summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp')
-rw-r--r--gnu/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp270
1 files changed, 0 insertions, 270 deletions
diff --git a/gnu/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp b/gnu/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
deleted file mode 100644
index 9596a2b6388..00000000000
--- a/gnu/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
+++ /dev/null
@@ -1,270 +0,0 @@
-//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "SystemZTargetMachine.h"
-#include "MCTargetDesc/SystemZMCTargetDesc.h"
-#include "SystemZ.h"
-#include "SystemZMachineScheduler.h"
-#include "SystemZTargetTransformInfo.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
-#include "llvm/CodeGen/TargetPassConfig.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/Support/CodeGen.h"
-#include "llvm/Support/TargetRegistry.h"
-#include "llvm/Target/TargetLoweringObjectFile.h"
-#include "llvm/Transforms/Scalar.h"
-#include <string>
-
-using namespace llvm;
-
-extern "C" void LLVMInitializeSystemZTarget() {
- // Register the target.
- RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
-}
-
-// Determine whether we use the vector ABI.
-static bool UsesVectorABI(StringRef CPU, StringRef FS) {
- // We use the vector ABI whenever the vector facility is avaiable.
- // This is the case by default if CPU is z13 or later, and can be
- // overridden via "[+-]vector" feature string elements.
- bool VectorABI = true;
- if (CPU.empty() || CPU == "generic" ||
- CPU == "z10" || CPU == "z196" || CPU == "zEC12")
- VectorABI = false;
-
- SmallVector<StringRef, 3> Features;
- FS.split(Features, ',', -1, false /* KeepEmpty */);
- for (auto &Feature : Features) {
- if (Feature == "vector" || Feature == "+vector")
- VectorABI = true;
- if (Feature == "-vector")
- VectorABI = false;
- }
-
- return VectorABI;
-}
-
-static std::string computeDataLayout(const Triple &TT, StringRef CPU,
- StringRef FS) {
- bool VectorABI = UsesVectorABI(CPU, FS);
- std::string Ret;
-
- // Big endian.
- Ret += "E";
-
- // Data mangling.
- Ret += DataLayout::getManglingComponent(TT);
-
- // Make sure that global data has at least 16 bits of alignment by
- // default, so that we can refer to it using LARL. We don't have any
- // special requirements for stack variables though.
- Ret += "-i1:8:16-i8:8:16";
-
- // 64-bit integers are naturally aligned.
- Ret += "-i64:64";
-
- // 128-bit floats are aligned only to 64 bits.
- Ret += "-f128:64";
-
- // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
- if (VectorABI)
- Ret += "-v128:64";
-
- // We prefer 16 bits of aligned for all globals; see above.
- Ret += "-a:8:16";
-
- // Integer registers are 32 or 64 bits.
- Ret += "-n32:64";
-
- return Ret;
-}
-
-static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
- // Static code is suitable for use in a dynamic executable; there is no
- // separate DynamicNoPIC model.
- if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
- return Reloc::Static;
- return *RM;
-}
-
-// For SystemZ we define the models as follows:
-//
-// Small: BRASL can call any function and will use a stub if necessary.
-// Locally-binding symbols will always be in range of LARL.
-//
-// Medium: BRASL can call any function and will use a stub if necessary.
-// GOT slots and locally-defined text will always be in range
-// of LARL, but other symbols might not be.
-//
-// Large: Equivalent to Medium for now.
-//
-// Kernel: Equivalent to Medium for now.
-//
-// This means that any PIC module smaller than 4GB meets the
-// requirements of Small, so Small seems like the best default there.
-//
-// All symbols bind locally in a non-PIC module, so the choice is less
-// obvious. There are two cases:
-//
-// - When creating an executable, PLTs and copy relocations allow
-// us to treat external symbols as part of the executable.
-// Any executable smaller than 4GB meets the requirements of Small,
-// so that seems like the best default.
-//
-// - When creating JIT code, stubs will be in range of BRASL if the
-// image is less than 4GB in size. GOT entries will likewise be
-// in range of LARL. However, the JIT environment has no equivalent
-// of copy relocs, so locally-binding data symbols might not be in
-// the range of LARL. We need the Medium model in that case.
-static CodeModel::Model
-getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
- bool JIT) {
- if (CM) {
- if (*CM == CodeModel::Tiny)
- report_fatal_error("Target does not support the tiny CodeModel");
- if (*CM == CodeModel::Kernel)
- report_fatal_error("Target does not support the kernel CodeModel");
- return *CM;
- }
- if (JIT)
- return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
- return CodeModel::Small;
-}
-
-SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
- StringRef CPU, StringRef FS,
- const TargetOptions &Options,
- Optional<Reloc::Model> RM,
- Optional<CodeModel::Model> CM,
- CodeGenOpt::Level OL, bool JIT)
- : LLVMTargetMachine(
- T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
- getEffectiveRelocModel(RM),
- getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
- OL),
- TLOF(llvm::make_unique<TargetLoweringObjectFileELF>()),
- Subtarget(TT, CPU, FS, *this) {
- initAsmInfo();
-}
-
-SystemZTargetMachine::~SystemZTargetMachine() = default;
-
-namespace {
-
-/// SystemZ Code Generator Pass Configuration Options.
-class SystemZPassConfig : public TargetPassConfig {
-public:
- SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
- : TargetPassConfig(TM, PM) {}
-
- SystemZTargetMachine &getSystemZTargetMachine() const {
- return getTM<SystemZTargetMachine>();
- }
-
- ScheduleDAGInstrs *
- createPostMachineScheduler(MachineSchedContext *C) const override {
- return new ScheduleDAGMI(C,
- llvm::make_unique<SystemZPostRASchedStrategy>(C),
- /*RemoveKillFlags=*/true);
- }
-
- void addIRPasses() override;
- bool addInstSelector() override;
- bool addILPOpts() override;
- void addPreSched2() override;
- void addPreEmitPass() override;
-};
-
-} // end anonymous namespace
-
-void SystemZPassConfig::addIRPasses() {
- if (getOptLevel() != CodeGenOpt::None) {
- addPass(createSystemZTDCPass());
- addPass(createLoopDataPrefetchPass());
- }
-
- TargetPassConfig::addIRPasses();
-}
-
-bool SystemZPassConfig::addInstSelector() {
- addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
-
- if (getOptLevel() != CodeGenOpt::None)
- addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
-
- return false;
-}
-
-bool SystemZPassConfig::addILPOpts() {
- addPass(&EarlyIfConverterID);
- return true;
-}
-
-void SystemZPassConfig::addPreSched2() {
- addPass(createSystemZExpandPseudoPass(getSystemZTargetMachine()));
-
- if (getOptLevel() != CodeGenOpt::None)
- addPass(&IfConverterID);
-}
-
-void SystemZPassConfig::addPreEmitPass() {
- // Do instruction shortening before compare elimination because some
- // vector instructions will be shortened into opcodes that compare
- // elimination recognizes.
- if (getOptLevel() != CodeGenOpt::None)
- addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
-
- // We eliminate comparisons here rather than earlier because some
- // transformations can change the set of available CC values and we
- // generally want those transformations to have priority. This is
- // especially true in the commonest case where the result of the comparison
- // is used by a single in-range branch instruction, since we will then
- // be able to fuse the compare and the branch instead.
- //
- // For example, two-address NILF can sometimes be converted into
- // three-address RISBLG. NILF produces a CC value that indicates whether
- // the low word is zero, but RISBLG does not modify CC at all. On the
- // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
- // The CC value produced by NILL isn't useful for our purposes, but the
- // value produced by RISBG can be used for any comparison with zero
- // (not just equality). So there are some transformations that lose
- // CC values (while still being worthwhile) and others that happen to make
- // the CC result more useful than it was originally.
- //
- // Another reason is that we only want to use BRANCH ON COUNT in cases
- // where we know that the count register is not going to be spilled.
- //
- // Doing it so late makes it more likely that a register will be reused
- // between the comparison and the branch, but it isn't clear whether
- // preventing that would be a win or not.
- if (getOptLevel() != CodeGenOpt::None)
- addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
- addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
-
- // Do final scheduling after all other optimizations, to get an
- // optimal input for the decoder (branch relaxation must happen
- // after block placement).
- if (getOptLevel() != CodeGenOpt::None)
- addPass(&PostMachineSchedulerID);
-}
-
-TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
- return new SystemZPassConfig(*this, PM);
-}
-
-TargetTransformInfo
-SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
- return TargetTransformInfo(SystemZTTIImpl(this, F));
-}