // 'y' : Equivalent to r; retained for + // backwards compatibility. + // 'c' : A register suitable for use in an indirect + // jump. This will always be $25 for -mabicalls. + // 'l' : The lo register. 1 word storage. + // 'x' : The hilo register pair. Double word storage. + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default : break; + case 'd': + case 'y': + case 'f': + case 'c': + case 'l': + case 'x': + return C_RegisterClass; + case 'R': + return C_Memory; + } + } + + if (Constraint == "ZC") + return C_Memory; + + return TargetLowering::getConstraintType(Constraint); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight +MipsTargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (!CallOperandVal) + return CW_Default; + Type *type = CallOperandVal->getType(); + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + break; + case 'd': + case 'y': + if (type->isIntegerTy()) + weight = CW_Register; + break; + case 'f': // FPU or MSA register + if (Subtarget.hasMSA() && type->isVectorTy() && + cast<VectorType>(type)->getBitWidth() == 128) + weight = CW_Register; + else if (type->isFloatTy()) + weight = CW_Register; + break; + case 'c': // $25 for indirect jumps + case 'l': // lo register + case 'x': // hilo register pair + if (type->isIntegerTy()) + weight = CW_SpecificReg; + break; + case 'I': // signed 16 bit immediate + case 'J': // integer zero + case 'K': // unsigned 16 bit immediate + case 'L': // signed 32 bit immediate where lower 16 bits are 0 + case 'N': // immediate in the range of -65535 to -1 (inclusive) + case 'O': // signed 15 bit immediate (+- 16383) + case 'P': // immediate in the range of 65535 to 1 (inclusive) + if (isa<ConstantInt>(CallOperandVal)) + weight = CW_Constant; + break; + case 'R': + weight = CW_Memory; + break; + } + return weight; +} + +/// This is a helper function to parse a physical register string and split it +/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag +/// that is returned indicates whether parsing was successful. The second flag +/// is true if the numeric part exists. +static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix, + unsigned long long &Reg) { + if (C.front() != '{' || C.back() != '}') + return std::make_pair(false, false); + + // Search for the first numeric character. + StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1; + I = std::find_if(B, E, isdigit); + + Prefix = StringRef(B, I - B); + + // The second flag is set to false if no numeric characters were found. + if (I == E) + return std::make_pair(true, false); + + // Parse the numeric characters. + return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg), + true); +} + +std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering:: +parseRegForInlineAsmConstraint(StringRef C, MVT VT) const { + const TargetRegisterInfo *TRI = + Subtarget.getRegisterInfo(); + const TargetRegisterClass *RC; + StringRef Prefix; + unsigned long long Reg; + + std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg); + + if (!R.first) + return std::make_pair(0U, nullptr); + + if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo. + // No numeric characters follow "hi" or "lo". + if (R.second) + return std::make_pair(0U, nullptr); + + RC = TRI->getRegClass(Prefix == "hi" ? + Mips::HI32RegClassID : Mips::LO32RegClassID); + return std::make_pair(*(RC->begin()), RC); + } else if (Prefix.startswith("$msa")) { + // Parse $msa(ir|csr|access|save|modify|request|map|unmap) + + // No numeric characters follow the name. + if (R.second) + return std::make_pair(0U, nullptr); + + Reg = StringSwitch<unsigned long long>(Prefix) + .Case("$msair", Mips::MSAIR) + .Case("$msacsr", Mips::MSACSR) + .Case("$msaaccess", Mips::MSAAccess) + .Case("$msasave", Mips::MSASave) + .Case("$msamodify", Mips::MSAModify) + .Case("$msarequest", Mips::MSARequest) + .Case("$msamap", Mips::MSAMap) + .Case("$msaunmap", Mips::MSAUnmap) + .Default(0); + + if (!Reg) + return std::make_pair(0U, nullptr); + + RC = TRI->getRegClass(Mips::MSACtrlRegClassID); + return std::make_pair(Reg, RC); + } + + if (!R.second) + return std::make_pair(0U, nullptr); + + if (Prefix == "$f") { // Parse $f0-$f31. + // If the size of FP registers is 64-bit or Reg is an even number, select + // the 64-bit register class. Otherwise, select the 32-bit register class. + if (VT == MVT::Other) + VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32; + + RC = getRegClassFor(VT); + + if (RC == &Mips::AFGR64RegClass) { + assert(Reg % 2 == 0); + Reg >>= 1; + } + } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7. + RC = TRI->getRegClass(Mips::FCCRegClassID); + else if (Prefix == "$w") { // Parse $w0-$w31. + RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT); + } else { // Parse $0-$31. + assert(Prefix == "$"); + RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT); + } + + assert(Reg < RC->getNumRegs()); + return std::make_pair(*(RC->begin() + Reg), RC); +} + +/// Given a register class constraint, like 'r', if this corresponds directly +/// to an LLVM register class, return a register of 0 and the register class +/// pointer. +std::pair<unsigned, const TargetRegisterClass *> +MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, + MVT VT) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'd': // Address register. Same as 'r' unless generating MIPS16 code. + case 'y': // Same as 'r'. Exists for compatibility. + case 'r': + if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { + if (Subtarget.inMips16Mode()) + return std::make_pair(0U, &Mips::CPU16RegsRegClass); + return std::make_pair(0U, &Mips::GPR32RegClass); + } + if (VT == MVT::i64 && !Subtarget.isGP64bit()) + return std::make_pair(0U, &Mips::GPR32RegClass); + if (VT == MVT::i64 && Subtarget.isGP64bit()) + return std::make_pair(0U, &Mips::GPR64RegClass); + // This will generate an error message + return std::make_pair(0U, nullptr); + case 'f': // FPU or MSA register + if (VT == MVT::v16i8) + return std::make_pair(0U, &Mips::MSA128BRegClass); + else if (VT == MVT::v8i16 || VT == MVT::v8f16) + return std::make_pair(0U, &Mips::MSA128HRegClass); + else if (VT == MVT::v4i32 || VT == MVT::v4f32) + return std::make_pair(0U, &Mips::MSA128WRegClass); + else if (VT == MVT::v2i64 || VT == MVT::v2f64) + return std::make_pair(0U, &Mips::MSA128DRegClass); + else if (VT == MVT::f32) + return std::make_pair(0U, &Mips::FGR32RegClass); + else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) { + if (Subtarget.isFP64bit()) + return std::make_pair(0U, &Mips::FGR64RegClass); + return std::make_pair(0U, &Mips::AFGR64RegClass); + } + break; + case 'c': // register suitable for indirect jump + if (VT == MVT::i32) + return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass); + assert(VT == MVT::i64 && "Unexpected type."); + return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass); + case 'l': // register suitable for indirect jump + if (VT == MVT::i32) + return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass); + return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass); + case 'x': // register suitable for indirect jump + // Fixme: Not triggering the use of both hi and low + // This will generate an error message + return std::make_pair(0U, nullptr); + } + } + + std::pair<unsigned, const TargetRegisterClass *> R; + R = parseRegForInlineAsmConstraint(Constraint, VT); + + if (R.second) + return R; + + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); +} + +/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +/// vector. If it is invalid, don't add anything to Ops. +void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue>&Ops, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue Result; + + // Only support length 1 constraints for now. + if (Constraint.length() > 1) return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: break; // This will fall through to the generic implementation + case 'I': // Signed 16 bit constant + // If this fails, the parent routine will give an error + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if (isInt<16>(Val)) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'J': // integer zero + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getZExtValue(); + if (Val == 0) { + Result = DAG.getTargetConstant(0, DL, Type); + break; + } + } + return; + case 'K': // unsigned 16 bit immediate + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + uint64_t Val = (uint64_t)C->getZExtValue(); + if (isUInt<16>(Val)) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'L': // signed 32 bit immediate where lower 16 bits are 0 + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){ + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'N': // immediate in the range of -65535 to -1 (inclusive) + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if ((Val >= -65535) && (Val <= -1)) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'O': // signed 15 bit immediate + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if ((isInt<15>(Val))) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'P': // immediate in the range of 1 to 65535 (inclusive) + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if ((Val <= 65535) && (Val >= 1)) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + + TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + switch (AM.Scale) { + case 0: // "r+i" or just "i", depending on HasBaseReg. + break; + case 1: + if (!AM.HasBaseReg) // allow "r+i". + break; + return false; // disallow "r+r" or "r+r+i". + default: + return false; + } + + return true; +} + +bool +MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + // The Mips target isn't yet aware of offsets. + return false; +} + +EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, + unsigned SrcAlign, + bool IsMemset, bool ZeroMemset, + bool MemcpyStrSrc, + MachineFunction &MF) const { + if (Subtarget.hasMips64()) + return MVT::i64; + + return MVT::i32; +} + +bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + if (VT != MVT::f32 && VT != MVT::f64) + return false; + if (Imm.isNegZero()) + return false; + return Imm.isZero(); +} + +unsigned MipsTargetLowering::getJumpTableEncoding() const { + if (ABI.IsN64()) + return MachineJumpTableInfo::EK_GPRel64BlockAddress; + + return TargetLowering::getJumpTableEncoding(); +} + +bool MipsTargetLowering::useSoftFloat() const { + return Subtarget.useSoftFloat(); +} + +void MipsTargetLowering::copyByValRegs( + SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains, SelectionDAG &DAG, + const ISD::ArgFlagsTy &Flags, SmallVectorImpl<SDValue> &InVals, + const Argument *FuncArg, unsigned FirstReg, unsigned LastReg, + const CCValAssign &VA, MipsCCState &State) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes(); + unsigned NumRegs = LastReg - FirstReg; + unsigned RegAreaSize = NumRegs * GPRSizeInBytes; + unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize); + int FrameObjOffset; + ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs(); + + if (RegAreaSize) + FrameObjOffset = + (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - + (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes); + else + FrameObjOffset = VA.getLocMemOffset(); + + // Create frame object. + EVT PtrTy = getPointerTy(DAG.getDataLayout()); + int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true); + SDValue FIN = DAG.getFrameIndex(FI, PtrTy); + InVals.push_back(FIN); + + if (!NumRegs) + return; + + // Copy arg registers. + MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8); + const TargetRegisterClass *RC = getRegClassFor(RegTy); + + for (unsigned I = 0; I < NumRegs; ++I) { + unsigned ArgReg = ByValArgRegs[FirstReg + I]; + unsigned VReg = addLiveIn(MF, ArgReg, RC); + unsigned Offset = I * GPRSizeInBytes; + SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN, + DAG.getConstant(Offset, DL, PtrTy)); + SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy), + StorePtr, MachinePointerInfo(FuncArg, Offset), + false, false, 0); + OutChains.push_back(Store); + } +} + +// Copy byVal arg to registers and stack. +void MipsTargetLowering::passByValArg( + SDValue Chain, SDLoc DL, + std::deque<std::pair<unsigned, SDValue>> &RegsToPass, + SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr, + MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg, + unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle, + const CCValAssign &VA) const { + unsigned ByValSizeInBytes = Flags.getByValSize(); + unsigned OffsetInBytes = 0; // From beginning of struct + unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); + unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes); + EVT PtrTy = getPointerTy(DAG.getDataLayout()), + RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); + unsigned NumRegs = LastReg - FirstReg; + + if (NumRegs) { + ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs(); + bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes); + unsigned I = 0; + + // Copy words to registers. + for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) { + SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, + DAG.getConstant(OffsetInBytes, DL, PtrTy)); + SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr, + MachinePointerInfo(), false, false, false, + Alignment); + MemOpChains.push_back(LoadVal.getValue(1)); + unsigned ArgReg = ArgRegs[FirstReg + I]; + RegsToPass.push_back(std::make_pair(ArgReg, LoadVal)); + } + + // Return if the struct has been fully copied. + if (ByValSizeInBytes == OffsetInBytes) + return; + + // Copy the remainder of the byval argument with sub-word loads and shifts. + if (LeftoverBytes) { + SDValue Val; + + for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0; + OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) { + unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes; + + if (RemainingSizeInBytes < LoadSizeInBytes) + continue; + + // Load subword. + SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, + DAG.getConstant(OffsetInBytes, DL, + PtrTy)); + SDValue LoadVal = DAG.getExtLoad( + ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(), + MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false, + Alignment); + MemOpChains.push_back(LoadVal.getValue(1)); + + // Shift the loaded value. + unsigned Shamt; + + if (isLittle) + Shamt = TotalBytesLoaded * 8; + else + Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8; + + SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal, + DAG.getConstant(Shamt, DL, MVT::i32)); + + if (Val.getNode()) + Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift); + else + Val = Shift; + + OffsetInBytes += LoadSizeInBytes; + TotalBytesLoaded += LoadSizeInBytes; + Alignment = std::min(Alignment, LoadSizeInBytes); + } + + unsigned ArgReg = ArgRegs[FirstReg + I]; + RegsToPass.push_back(std::make_pair(ArgReg, Val)); + return; + } + } + + // Copy remainder of byval arg to it with memcpy. + unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes; + SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, + DAG.getConstant(OffsetInBytes, DL, PtrTy)); + SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr, + DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); + Chain = DAG.getMemcpy(Chain, DL, Dst, Src, + DAG.getConstant(MemCpySize, DL, PtrTy), + Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false, + /*isTailCall=*/false, + MachinePointerInfo(), MachinePointerInfo()); + MemOpChains.push_back(Chain); +} + +void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains, + SDValue Chain, SDLoc DL, + SelectionDAG &DAG, + CCState &State) const { + ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs(); + unsigned Idx = State.getFirstUnallocated(ArgRegs); + unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); + MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); + const TargetRegisterClass *RC = getRegClassFor(RegTy); + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + // Offset of the first variable argument from stack pointer. + int VaArgOffset; + + if (ArgRegs.size() == Idx) + VaArgOffset = + RoundUpToAlignment(State.getNextStackOffset(), RegSizeInBytes); + else { + VaArgOffset = + (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - + (int)(RegSizeInBytes * (ArgRegs.size() - Idx)); + } + + // Record the frame index of the first variable argument + // which is a value necessary to VASTART. + int FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true); + MipsFI->setVarArgsFrameIndex(FI); + + // Copy the integer registers that have not been used for argument passing + // to the argument register save area. For O32, the save area is allocated + // in the caller's stack frame, while for N32/64, it is allocated in the + // callee's stack frame. + for (unsigned I = Idx; I < ArgRegs.size(); + ++I, VaArgOffset += RegSizeInBytes) { + unsigned Reg = addLiveIn(MF, ArgRegs[I], RC); + SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy); + FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true); + SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, + MachinePointerInfo(), false, false, 0); + cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue( + (Value *)nullptr); + OutChains.push_back(Store); + } +} + +void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size, + unsigned Align) const { + const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); + + assert(Size && "Byval argument's size shouldn't be 0."); + + Align = std::min(Align, TFL->getStackAlignment()); + + unsigned FirstReg = 0; + unsigned NumRegs = 0; + + if (State->getCallingConv() != CallingConv::Fast) { + unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); + ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs(); + // FIXME: The O32 case actually describes no shadow registers. + const MCPhysReg *ShadowRegs = + ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs; + + // We used to check the size as well but we can't do that anymore since + // CCState::HandleByVal() rounds up the size after calling this function. + assert(!(Align % RegSizeInBytes) && + "Byval argument's alignment should be a multiple of" + "RegSizeInBytes."); + + FirstReg = State->getFirstUnallocated(IntArgRegs); + + // If Align > RegSizeInBytes, the first arg register must be even. + // FIXME: This condition happens to do the right thing but it's not the + // right way to test it. We want to check that the stack frame offset + // of the register is aligned. + if ((Align > RegSizeInBytes) && (FirstReg % 2)) { + State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]); + ++FirstReg; + } + + // Mark the registers allocated. + Size = RoundUpToAlignment(Size, RegSizeInBytes); + for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size()); + Size -= RegSizeInBytes, ++I, ++NumRegs) + State->AllocateReg(IntArgRegs[I], ShadowRegs[I]); + } + + State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs); +} + +MachineBasicBlock * +MipsTargetLowering::emitPseudoSELECT(MachineInstr *MI, MachineBasicBlock *BB, + bool isFPCmp, unsigned Opc) const { + assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && + "Subtarget already supports SELECT nodes with the use of" + "conditional-move instructions."); + + const TargetInstrInfo *TII = + Subtarget.getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + // To "insert" a SELECT instruction, we actually have to insert the + // diamond control-flow pattern. The incoming instruction knows the + // destination vreg to set, the condition code register to branch on, the + // true/false values to select between, and a branch opcode to use. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = ++BB->getIterator(); + + // thisMBB: + // ... + // TrueVal = ... + // setcc r1, r2, r3 + // bNE r1, r0, copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Next, add the true and fallthrough blocks as its successors. + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + if (isFPCmp) { + // bc1[tf] cc, sinkMBB + BuildMI(BB, DL, TII->get(Opc)) + .addReg(MI->getOperand(1).getReg()) + .addMBB(sinkMBB); + } else { + // bne rs, $0, sinkMBB + BuildMI(BB, DL, TII->get(Opc)) + .addReg(MI->getOperand(1).getReg()) + .addReg(Mips::ZERO) + .addMBB(sinkMBB); + } + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + BB = copy0MBB; + + // Update machine-CFG edges + BB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] + // ... + BB = sinkMBB; + + BuildMI(*BB, BB->begin(), DL, + TII->get(Mips::PHI), MI->getOperand(0).getReg()) + .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB) + .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB); + + MI->eraseFromParent(); // The pseudo instruction is gone now. + + return BB; +} + +// FIXME? Maybe this could be a TableGen attribute on some registers and +// this table could be generated automatically from RegInfo. +unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT, + SelectionDAG &DAG) const { + // Named registers is expected to be fairly rare. For now, just support $28 + // since the linux kernel uses it. + if (Subtarget.isGP64bit()) { + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("$28", Mips::GP_64) + .Default(0); + if (Reg) + return Reg; + } else { + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("$28", Mips::GP) + .Default(0); + if (Reg) + return Reg; + } + report_fatal_error("Invalid register name global variable"); +} |
