diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp | 1572 |
1 files changed, 0 insertions, 1572 deletions
diff --git a/gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp b/gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp deleted file mode 100644 index 4e2a82b56ee..00000000000 --- a/gnu/llvm/lib/Transforms/IPO/FunctionAttrs.cpp +++ /dev/null @@ -1,1572 +0,0 @@ -//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -/// \file -/// This file implements interprocedural passes which walk the -/// call-graph deducing and/or propagating function attributes. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/IPO/FunctionAttrs.h" -#include "llvm/ADT/SCCIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/BasicAliasAnalysis.h" -#include "llvm/Analysis/CGSCCPassManager.h" -#include "llvm/Analysis/CallGraph.h" -#include "llvm/Analysis/CallGraphSCCPass.h" -#include "llvm/Analysis/CaptureTracking.h" -#include "llvm/Analysis/LazyCallGraph.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/IPO.h" -#include <cassert> -#include <iterator> -#include <map> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "functionattrs" - -STATISTIC(NumReadNone, "Number of functions marked readnone"); -STATISTIC(NumReadOnly, "Number of functions marked readonly"); -STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); -STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); -STATISTIC(NumReturned, "Number of arguments marked returned"); -STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); -STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); -STATISTIC(NumNoAlias, "Number of function returns marked noalias"); -STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); -STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); -STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); - -// FIXME: This is disabled by default to avoid exposing security vulnerabilities -// in C/C++ code compiled by clang: -// http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html -static cl::opt<bool> EnableNonnullArgPropagation( - "enable-nonnull-arg-prop", cl::Hidden, - cl::desc("Try to propagate nonnull argument attributes from callsites to " - "caller functions.")); - -static cl::opt<bool> DisableNoUnwindInference( - "disable-nounwind-inference", cl::Hidden, - cl::desc("Stop inferring nounwind attribute during function-attrs pass")); - -namespace { - -using SCCNodeSet = SmallSetVector<Function *, 8>; - -} // end anonymous namespace - -/// Returns the memory access attribute for function F using AAR for AA results, -/// where SCCNodes is the current SCC. -/// -/// If ThisBody is true, this function may examine the function body and will -/// return a result pertaining to this copy of the function. If it is false, the -/// result will be based only on AA results for the function declaration; it -/// will be assumed that some other (perhaps less optimized) version of the -/// function may be selected at link time. -static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, - AAResults &AAR, - const SCCNodeSet &SCCNodes) { - FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); - if (MRB == FMRB_DoesNotAccessMemory) - // Already perfect! - return MAK_ReadNone; - - if (!ThisBody) { - if (AliasAnalysis::onlyReadsMemory(MRB)) - return MAK_ReadOnly; - - if (AliasAnalysis::doesNotReadMemory(MRB)) - return MAK_WriteOnly; - - // Conservatively assume it reads and writes to memory. - return MAK_MayWrite; - } - - // Scan the function body for instructions that may read or write memory. - bool ReadsMemory = false; - bool WritesMemory = false; - for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { - Instruction *I = &*II; - - // Some instructions can be ignored even if they read or write memory. - // Detect these now, skipping to the next instruction if one is found. - if (auto *Call = dyn_cast<CallBase>(I)) { - // Ignore calls to functions in the same SCC, as long as the call sites - // don't have operand bundles. Calls with operand bundles are allowed to - // have memory effects not described by the memory effects of the call - // target. - if (!Call->hasOperandBundles() && Call->getCalledFunction() && - SCCNodes.count(Call->getCalledFunction())) - continue; - FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); - ModRefInfo MRI = createModRefInfo(MRB); - - // If the call doesn't access memory, we're done. - if (isNoModRef(MRI)) - continue; - - if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { - // The call could access any memory. If that includes writes, note it. - if (isModSet(MRI)) - WritesMemory = true; - // If it reads, note it. - if (isRefSet(MRI)) - ReadsMemory = true; - continue; - } - - // Check whether all pointer arguments point to local memory, and - // ignore calls that only access local memory. - for (CallSite::arg_iterator CI = Call->arg_begin(), CE = Call->arg_end(); - CI != CE; ++CI) { - Value *Arg = *CI; - if (!Arg->getType()->isPtrOrPtrVectorTy()) - continue; - - AAMDNodes AAInfo; - I->getAAMetadata(AAInfo); - MemoryLocation Loc(Arg, LocationSize::unknown(), AAInfo); - - // Skip accesses to local or constant memory as they don't impact the - // externally visible mod/ref behavior. - if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) - continue; - - if (isModSet(MRI)) - // Writes non-local memory. - WritesMemory = true; - if (isRefSet(MRI)) - // Ok, it reads non-local memory. - ReadsMemory = true; - } - continue; - } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - // Ignore non-volatile loads from local memory. (Atomic is okay here.) - if (!LI->isVolatile()) { - MemoryLocation Loc = MemoryLocation::get(LI); - if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) - continue; - } - } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - // Ignore non-volatile stores to local memory. (Atomic is okay here.) - if (!SI->isVolatile()) { - MemoryLocation Loc = MemoryLocation::get(SI); - if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) - continue; - } - } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) { - // Ignore vaargs on local memory. - MemoryLocation Loc = MemoryLocation::get(VI); - if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) - continue; - } - - // Any remaining instructions need to be taken seriously! Check if they - // read or write memory. - // - // Writes memory, remember that. - WritesMemory |= I->mayWriteToMemory(); - - // If this instruction may read memory, remember that. - ReadsMemory |= I->mayReadFromMemory(); - } - - if (WritesMemory) { - if (!ReadsMemory) - return MAK_WriteOnly; - else - return MAK_MayWrite; - } - - return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; -} - -MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, - AAResults &AAR) { - return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); -} - -/// Deduce readonly/readnone attributes for the SCC. -template <typename AARGetterT> -static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) { - // Check if any of the functions in the SCC read or write memory. If they - // write memory then they can't be marked readnone or readonly. - bool ReadsMemory = false; - bool WritesMemory = false; - for (Function *F : SCCNodes) { - // Call the callable parameter to look up AA results for this function. - AAResults &AAR = AARGetter(*F); - - // Non-exact function definitions may not be selected at link time, and an - // alternative version that writes to memory may be selected. See the - // comment on GlobalValue::isDefinitionExact for more details. - switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), - AAR, SCCNodes)) { - case MAK_MayWrite: - return false; - case MAK_ReadOnly: - ReadsMemory = true; - break; - case MAK_WriteOnly: - WritesMemory = true; - break; - case MAK_ReadNone: - // Nothing to do! - break; - } - } - - // Success! Functions in this SCC do not access memory, or only read memory. - // Give them the appropriate attribute. - bool MadeChange = false; - - assert(!(ReadsMemory && WritesMemory) && - "Function marked read-only and write-only"); - for (Function *F : SCCNodes) { - if (F->doesNotAccessMemory()) - // Already perfect! - continue; - - if (F->onlyReadsMemory() && ReadsMemory) - // No change. - continue; - - if (F->doesNotReadMemory() && WritesMemory) - continue; - - MadeChange = true; - - // Clear out any existing attributes. - F->removeFnAttr(Attribute::ReadOnly); - F->removeFnAttr(Attribute::ReadNone); - F->removeFnAttr(Attribute::WriteOnly); - - if (!WritesMemory && !ReadsMemory) { - // Clear out any "access range attributes" if readnone was deduced. - F->removeFnAttr(Attribute::ArgMemOnly); - F->removeFnAttr(Attribute::InaccessibleMemOnly); - F->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly); - } - - // Add in the new attribute. - if (WritesMemory && !ReadsMemory) - F->addFnAttr(Attribute::WriteOnly); - else - F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); - - if (WritesMemory && !ReadsMemory) - ++NumWriteOnly; - else if (ReadsMemory) - ++NumReadOnly; - else - ++NumReadNone; - } - - return MadeChange; -} - -namespace { - -/// For a given pointer Argument, this retains a list of Arguments of functions -/// in the same SCC that the pointer data flows into. We use this to build an -/// SCC of the arguments. -struct ArgumentGraphNode { - Argument *Definition; - SmallVector<ArgumentGraphNode *, 4> Uses; -}; - -class ArgumentGraph { - // We store pointers to ArgumentGraphNode objects, so it's important that - // that they not move around upon insert. - using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; - - ArgumentMapTy ArgumentMap; - - // There is no root node for the argument graph, in fact: - // void f(int *x, int *y) { if (...) f(x, y); } - // is an example where the graph is disconnected. The SCCIterator requires a - // single entry point, so we maintain a fake ("synthetic") root node that - // uses every node. Because the graph is directed and nothing points into - // the root, it will not participate in any SCCs (except for its own). - ArgumentGraphNode SyntheticRoot; - -public: - ArgumentGraph() { SyntheticRoot.Definition = nullptr; } - - using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; - - iterator begin() { return SyntheticRoot.Uses.begin(); } - iterator end() { return SyntheticRoot.Uses.end(); } - ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } - - ArgumentGraphNode *operator[](Argument *A) { - ArgumentGraphNode &Node = ArgumentMap[A]; - Node.Definition = A; - SyntheticRoot.Uses.push_back(&Node); - return &Node; - } -}; - -/// This tracker checks whether callees are in the SCC, and if so it does not -/// consider that a capture, instead adding it to the "Uses" list and -/// continuing with the analysis. -struct ArgumentUsesTracker : public CaptureTracker { - ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} - - void tooManyUses() override { Captured = true; } - - bool captured(const Use *U) override { - CallSite CS(U->getUser()); - if (!CS.getInstruction()) { - Captured = true; - return true; - } - - Function *F = CS.getCalledFunction(); - if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { - Captured = true; - return true; - } - - // Note: the callee and the two successor blocks *follow* the argument - // operands. This means there is no need to adjust UseIndex to account for - // these. - - unsigned UseIndex = - std::distance(const_cast<const Use *>(CS.arg_begin()), U); - - assert(UseIndex < CS.data_operands_size() && - "Indirect function calls should have been filtered above!"); - - if (UseIndex >= CS.getNumArgOperands()) { - // Data operand, but not a argument operand -- must be a bundle operand - assert(CS.hasOperandBundles() && "Must be!"); - - // CaptureTracking told us that we're being captured by an operand bundle - // use. In this case it does not matter if the callee is within our SCC - // or not -- we've been captured in some unknown way, and we have to be - // conservative. - Captured = true; - return true; - } - - if (UseIndex >= F->arg_size()) { - assert(F->isVarArg() && "More params than args in non-varargs call"); - Captured = true; - return true; - } - - Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); - return false; - } - - // True only if certainly captured (used outside our SCC). - bool Captured = false; - - // Uses within our SCC. - SmallVector<Argument *, 4> Uses; - - const SCCNodeSet &SCCNodes; -}; - -} // end anonymous namespace - -namespace llvm { - -template <> struct GraphTraits<ArgumentGraphNode *> { - using NodeRef = ArgumentGraphNode *; - using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; - - static NodeRef getEntryNode(NodeRef A) { return A; } - static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } - static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } -}; - -template <> -struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { - static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } - - static ChildIteratorType nodes_begin(ArgumentGraph *AG) { - return AG->begin(); - } - - static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } -}; - -} // end namespace llvm - -/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. -static Attribute::AttrKind -determinePointerReadAttrs(Argument *A, - const SmallPtrSet<Argument *, 8> &SCCNodes) { - SmallVector<Use *, 32> Worklist; - SmallPtrSet<Use *, 32> Visited; - - // inalloca arguments are always clobbered by the call. - if (A->hasInAllocaAttr()) - return Attribute::None; - - bool IsRead = false; - // We don't need to track IsWritten. If A is written to, return immediately. - - for (Use &U : A->uses()) { - Visited.insert(&U); - Worklist.push_back(&U); - } - - while (!Worklist.empty()) { - Use *U = Worklist.pop_back_val(); - Instruction *I = cast<Instruction>(U->getUser()); - - switch (I->getOpcode()) { - case Instruction::BitCast: - case Instruction::GetElementPtr: - case Instruction::PHI: - case Instruction::Select: - case Instruction::AddrSpaceCast: - // The original value is not read/written via this if the new value isn't. - for (Use &UU : I->uses()) - if (Visited.insert(&UU).second) - Worklist.push_back(&UU); - break; - - case Instruction::Call: - case Instruction::Invoke: { - bool Captures = true; - - if (I->getType()->isVoidTy()) - Captures = false; - - auto AddUsersToWorklistIfCapturing = [&] { - if (Captures) - for (Use &UU : I->uses()) - if (Visited.insert(&UU).second) - Worklist.push_back(&UU); - }; - - CallSite CS(I); - if (CS.doesNotAccessMemory()) { - AddUsersToWorklistIfCapturing(); - continue; - } - - Function *F = CS.getCalledFunction(); - if (!F) { - if (CS.onlyReadsMemory()) { - IsRead = true; - AddUsersToWorklistIfCapturing(); - continue; - } - return Attribute::None; - } - - // Note: the callee and the two successor blocks *follow* the argument - // operands. This means there is no need to adjust UseIndex to account - // for these. - - unsigned UseIndex = std::distance(CS.arg_begin(), U); - - // U cannot be the callee operand use: since we're exploring the - // transitive uses of an Argument, having such a use be a callee would - // imply the CallSite is an indirect call or invoke; and we'd take the - // early exit above. - assert(UseIndex < CS.data_operands_size() && - "Data operand use expected!"); - - bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands(); - - if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { - assert(F->isVarArg() && "More params than args in non-varargs call"); - return Attribute::None; - } - - Captures &= !CS.doesNotCapture(UseIndex); - - // Since the optimizer (by design) cannot see the data flow corresponding - // to a operand bundle use, these cannot participate in the optimistic SCC - // analysis. Instead, we model the operand bundle uses as arguments in - // call to a function external to the SCC. - if (IsOperandBundleUse || - !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) { - - // The accessors used on CallSite here do the right thing for calls and - // invokes with operand bundles. - - if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex)) - return Attribute::None; - if (!CS.doesNotAccessMemory(UseIndex)) - IsRead = true; - } - - AddUsersToWorklistIfCapturing(); - break; - } - - case Instruction::Load: - // A volatile load has side effects beyond what readonly can be relied - // upon. - if (cast<LoadInst>(I)->isVolatile()) - return Attribute::None; - - IsRead = true; - break; - - case Instruction::ICmp: - case Instruction::Ret: - break; - - default: - return Attribute::None; - } - } - - return IsRead ? Attribute::ReadOnly : Attribute::ReadNone; -} - -/// Deduce returned attributes for the SCC. -static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) { - bool Changed = false; - - // Check each function in turn, determining if an argument is always returned. - for (Function *F : SCCNodes) { - // We can infer and propagate function attributes only when we know that the - // definition we'll get at link time is *exactly* the definition we see now. - // For more details, see GlobalValue::mayBeDerefined. - if (!F->hasExactDefinition()) - continue; - - if (F->getReturnType()->isVoidTy()) - continue; - - // There is nothing to do if an argument is already marked as 'returned'. - if (llvm::any_of(F->args(), - [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) - continue; - - auto FindRetArg = [&]() -> Value * { - Value *RetArg = nullptr; - for (BasicBlock &BB : *F) - if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { - // Note that stripPointerCasts should look through functions with - // returned arguments. - Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); - if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) - return nullptr; - - if (!RetArg) - RetArg = RetVal; - else if (RetArg != RetVal) - return nullptr; - } - - return RetArg; - }; - - if (Value *RetArg = FindRetArg()) { - auto *A = cast<Argument>(RetArg); - A->addAttr(Attribute::Returned); - ++NumReturned; - Changed = true; - } - } - - return Changed; -} - -/// If a callsite has arguments that are also arguments to the parent function, -/// try to propagate attributes from the callsite's arguments to the parent's -/// arguments. This may be important because inlining can cause information loss -/// when attribute knowledge disappears with the inlined call. -static bool addArgumentAttrsFromCallsites(Function &F) { - if (!EnableNonnullArgPropagation) - return false; - - bool Changed = false; - - // For an argument attribute to transfer from a callsite to the parent, the - // call must be guaranteed to execute every time the parent is called. - // Conservatively, just check for calls in the entry block that are guaranteed - // to execute. - // TODO: This could be enhanced by testing if the callsite post-dominates the - // entry block or by doing simple forward walks or backward walks to the - // callsite. - BasicBlock &Entry = F.getEntryBlock(); - for (Instruction &I : Entry) { - if (auto CS = CallSite(&I)) { - if (auto *CalledFunc = CS.getCalledFunction()) { - for (auto &CSArg : CalledFunc->args()) { - if (!CSArg.hasNonNullAttr()) - continue; - - // If the non-null callsite argument operand is an argument to 'F' - // (the caller) and the call is guaranteed to execute, then the value - // must be non-null throughout 'F'. - auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo())); - if (FArg && !FArg->hasNonNullAttr()) { - FArg->addAttr(Attribute::NonNull); - Changed = true; - } - } - } - } - if (!isGuaranteedToTransferExecutionToSuccessor(&I)) - break; - } - - return Changed; -} - -/// Deduce nocapture attributes for the SCC. -static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) { - bool Changed = false; - - ArgumentGraph AG; - - // Check each function in turn, determining which pointer arguments are not - // captured. - for (Function *F : SCCNodes) { - // We can infer and propagate function attributes only when we know that the - // definition we'll get at link time is *exactly* the definition we see now. - // For more details, see GlobalValue::mayBeDerefined. - if (!F->hasExactDefinition()) - continue; - - Changed |= addArgumentAttrsFromCallsites(*F); - - // Functions that are readonly (or readnone) and nounwind and don't return - // a value can't capture arguments. Don't analyze them. - if (F->onlyReadsMemory() && F->doesNotThrow() && - F->getReturnType()->isVoidTy()) { - for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; - ++A) { - if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { - A->addAttr(Attribute::NoCapture); - ++NumNoCapture; - Changed = true; - } - } - continue; - } - - for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; - ++A) { - if (!A->getType()->isPointerTy()) - continue; - bool HasNonLocalUses = false; - if (!A->hasNoCaptureAttr()) { - ArgumentUsesTracker Tracker(SCCNodes); - PointerMayBeCaptured(&*A, &Tracker); - if (!Tracker.Captured) { - if (Tracker.Uses.empty()) { - // If it's trivially not captured, mark it nocapture now. - A->addAttr(Attribute::NoCapture); - ++NumNoCapture; - Changed = true; - } else { - // If it's not trivially captured and not trivially not captured, - // then it must be calling into another function in our SCC. Save - // its particulars for Argument-SCC analysis later. - ArgumentGraphNode *Node = AG[&*A]; - for (Argument *Use : Tracker.Uses) { - Node->Uses.push_back(AG[Use]); - if (Use != &*A) - HasNonLocalUses = true; - } - } - } - // Otherwise, it's captured. Don't bother doing SCC analysis on it. - } - if (!HasNonLocalUses && !A->onlyReadsMemory()) { - // Can we determine that it's readonly/readnone without doing an SCC? - // Note that we don't allow any calls at all here, or else our result - // will be dependent on the iteration order through the functions in the - // SCC. - SmallPtrSet<Argument *, 8> Self; - Self.insert(&*A); - Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self); - if (R != Attribute::None) { - A->addAttr(R); - Changed = true; - R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; - } - } - } - } - - // The graph we've collected is partial because we stopped scanning for - // argument uses once we solved the argument trivially. These partial nodes - // show up as ArgumentGraphNode objects with an empty Uses list, and for - // these nodes the final decision about whether they capture has already been - // made. If the definition doesn't have a 'nocapture' attribute by now, it - // captures. - - for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { - const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; - if (ArgumentSCC.size() == 1) { - if (!ArgumentSCC[0]->Definition) - continue; // synthetic root node - - // eg. "void f(int* x) { if (...) f(x); }" - if (ArgumentSCC[0]->Uses.size() == 1 && - ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { - Argument *A = ArgumentSCC[0]->Definition; - A->addAttr(Attribute::NoCapture); - ++NumNoCapture; - Changed = true; - } - continue; - } - - bool SCCCaptured = false; - for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); - I != E && !SCCCaptured; ++I) { - ArgumentGraphNode *Node = *I; - if (Node->Uses.empty()) { - if (!Node->Definition->hasNoCaptureAttr()) - SCCCaptured = true; - } - } - if (SCCCaptured) - continue; - - SmallPtrSet<Argument *, 8> ArgumentSCCNodes; - // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for - // quickly looking up whether a given Argument is in this ArgumentSCC. - for (ArgumentGraphNode *I : ArgumentSCC) { - ArgumentSCCNodes.insert(I->Definition); - } - - for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); - I != E && !SCCCaptured; ++I) { - ArgumentGraphNode *N = *I; - for (ArgumentGraphNode *Use : N->Uses) { - Argument *A = Use->Definition; - if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) - continue; - SCCCaptured = true; - break; - } - } - if (SCCCaptured) - continue; - - for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { - Argument *A = ArgumentSCC[i]->Definition; - A->addAttr(Attribute::NoCapture); - ++NumNoCapture; - Changed = true; - } - - // We also want to compute readonly/readnone. With a small number of false - // negatives, we can assume that any pointer which is captured isn't going - // to be provably readonly or readnone, since by definition we can't - // analyze all uses of a captured pointer. - // - // The false negatives happen when the pointer is captured by a function - // that promises readonly/readnone behaviour on the pointer, then the - // pointer's lifetime ends before anything that writes to arbitrary memory. - // Also, a readonly/readnone pointer may be returned, but returning a - // pointer is capturing it. - - Attribute::AttrKind ReadAttr = Attribute::ReadNone; - for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { - Argument *A = ArgumentSCC[i]->Definition; - Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes); - if (K == Attribute::ReadNone) - continue; - if (K == Attribute::ReadOnly) { - ReadAttr = Attribute::ReadOnly; - continue; - } - ReadAttr = K; - break; - } - - if (ReadAttr != Attribute::None) { - for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { - Argument *A = ArgumentSCC[i]->Definition; - // Clear out existing readonly/readnone attributes - A->removeAttr(Attribute::ReadOnly); - A->removeAttr(Attribute::ReadNone); - A->addAttr(ReadAttr); - ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; - Changed = true; - } - } - } - - return Changed; -} - -/// Tests whether a function is "malloc-like". -/// -/// A function is "malloc-like" if it returns either null or a pointer that -/// doesn't alias any other pointer visible to the caller. -static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { - SmallSetVector<Value *, 8> FlowsToReturn; - for (BasicBlock &BB : *F) - if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) - FlowsToReturn.insert(Ret->getReturnValue()); - - for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { - Value *RetVal = FlowsToReturn[i]; - - if (Constant *C = dyn_cast<Constant>(RetVal)) { - if (!C->isNullValue() && !isa<UndefValue>(C)) - return false; - - continue; - } - - if (isa<Argument>(RetVal)) - return false; - - if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) - switch (RVI->getOpcode()) { - // Extend the analysis by looking upwards. - case Instruction::BitCast: - case Instruction::GetElementPtr: - case Instruction::AddrSpaceCast: - FlowsToReturn.insert(RVI->getOperand(0)); - continue; - case Instruction::Select: { - SelectInst *SI = cast<SelectInst>(RVI); - FlowsToReturn.insert(SI->getTrueValue()); - FlowsToReturn.insert(SI->getFalseValue()); - continue; - } - case Instruction::PHI: { - PHINode *PN = cast<PHINode>(RVI); - for (Value *IncValue : PN->incoming_values()) - FlowsToReturn.insert(IncValue); - continue; - } - - // Check whether the pointer came from an allocation. - case Instruction::Alloca: - break; - case Instruction::Call: - case Instruction::Invoke: { - CallSite CS(RVI); - if (CS.hasRetAttr(Attribute::NoAlias)) - break; - if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction())) - break; - LLVM_FALLTHROUGH; - } - default: - return false; // Did not come from an allocation. - } - - if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) - return false; - } - - return true; -} - -/// Deduce noalias attributes for the SCC. -static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) { - // Check each function in turn, determining which functions return noalias - // pointers. - for (Function *F : SCCNodes) { - // Already noalias. - if (F->returnDoesNotAlias()) - continue; - - // We can infer and propagate function attributes only when we know that the - // definition we'll get at link time is *exactly* the definition we see now. - // For more details, see GlobalValue::mayBeDerefined. - if (!F->hasExactDefinition()) - return false; - - // We annotate noalias return values, which are only applicable to - // pointer types. - if (!F->getReturnType()->isPointerTy()) - continue; - - if (!isFunctionMallocLike(F, SCCNodes)) - return false; - } - - bool MadeChange = false; - for (Function *F : SCCNodes) { - if (F->returnDoesNotAlias() || - !F->getReturnType()->isPointerTy()) - continue; - - F->setReturnDoesNotAlias(); - ++NumNoAlias; - MadeChange = true; - } - - return MadeChange; -} - -/// Tests whether this function is known to not return null. -/// -/// Requires that the function returns a pointer. -/// -/// Returns true if it believes the function will not return a null, and sets -/// \p Speculative based on whether the returned conclusion is a speculative -/// conclusion due to SCC calls. -static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, - bool &Speculative) { - assert(F->getReturnType()->isPointerTy() && - "nonnull only meaningful on pointer types"); - Speculative = false; - - SmallSetVector<Value *, 8> FlowsToReturn; - for (BasicBlock &BB : *F) - if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) - FlowsToReturn.insert(Ret->getReturnValue()); - - auto &DL = F->getParent()->getDataLayout(); - - for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { - Value *RetVal = FlowsToReturn[i]; - - // If this value is locally known to be non-null, we're good - if (isKnownNonZero(RetVal, DL)) - continue; - - // Otherwise, we need to look upwards since we can't make any local - // conclusions. - Instruction *RVI = dyn_cast<Instruction>(RetVal); - if (!RVI) - return false; - switch (RVI->getOpcode()) { - // Extend the analysis by looking upwards. - case Instruction::BitCast: - case Instruction::GetElementPtr: - case Instruction::AddrSpaceCast: - FlowsToReturn.insert(RVI->getOperand(0)); - continue; - case Instruction::Select: { - SelectInst *SI = cast<SelectInst>(RVI); - FlowsToReturn.insert(SI->getTrueValue()); - FlowsToReturn.insert(SI->getFalseValue()); - continue; - } - case Instruction::PHI: { - PHINode *PN = cast<PHINode>(RVI); - for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) - FlowsToReturn.insert(PN->getIncomingValue(i)); - continue; - } - case Instruction::Call: - case Instruction::Invoke: { - CallSite CS(RVI); - Function *Callee = CS.getCalledFunction(); - // A call to a node within the SCC is assumed to return null until - // proven otherwise - if (Callee && SCCNodes.count(Callee)) { - Speculative = true; - continue; - } - return false; - } - default: - return false; // Unknown source, may be null - }; - llvm_unreachable("should have either continued or returned"); - } - - return true; -} - -/// Deduce nonnull attributes for the SCC. -static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) { - // Speculative that all functions in the SCC return only nonnull - // pointers. We may refute this as we analyze functions. - bool SCCReturnsNonNull = true; - - bool MadeChange = false; - - // Check each function in turn, determining which functions return nonnull - // pointers. - for (Function *F : SCCNodes) { - // Already nonnull. - if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, - Attribute::NonNull)) - continue; - - // We can infer and propagate function attributes only when we know that the - // definition we'll get at link time is *exactly* the definition we see now. - // For more details, see GlobalValue::mayBeDerefined. - if (!F->hasExactDefinition()) - return false; - - // We annotate nonnull return values, which are only applicable to - // pointer types. - if (!F->getReturnType()->isPointerTy()) - continue; - - bool Speculative = false; - if (isReturnNonNull(F, SCCNodes, Speculative)) { - if (!Speculative) { - // Mark the function eagerly since we may discover a function - // which prevents us from speculating about the entire SCC - LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() - << " as nonnull\n"); - F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); - ++NumNonNullReturn; - MadeChange = true; - } - continue; - } - // At least one function returns something which could be null, can't - // speculate any more. - SCCReturnsNonNull = false; - } - - if (SCCReturnsNonNull) { - for (Function *F : SCCNodes) { - if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, - Attribute::NonNull) || - !F->getReturnType()->isPointerTy()) - continue; - - LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); - F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); - ++NumNonNullReturn; - MadeChange = true; - } - } - - return MadeChange; -} - -namespace { - -/// Collects a set of attribute inference requests and performs them all in one -/// go on a single SCC Node. Inference involves scanning function bodies -/// looking for instructions that violate attribute assumptions. -/// As soon as all the bodies are fine we are free to set the attribute. -/// Customization of inference for individual attributes is performed by -/// providing a handful of predicates for each attribute. -class AttributeInferer { -public: - /// Describes a request for inference of a single attribute. - struct InferenceDescriptor { - - /// Returns true if this function does not have to be handled. - /// General intent for this predicate is to provide an optimization - /// for functions that do not need this attribute inference at all - /// (say, for functions that already have the attribute). - std::function<bool(const Function &)> SkipFunction; - - /// Returns true if this instruction violates attribute assumptions. - std::function<bool(Instruction &)> InstrBreaksAttribute; - - /// Sets the inferred attribute for this function. - std::function<void(Function &)> SetAttribute; - - /// Attribute we derive. - Attribute::AttrKind AKind; - - /// If true, only "exact" definitions can be used to infer this attribute. - /// See GlobalValue::isDefinitionExact. - bool RequiresExactDefinition; - - InferenceDescriptor(Attribute::AttrKind AK, - std::function<bool(const Function &)> SkipFunc, - std::function<bool(Instruction &)> InstrScan, - std::function<void(Function &)> SetAttr, - bool ReqExactDef) - : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), - SetAttribute(SetAttr), AKind(AK), - RequiresExactDefinition(ReqExactDef) {} - }; - -private: - SmallVector<InferenceDescriptor, 4> InferenceDescriptors; - -public: - void registerAttrInference(InferenceDescriptor AttrInference) { - InferenceDescriptors.push_back(AttrInference); - } - - bool run(const SCCNodeSet &SCCNodes); -}; - -/// Perform all the requested attribute inference actions according to the -/// attribute predicates stored before. -bool AttributeInferer::run(const SCCNodeSet &SCCNodes) { - SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; - // Go through all the functions in SCC and check corresponding attribute - // assumptions for each of them. Attributes that are invalid for this SCC - // will be removed from InferInSCC. - for (Function *F : SCCNodes) { - - // No attributes whose assumptions are still valid - done. - if (InferInSCC.empty()) - return false; - - // Check if our attributes ever need scanning/can be scanned. - llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { - if (ID.SkipFunction(*F)) - return false; - - // Remove from further inference (invalidate) when visiting a function - // that has no instructions to scan/has an unsuitable definition. - return F->isDeclaration() || - (ID.RequiresExactDefinition && !F->hasExactDefinition()); - }); - - // For each attribute still in InferInSCC that doesn't explicitly skip F, - // set up the F instructions scan to verify assumptions of the attribute. - SmallVector<InferenceDescriptor, 4> InferInThisFunc; - llvm::copy_if( - InferInSCC, std::back_inserter(InferInThisFunc), - [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); - - if (InferInThisFunc.empty()) - continue; - - // Start instruction scan. - for (Instruction &I : instructions(*F)) { - llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { - if (!ID.InstrBreaksAttribute(I)) - return false; - // Remove attribute from further inference on any other functions - // because attribute assumptions have just been violated. - llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { - return D.AKind == ID.AKind; - }); - // Remove attribute from the rest of current instruction scan. - return true; - }); - - if (InferInThisFunc.empty()) - break; - } - } - - if (InferInSCC.empty()) - return false; - - bool Changed = false; - for (Function *F : SCCNodes) - // At this point InferInSCC contains only functions that were either: - // - explicitly skipped from scan/inference, or - // - verified to have no instructions that break attribute assumptions. - // Hence we just go and force the attribute for all non-skipped functions. - for (auto &ID : InferInSCC) { - if (ID.SkipFunction(*F)) - continue; - Changed = true; - ID.SetAttribute(*F); - } - return Changed; -} - -} // end anonymous namespace - -/// Helper for non-Convergent inference predicate InstrBreaksAttribute. -static bool InstrBreaksNonConvergent(Instruction &I, - const SCCNodeSet &SCCNodes) { - const CallSite CS(&I); - // Breaks non-convergent assumption if CS is a convergent call to a function - // not in the SCC. - return CS && CS.isConvergent() && SCCNodes.count(CS.getCalledFunction()) == 0; -} - -/// Helper for NoUnwind inference predicate InstrBreaksAttribute. -static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { - if (!I.mayThrow()) - return false; - if (const auto *CI = dyn_cast<CallInst>(&I)) { - if (Function *Callee = CI->getCalledFunction()) { - // I is a may-throw call to a function inside our SCC. This doesn't - // invalidate our current working assumption that the SCC is no-throw; we - // just have to scan that other function. - if (SCCNodes.count(Callee) > 0) - return false; - } - } - return true; -} - -/// Infer attributes from all functions in the SCC by scanning every -/// instruction for compliance to the attribute assumptions. Currently it -/// does: -/// - removal of Convergent attribute -/// - addition of NoUnwind attribute -/// -/// Returns true if any changes to function attributes were made. -static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) { - - AttributeInferer AI; - - // Request to remove the convergent attribute from all functions in the SCC - // if every callsite within the SCC is not convergent (except for calls - // to functions within the SCC). - // Note: Removal of the attr from the callsites will happen in - // InstCombineCalls separately. - AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ - Attribute::Convergent, - // Skip non-convergent functions. - [](const Function &F) { return !F.isConvergent(); }, - // Instructions that break non-convergent assumption. - [SCCNodes](Instruction &I) { - return InstrBreaksNonConvergent(I, SCCNodes); - }, - [](Function &F) { - LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() - << "\n"); - F.setNotConvergent(); - }, - /* RequiresExactDefinition= */ false}); - - if (!DisableNoUnwindInference) - // Request to infer nounwind attribute for all the functions in the SCC if - // every callsite within the SCC is not throwing (except for calls to - // functions within the SCC). Note that nounwind attribute suffers from - // derefinement - results may change depending on how functions are - // optimized. Thus it can be inferred only from exact definitions. - AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ - Attribute::NoUnwind, - // Skip non-throwing functions. - [](const Function &F) { return F.doesNotThrow(); }, - // Instructions that break non-throwing assumption. - [SCCNodes](Instruction &I) { - return InstrBreaksNonThrowing(I, SCCNodes); - }, - [](Function &F) { - LLVM_DEBUG(dbgs() - << "Adding nounwind attr to fn " << F.getName() << "\n"); - F.setDoesNotThrow(); - ++NumNoUnwind; - }, - /* RequiresExactDefinition= */ true}); - - // Perform all the requested attribute inference actions. - return AI.run(SCCNodes); -} - -static bool setDoesNotRecurse(Function &F) { - if (F.doesNotRecurse()) - return false; - F.setDoesNotRecurse(); - ++NumNoRecurse; - return true; -} - -static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) { - // Try and identify functions that do not recurse. - - // If the SCC contains multiple nodes we know for sure there is recursion. - if (SCCNodes.size() != 1) - return false; - - Function *F = *SCCNodes.begin(); - if (!F || F->isDeclaration() || F->doesNotRecurse()) - return false; - - // If all of the calls in F are identifiable and are to norecurse functions, F - // is norecurse. This check also detects self-recursion as F is not currently - // marked norecurse, so any called from F to F will not be marked norecurse. - for (auto &BB : *F) - for (auto &I : BB.instructionsWithoutDebug()) - if (auto CS = CallSite(&I)) { - Function *Callee = CS.getCalledFunction(); - if (!Callee || Callee == F || !Callee->doesNotRecurse()) - // Function calls a potentially recursive function. - return false; - } - - // Every call was to a non-recursive function other than this function, and - // we have no indirect recursion as the SCC size is one. This function cannot - // recurse. - return setDoesNotRecurse(*F); -} - -template <typename AARGetterT> -static bool deriveAttrsInPostOrder(SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, - bool HasUnknownCall) { - bool Changed = false; - - // Bail if the SCC only contains optnone functions. - if (SCCNodes.empty()) - return Changed; - - Changed |= addArgumentReturnedAttrs(SCCNodes); - Changed |= addReadAttrs(SCCNodes, AARGetter); - Changed |= addArgumentAttrs(SCCNodes); - - // If we have no external nodes participating in the SCC, we can deduce some - // more precise attributes as well. - if (!HasUnknownCall) { - Changed |= addNoAliasAttrs(SCCNodes); - Changed |= addNonNullAttrs(SCCNodes); - Changed |= inferAttrsFromFunctionBodies(SCCNodes); - Changed |= addNoRecurseAttrs(SCCNodes); - } - - return Changed; -} - -PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, - CGSCCAnalysisManager &AM, - LazyCallGraph &CG, - CGSCCUpdateResult &) { - FunctionAnalysisManager &FAM = - AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); - - // We pass a lambda into functions to wire them up to the analysis manager - // for getting function analyses. - auto AARGetter = [&](Function &F) -> AAResults & { - return FAM.getResult<AAManager>(F); - }; - - // Fill SCCNodes with the elements of the SCC. Also track whether there are - // any external or opt-none nodes that will prevent us from optimizing any - // part of the SCC. - SCCNodeSet SCCNodes; - bool HasUnknownCall = false; - for (LazyCallGraph::Node &N : C) { - Function &F = N.getFunction(); - if (F.hasFnAttribute(Attribute::OptimizeNone) || - F.hasFnAttribute(Attribute::Naked)) { - // Treat any function we're trying not to optimize as if it were an - // indirect call and omit it from the node set used below. - HasUnknownCall = true; - continue; - } - // Track whether any functions in this SCC have an unknown call edge. - // Note: if this is ever a performance hit, we can common it with - // subsequent routines which also do scans over the instructions of the - // function. - if (!HasUnknownCall) - for (Instruction &I : instructions(F)) - if (auto CS = CallSite(&I)) - if (!CS.getCalledFunction()) { - HasUnknownCall = true; - break; - } - - SCCNodes.insert(&F); - } - - if (deriveAttrsInPostOrder(SCCNodes, AARGetter, HasUnknownCall)) - return PreservedAnalyses::none(); - - return PreservedAnalyses::all(); -} - -namespace { - -struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { - // Pass identification, replacement for typeid - static char ID; - - PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { - initializePostOrderFunctionAttrsLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - bool runOnSCC(CallGraphSCC &SCC) override; - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesCFG(); - AU.addRequired<AssumptionCacheTracker>(); - getAAResultsAnalysisUsage(AU); - CallGraphSCCPass::getAnalysisUsage(AU); - } -}; - -} // end anonymous namespace - -char PostOrderFunctionAttrsLegacyPass::ID = 0; -INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs", - "Deduce function attributes", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) -INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs", - "Deduce function attributes", false, false) - -Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { - return new PostOrderFunctionAttrsLegacyPass(); -} - -template <typename AARGetterT> -static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { - - // Fill SCCNodes with the elements of the SCC. Used for quickly looking up - // whether a given CallGraphNode is in this SCC. Also track whether there are - // any external or opt-none nodes that will prevent us from optimizing any - // part of the SCC. - SCCNodeSet SCCNodes; - bool ExternalNode = false; - for (CallGraphNode *I : SCC) { - Function *F = I->getFunction(); - if (!F || F->hasFnAttribute(Attribute::OptimizeNone) || - F->hasFnAttribute(Attribute::Naked)) { - // External node or function we're trying not to optimize - we both avoid - // transform them and avoid leveraging information they provide. - ExternalNode = true; - continue; - } - - SCCNodes.insert(F); - } - - return deriveAttrsInPostOrder(SCCNodes, AARGetter, ExternalNode); -} - -bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { - if (skipSCC(SCC)) - return false; - return runImpl(SCC, LegacyAARGetter(*this)); -} - -namespace { - -struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { - // Pass identification, replacement for typeid - static char ID; - - ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { - initializeReversePostOrderFunctionAttrsLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - bool runOnModule(Module &M) override; - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesCFG(); - AU.addRequired<CallGraphWrapperPass>(); - AU.addPreserved<CallGraphWrapperPass>(); - } -}; - -} // end anonymous namespace - -char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs", - "Deduce function attributes in RPO", false, false) -INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) -INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs", - "Deduce function attributes in RPO", false, false) - -Pass *llvm::createReversePostOrderFunctionAttrsPass() { - return new ReversePostOrderFunctionAttrsLegacyPass(); -} - -static bool addNoRecurseAttrsTopDown(Function &F) { - // We check the preconditions for the function prior to calling this to avoid - // the cost of building up a reversible post-order list. We assert them here - // to make sure none of the invariants this relies on were violated. - assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); - assert(!F.doesNotRecurse() && - "This function has already been deduced as norecurs!"); - assert(F.hasInternalLinkage() && - "Can only do top-down deduction for internal linkage functions!"); - - // If F is internal and all of its uses are calls from a non-recursive - // functions, then none of its calls could in fact recurse without going - // through a function marked norecurse, and so we can mark this function too - // as norecurse. Note that the uses must actually be calls -- otherwise - // a pointer to this function could be returned from a norecurse function but - // this function could be recursively (indirectly) called. Note that this - // also detects if F is directly recursive as F is not yet marked as - // a norecurse function. - for (auto *U : F.users()) { - auto *I = dyn_cast<Instruction>(U); - if (!I) - return false; - CallSite CS(I); - if (!CS || !CS.getParent()->getParent()->doesNotRecurse()) - return false; - } - return setDoesNotRecurse(F); -} - -static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { - // We only have a post-order SCC traversal (because SCCs are inherently - // discovered in post-order), so we accumulate them in a vector and then walk - // it in reverse. This is simpler than using the RPO iterator infrastructure - // because we need to combine SCC detection and the PO walk of the call - // graph. We can also cheat egregiously because we're primarily interested in - // synthesizing norecurse and so we can only save the singular SCCs as SCCs - // with multiple functions in them will clearly be recursive. - SmallVector<Function *, 16> Worklist; - for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { - if (I->size() != 1) - continue; - - Function *F = I->front()->getFunction(); - if (F && !F->isDeclaration() && !F->doesNotRecurse() && - F->hasInternalLinkage()) - Worklist.push_back(F); - } - - bool Changed = false; - for (auto *F : llvm::reverse(Worklist)) - Changed |= addNoRecurseAttrsTopDown(*F); - - return Changed; -} - -bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { - if (skipModule(M)) - return false; - - auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); - - return deduceFunctionAttributeInRPO(M, CG); -} - -PreservedAnalyses -ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { - auto &CG = AM.getResult<CallGraphAnalysis>(M); - - if (!deduceFunctionAttributeInRPO(M, CG)) - return PreservedAnalyses::all(); - - PreservedAnalyses PA; - PA.preserve<CallGraphAnalysis>(); - return PA; -} |
