summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp1134
1 files changed, 0 insertions, 1134 deletions
diff --git a/gnu/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/gnu/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
deleted file mode 100644
index 4663de0b049..00000000000
--- a/gnu/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ /dev/null
@@ -1,1134 +0,0 @@
-//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass promotes "by reference" arguments to be "by value" arguments. In
-// practice, this means looking for internal functions that have pointer
-// arguments. If it can prove, through the use of alias analysis, that an
-// argument is *only* loaded, then it can pass the value into the function
-// instead of the address of the value. This can cause recursive simplification
-// of code and lead to the elimination of allocas (especially in C++ template
-// code like the STL).
-//
-// This pass also handles aggregate arguments that are passed into a function,
-// scalarizing them if the elements of the aggregate are only loaded. Note that
-// by default it refuses to scalarize aggregates which would require passing in
-// more than three operands to the function, because passing thousands of
-// operands for a large array or structure is unprofitable! This limit can be
-// configured or disabled, however.
-//
-// Note that this transformation could also be done for arguments that are only
-// stored to (returning the value instead), but does not currently. This case
-// would be best handled when and if LLVM begins supporting multiple return
-// values from functions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/IPO/ArgumentPromotion.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/BasicAliasAnalysis.h"
-#include "llvm/Analysis/CGSCCPassManager.h"
-#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Analysis/CallGraphSCCPass.h"
-#include "llvm/Analysis/LazyCallGraph.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/IPO.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <functional>
-#include <iterator>
-#include <map>
-#include <set>
-#include <string>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "argpromotion"
-
-STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
-STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
-STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
-STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
-
-/// A vector used to hold the indices of a single GEP instruction
-using IndicesVector = std::vector<uint64_t>;
-
-/// DoPromotion - This method actually performs the promotion of the specified
-/// arguments, and returns the new function. At this point, we know that it's
-/// safe to do so.
-static Function *
-doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
- SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
- Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
- ReplaceCallSite) {
- // Start by computing a new prototype for the function, which is the same as
- // the old function, but has modified arguments.
- FunctionType *FTy = F->getFunctionType();
- std::vector<Type *> Params;
-
- using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
-
- // ScalarizedElements - If we are promoting a pointer that has elements
- // accessed out of it, keep track of which elements are accessed so that we
- // can add one argument for each.
- //
- // Arguments that are directly loaded will have a zero element value here, to
- // handle cases where there are both a direct load and GEP accesses.
- std::map<Argument *, ScalarizeTable> ScalarizedElements;
-
- // OriginalLoads - Keep track of a representative load instruction from the
- // original function so that we can tell the alias analysis implementation
- // what the new GEP/Load instructions we are inserting look like.
- // We need to keep the original loads for each argument and the elements
- // of the argument that are accessed.
- std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
-
- // Attribute - Keep track of the parameter attributes for the arguments
- // that we are *not* promoting. For the ones that we do promote, the parameter
- // attributes are lost
- SmallVector<AttributeSet, 8> ArgAttrVec;
- AttributeList PAL = F->getAttributes();
-
- // First, determine the new argument list
- unsigned ArgNo = 0;
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
- ++I, ++ArgNo) {
- if (ByValArgsToTransform.count(&*I)) {
- // Simple byval argument? Just add all the struct element types.
- Type *AgTy = cast<PointerType>(I->getType())->getElementType();
- StructType *STy = cast<StructType>(AgTy);
- Params.insert(Params.end(), STy->element_begin(), STy->element_end());
- ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
- AttributeSet());
- ++NumByValArgsPromoted;
- } else if (!ArgsToPromote.count(&*I)) {
- // Unchanged argument
- Params.push_back(I->getType());
- ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
- } else if (I->use_empty()) {
- // Dead argument (which are always marked as promotable)
- ++NumArgumentsDead;
-
- // There may be remaining metadata uses of the argument for things like
- // llvm.dbg.value. Replace them with undef.
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- } else {
- // Okay, this is being promoted. This means that the only uses are loads
- // or GEPs which are only used by loads
-
- // In this table, we will track which indices are loaded from the argument
- // (where direct loads are tracked as no indices).
- ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
- for (User *U : I->users()) {
- Instruction *UI = cast<Instruction>(U);
- Type *SrcTy;
- if (LoadInst *L = dyn_cast<LoadInst>(UI))
- SrcTy = L->getType();
- else
- SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
- IndicesVector Indices;
- Indices.reserve(UI->getNumOperands() - 1);
- // Since loads will only have a single operand, and GEPs only a single
- // non-index operand, this will record direct loads without any indices,
- // and gep+loads with the GEP indices.
- for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
- II != IE; ++II)
- Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
- // GEPs with a single 0 index can be merged with direct loads
- if (Indices.size() == 1 && Indices.front() == 0)
- Indices.clear();
- ArgIndices.insert(std::make_pair(SrcTy, Indices));
- LoadInst *OrigLoad;
- if (LoadInst *L = dyn_cast<LoadInst>(UI))
- OrigLoad = L;
- else
- // Take any load, we will use it only to update Alias Analysis
- OrigLoad = cast<LoadInst>(UI->user_back());
- OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
- }
-
- // Add a parameter to the function for each element passed in.
- for (const auto &ArgIndex : ArgIndices) {
- // not allowed to dereference ->begin() if size() is 0
- Params.push_back(GetElementPtrInst::getIndexedType(
- cast<PointerType>(I->getType()->getScalarType())->getElementType(),
- ArgIndex.second));
- ArgAttrVec.push_back(AttributeSet());
- assert(Params.back());
- }
-
- if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
- ++NumArgumentsPromoted;
- else
- ++NumAggregatesPromoted;
- }
- }
-
- Type *RetTy = FTy->getReturnType();
-
- // Construct the new function type using the new arguments.
- FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
-
- // Create the new function body and insert it into the module.
- Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
- F->getName());
- NF->copyAttributesFrom(F);
-
- // Patch the pointer to LLVM function in debug info descriptor.
- NF->setSubprogram(F->getSubprogram());
- F->setSubprogram(nullptr);
-
- LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
- << "From: " << *F);
-
- // Recompute the parameter attributes list based on the new arguments for
- // the function.
- NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
- PAL.getRetAttributes(), ArgAttrVec));
- ArgAttrVec.clear();
-
- F->getParent()->getFunctionList().insert(F->getIterator(), NF);
- NF->takeName(F);
-
- // Loop over all of the callers of the function, transforming the call sites
- // to pass in the loaded pointers.
- //
- SmallVector<Value *, 16> Args;
- while (!F->use_empty()) {
- CallSite CS(F->user_back());
- assert(CS.getCalledFunction() == F);
- Instruction *Call = CS.getInstruction();
- const AttributeList &CallPAL = CS.getAttributes();
-
- // Loop over the operands, inserting GEP and loads in the caller as
- // appropriate.
- CallSite::arg_iterator AI = CS.arg_begin();
- ArgNo = 0;
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
- ++I, ++AI, ++ArgNo)
- if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
- Args.push_back(*AI); // Unmodified argument
- ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
- } else if (ByValArgsToTransform.count(&*I)) {
- // Emit a GEP and load for each element of the struct.
- Type *AgTy = cast<PointerType>(I->getType())->getElementType();
- StructType *STy = cast<StructType>(AgTy);
- Value *Idxs[2] = {
- ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
- Value *Idx = GetElementPtrInst::Create(
- STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
- // TODO: Tell AA about the new values?
- Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call));
- ArgAttrVec.push_back(AttributeSet());
- }
- } else if (!I->use_empty()) {
- // Non-dead argument: insert GEPs and loads as appropriate.
- ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
- // Store the Value* version of the indices in here, but declare it now
- // for reuse.
- std::vector<Value *> Ops;
- for (const auto &ArgIndex : ArgIndices) {
- Value *V = *AI;
- LoadInst *OrigLoad =
- OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
- if (!ArgIndex.second.empty()) {
- Ops.reserve(ArgIndex.second.size());
- Type *ElTy = V->getType();
- for (auto II : ArgIndex.second) {
- // Use i32 to index structs, and i64 for others (pointers/arrays).
- // This satisfies GEP constraints.
- Type *IdxTy =
- (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
- : Type::getInt64Ty(F->getContext()));
- Ops.push_back(ConstantInt::get(IdxTy, II));
- // Keep track of the type we're currently indexing.
- if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
- ElTy = ElPTy->getElementType();
- else
- ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
- }
- // And create a GEP to extract those indices.
- V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
- V->getName() + ".idx", Call);
- Ops.clear();
- }
- // Since we're replacing a load make sure we take the alignment
- // of the previous load.
- LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call);
- newLoad->setAlignment(OrigLoad->getAlignment());
- // Transfer the AA info too.
- AAMDNodes AAInfo;
- OrigLoad->getAAMetadata(AAInfo);
- newLoad->setAAMetadata(AAInfo);
-
- Args.push_back(newLoad);
- ArgAttrVec.push_back(AttributeSet());
- }
- }
-
- // Push any varargs arguments on the list.
- for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
- Args.push_back(*AI);
- ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
- }
-
- SmallVector<OperandBundleDef, 1> OpBundles;
- CS.getOperandBundlesAsDefs(OpBundles);
-
- CallSite NewCS;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
- NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
- Args, OpBundles, "", Call);
- } else {
- auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
- NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
- NewCS = NewCall;
- }
- NewCS.setCallingConv(CS.getCallingConv());
- NewCS.setAttributes(
- AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
- CallPAL.getRetAttributes(), ArgAttrVec));
- NewCS->setDebugLoc(Call->getDebugLoc());
- uint64_t W;
- if (Call->extractProfTotalWeight(W))
- NewCS->setProfWeight(W);
- Args.clear();
- ArgAttrVec.clear();
-
- // Update the callgraph to know that the callsite has been transformed.
- if (ReplaceCallSite)
- (*ReplaceCallSite)(CS, NewCS);
-
- if (!Call->use_empty()) {
- Call->replaceAllUsesWith(NewCS.getInstruction());
- NewCS->takeName(Call);
- }
-
- // Finally, remove the old call from the program, reducing the use-count of
- // F.
- Call->eraseFromParent();
- }
-
- const DataLayout &DL = F->getParent()->getDataLayout();
-
- // Since we have now created the new function, splice the body of the old
- // function right into the new function, leaving the old rotting hulk of the
- // function empty.
- NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
-
- // Loop over the argument list, transferring uses of the old arguments over to
- // the new arguments, also transferring over the names as well.
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
- I2 = NF->arg_begin();
- I != E; ++I) {
- if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
- // If this is an unmodified argument, move the name and users over to the
- // new version.
- I->replaceAllUsesWith(&*I2);
- I2->takeName(&*I);
- ++I2;
- continue;
- }
-
- if (ByValArgsToTransform.count(&*I)) {
- // In the callee, we create an alloca, and store each of the new incoming
- // arguments into the alloca.
- Instruction *InsertPt = &NF->begin()->front();
-
- // Just add all the struct element types.
- Type *AgTy = cast<PointerType>(I->getType())->getElementType();
- Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
- I->getParamAlignment(), "", InsertPt);
- StructType *STy = cast<StructType>(AgTy);
- Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
- nullptr};
-
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
- Value *Idx = GetElementPtrInst::Create(
- AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
- InsertPt);
- I2->setName(I->getName() + "." + Twine(i));
- new StoreInst(&*I2++, Idx, InsertPt);
- }
-
- // Anything that used the arg should now use the alloca.
- I->replaceAllUsesWith(TheAlloca);
- TheAlloca->takeName(&*I);
-
- // If the alloca is used in a call, we must clear the tail flag since
- // the callee now uses an alloca from the caller.
- for (User *U : TheAlloca->users()) {
- CallInst *Call = dyn_cast<CallInst>(U);
- if (!Call)
- continue;
- Call->setTailCall(false);
- }
- continue;
- }
-
- if (I->use_empty())
- continue;
-
- // Otherwise, if we promoted this argument, then all users are load
- // instructions (or GEPs with only load users), and all loads should be
- // using the new argument that we added.
- ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
-
- while (!I->use_empty()) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
- assert(ArgIndices.begin()->second.empty() &&
- "Load element should sort to front!");
- I2->setName(I->getName() + ".val");
- LI->replaceAllUsesWith(&*I2);
- LI->eraseFromParent();
- LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
- << "' in function '" << F->getName() << "'\n");
- } else {
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
- IndicesVector Operands;
- Operands.reserve(GEP->getNumIndices());
- for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
- II != IE; ++II)
- Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
-
- // GEPs with a single 0 index can be merged with direct loads
- if (Operands.size() == 1 && Operands.front() == 0)
- Operands.clear();
-
- Function::arg_iterator TheArg = I2;
- for (ScalarizeTable::iterator It = ArgIndices.begin();
- It->second != Operands; ++It, ++TheArg) {
- assert(It != ArgIndices.end() && "GEP not handled??");
- }
-
- std::string NewName = I->getName();
- for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
- NewName += "." + utostr(Operands[i]);
- }
- NewName += ".val";
- TheArg->setName(NewName);
-
- LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
- << "' of function '" << NF->getName() << "'\n");
-
- // All of the uses must be load instructions. Replace them all with
- // the argument specified by ArgNo.
- while (!GEP->use_empty()) {
- LoadInst *L = cast<LoadInst>(GEP->user_back());
- L->replaceAllUsesWith(&*TheArg);
- L->eraseFromParent();
- }
- GEP->eraseFromParent();
- }
- }
-
- // Increment I2 past all of the arguments added for this promoted pointer.
- std::advance(I2, ArgIndices.size());
- }
-
- return NF;
-}
-
-/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
-/// all callees pass in a valid pointer for the specified function argument.
-static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
- Function *Callee = Arg->getParent();
- const DataLayout &DL = Callee->getParent()->getDataLayout();
-
- unsigned ArgNo = Arg->getArgNo();
-
- // Look at all call sites of the function. At this point we know we only have
- // direct callees.
- for (User *U : Callee->users()) {
- CallSite CS(U);
- assert(CS && "Should only have direct calls!");
-
- if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
- return false;
- }
- return true;
-}
-
-/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
-/// that is greater than or equal to the size of prefix, and each of the
-/// elements in Prefix is the same as the corresponding elements in Longer.
-///
-/// This means it also returns true when Prefix and Longer are equal!
-static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
- if (Prefix.size() > Longer.size())
- return false;
- return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
-}
-
-/// Checks if Indices, or a prefix of Indices, is in Set.
-static bool prefixIn(const IndicesVector &Indices,
- std::set<IndicesVector> &Set) {
- std::set<IndicesVector>::iterator Low;
- Low = Set.upper_bound(Indices);
- if (Low != Set.begin())
- Low--;
- // Low is now the last element smaller than or equal to Indices. This means
- // it points to a prefix of Indices (possibly Indices itself), if such
- // prefix exists.
- //
- // This load is safe if any prefix of its operands is safe to load.
- return Low != Set.end() && isPrefix(*Low, Indices);
-}
-
-/// Mark the given indices (ToMark) as safe in the given set of indices
-/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
-/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
-/// already. Furthermore, any indices that Indices is itself a prefix of, are
-/// removed from Safe (since they are implicitely safe because of Indices now).
-static void markIndicesSafe(const IndicesVector &ToMark,
- std::set<IndicesVector> &Safe) {
- std::set<IndicesVector>::iterator Low;
- Low = Safe.upper_bound(ToMark);
- // Guard against the case where Safe is empty
- if (Low != Safe.begin())
- Low--;
- // Low is now the last element smaller than or equal to Indices. This
- // means it points to a prefix of Indices (possibly Indices itself), if
- // such prefix exists.
- if (Low != Safe.end()) {
- if (isPrefix(*Low, ToMark))
- // If there is already a prefix of these indices (or exactly these
- // indices) marked a safe, don't bother adding these indices
- return;
-
- // Increment Low, so we can use it as a "insert before" hint
- ++Low;
- }
- // Insert
- Low = Safe.insert(Low, ToMark);
- ++Low;
- // If there we're a prefix of longer index list(s), remove those
- std::set<IndicesVector>::iterator End = Safe.end();
- while (Low != End && isPrefix(ToMark, *Low)) {
- std::set<IndicesVector>::iterator Remove = Low;
- ++Low;
- Safe.erase(Remove);
- }
-}
-
-/// isSafeToPromoteArgument - As you might guess from the name of this method,
-/// it checks to see if it is both safe and useful to promote the argument.
-/// This method limits promotion of aggregates to only promote up to three
-/// elements of the aggregate in order to avoid exploding the number of
-/// arguments passed in.
-static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
- AAResults &AAR, unsigned MaxElements) {
- using GEPIndicesSet = std::set<IndicesVector>;
-
- // Quick exit for unused arguments
- if (Arg->use_empty())
- return true;
-
- // We can only promote this argument if all of the uses are loads, or are GEP
- // instructions (with constant indices) that are subsequently loaded.
- //
- // Promoting the argument causes it to be loaded in the caller
- // unconditionally. This is only safe if we can prove that either the load
- // would have happened in the callee anyway (ie, there is a load in the entry
- // block) or the pointer passed in at every call site is guaranteed to be
- // valid.
- // In the former case, invalid loads can happen, but would have happened
- // anyway, in the latter case, invalid loads won't happen. This prevents us
- // from introducing an invalid load that wouldn't have happened in the
- // original code.
- //
- // This set will contain all sets of indices that are loaded in the entry
- // block, and thus are safe to unconditionally load in the caller.
- //
- // This optimization is also safe for InAlloca parameters, because it verifies
- // that the address isn't captured.
- GEPIndicesSet SafeToUnconditionallyLoad;
-
- // This set contains all the sets of indices that we are planning to promote.
- // This makes it possible to limit the number of arguments added.
- GEPIndicesSet ToPromote;
-
- // If the pointer is always valid, any load with first index 0 is valid.
- if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
- SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
-
- // First, iterate the entry block and mark loads of (geps of) arguments as
- // safe.
- BasicBlock &EntryBlock = Arg->getParent()->front();
- // Declare this here so we can reuse it
- IndicesVector Indices;
- for (Instruction &I : EntryBlock)
- if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- Value *V = LI->getPointerOperand();
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
- V = GEP->getPointerOperand();
- if (V == Arg) {
- // This load actually loads (part of) Arg? Check the indices then.
- Indices.reserve(GEP->getNumIndices());
- for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
- II != IE; ++II)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
- Indices.push_back(CI->getSExtValue());
- else
- // We found a non-constant GEP index for this argument? Bail out
- // right away, can't promote this argument at all.
- return false;
-
- // Indices checked out, mark them as safe
- markIndicesSafe(Indices, SafeToUnconditionallyLoad);
- Indices.clear();
- }
- } else if (V == Arg) {
- // Direct loads are equivalent to a GEP with a single 0 index.
- markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
- }
- }
-
- // Now, iterate all uses of the argument to see if there are any uses that are
- // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
- SmallVector<LoadInst *, 16> Loads;
- IndicesVector Operands;
- for (Use &U : Arg->uses()) {
- User *UR = U.getUser();
- Operands.clear();
- if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
- // Don't hack volatile/atomic loads
- if (!LI->isSimple())
- return false;
- Loads.push_back(LI);
- // Direct loads are equivalent to a GEP with a zero index and then a load.
- Operands.push_back(0);
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
- if (GEP->use_empty()) {
- // Dead GEP's cause trouble later. Just remove them if we run into
- // them.
- GEP->eraseFromParent();
- // TODO: This runs the above loop over and over again for dead GEPs
- // Couldn't we just do increment the UI iterator earlier and erase the
- // use?
- return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
- MaxElements);
- }
-
- // Ensure that all of the indices are constants.
- for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
- ++i)
- if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
- Operands.push_back(C->getSExtValue());
- else
- return false; // Not a constant operand GEP!
-
- // Ensure that the only users of the GEP are load instructions.
- for (User *GEPU : GEP->users())
- if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
- // Don't hack volatile/atomic loads
- if (!LI->isSimple())
- return false;
- Loads.push_back(LI);
- } else {
- // Other uses than load?
- return false;
- }
- } else {
- return false; // Not a load or a GEP.
- }
-
- // Now, see if it is safe to promote this load / loads of this GEP. Loading
- // is safe if Operands, or a prefix of Operands, is marked as safe.
- if (!prefixIn(Operands, SafeToUnconditionallyLoad))
- return false;
-
- // See if we are already promoting a load with these indices. If not, check
- // to make sure that we aren't promoting too many elements. If so, nothing
- // to do.
- if (ToPromote.find(Operands) == ToPromote.end()) {
- if (MaxElements > 0 && ToPromote.size() == MaxElements) {
- LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
- << Arg->getName()
- << "' because it would require adding more "
- << "than " << MaxElements
- << " arguments to the function.\n");
- // We limit aggregate promotion to only promoting up to a fixed number
- // of elements of the aggregate.
- return false;
- }
- ToPromote.insert(std::move(Operands));
- }
- }
-
- if (Loads.empty())
- return true; // No users, this is a dead argument.
-
- // Okay, now we know that the argument is only used by load instructions and
- // it is safe to unconditionally perform all of them. Use alias analysis to
- // check to see if the pointer is guaranteed to not be modified from entry of
- // the function to each of the load instructions.
-
- // Because there could be several/many load instructions, remember which
- // blocks we know to be transparent to the load.
- df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
-
- for (LoadInst *Load : Loads) {
- // Check to see if the load is invalidated from the start of the block to
- // the load itself.
- BasicBlock *BB = Load->getParent();
-
- MemoryLocation Loc = MemoryLocation::get(Load);
- if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
- return false; // Pointer is invalidated!
-
- // Now check every path from the entry block to the load for transparency.
- // To do this, we perform a depth first search on the inverse CFG from the
- // loading block.
- for (BasicBlock *P : predecessors(BB)) {
- for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
- if (AAR.canBasicBlockModify(*TranspBB, Loc))
- return false;
- }
- }
-
- // If the path from the entry of the function to each load is free of
- // instructions that potentially invalidate the load, we can make the
- // transformation!
- return true;
-}
-
-/// Checks if a type could have padding bytes.
-static bool isDenselyPacked(Type *type, const DataLayout &DL) {
- // There is no size information, so be conservative.
- if (!type->isSized())
- return false;
-
- // If the alloc size is not equal to the storage size, then there are padding
- // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
- if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
- return false;
-
- if (!isa<CompositeType>(type))
- return true;
-
- // For homogenous sequential types, check for padding within members.
- if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
- return isDenselyPacked(seqTy->getElementType(), DL);
-
- // Check for padding within and between elements of a struct.
- StructType *StructTy = cast<StructType>(type);
- const StructLayout *Layout = DL.getStructLayout(StructTy);
- uint64_t StartPos = 0;
- for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
- Type *ElTy = StructTy->getElementType(i);
- if (!isDenselyPacked(ElTy, DL))
- return false;
- if (StartPos != Layout->getElementOffsetInBits(i))
- return false;
- StartPos += DL.getTypeAllocSizeInBits(ElTy);
- }
-
- return true;
-}
-
-/// Checks if the padding bytes of an argument could be accessed.
-static bool canPaddingBeAccessed(Argument *arg) {
- assert(arg->hasByValAttr());
-
- // Track all the pointers to the argument to make sure they are not captured.
- SmallPtrSet<Value *, 16> PtrValues;
- PtrValues.insert(arg);
-
- // Track all of the stores.
- SmallVector<StoreInst *, 16> Stores;
-
- // Scan through the uses recursively to make sure the pointer is always used
- // sanely.
- SmallVector<Value *, 16> WorkList;
- WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
- while (!WorkList.empty()) {
- Value *V = WorkList.back();
- WorkList.pop_back();
- if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
- if (PtrValues.insert(V).second)
- WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
- } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
- Stores.push_back(Store);
- } else if (!isa<LoadInst>(V)) {
- return true;
- }
- }
-
- // Check to make sure the pointers aren't captured
- for (StoreInst *Store : Stores)
- if (PtrValues.count(Store->getValueOperand()))
- return true;
-
- return false;
-}
-
-static bool areFunctionArgsABICompatible(
- const Function &F, const TargetTransformInfo &TTI,
- SmallPtrSetImpl<Argument *> &ArgsToPromote,
- SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
- for (const Use &U : F.uses()) {
- CallSite CS(U.getUser());
- const Function *Caller = CS.getCaller();
- const Function *Callee = CS.getCalledFunction();
- if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
- !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
- return false;
- }
- return true;
-}
-
-/// PromoteArguments - This method checks the specified function to see if there
-/// are any promotable arguments and if it is safe to promote the function (for
-/// example, all callers are direct). If safe to promote some arguments, it
-/// calls the DoPromotion method.
-static Function *
-promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
- unsigned MaxElements,
- Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
- ReplaceCallSite,
- const TargetTransformInfo &TTI) {
- // Don't perform argument promotion for naked functions; otherwise we can end
- // up removing parameters that are seemingly 'not used' as they are referred
- // to in the assembly.
- if(F->hasFnAttribute(Attribute::Naked))
- return nullptr;
-
- // Make sure that it is local to this module.
- if (!F->hasLocalLinkage())
- return nullptr;
-
- // Don't promote arguments for variadic functions. Adding, removing, or
- // changing non-pack parameters can change the classification of pack
- // parameters. Frontends encode that classification at the call site in the
- // IR, while in the callee the classification is determined dynamically based
- // on the number of registers consumed so far.
- if (F->isVarArg())
- return nullptr;
-
- // First check: see if there are any pointer arguments! If not, quick exit.
- SmallVector<Argument *, 16> PointerArgs;
- for (Argument &I : F->args())
- if (I.getType()->isPointerTy())
- PointerArgs.push_back(&I);
- if (PointerArgs.empty())
- return nullptr;
-
- // Second check: make sure that all callers are direct callers. We can't
- // transform functions that have indirect callers. Also see if the function
- // is self-recursive and check that target features are compatible.
- bool isSelfRecursive = false;
- for (Use &U : F->uses()) {
- CallSite CS(U.getUser());
- // Must be a direct call.
- if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
- return nullptr;
-
- // Can't change signature of musttail callee
- if (CS.isMustTailCall())
- return nullptr;
-
- if (CS.getInstruction()->getParent()->getParent() == F)
- isSelfRecursive = true;
- }
-
- // Can't change signature of musttail caller
- // FIXME: Support promoting whole chain of musttail functions
- for (BasicBlock &BB : *F)
- if (BB.getTerminatingMustTailCall())
- return nullptr;
-
- const DataLayout &DL = F->getParent()->getDataLayout();
-
- AAResults &AAR = AARGetter(*F);
-
- // Check to see which arguments are promotable. If an argument is promotable,
- // add it to ArgsToPromote.
- SmallPtrSet<Argument *, 8> ArgsToPromote;
- SmallPtrSet<Argument *, 8> ByValArgsToTransform;
- for (Argument *PtrArg : PointerArgs) {
- Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
-
- // Replace sret attribute with noalias. This reduces register pressure by
- // avoiding a register copy.
- if (PtrArg->hasStructRetAttr()) {
- unsigned ArgNo = PtrArg->getArgNo();
- F->removeParamAttr(ArgNo, Attribute::StructRet);
- F->addParamAttr(ArgNo, Attribute::NoAlias);
- for (Use &U : F->uses()) {
- CallSite CS(U.getUser());
- CS.removeParamAttr(ArgNo, Attribute::StructRet);
- CS.addParamAttr(ArgNo, Attribute::NoAlias);
- }
- }
-
- // If this is a byval argument, and if the aggregate type is small, just
- // pass the elements, which is always safe, if the passed value is densely
- // packed or if we can prove the padding bytes are never accessed. This does
- // not apply to inalloca.
- bool isSafeToPromote =
- PtrArg->hasByValAttr() &&
- (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
- if (isSafeToPromote) {
- if (StructType *STy = dyn_cast<StructType>(AgTy)) {
- if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
- LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
- << PtrArg->getName()
- << "' because it would require adding more"
- << " than " << MaxElements
- << " arguments to the function.\n");
- continue;
- }
-
- // If all the elements are single-value types, we can promote it.
- bool AllSimple = true;
- for (const auto *EltTy : STy->elements()) {
- if (!EltTy->isSingleValueType()) {
- AllSimple = false;
- break;
- }
- }
-
- // Safe to transform, don't even bother trying to "promote" it.
- // Passing the elements as a scalar will allow sroa to hack on
- // the new alloca we introduce.
- if (AllSimple) {
- ByValArgsToTransform.insert(PtrArg);
- continue;
- }
- }
- }
-
- // If the argument is a recursive type and we're in a recursive
- // function, we could end up infinitely peeling the function argument.
- if (isSelfRecursive) {
- if (StructType *STy = dyn_cast<StructType>(AgTy)) {
- bool RecursiveType = false;
- for (const auto *EltTy : STy->elements()) {
- if (EltTy == PtrArg->getType()) {
- RecursiveType = true;
- break;
- }
- }
- if (RecursiveType)
- continue;
- }
- }
-
- // Otherwise, see if we can promote the pointer to its value.
- if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
- MaxElements))
- ArgsToPromote.insert(PtrArg);
- }
-
- // No promotable pointer arguments.
- if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
- return nullptr;
-
- if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
- ByValArgsToTransform))
- return nullptr;
-
- return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
-}
-
-PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &CG,
- CGSCCUpdateResult &UR) {
- bool Changed = false, LocalChange;
-
- // Iterate until we stop promoting from this SCC.
- do {
- LocalChange = false;
-
- for (LazyCallGraph::Node &N : C) {
- Function &OldF = N.getFunction();
-
- FunctionAnalysisManager &FAM =
- AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
- // FIXME: This lambda must only be used with this function. We should
- // skip the lambda and just get the AA results directly.
- auto AARGetter = [&](Function &F) -> AAResults & {
- assert(&F == &OldF && "Called with an unexpected function!");
- return FAM.getResult<AAManager>(F);
- };
-
- const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
- Function *NewF =
- promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
- if (!NewF)
- continue;
- LocalChange = true;
-
- // Directly substitute the functions in the call graph. Note that this
- // requires the old function to be completely dead and completely
- // replaced by the new function. It does no call graph updates, it merely
- // swaps out the particular function mapped to a particular node in the
- // graph.
- C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
- OldF.eraseFromParent();
- }
-
- Changed |= LocalChange;
- } while (LocalChange);
-
- if (!Changed)
- return PreservedAnalyses::all();
-
- return PreservedAnalyses::none();
-}
-
-namespace {
-
-/// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
-struct ArgPromotion : public CallGraphSCCPass {
- // Pass identification, replacement for typeid
- static char ID;
-
- explicit ArgPromotion(unsigned MaxElements = 3)
- : CallGraphSCCPass(ID), MaxElements(MaxElements) {
- initializeArgPromotionPass(*PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- getAAResultsAnalysisUsage(AU);
- CallGraphSCCPass::getAnalysisUsage(AU);
- }
-
- bool runOnSCC(CallGraphSCC &SCC) override;
-
-private:
- using llvm::Pass::doInitialization;
-
- bool doInitialization(CallGraph &CG) override;
-
- /// The maximum number of elements to expand, or 0 for unlimited.
- unsigned MaxElements;
-};
-
-} // end anonymous namespace
-
-char ArgPromotion::ID = 0;
-
-INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
- "Promote 'by reference' arguments to scalars", false,
- false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
- "Promote 'by reference' arguments to scalars", false, false)
-
-Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
- return new ArgPromotion(MaxElements);
-}
-
-bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
- if (skipSCC(SCC))
- return false;
-
- // Get the callgraph information that we need to update to reflect our
- // changes.
- CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
-
- LegacyAARGetter AARGetter(*this);
-
- bool Changed = false, LocalChange;
-
- // Iterate until we stop promoting from this SCC.
- do {
- LocalChange = false;
- // Attempt to promote arguments from all functions in this SCC.
- for (CallGraphNode *OldNode : SCC) {
- Function *OldF = OldNode->getFunction();
- if (!OldF)
- continue;
-
- auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
- Function *Caller = OldCS.getInstruction()->getParent()->getParent();
- CallGraphNode *NewCalleeNode =
- CG.getOrInsertFunction(NewCS.getCalledFunction());
- CallGraphNode *CallerNode = CG[Caller];
- CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
- };
-
- const TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
- if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
- {ReplaceCallSite}, TTI)) {
- LocalChange = true;
-
- // Update the call graph for the newly promoted function.
- CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
- NewNode->stealCalledFunctionsFrom(OldNode);
- if (OldNode->getNumReferences() == 0)
- delete CG.removeFunctionFromModule(OldNode);
- else
- OldF->setLinkage(Function::ExternalLinkage);
-
- // And updat ethe SCC we're iterating as well.
- SCC.ReplaceNode(OldNode, NewNode);
- }
- }
- // Remember that we changed something.
- Changed |= LocalChange;
- } while (LocalChange);
-
- return Changed;
-}
-
-bool ArgPromotion::doInitialization(CallGraph &CG) {
- return CallGraphSCCPass::doInitialization(CG);
-}