summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp1572
1 files changed, 0 insertions, 1572 deletions
diff --git a/gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp b/gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
deleted file mode 100644
index 4e2a82b56ee..00000000000
--- a/gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
+++ /dev/null
@@ -1,1572 +0,0 @@
-//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-/// \file
-/// This file implements interprocedural passes which walk the
-/// call-graph deducing and/or propagating function attributes.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/IPO/FunctionAttrs.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/BasicAliasAnalysis.h"
-#include "llvm/Analysis/CGSCCPassManager.h"
-#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Analysis/CallGraphSCCPass.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/LazyCallGraph.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/IPO.h"
-#include <cassert>
-#include <iterator>
-#include <map>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "functionattrs"
-
-STATISTIC(NumReadNone, "Number of functions marked readnone");
-STATISTIC(NumReadOnly, "Number of functions marked readonly");
-STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
-STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
-STATISTIC(NumReturned, "Number of arguments marked returned");
-STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
-STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
-STATISTIC(NumNoAlias, "Number of function returns marked noalias");
-STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
-STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
-STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
-
-// FIXME: This is disabled by default to avoid exposing security vulnerabilities
-// in C/C++ code compiled by clang:
-// http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
-static cl::opt<bool> EnableNonnullArgPropagation(
- "enable-nonnull-arg-prop", cl::Hidden,
- cl::desc("Try to propagate nonnull argument attributes from callsites to "
- "caller functions."));
-
-static cl::opt<bool> DisableNoUnwindInference(
- "disable-nounwind-inference", cl::Hidden,
- cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
-
-namespace {
-
-using SCCNodeSet = SmallSetVector<Function *, 8>;
-
-} // end anonymous namespace
-
-/// Returns the memory access attribute for function F using AAR for AA results,
-/// where SCCNodes is the current SCC.
-///
-/// If ThisBody is true, this function may examine the function body and will
-/// return a result pertaining to this copy of the function. If it is false, the
-/// result will be based only on AA results for the function declaration; it
-/// will be assumed that some other (perhaps less optimized) version of the
-/// function may be selected at link time.
-static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
- AAResults &AAR,
- const SCCNodeSet &SCCNodes) {
- FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
- if (MRB == FMRB_DoesNotAccessMemory)
- // Already perfect!
- return MAK_ReadNone;
-
- if (!ThisBody) {
- if (AliasAnalysis::onlyReadsMemory(MRB))
- return MAK_ReadOnly;
-
- if (AliasAnalysis::doesNotReadMemory(MRB))
- return MAK_WriteOnly;
-
- // Conservatively assume it reads and writes to memory.
- return MAK_MayWrite;
- }
-
- // Scan the function body for instructions that may read or write memory.
- bool ReadsMemory = false;
- bool WritesMemory = false;
- for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
- Instruction *I = &*II;
-
- // Some instructions can be ignored even if they read or write memory.
- // Detect these now, skipping to the next instruction if one is found.
- if (auto *Call = dyn_cast<CallBase>(I)) {
- // Ignore calls to functions in the same SCC, as long as the call sites
- // don't have operand bundles. Calls with operand bundles are allowed to
- // have memory effects not described by the memory effects of the call
- // target.
- if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
- SCCNodes.count(Call->getCalledFunction()))
- continue;
- FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
- ModRefInfo MRI = createModRefInfo(MRB);
-
- // If the call doesn't access memory, we're done.
- if (isNoModRef(MRI))
- continue;
-
- if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
- // The call could access any memory. If that includes writes, note it.
- if (isModSet(MRI))
- WritesMemory = true;
- // If it reads, note it.
- if (isRefSet(MRI))
- ReadsMemory = true;
- continue;
- }
-
- // Check whether all pointer arguments point to local memory, and
- // ignore calls that only access local memory.
- for (CallSite::arg_iterator CI = Call->arg_begin(), CE = Call->arg_end();
- CI != CE; ++CI) {
- Value *Arg = *CI;
- if (!Arg->getType()->isPtrOrPtrVectorTy())
- continue;
-
- AAMDNodes AAInfo;
- I->getAAMetadata(AAInfo);
- MemoryLocation Loc(Arg, LocationSize::unknown(), AAInfo);
-
- // Skip accesses to local or constant memory as they don't impact the
- // externally visible mod/ref behavior.
- if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
-
- if (isModSet(MRI))
- // Writes non-local memory.
- WritesMemory = true;
- if (isRefSet(MRI))
- // Ok, it reads non-local memory.
- ReadsMemory = true;
- }
- continue;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- // Ignore non-volatile loads from local memory. (Atomic is okay here.)
- if (!LI->isVolatile()) {
- MemoryLocation Loc = MemoryLocation::get(LI);
- if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- }
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- // Ignore non-volatile stores to local memory. (Atomic is okay here.)
- if (!SI->isVolatile()) {
- MemoryLocation Loc = MemoryLocation::get(SI);
- if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- }
- } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
- // Ignore vaargs on local memory.
- MemoryLocation Loc = MemoryLocation::get(VI);
- if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- }
-
- // Any remaining instructions need to be taken seriously! Check if they
- // read or write memory.
- //
- // Writes memory, remember that.
- WritesMemory |= I->mayWriteToMemory();
-
- // If this instruction may read memory, remember that.
- ReadsMemory |= I->mayReadFromMemory();
- }
-
- if (WritesMemory) {
- if (!ReadsMemory)
- return MAK_WriteOnly;
- else
- return MAK_MayWrite;
- }
-
- return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
-}
-
-MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
- AAResults &AAR) {
- return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
-}
-
-/// Deduce readonly/readnone attributes for the SCC.
-template <typename AARGetterT>
-static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
- // Check if any of the functions in the SCC read or write memory. If they
- // write memory then they can't be marked readnone or readonly.
- bool ReadsMemory = false;
- bool WritesMemory = false;
- for (Function *F : SCCNodes) {
- // Call the callable parameter to look up AA results for this function.
- AAResults &AAR = AARGetter(*F);
-
- // Non-exact function definitions may not be selected at link time, and an
- // alternative version that writes to memory may be selected. See the
- // comment on GlobalValue::isDefinitionExact for more details.
- switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
- AAR, SCCNodes)) {
- case MAK_MayWrite:
- return false;
- case MAK_ReadOnly:
- ReadsMemory = true;
- break;
- case MAK_WriteOnly:
- WritesMemory = true;
- break;
- case MAK_ReadNone:
- // Nothing to do!
- break;
- }
- }
-
- // Success! Functions in this SCC do not access memory, or only read memory.
- // Give them the appropriate attribute.
- bool MadeChange = false;
-
- assert(!(ReadsMemory && WritesMemory) &&
- "Function marked read-only and write-only");
- for (Function *F : SCCNodes) {
- if (F->doesNotAccessMemory())
- // Already perfect!
- continue;
-
- if (F->onlyReadsMemory() && ReadsMemory)
- // No change.
- continue;
-
- if (F->doesNotReadMemory() && WritesMemory)
- continue;
-
- MadeChange = true;
-
- // Clear out any existing attributes.
- F->removeFnAttr(Attribute::ReadOnly);
- F->removeFnAttr(Attribute::ReadNone);
- F->removeFnAttr(Attribute::WriteOnly);
-
- if (!WritesMemory && !ReadsMemory) {
- // Clear out any "access range attributes" if readnone was deduced.
- F->removeFnAttr(Attribute::ArgMemOnly);
- F->removeFnAttr(Attribute::InaccessibleMemOnly);
- F->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
- }
-
- // Add in the new attribute.
- if (WritesMemory && !ReadsMemory)
- F->addFnAttr(Attribute::WriteOnly);
- else
- F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
-
- if (WritesMemory && !ReadsMemory)
- ++NumWriteOnly;
- else if (ReadsMemory)
- ++NumReadOnly;
- else
- ++NumReadNone;
- }
-
- return MadeChange;
-}
-
-namespace {
-
-/// For a given pointer Argument, this retains a list of Arguments of functions
-/// in the same SCC that the pointer data flows into. We use this to build an
-/// SCC of the arguments.
-struct ArgumentGraphNode {
- Argument *Definition;
- SmallVector<ArgumentGraphNode *, 4> Uses;
-};
-
-class ArgumentGraph {
- // We store pointers to ArgumentGraphNode objects, so it's important that
- // that they not move around upon insert.
- using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
-
- ArgumentMapTy ArgumentMap;
-
- // There is no root node for the argument graph, in fact:
- // void f(int *x, int *y) { if (...) f(x, y); }
- // is an example where the graph is disconnected. The SCCIterator requires a
- // single entry point, so we maintain a fake ("synthetic") root node that
- // uses every node. Because the graph is directed and nothing points into
- // the root, it will not participate in any SCCs (except for its own).
- ArgumentGraphNode SyntheticRoot;
-
-public:
- ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
-
- using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
-
- iterator begin() { return SyntheticRoot.Uses.begin(); }
- iterator end() { return SyntheticRoot.Uses.end(); }
- ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
-
- ArgumentGraphNode *operator[](Argument *A) {
- ArgumentGraphNode &Node = ArgumentMap[A];
- Node.Definition = A;
- SyntheticRoot.Uses.push_back(&Node);
- return &Node;
- }
-};
-
-/// This tracker checks whether callees are in the SCC, and if so it does not
-/// consider that a capture, instead adding it to the "Uses" list and
-/// continuing with the analysis.
-struct ArgumentUsesTracker : public CaptureTracker {
- ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
-
- void tooManyUses() override { Captured = true; }
-
- bool captured(const Use *U) override {
- CallSite CS(U->getUser());
- if (!CS.getInstruction()) {
- Captured = true;
- return true;
- }
-
- Function *F = CS.getCalledFunction();
- if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
- Captured = true;
- return true;
- }
-
- // Note: the callee and the two successor blocks *follow* the argument
- // operands. This means there is no need to adjust UseIndex to account for
- // these.
-
- unsigned UseIndex =
- std::distance(const_cast<const Use *>(CS.arg_begin()), U);
-
- assert(UseIndex < CS.data_operands_size() &&
- "Indirect function calls should have been filtered above!");
-
- if (UseIndex >= CS.getNumArgOperands()) {
- // Data operand, but not a argument operand -- must be a bundle operand
- assert(CS.hasOperandBundles() && "Must be!");
-
- // CaptureTracking told us that we're being captured by an operand bundle
- // use. In this case it does not matter if the callee is within our SCC
- // or not -- we've been captured in some unknown way, and we have to be
- // conservative.
- Captured = true;
- return true;
- }
-
- if (UseIndex >= F->arg_size()) {
- assert(F->isVarArg() && "More params than args in non-varargs call");
- Captured = true;
- return true;
- }
-
- Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
- return false;
- }
-
- // True only if certainly captured (used outside our SCC).
- bool Captured = false;
-
- // Uses within our SCC.
- SmallVector<Argument *, 4> Uses;
-
- const SCCNodeSet &SCCNodes;
-};
-
-} // end anonymous namespace
-
-namespace llvm {
-
-template <> struct GraphTraits<ArgumentGraphNode *> {
- using NodeRef = ArgumentGraphNode *;
- using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
-
- static NodeRef getEntryNode(NodeRef A) { return A; }
- static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
- static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
-};
-
-template <>
-struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
- static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
-
- static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
- return AG->begin();
- }
-
- static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
-};
-
-} // end namespace llvm
-
-/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
-static Attribute::AttrKind
-determinePointerReadAttrs(Argument *A,
- const SmallPtrSet<Argument *, 8> &SCCNodes) {
- SmallVector<Use *, 32> Worklist;
- SmallPtrSet<Use *, 32> Visited;
-
- // inalloca arguments are always clobbered by the call.
- if (A->hasInAllocaAttr())
- return Attribute::None;
-
- bool IsRead = false;
- // We don't need to track IsWritten. If A is written to, return immediately.
-
- for (Use &U : A->uses()) {
- Visited.insert(&U);
- Worklist.push_back(&U);
- }
-
- while (!Worklist.empty()) {
- Use *U = Worklist.pop_back_val();
- Instruction *I = cast<Instruction>(U->getUser());
-
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::PHI:
- case Instruction::Select:
- case Instruction::AddrSpaceCast:
- // The original value is not read/written via this if the new value isn't.
- for (Use &UU : I->uses())
- if (Visited.insert(&UU).second)
- Worklist.push_back(&UU);
- break;
-
- case Instruction::Call:
- case Instruction::Invoke: {
- bool Captures = true;
-
- if (I->getType()->isVoidTy())
- Captures = false;
-
- auto AddUsersToWorklistIfCapturing = [&] {
- if (Captures)
- for (Use &UU : I->uses())
- if (Visited.insert(&UU).second)
- Worklist.push_back(&UU);
- };
-
- CallSite CS(I);
- if (CS.doesNotAccessMemory()) {
- AddUsersToWorklistIfCapturing();
- continue;
- }
-
- Function *F = CS.getCalledFunction();
- if (!F) {
- if (CS.onlyReadsMemory()) {
- IsRead = true;
- AddUsersToWorklistIfCapturing();
- continue;
- }
- return Attribute::None;
- }
-
- // Note: the callee and the two successor blocks *follow* the argument
- // operands. This means there is no need to adjust UseIndex to account
- // for these.
-
- unsigned UseIndex = std::distance(CS.arg_begin(), U);
-
- // U cannot be the callee operand use: since we're exploring the
- // transitive uses of an Argument, having such a use be a callee would
- // imply the CallSite is an indirect call or invoke; and we'd take the
- // early exit above.
- assert(UseIndex < CS.data_operands_size() &&
- "Data operand use expected!");
-
- bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
-
- if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
- assert(F->isVarArg() && "More params than args in non-varargs call");
- return Attribute::None;
- }
-
- Captures &= !CS.doesNotCapture(UseIndex);
-
- // Since the optimizer (by design) cannot see the data flow corresponding
- // to a operand bundle use, these cannot participate in the optimistic SCC
- // analysis. Instead, we model the operand bundle uses as arguments in
- // call to a function external to the SCC.
- if (IsOperandBundleUse ||
- !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
-
- // The accessors used on CallSite here do the right thing for calls and
- // invokes with operand bundles.
-
- if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
- return Attribute::None;
- if (!CS.doesNotAccessMemory(UseIndex))
- IsRead = true;
- }
-
- AddUsersToWorklistIfCapturing();
- break;
- }
-
- case Instruction::Load:
- // A volatile load has side effects beyond what readonly can be relied
- // upon.
- if (cast<LoadInst>(I)->isVolatile())
- return Attribute::None;
-
- IsRead = true;
- break;
-
- case Instruction::ICmp:
- case Instruction::Ret:
- break;
-
- default:
- return Attribute::None;
- }
- }
-
- return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
-}
-
-/// Deduce returned attributes for the SCC.
-static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
- bool Changed = false;
-
- // Check each function in turn, determining if an argument is always returned.
- for (Function *F : SCCNodes) {
- // We can infer and propagate function attributes only when we know that the
- // definition we'll get at link time is *exactly* the definition we see now.
- // For more details, see GlobalValue::mayBeDerefined.
- if (!F->hasExactDefinition())
- continue;
-
- if (F->getReturnType()->isVoidTy())
- continue;
-
- // There is nothing to do if an argument is already marked as 'returned'.
- if (llvm::any_of(F->args(),
- [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
- continue;
-
- auto FindRetArg = [&]() -> Value * {
- Value *RetArg = nullptr;
- for (BasicBlock &BB : *F)
- if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
- // Note that stripPointerCasts should look through functions with
- // returned arguments.
- Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
- if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
- return nullptr;
-
- if (!RetArg)
- RetArg = RetVal;
- else if (RetArg != RetVal)
- return nullptr;
- }
-
- return RetArg;
- };
-
- if (Value *RetArg = FindRetArg()) {
- auto *A = cast<Argument>(RetArg);
- A->addAttr(Attribute::Returned);
- ++NumReturned;
- Changed = true;
- }
- }
-
- return Changed;
-}
-
-/// If a callsite has arguments that are also arguments to the parent function,
-/// try to propagate attributes from the callsite's arguments to the parent's
-/// arguments. This may be important because inlining can cause information loss
-/// when attribute knowledge disappears with the inlined call.
-static bool addArgumentAttrsFromCallsites(Function &F) {
- if (!EnableNonnullArgPropagation)
- return false;
-
- bool Changed = false;
-
- // For an argument attribute to transfer from a callsite to the parent, the
- // call must be guaranteed to execute every time the parent is called.
- // Conservatively, just check for calls in the entry block that are guaranteed
- // to execute.
- // TODO: This could be enhanced by testing if the callsite post-dominates the
- // entry block or by doing simple forward walks or backward walks to the
- // callsite.
- BasicBlock &Entry = F.getEntryBlock();
- for (Instruction &I : Entry) {
- if (auto CS = CallSite(&I)) {
- if (auto *CalledFunc = CS.getCalledFunction()) {
- for (auto &CSArg : CalledFunc->args()) {
- if (!CSArg.hasNonNullAttr())
- continue;
-
- // If the non-null callsite argument operand is an argument to 'F'
- // (the caller) and the call is guaranteed to execute, then the value
- // must be non-null throughout 'F'.
- auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo()));
- if (FArg && !FArg->hasNonNullAttr()) {
- FArg->addAttr(Attribute::NonNull);
- Changed = true;
- }
- }
- }
- }
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- break;
- }
-
- return Changed;
-}
-
-/// Deduce nocapture attributes for the SCC.
-static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
- bool Changed = false;
-
- ArgumentGraph AG;
-
- // Check each function in turn, determining which pointer arguments are not
- // captured.
- for (Function *F : SCCNodes) {
- // We can infer and propagate function attributes only when we know that the
- // definition we'll get at link time is *exactly* the definition we see now.
- // For more details, see GlobalValue::mayBeDerefined.
- if (!F->hasExactDefinition())
- continue;
-
- Changed |= addArgumentAttrsFromCallsites(*F);
-
- // Functions that are readonly (or readnone) and nounwind and don't return
- // a value can't capture arguments. Don't analyze them.
- if (F->onlyReadsMemory() && F->doesNotThrow() &&
- F->getReturnType()->isVoidTy()) {
- for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
- ++A) {
- if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
- A->addAttr(Attribute::NoCapture);
- ++NumNoCapture;
- Changed = true;
- }
- }
- continue;
- }
-
- for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
- ++A) {
- if (!A->getType()->isPointerTy())
- continue;
- bool HasNonLocalUses = false;
- if (!A->hasNoCaptureAttr()) {
- ArgumentUsesTracker Tracker(SCCNodes);
- PointerMayBeCaptured(&*A, &Tracker);
- if (!Tracker.Captured) {
- if (Tracker.Uses.empty()) {
- // If it's trivially not captured, mark it nocapture now.
- A->addAttr(Attribute::NoCapture);
- ++NumNoCapture;
- Changed = true;
- } else {
- // If it's not trivially captured and not trivially not captured,
- // then it must be calling into another function in our SCC. Save
- // its particulars for Argument-SCC analysis later.
- ArgumentGraphNode *Node = AG[&*A];
- for (Argument *Use : Tracker.Uses) {
- Node->Uses.push_back(AG[Use]);
- if (Use != &*A)
- HasNonLocalUses = true;
- }
- }
- }
- // Otherwise, it's captured. Don't bother doing SCC analysis on it.
- }
- if (!HasNonLocalUses && !A->onlyReadsMemory()) {
- // Can we determine that it's readonly/readnone without doing an SCC?
- // Note that we don't allow any calls at all here, or else our result
- // will be dependent on the iteration order through the functions in the
- // SCC.
- SmallPtrSet<Argument *, 8> Self;
- Self.insert(&*A);
- Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
- if (R != Attribute::None) {
- A->addAttr(R);
- Changed = true;
- R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
- }
- }
- }
- }
-
- // The graph we've collected is partial because we stopped scanning for
- // argument uses once we solved the argument trivially. These partial nodes
- // show up as ArgumentGraphNode objects with an empty Uses list, and for
- // these nodes the final decision about whether they capture has already been
- // made. If the definition doesn't have a 'nocapture' attribute by now, it
- // captures.
-
- for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
- const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
- if (ArgumentSCC.size() == 1) {
- if (!ArgumentSCC[0]->Definition)
- continue; // synthetic root node
-
- // eg. "void f(int* x) { if (...) f(x); }"
- if (ArgumentSCC[0]->Uses.size() == 1 &&
- ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
- Argument *A = ArgumentSCC[0]->Definition;
- A->addAttr(Attribute::NoCapture);
- ++NumNoCapture;
- Changed = true;
- }
- continue;
- }
-
- bool SCCCaptured = false;
- for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
- I != E && !SCCCaptured; ++I) {
- ArgumentGraphNode *Node = *I;
- if (Node->Uses.empty()) {
- if (!Node->Definition->hasNoCaptureAttr())
- SCCCaptured = true;
- }
- }
- if (SCCCaptured)
- continue;
-
- SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
- // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
- // quickly looking up whether a given Argument is in this ArgumentSCC.
- for (ArgumentGraphNode *I : ArgumentSCC) {
- ArgumentSCCNodes.insert(I->Definition);
- }
-
- for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
- I != E && !SCCCaptured; ++I) {
- ArgumentGraphNode *N = *I;
- for (ArgumentGraphNode *Use : N->Uses) {
- Argument *A = Use->Definition;
- if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
- continue;
- SCCCaptured = true;
- break;
- }
- }
- if (SCCCaptured)
- continue;
-
- for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
- Argument *A = ArgumentSCC[i]->Definition;
- A->addAttr(Attribute::NoCapture);
- ++NumNoCapture;
- Changed = true;
- }
-
- // We also want to compute readonly/readnone. With a small number of false
- // negatives, we can assume that any pointer which is captured isn't going
- // to be provably readonly or readnone, since by definition we can't
- // analyze all uses of a captured pointer.
- //
- // The false negatives happen when the pointer is captured by a function
- // that promises readonly/readnone behaviour on the pointer, then the
- // pointer's lifetime ends before anything that writes to arbitrary memory.
- // Also, a readonly/readnone pointer may be returned, but returning a
- // pointer is capturing it.
-
- Attribute::AttrKind ReadAttr = Attribute::ReadNone;
- for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
- Argument *A = ArgumentSCC[i]->Definition;
- Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
- if (K == Attribute::ReadNone)
- continue;
- if (K == Attribute::ReadOnly) {
- ReadAttr = Attribute::ReadOnly;
- continue;
- }
- ReadAttr = K;
- break;
- }
-
- if (ReadAttr != Attribute::None) {
- for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
- Argument *A = ArgumentSCC[i]->Definition;
- // Clear out existing readonly/readnone attributes
- A->removeAttr(Attribute::ReadOnly);
- A->removeAttr(Attribute::ReadNone);
- A->addAttr(ReadAttr);
- ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
- Changed = true;
- }
- }
- }
-
- return Changed;
-}
-
-/// Tests whether a function is "malloc-like".
-///
-/// A function is "malloc-like" if it returns either null or a pointer that
-/// doesn't alias any other pointer visible to the caller.
-static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
- SmallSetVector<Value *, 8> FlowsToReturn;
- for (BasicBlock &BB : *F)
- if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
- FlowsToReturn.insert(Ret->getReturnValue());
-
- for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
- Value *RetVal = FlowsToReturn[i];
-
- if (Constant *C = dyn_cast<Constant>(RetVal)) {
- if (!C->isNullValue() && !isa<UndefValue>(C))
- return false;
-
- continue;
- }
-
- if (isa<Argument>(RetVal))
- return false;
-
- if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
- switch (RVI->getOpcode()) {
- // Extend the analysis by looking upwards.
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::AddrSpaceCast:
- FlowsToReturn.insert(RVI->getOperand(0));
- continue;
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(RVI);
- FlowsToReturn.insert(SI->getTrueValue());
- FlowsToReturn.insert(SI->getFalseValue());
- continue;
- }
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(RVI);
- for (Value *IncValue : PN->incoming_values())
- FlowsToReturn.insert(IncValue);
- continue;
- }
-
- // Check whether the pointer came from an allocation.
- case Instruction::Alloca:
- break;
- case Instruction::Call:
- case Instruction::Invoke: {
- CallSite CS(RVI);
- if (CS.hasRetAttr(Attribute::NoAlias))
- break;
- if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
- break;
- LLVM_FALLTHROUGH;
- }
- default:
- return false; // Did not come from an allocation.
- }
-
- if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
- return false;
- }
-
- return true;
-}
-
-/// Deduce noalias attributes for the SCC.
-static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
- // Check each function in turn, determining which functions return noalias
- // pointers.
- for (Function *F : SCCNodes) {
- // Already noalias.
- if (F->returnDoesNotAlias())
- continue;
-
- // We can infer and propagate function attributes only when we know that the
- // definition we'll get at link time is *exactly* the definition we see now.
- // For more details, see GlobalValue::mayBeDerefined.
- if (!F->hasExactDefinition())
- return false;
-
- // We annotate noalias return values, which are only applicable to
- // pointer types.
- if (!F->getReturnType()->isPointerTy())
- continue;
-
- if (!isFunctionMallocLike(F, SCCNodes))
- return false;
- }
-
- bool MadeChange = false;
- for (Function *F : SCCNodes) {
- if (F->returnDoesNotAlias() ||
- !F->getReturnType()->isPointerTy())
- continue;
-
- F->setReturnDoesNotAlias();
- ++NumNoAlias;
- MadeChange = true;
- }
-
- return MadeChange;
-}
-
-/// Tests whether this function is known to not return null.
-///
-/// Requires that the function returns a pointer.
-///
-/// Returns true if it believes the function will not return a null, and sets
-/// \p Speculative based on whether the returned conclusion is a speculative
-/// conclusion due to SCC calls.
-static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
- bool &Speculative) {
- assert(F->getReturnType()->isPointerTy() &&
- "nonnull only meaningful on pointer types");
- Speculative = false;
-
- SmallSetVector<Value *, 8> FlowsToReturn;
- for (BasicBlock &BB : *F)
- if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
- FlowsToReturn.insert(Ret->getReturnValue());
-
- auto &DL = F->getParent()->getDataLayout();
-
- for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
- Value *RetVal = FlowsToReturn[i];
-
- // If this value is locally known to be non-null, we're good
- if (isKnownNonZero(RetVal, DL))
- continue;
-
- // Otherwise, we need to look upwards since we can't make any local
- // conclusions.
- Instruction *RVI = dyn_cast<Instruction>(RetVal);
- if (!RVI)
- return false;
- switch (RVI->getOpcode()) {
- // Extend the analysis by looking upwards.
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::AddrSpaceCast:
- FlowsToReturn.insert(RVI->getOperand(0));
- continue;
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(RVI);
- FlowsToReturn.insert(SI->getTrueValue());
- FlowsToReturn.insert(SI->getFalseValue());
- continue;
- }
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(RVI);
- for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- FlowsToReturn.insert(PN->getIncomingValue(i));
- continue;
- }
- case Instruction::Call:
- case Instruction::Invoke: {
- CallSite CS(RVI);
- Function *Callee = CS.getCalledFunction();
- // A call to a node within the SCC is assumed to return null until
- // proven otherwise
- if (Callee && SCCNodes.count(Callee)) {
- Speculative = true;
- continue;
- }
- return false;
- }
- default:
- return false; // Unknown source, may be null
- };
- llvm_unreachable("should have either continued or returned");
- }
-
- return true;
-}
-
-/// Deduce nonnull attributes for the SCC.
-static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
- // Speculative that all functions in the SCC return only nonnull
- // pointers. We may refute this as we analyze functions.
- bool SCCReturnsNonNull = true;
-
- bool MadeChange = false;
-
- // Check each function in turn, determining which functions return nonnull
- // pointers.
- for (Function *F : SCCNodes) {
- // Already nonnull.
- if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
- Attribute::NonNull))
- continue;
-
- // We can infer and propagate function attributes only when we know that the
- // definition we'll get at link time is *exactly* the definition we see now.
- // For more details, see GlobalValue::mayBeDerefined.
- if (!F->hasExactDefinition())
- return false;
-
- // We annotate nonnull return values, which are only applicable to
- // pointer types.
- if (!F->getReturnType()->isPointerTy())
- continue;
-
- bool Speculative = false;
- if (isReturnNonNull(F, SCCNodes, Speculative)) {
- if (!Speculative) {
- // Mark the function eagerly since we may discover a function
- // which prevents us from speculating about the entire SCC
- LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
- << " as nonnull\n");
- F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
- ++NumNonNullReturn;
- MadeChange = true;
- }
- continue;
- }
- // At least one function returns something which could be null, can't
- // speculate any more.
- SCCReturnsNonNull = false;
- }
-
- if (SCCReturnsNonNull) {
- for (Function *F : SCCNodes) {
- if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
- Attribute::NonNull) ||
- !F->getReturnType()->isPointerTy())
- continue;
-
- LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
- F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
- ++NumNonNullReturn;
- MadeChange = true;
- }
- }
-
- return MadeChange;
-}
-
-namespace {
-
-/// Collects a set of attribute inference requests and performs them all in one
-/// go on a single SCC Node. Inference involves scanning function bodies
-/// looking for instructions that violate attribute assumptions.
-/// As soon as all the bodies are fine we are free to set the attribute.
-/// Customization of inference for individual attributes is performed by
-/// providing a handful of predicates for each attribute.
-class AttributeInferer {
-public:
- /// Describes a request for inference of a single attribute.
- struct InferenceDescriptor {
-
- /// Returns true if this function does not have to be handled.
- /// General intent for this predicate is to provide an optimization
- /// for functions that do not need this attribute inference at all
- /// (say, for functions that already have the attribute).
- std::function<bool(const Function &)> SkipFunction;
-
- /// Returns true if this instruction violates attribute assumptions.
- std::function<bool(Instruction &)> InstrBreaksAttribute;
-
- /// Sets the inferred attribute for this function.
- std::function<void(Function &)> SetAttribute;
-
- /// Attribute we derive.
- Attribute::AttrKind AKind;
-
- /// If true, only "exact" definitions can be used to infer this attribute.
- /// See GlobalValue::isDefinitionExact.
- bool RequiresExactDefinition;
-
- InferenceDescriptor(Attribute::AttrKind AK,
- std::function<bool(const Function &)> SkipFunc,
- std::function<bool(Instruction &)> InstrScan,
- std::function<void(Function &)> SetAttr,
- bool ReqExactDef)
- : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
- SetAttribute(SetAttr), AKind(AK),
- RequiresExactDefinition(ReqExactDef) {}
- };
-
-private:
- SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
-
-public:
- void registerAttrInference(InferenceDescriptor AttrInference) {
- InferenceDescriptors.push_back(AttrInference);
- }
-
- bool run(const SCCNodeSet &SCCNodes);
-};
-
-/// Perform all the requested attribute inference actions according to the
-/// attribute predicates stored before.
-bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
- SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
- // Go through all the functions in SCC and check corresponding attribute
- // assumptions for each of them. Attributes that are invalid for this SCC
- // will be removed from InferInSCC.
- for (Function *F : SCCNodes) {
-
- // No attributes whose assumptions are still valid - done.
- if (InferInSCC.empty())
- return false;
-
- // Check if our attributes ever need scanning/can be scanned.
- llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
- if (ID.SkipFunction(*F))
- return false;
-
- // Remove from further inference (invalidate) when visiting a function
- // that has no instructions to scan/has an unsuitable definition.
- return F->isDeclaration() ||
- (ID.RequiresExactDefinition && !F->hasExactDefinition());
- });
-
- // For each attribute still in InferInSCC that doesn't explicitly skip F,
- // set up the F instructions scan to verify assumptions of the attribute.
- SmallVector<InferenceDescriptor, 4> InferInThisFunc;
- llvm::copy_if(
- InferInSCC, std::back_inserter(InferInThisFunc),
- [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
-
- if (InferInThisFunc.empty())
- continue;
-
- // Start instruction scan.
- for (Instruction &I : instructions(*F)) {
- llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
- if (!ID.InstrBreaksAttribute(I))
- return false;
- // Remove attribute from further inference on any other functions
- // because attribute assumptions have just been violated.
- llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
- return D.AKind == ID.AKind;
- });
- // Remove attribute from the rest of current instruction scan.
- return true;
- });
-
- if (InferInThisFunc.empty())
- break;
- }
- }
-
- if (InferInSCC.empty())
- return false;
-
- bool Changed = false;
- for (Function *F : SCCNodes)
- // At this point InferInSCC contains only functions that were either:
- // - explicitly skipped from scan/inference, or
- // - verified to have no instructions that break attribute assumptions.
- // Hence we just go and force the attribute for all non-skipped functions.
- for (auto &ID : InferInSCC) {
- if (ID.SkipFunction(*F))
- continue;
- Changed = true;
- ID.SetAttribute(*F);
- }
- return Changed;
-}
-
-} // end anonymous namespace
-
-/// Helper for non-Convergent inference predicate InstrBreaksAttribute.
-static bool InstrBreaksNonConvergent(Instruction &I,
- const SCCNodeSet &SCCNodes) {
- const CallSite CS(&I);
- // Breaks non-convergent assumption if CS is a convergent call to a function
- // not in the SCC.
- return CS && CS.isConvergent() && SCCNodes.count(CS.getCalledFunction()) == 0;
-}
-
-/// Helper for NoUnwind inference predicate InstrBreaksAttribute.
-static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
- if (!I.mayThrow())
- return false;
- if (const auto *CI = dyn_cast<CallInst>(&I)) {
- if (Function *Callee = CI->getCalledFunction()) {
- // I is a may-throw call to a function inside our SCC. This doesn't
- // invalidate our current working assumption that the SCC is no-throw; we
- // just have to scan that other function.
- if (SCCNodes.count(Callee) > 0)
- return false;
- }
- }
- return true;
-}
-
-/// Infer attributes from all functions in the SCC by scanning every
-/// instruction for compliance to the attribute assumptions. Currently it
-/// does:
-/// - removal of Convergent attribute
-/// - addition of NoUnwind attribute
-///
-/// Returns true if any changes to function attributes were made.
-static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {
-
- AttributeInferer AI;
-
- // Request to remove the convergent attribute from all functions in the SCC
- // if every callsite within the SCC is not convergent (except for calls
- // to functions within the SCC).
- // Note: Removal of the attr from the callsites will happen in
- // InstCombineCalls separately.
- AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
- Attribute::Convergent,
- // Skip non-convergent functions.
- [](const Function &F) { return !F.isConvergent(); },
- // Instructions that break non-convergent assumption.
- [SCCNodes](Instruction &I) {
- return InstrBreaksNonConvergent(I, SCCNodes);
- },
- [](Function &F) {
- LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
- << "\n");
- F.setNotConvergent();
- },
- /* RequiresExactDefinition= */ false});
-
- if (!DisableNoUnwindInference)
- // Request to infer nounwind attribute for all the functions in the SCC if
- // every callsite within the SCC is not throwing (except for calls to
- // functions within the SCC). Note that nounwind attribute suffers from
- // derefinement - results may change depending on how functions are
- // optimized. Thus it can be inferred only from exact definitions.
- AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
- Attribute::NoUnwind,
- // Skip non-throwing functions.
- [](const Function &F) { return F.doesNotThrow(); },
- // Instructions that break non-throwing assumption.
- [SCCNodes](Instruction &I) {
- return InstrBreaksNonThrowing(I, SCCNodes);
- },
- [](Function &F) {
- LLVM_DEBUG(dbgs()
- << "Adding nounwind attr to fn " << F.getName() << "\n");
- F.setDoesNotThrow();
- ++NumNoUnwind;
- },
- /* RequiresExactDefinition= */ true});
-
- // Perform all the requested attribute inference actions.
- return AI.run(SCCNodes);
-}
-
-static bool setDoesNotRecurse(Function &F) {
- if (F.doesNotRecurse())
- return false;
- F.setDoesNotRecurse();
- ++NumNoRecurse;
- return true;
-}
-
-static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
- // Try and identify functions that do not recurse.
-
- // If the SCC contains multiple nodes we know for sure there is recursion.
- if (SCCNodes.size() != 1)
- return false;
-
- Function *F = *SCCNodes.begin();
- if (!F || F->isDeclaration() || F->doesNotRecurse())
- return false;
-
- // If all of the calls in F are identifiable and are to norecurse functions, F
- // is norecurse. This check also detects self-recursion as F is not currently
- // marked norecurse, so any called from F to F will not be marked norecurse.
- for (auto &BB : *F)
- for (auto &I : BB.instructionsWithoutDebug())
- if (auto CS = CallSite(&I)) {
- Function *Callee = CS.getCalledFunction();
- if (!Callee || Callee == F || !Callee->doesNotRecurse())
- // Function calls a potentially recursive function.
- return false;
- }
-
- // Every call was to a non-recursive function other than this function, and
- // we have no indirect recursion as the SCC size is one. This function cannot
- // recurse.
- return setDoesNotRecurse(*F);
-}
-
-template <typename AARGetterT>
-static bool deriveAttrsInPostOrder(SCCNodeSet &SCCNodes, AARGetterT &&AARGetter,
- bool HasUnknownCall) {
- bool Changed = false;
-
- // Bail if the SCC only contains optnone functions.
- if (SCCNodes.empty())
- return Changed;
-
- Changed |= addArgumentReturnedAttrs(SCCNodes);
- Changed |= addReadAttrs(SCCNodes, AARGetter);
- Changed |= addArgumentAttrs(SCCNodes);
-
- // If we have no external nodes participating in the SCC, we can deduce some
- // more precise attributes as well.
- if (!HasUnknownCall) {
- Changed |= addNoAliasAttrs(SCCNodes);
- Changed |= addNonNullAttrs(SCCNodes);
- Changed |= inferAttrsFromFunctionBodies(SCCNodes);
- Changed |= addNoRecurseAttrs(SCCNodes);
- }
-
- return Changed;
-}
-
-PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &CG,
- CGSCCUpdateResult &) {
- FunctionAnalysisManager &FAM =
- AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
-
- // We pass a lambda into functions to wire them up to the analysis manager
- // for getting function analyses.
- auto AARGetter = [&](Function &F) -> AAResults & {
- return FAM.getResult<AAManager>(F);
- };
-
- // Fill SCCNodes with the elements of the SCC. Also track whether there are
- // any external or opt-none nodes that will prevent us from optimizing any
- // part of the SCC.
- SCCNodeSet SCCNodes;
- bool HasUnknownCall = false;
- for (LazyCallGraph::Node &N : C) {
- Function &F = N.getFunction();
- if (F.hasFnAttribute(Attribute::OptimizeNone) ||
- F.hasFnAttribute(Attribute::Naked)) {
- // Treat any function we're trying not to optimize as if it were an
- // indirect call and omit it from the node set used below.
- HasUnknownCall = true;
- continue;
- }
- // Track whether any functions in this SCC have an unknown call edge.
- // Note: if this is ever a performance hit, we can common it with
- // subsequent routines which also do scans over the instructions of the
- // function.
- if (!HasUnknownCall)
- for (Instruction &I : instructions(F))
- if (auto CS = CallSite(&I))
- if (!CS.getCalledFunction()) {
- HasUnknownCall = true;
- break;
- }
-
- SCCNodes.insert(&F);
- }
-
- if (deriveAttrsInPostOrder(SCCNodes, AARGetter, HasUnknownCall))
- return PreservedAnalyses::none();
-
- return PreservedAnalyses::all();
-}
-
-namespace {
-
-struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
- // Pass identification, replacement for typeid
- static char ID;
-
- PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
- initializePostOrderFunctionAttrsLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
-
- bool runOnSCC(CallGraphSCC &SCC) override;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<AssumptionCacheTracker>();
- getAAResultsAnalysisUsage(AU);
- CallGraphSCCPass::getAnalysisUsage(AU);
- }
-};
-
-} // end anonymous namespace
-
-char PostOrderFunctionAttrsLegacyPass::ID = 0;
-INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
- "Deduce function attributes", false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
-INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
- "Deduce function attributes", false, false)
-
-Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
- return new PostOrderFunctionAttrsLegacyPass();
-}
-
-template <typename AARGetterT>
-static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
-
- // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
- // whether a given CallGraphNode is in this SCC. Also track whether there are
- // any external or opt-none nodes that will prevent us from optimizing any
- // part of the SCC.
- SCCNodeSet SCCNodes;
- bool ExternalNode = false;
- for (CallGraphNode *I : SCC) {
- Function *F = I->getFunction();
- if (!F || F->hasFnAttribute(Attribute::OptimizeNone) ||
- F->hasFnAttribute(Attribute::Naked)) {
- // External node or function we're trying not to optimize - we both avoid
- // transform them and avoid leveraging information they provide.
- ExternalNode = true;
- continue;
- }
-
- SCCNodes.insert(F);
- }
-
- return deriveAttrsInPostOrder(SCCNodes, AARGetter, ExternalNode);
-}
-
-bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
- if (skipSCC(SCC))
- return false;
- return runImpl(SCC, LegacyAARGetter(*this));
-}
-
-namespace {
-
-struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
- // Pass identification, replacement for typeid
- static char ID;
-
- ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
- initializeReversePostOrderFunctionAttrsLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
-
- bool runOnModule(Module &M) override;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<CallGraphWrapperPass>();
- AU.addPreserved<CallGraphWrapperPass>();
- }
-};
-
-} // end anonymous namespace
-
-char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
- "Deduce function attributes in RPO", false, false)
-INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
-INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
- "Deduce function attributes in RPO", false, false)
-
-Pass *llvm::createReversePostOrderFunctionAttrsPass() {
- return new ReversePostOrderFunctionAttrsLegacyPass();
-}
-
-static bool addNoRecurseAttrsTopDown(Function &F) {
- // We check the preconditions for the function prior to calling this to avoid
- // the cost of building up a reversible post-order list. We assert them here
- // to make sure none of the invariants this relies on were violated.
- assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
- assert(!F.doesNotRecurse() &&
- "This function has already been deduced as norecurs!");
- assert(F.hasInternalLinkage() &&
- "Can only do top-down deduction for internal linkage functions!");
-
- // If F is internal and all of its uses are calls from a non-recursive
- // functions, then none of its calls could in fact recurse without going
- // through a function marked norecurse, and so we can mark this function too
- // as norecurse. Note that the uses must actually be calls -- otherwise
- // a pointer to this function could be returned from a norecurse function but
- // this function could be recursively (indirectly) called. Note that this
- // also detects if F is directly recursive as F is not yet marked as
- // a norecurse function.
- for (auto *U : F.users()) {
- auto *I = dyn_cast<Instruction>(U);
- if (!I)
- return false;
- CallSite CS(I);
- if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
- return false;
- }
- return setDoesNotRecurse(F);
-}
-
-static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
- // We only have a post-order SCC traversal (because SCCs are inherently
- // discovered in post-order), so we accumulate them in a vector and then walk
- // it in reverse. This is simpler than using the RPO iterator infrastructure
- // because we need to combine SCC detection and the PO walk of the call
- // graph. We can also cheat egregiously because we're primarily interested in
- // synthesizing norecurse and so we can only save the singular SCCs as SCCs
- // with multiple functions in them will clearly be recursive.
- SmallVector<Function *, 16> Worklist;
- for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
- if (I->size() != 1)
- continue;
-
- Function *F = I->front()->getFunction();
- if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
- F->hasInternalLinkage())
- Worklist.push_back(F);
- }
-
- bool Changed = false;
- for (auto *F : llvm::reverse(Worklist))
- Changed |= addNoRecurseAttrsTopDown(*F);
-
- return Changed;
-}
-
-bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
- if (skipModule(M))
- return false;
-
- auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
-
- return deduceFunctionAttributeInRPO(M, CG);
-}
-
-PreservedAnalyses
-ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
- auto &CG = AM.getResult<CallGraphAnalysis>(M);
-
- if (!deduceFunctionAttributeInRPO(M, CG))
- return PreservedAnalyses::all();
-
- PreservedAnalyses PA;
- PA.preserve<CallGraphAnalysis>();
- return PA;
-}