summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/IPO/GlobalOpt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/IPO/GlobalOpt.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/IPO/GlobalOpt.cpp3030
1 files changed, 0 insertions, 3030 deletions
diff --git a/gnu/llvm/lib/Transforms/IPO/GlobalOpt.cpp b/gnu/llvm/lib/Transforms/IPO/GlobalOpt.cpp
deleted file mode 100644
index 3005aafd06b..00000000000
--- a/gnu/llvm/lib/Transforms/IPO/GlobalOpt.cpp
+++ /dev/null
@@ -1,3030 +0,0 @@
-//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass transforms simple global variables that never have their address
-// taken. If obviously true, it marks read/write globals as constant, deletes
-// variables only stored to, etc.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/IPO/GlobalOpt.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/BlockFrequencyInfo.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/BinaryFormat/Dwarf.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/CallingConv.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GetElementPtrTypeIterator.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/AtomicOrdering.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/Transforms/Utils/CtorUtils.h"
-#include "llvm/Transforms/Utils/Evaluator.h"
-#include "llvm/Transforms/Utils/GlobalStatus.h"
-#include <cassert>
-#include <cstdint>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "globalopt"
-
-STATISTIC(NumMarked , "Number of globals marked constant");
-STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
-STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
-STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
-STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
-STATISTIC(NumDeleted , "Number of globals deleted");
-STATISTIC(NumGlobUses , "Number of global uses devirtualized");
-STATISTIC(NumLocalized , "Number of globals localized");
-STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
-STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
-STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
-STATISTIC(NumNestRemoved , "Number of nest attributes removed");
-STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
-STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
-STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
-STATISTIC(NumInternalFunc, "Number of internal functions");
-STATISTIC(NumColdCC, "Number of functions marked coldcc");
-
-static cl::opt<bool>
- EnableColdCCStressTest("enable-coldcc-stress-test",
- cl::desc("Enable stress test of coldcc by adding "
- "calling conv to all internal functions."),
- cl::init(false), cl::Hidden);
-
-static cl::opt<int> ColdCCRelFreq(
- "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
- cl::desc(
- "Maximum block frequency, expressed as a percentage of caller's "
- "entry frequency, for a call site to be considered cold for enabling"
- "coldcc"));
-
-/// Is this global variable possibly used by a leak checker as a root? If so,
-/// we might not really want to eliminate the stores to it.
-static bool isLeakCheckerRoot(GlobalVariable *GV) {
- // A global variable is a root if it is a pointer, or could plausibly contain
- // a pointer. There are two challenges; one is that we could have a struct
- // the has an inner member which is a pointer. We recurse through the type to
- // detect these (up to a point). The other is that we may actually be a union
- // of a pointer and another type, and so our LLVM type is an integer which
- // gets converted into a pointer, or our type is an [i8 x #] with a pointer
- // potentially contained here.
-
- if (GV->hasPrivateLinkage())
- return false;
-
- SmallVector<Type *, 4> Types;
- Types.push_back(GV->getValueType());
-
- unsigned Limit = 20;
- do {
- Type *Ty = Types.pop_back_val();
- switch (Ty->getTypeID()) {
- default: break;
- case Type::PointerTyID: return true;
- case Type::ArrayTyID:
- case Type::VectorTyID: {
- SequentialType *STy = cast<SequentialType>(Ty);
- Types.push_back(STy->getElementType());
- break;
- }
- case Type::StructTyID: {
- StructType *STy = cast<StructType>(Ty);
- if (STy->isOpaque()) return true;
- for (StructType::element_iterator I = STy->element_begin(),
- E = STy->element_end(); I != E; ++I) {
- Type *InnerTy = *I;
- if (isa<PointerType>(InnerTy)) return true;
- if (isa<CompositeType>(InnerTy))
- Types.push_back(InnerTy);
- }
- break;
- }
- }
- if (--Limit == 0) return true;
- } while (!Types.empty());
- return false;
-}
-
-/// Given a value that is stored to a global but never read, determine whether
-/// it's safe to remove the store and the chain of computation that feeds the
-/// store.
-static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
- do {
- if (isa<Constant>(V))
- return true;
- if (!V->hasOneUse())
- return false;
- if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
- isa<GlobalValue>(V))
- return false;
- if (isAllocationFn(V, TLI))
- return true;
-
- Instruction *I = cast<Instruction>(V);
- if (I->mayHaveSideEffects())
- return false;
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
- if (!GEP->hasAllConstantIndices())
- return false;
- } else if (I->getNumOperands() != 1) {
- return false;
- }
-
- V = I->getOperand(0);
- } while (true);
-}
-
-/// This GV is a pointer root. Loop over all users of the global and clean up
-/// any that obviously don't assign the global a value that isn't dynamically
-/// allocated.
-static bool CleanupPointerRootUsers(GlobalVariable *GV,
- const TargetLibraryInfo *TLI) {
- // A brief explanation of leak checkers. The goal is to find bugs where
- // pointers are forgotten, causing an accumulating growth in memory
- // usage over time. The common strategy for leak checkers is to whitelist the
- // memory pointed to by globals at exit. This is popular because it also
- // solves another problem where the main thread of a C++ program may shut down
- // before other threads that are still expecting to use those globals. To
- // handle that case, we expect the program may create a singleton and never
- // destroy it.
-
- bool Changed = false;
-
- // If Dead[n].first is the only use of a malloc result, we can delete its
- // chain of computation and the store to the global in Dead[n].second.
- SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
-
- // Constants can't be pointers to dynamically allocated memory.
- for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
- UI != E;) {
- User *U = *UI++;
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- Value *V = SI->getValueOperand();
- if (isa<Constant>(V)) {
- Changed = true;
- SI->eraseFromParent();
- } else if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (I->hasOneUse())
- Dead.push_back(std::make_pair(I, SI));
- }
- } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
- if (isa<Constant>(MSI->getValue())) {
- Changed = true;
- MSI->eraseFromParent();
- } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
- if (I->hasOneUse())
- Dead.push_back(std::make_pair(I, MSI));
- }
- } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
- GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
- if (MemSrc && MemSrc->isConstant()) {
- Changed = true;
- MTI->eraseFromParent();
- } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
- if (I->hasOneUse())
- Dead.push_back(std::make_pair(I, MTI));
- }
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
- if (CE->use_empty()) {
- CE->destroyConstant();
- Changed = true;
- }
- } else if (Constant *C = dyn_cast<Constant>(U)) {
- if (isSafeToDestroyConstant(C)) {
- C->destroyConstant();
- // This could have invalidated UI, start over from scratch.
- Dead.clear();
- CleanupPointerRootUsers(GV, TLI);
- return true;
- }
- }
- }
-
- for (int i = 0, e = Dead.size(); i != e; ++i) {
- if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
- Dead[i].second->eraseFromParent();
- Instruction *I = Dead[i].first;
- do {
- if (isAllocationFn(I, TLI))
- break;
- Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
- if (!J)
- break;
- I->eraseFromParent();
- I = J;
- } while (true);
- I->eraseFromParent();
- }
- }
-
- return Changed;
-}
-
-/// We just marked GV constant. Loop over all users of the global, cleaning up
-/// the obvious ones. This is largely just a quick scan over the use list to
-/// clean up the easy and obvious cruft. This returns true if it made a change.
-static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
- const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- bool Changed = false;
- // Note that we need to use a weak value handle for the worklist items. When
- // we delete a constant array, we may also be holding pointer to one of its
- // elements (or an element of one of its elements if we're dealing with an
- // array of arrays) in the worklist.
- SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
- while (!WorkList.empty()) {
- Value *UV = WorkList.pop_back_val();
- if (!UV)
- continue;
-
- User *U = cast<User>(UV);
-
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- if (Init) {
- // Replace the load with the initializer.
- LI->replaceAllUsesWith(Init);
- LI->eraseFromParent();
- Changed = true;
- }
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- // Store must be unreachable or storing Init into the global.
- SI->eraseFromParent();
- Changed = true;
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- Constant *SubInit = nullptr;
- if (Init)
- SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
- Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
- } else if ((CE->getOpcode() == Instruction::BitCast &&
- CE->getType()->isPointerTy()) ||
- CE->getOpcode() == Instruction::AddrSpaceCast) {
- // Pointer cast, delete any stores and memsets to the global.
- Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
- }
-
- if (CE->use_empty()) {
- CE->destroyConstant();
- Changed = true;
- }
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
- // Do not transform "gepinst (gep constexpr (GV))" here, because forming
- // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
- // and will invalidate our notion of what Init is.
- Constant *SubInit = nullptr;
- if (!isa<ConstantExpr>(GEP->getOperand(0))) {
- ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
- ConstantFoldInstruction(GEP, DL, TLI));
- if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
- SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
-
- // If the initializer is an all-null value and we have an inbounds GEP,
- // we already know what the result of any load from that GEP is.
- // TODO: Handle splats.
- if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
- SubInit = Constant::getNullValue(GEP->getResultElementType());
- }
- Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
-
- if (GEP->use_empty()) {
- GEP->eraseFromParent();
- Changed = true;
- }
- } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
- if (MI->getRawDest() == V) {
- MI->eraseFromParent();
- Changed = true;
- }
-
- } else if (Constant *C = dyn_cast<Constant>(U)) {
- // If we have a chain of dead constantexprs or other things dangling from
- // us, and if they are all dead, nuke them without remorse.
- if (isSafeToDestroyConstant(C)) {
- C->destroyConstant();
- CleanupConstantGlobalUsers(V, Init, DL, TLI);
- return true;
- }
- }
- }
- return Changed;
-}
-
-static bool isSafeSROAElementUse(Value *V);
-
-/// Return true if the specified GEP is a safe user of a derived
-/// expression from a global that we want to SROA.
-static bool isSafeSROAGEP(User *U) {
- // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
- // don't like < 3 operand CE's, and we don't like non-constant integer
- // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
- // value of C.
- if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
- !cast<Constant>(U->getOperand(1))->isNullValue())
- return false;
-
- gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
- ++GEPI; // Skip over the pointer index.
-
- // For all other level we require that the indices are constant and inrange.
- // In particular, consider: A[0][i]. We cannot know that the user isn't doing
- // invalid things like allowing i to index an out-of-range subscript that
- // accesses A[1]. This can also happen between different members of a struct
- // in llvm IR.
- for (; GEPI != E; ++GEPI) {
- if (GEPI.isStruct())
- continue;
-
- ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
- if (!IdxVal || (GEPI.isBoundedSequential() &&
- IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
- return false;
- }
-
- return llvm::all_of(U->users(),
- [](User *UU) { return isSafeSROAElementUse(UU); });
-}
-
-/// Return true if the specified instruction is a safe user of a derived
-/// expression from a global that we want to SROA.
-static bool isSafeSROAElementUse(Value *V) {
- // We might have a dead and dangling constant hanging off of here.
- if (Constant *C = dyn_cast<Constant>(V))
- return isSafeToDestroyConstant(C);
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
-
- // Loads are ok.
- if (isa<LoadInst>(I)) return true;
-
- // Stores *to* the pointer are ok.
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->getOperand(0) != V;
-
- // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
- return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
-}
-
-/// Look at all uses of the global and decide whether it is safe for us to
-/// perform this transformation.
-static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
- for (User *U : GV->users()) {
- // The user of the global must be a GEP Inst or a ConstantExpr GEP.
- if (!isa<GetElementPtrInst>(U) &&
- (!isa<ConstantExpr>(U) ||
- cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
- return false;
-
- // Check the gep and it's users are safe to SRA
- if (!isSafeSROAGEP(U))
- return false;
- }
-
- return true;
-}
-
-/// Copy over the debug info for a variable to its SRA replacements.
-static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
- uint64_t FragmentOffsetInBits,
- uint64_t FragmentSizeInBits,
- unsigned NumElements) {
- SmallVector<DIGlobalVariableExpression *, 1> GVs;
- GV->getDebugInfo(GVs);
- for (auto *GVE : GVs) {
- DIVariable *Var = GVE->getVariable();
- DIExpression *Expr = GVE->getExpression();
- if (NumElements > 1) {
- if (auto E = DIExpression::createFragmentExpression(
- Expr, FragmentOffsetInBits, FragmentSizeInBits))
- Expr = *E;
- else
- return;
- }
- auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
- NGV->addDebugInfo(NGVE);
- }
-}
-
-/// Perform scalar replacement of aggregates on the specified global variable.
-/// This opens the door for other optimizations by exposing the behavior of the
-/// program in a more fine-grained way. We have determined that this
-/// transformation is safe already. We return the first global variable we
-/// insert so that the caller can reprocess it.
-static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
- // Make sure this global only has simple uses that we can SRA.
- if (!GlobalUsersSafeToSRA(GV))
- return nullptr;
-
- assert(GV->hasLocalLinkage());
- Constant *Init = GV->getInitializer();
- Type *Ty = Init->getType();
-
- std::vector<GlobalVariable *> NewGlobals;
- Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
-
- // Get the alignment of the global, either explicit or target-specific.
- unsigned StartAlignment = GV->getAlignment();
- if (StartAlignment == 0)
- StartAlignment = DL.getABITypeAlignment(GV->getType());
-
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- unsigned NumElements = STy->getNumElements();
- NewGlobals.reserve(NumElements);
- const StructLayout &Layout = *DL.getStructLayout(STy);
- for (unsigned i = 0, e = NumElements; i != e; ++i) {
- Constant *In = Init->getAggregateElement(i);
- assert(In && "Couldn't get element of initializer?");
- GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
- GlobalVariable::InternalLinkage,
- In, GV->getName()+"."+Twine(i),
- GV->getThreadLocalMode(),
- GV->getType()->getAddressSpace());
- NGV->setExternallyInitialized(GV->isExternallyInitialized());
- NGV->copyAttributesFrom(GV);
- Globals.push_back(NGV);
- NewGlobals.push_back(NGV);
-
- // Calculate the known alignment of the field. If the original aggregate
- // had 256 byte alignment for example, something might depend on that:
- // propagate info to each field.
- uint64_t FieldOffset = Layout.getElementOffset(i);
- unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
- if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
- NGV->setAlignment(NewAlign);
-
- // Copy over the debug info for the variable.
- uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
- uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
- transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
- }
- } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
- unsigned NumElements = STy->getNumElements();
- if (NumElements > 16 && GV->hasNUsesOrMore(16))
- return nullptr; // It's not worth it.
- NewGlobals.reserve(NumElements);
- auto ElTy = STy->getElementType();
- uint64_t EltSize = DL.getTypeAllocSize(ElTy);
- unsigned EltAlign = DL.getABITypeAlignment(ElTy);
- uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
- for (unsigned i = 0, e = NumElements; i != e; ++i) {
- Constant *In = Init->getAggregateElement(i);
- assert(In && "Couldn't get element of initializer?");
-
- GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
- GlobalVariable::InternalLinkage,
- In, GV->getName()+"."+Twine(i),
- GV->getThreadLocalMode(),
- GV->getType()->getAddressSpace());
- NGV->setExternallyInitialized(GV->isExternallyInitialized());
- NGV->copyAttributesFrom(GV);
- Globals.push_back(NGV);
- NewGlobals.push_back(NGV);
-
- // Calculate the known alignment of the field. If the original aggregate
- // had 256 byte alignment for example, something might depend on that:
- // propagate info to each field.
- unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
- if (NewAlign > EltAlign)
- NGV->setAlignment(NewAlign);
- transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
- NumElements);
- }
- }
-
- if (NewGlobals.empty())
- return nullptr;
-
- LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
-
- Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
-
- // Loop over all of the uses of the global, replacing the constantexpr geps,
- // with smaller constantexpr geps or direct references.
- while (!GV->use_empty()) {
- User *GEP = GV->user_back();
- assert(((isa<ConstantExpr>(GEP) &&
- cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
- isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
-
- // Ignore the 1th operand, which has to be zero or else the program is quite
- // broken (undefined). Get the 2nd operand, which is the structure or array
- // index.
- unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
- if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
-
- Value *NewPtr = NewGlobals[Val];
- Type *NewTy = NewGlobals[Val]->getValueType();
-
- // Form a shorter GEP if needed.
- if (GEP->getNumOperands() > 3) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
- SmallVector<Constant*, 8> Idxs;
- Idxs.push_back(NullInt);
- for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
- Idxs.push_back(CE->getOperand(i));
- NewPtr =
- ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
- } else {
- GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
- SmallVector<Value*, 8> Idxs;
- Idxs.push_back(NullInt);
- for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
- Idxs.push_back(GEPI->getOperand(i));
- NewPtr = GetElementPtrInst::Create(
- NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
- }
- }
- GEP->replaceAllUsesWith(NewPtr);
-
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
- GEPI->eraseFromParent();
- else
- cast<ConstantExpr>(GEP)->destroyConstant();
- }
-
- // Delete the old global, now that it is dead.
- Globals.erase(GV);
- ++NumSRA;
-
- // Loop over the new globals array deleting any globals that are obviously
- // dead. This can arise due to scalarization of a structure or an array that
- // has elements that are dead.
- unsigned FirstGlobal = 0;
- for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
- if (NewGlobals[i]->use_empty()) {
- Globals.erase(NewGlobals[i]);
- if (FirstGlobal == i) ++FirstGlobal;
- }
-
- return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
-}
-
-/// Return true if all users of the specified value will trap if the value is
-/// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid
-/// reprocessing them.
-static bool AllUsesOfValueWillTrapIfNull(const Value *V,
- SmallPtrSetImpl<const PHINode*> &PHIs) {
- for (const User *U : V->users()) {
- if (const Instruction *I = dyn_cast<Instruction>(U)) {
- // If null pointer is considered valid, then all uses are non-trapping.
- // Non address-space 0 globals have already been pruned by the caller.
- if (NullPointerIsDefined(I->getFunction()))
- return false;
- }
- if (isa<LoadInst>(U)) {
- // Will trap.
- } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (SI->getOperand(0) == V) {
- //cerr << "NONTRAPPING USE: " << *U;
- return false; // Storing the value.
- }
- } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
- if (CI->getCalledValue() != V) {
- //cerr << "NONTRAPPING USE: " << *U;
- return false; // Not calling the ptr
- }
- } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
- if (II->getCalledValue() != V) {
- //cerr << "NONTRAPPING USE: " << *U;
- return false; // Not calling the ptr
- }
- } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
- if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
- } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
- if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
- } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
- // If we've already seen this phi node, ignore it, it has already been
- // checked.
- if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
- return false;
- } else if (isa<ICmpInst>(U) &&
- isa<ConstantPointerNull>(U->getOperand(1))) {
- // Ignore icmp X, null
- } else {
- //cerr << "NONTRAPPING USE: " << *U;
- return false;
- }
- }
- return true;
-}
-
-/// Return true if all uses of any loads from GV will trap if the loaded value
-/// is null. Note that this also permits comparisons of the loaded value
-/// against null, as a special case.
-static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
- for (const User *U : GV->users())
- if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
- SmallPtrSet<const PHINode*, 8> PHIs;
- if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
- return false;
- } else if (isa<StoreInst>(U)) {
- // Ignore stores to the global.
- } else {
- // We don't know or understand this user, bail out.
- //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
- return false;
- }
- return true;
-}
-
-static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
- bool Changed = false;
- for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
- Instruction *I = cast<Instruction>(*UI++);
- // Uses are non-trapping if null pointer is considered valid.
- // Non address-space 0 globals are already pruned by the caller.
- if (NullPointerIsDefined(I->getFunction()))
- return false;
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- LI->setOperand(0, NewV);
- Changed = true;
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- if (SI->getOperand(1) == V) {
- SI->setOperand(1, NewV);
- Changed = true;
- }
- } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- CallSite CS(I);
- if (CS.getCalledValue() == V) {
- // Calling through the pointer! Turn into a direct call, but be careful
- // that the pointer is not also being passed as an argument.
- CS.setCalledFunction(NewV);
- Changed = true;
- bool PassedAsArg = false;
- for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
- if (CS.getArgument(i) == V) {
- PassedAsArg = true;
- CS.setArgument(i, NewV);
- }
-
- if (PassedAsArg) {
- // Being passed as an argument also. Be careful to not invalidate UI!
- UI = V->user_begin();
- }
- }
- } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
- Changed |= OptimizeAwayTrappingUsesOfValue(CI,
- ConstantExpr::getCast(CI->getOpcode(),
- NewV, CI->getType()));
- if (CI->use_empty()) {
- Changed = true;
- CI->eraseFromParent();
- }
- } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
- // Should handle GEP here.
- SmallVector<Constant*, 8> Idxs;
- Idxs.reserve(GEPI->getNumOperands()-1);
- for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
- i != e; ++i)
- if (Constant *C = dyn_cast<Constant>(*i))
- Idxs.push_back(C);
- else
- break;
- if (Idxs.size() == GEPI->getNumOperands()-1)
- Changed |= OptimizeAwayTrappingUsesOfValue(
- GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
- if (GEPI->use_empty()) {
- Changed = true;
- GEPI->eraseFromParent();
- }
- }
- }
-
- return Changed;
-}
-
-/// The specified global has only one non-null value stored into it. If there
-/// are uses of the loaded value that would trap if the loaded value is
-/// dynamically null, then we know that they cannot be reachable with a null
-/// optimize away the load.
-static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
- const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- bool Changed = false;
-
- // Keep track of whether we are able to remove all the uses of the global
- // other than the store that defines it.
- bool AllNonStoreUsesGone = true;
-
- // Replace all uses of loads with uses of uses of the stored value.
- for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
- User *GlobalUser = *GUI++;
- if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
- Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
- // If we were able to delete all uses of the loads
- if (LI->use_empty()) {
- LI->eraseFromParent();
- Changed = true;
- } else {
- AllNonStoreUsesGone = false;
- }
- } else if (isa<StoreInst>(GlobalUser)) {
- // Ignore the store that stores "LV" to the global.
- assert(GlobalUser->getOperand(1) == GV &&
- "Must be storing *to* the global");
- } else {
- AllNonStoreUsesGone = false;
-
- // If we get here we could have other crazy uses that are transitively
- // loaded.
- assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
- isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
- isa<BitCastInst>(GlobalUser) ||
- isa<GetElementPtrInst>(GlobalUser)) &&
- "Only expect load and stores!");
- }
- }
-
- if (Changed) {
- LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
- << "\n");
- ++NumGlobUses;
- }
-
- // If we nuked all of the loads, then none of the stores are needed either,
- // nor is the global.
- if (AllNonStoreUsesGone) {
- if (isLeakCheckerRoot(GV)) {
- Changed |= CleanupPointerRootUsers(GV, TLI);
- } else {
- Changed = true;
- CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
- }
- if (GV->use_empty()) {
- LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
- Changed = true;
- GV->eraseFromParent();
- ++NumDeleted;
- }
- }
- return Changed;
-}
-
-/// Walk the use list of V, constant folding all of the instructions that are
-/// foldable.
-static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
- if (Instruction *I = dyn_cast<Instruction>(*UI++))
- if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
- I->replaceAllUsesWith(NewC);
-
- // Advance UI to the next non-I use to avoid invalidating it!
- // Instructions could multiply use V.
- while (UI != E && *UI == I)
- ++UI;
- if (isInstructionTriviallyDead(I, TLI))
- I->eraseFromParent();
- }
-}
-
-/// This function takes the specified global variable, and transforms the
-/// program as if it always contained the result of the specified malloc.
-/// Because it is always the result of the specified malloc, there is no reason
-/// to actually DO the malloc. Instead, turn the malloc into a global, and any
-/// loads of GV as uses of the new global.
-static GlobalVariable *
-OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
- ConstantInt *NElements, const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI
- << '\n');
-
- Type *GlobalType;
- if (NElements->getZExtValue() == 1)
- GlobalType = AllocTy;
- else
- // If we have an array allocation, the global variable is of an array.
- GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
-
- // Create the new global variable. The contents of the malloc'd memory is
- // undefined, so initialize with an undef value.
- GlobalVariable *NewGV = new GlobalVariable(
- *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
- UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
- GV->getThreadLocalMode());
-
- // If there are bitcast users of the malloc (which is typical, usually we have
- // a malloc + bitcast) then replace them with uses of the new global. Update
- // other users to use the global as well.
- BitCastInst *TheBC = nullptr;
- while (!CI->use_empty()) {
- Instruction *User = cast<Instruction>(CI->user_back());
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
- if (BCI->getType() == NewGV->getType()) {
- BCI->replaceAllUsesWith(NewGV);
- BCI->eraseFromParent();
- } else {
- BCI->setOperand(0, NewGV);
- }
- } else {
- if (!TheBC)
- TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
- User->replaceUsesOfWith(CI, TheBC);
- }
- }
-
- Constant *RepValue = NewGV;
- if (NewGV->getType() != GV->getValueType())
- RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
-
- // If there is a comparison against null, we will insert a global bool to
- // keep track of whether the global was initialized yet or not.
- GlobalVariable *InitBool =
- new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
- GlobalValue::InternalLinkage,
- ConstantInt::getFalse(GV->getContext()),
- GV->getName()+".init", GV->getThreadLocalMode());
- bool InitBoolUsed = false;
-
- // Loop over all uses of GV, processing them in turn.
- while (!GV->use_empty()) {
- if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
- // The global is initialized when the store to it occurs.
- new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
- SI->getOrdering(), SI->getSyncScopeID(), SI);
- SI->eraseFromParent();
- continue;
- }
-
- LoadInst *LI = cast<LoadInst>(GV->user_back());
- while (!LI->use_empty()) {
- Use &LoadUse = *LI->use_begin();
- ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
- if (!ICI) {
- LoadUse = RepValue;
- continue;
- }
-
- // Replace the cmp X, 0 with a use of the bool value.
- // Sink the load to where the compare was, if atomic rules allow us to.
- Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
- LI->getOrdering(), LI->getSyncScopeID(),
- LI->isUnordered() ? (Instruction*)ICI : LI);
- InitBoolUsed = true;
- switch (ICI->getPredicate()) {
- default: llvm_unreachable("Unknown ICmp Predicate!");
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT: // X < null -> always false
- LV = ConstantInt::getFalse(GV->getContext());
- break;
- case ICmpInst::ICMP_ULE:
- case ICmpInst::ICMP_SLE:
- case ICmpInst::ICMP_EQ:
- LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
- break;
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_UGE:
- case ICmpInst::ICMP_SGE:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_SGT:
- break; // no change.
- }
- ICI->replaceAllUsesWith(LV);
- ICI->eraseFromParent();
- }
- LI->eraseFromParent();
- }
-
- // If the initialization boolean was used, insert it, otherwise delete it.
- if (!InitBoolUsed) {
- while (!InitBool->use_empty()) // Delete initializations
- cast<StoreInst>(InitBool->user_back())->eraseFromParent();
- delete InitBool;
- } else
- GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
-
- // Now the GV is dead, nuke it and the malloc..
- GV->eraseFromParent();
- CI->eraseFromParent();
-
- // To further other optimizations, loop over all users of NewGV and try to
- // constant prop them. This will promote GEP instructions with constant
- // indices into GEP constant-exprs, which will allow global-opt to hack on it.
- ConstantPropUsersOf(NewGV, DL, TLI);
- if (RepValue != NewGV)
- ConstantPropUsersOf(RepValue, DL, TLI);
-
- return NewGV;
-}
-
-/// Scan the use-list of V checking to make sure that there are no complex uses
-/// of V. We permit simple things like dereferencing the pointer, but not
-/// storing through the address, unless it is to the specified global.
-static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
- const GlobalVariable *GV,
- SmallPtrSetImpl<const PHINode*> &PHIs) {
- for (const User *U : V->users()) {
- const Instruction *Inst = cast<Instruction>(U);
-
- if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
- continue; // Fine, ignore.
- }
-
- if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
- return false; // Storing the pointer itself... bad.
- continue; // Otherwise, storing through it, or storing into GV... fine.
- }
-
- // Must index into the array and into the struct.
- if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
- if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
- return false;
- continue;
- }
-
- if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
- // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
- // cycles.
- if (PHIs.insert(PN).second)
- if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
- return false;
- continue;
- }
-
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
- if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
- return false;
- continue;
- }
-
- return false;
- }
- return true;
-}
-
-/// The Alloc pointer is stored into GV somewhere. Transform all uses of the
-/// allocation into loads from the global and uses of the resultant pointer.
-/// Further, delete the store into GV. This assumes that these value pass the
-/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
-static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
- GlobalVariable *GV) {
- while (!Alloc->use_empty()) {
- Instruction *U = cast<Instruction>(*Alloc->user_begin());
- Instruction *InsertPt = U;
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- // If this is the store of the allocation into the global, remove it.
- if (SI->getOperand(1) == GV) {
- SI->eraseFromParent();
- continue;
- }
- } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
- // Insert the load in the corresponding predecessor, not right before the
- // PHI.
- InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
- } else if (isa<BitCastInst>(U)) {
- // Must be bitcast between the malloc and store to initialize the global.
- ReplaceUsesOfMallocWithGlobal(U, GV);
- U->eraseFromParent();
- continue;
- } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
- // If this is a "GEP bitcast" and the user is a store to the global, then
- // just process it as a bitcast.
- if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
- if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
- if (SI->getOperand(1) == GV) {
- // Must be bitcast GEP between the malloc and store to initialize
- // the global.
- ReplaceUsesOfMallocWithGlobal(GEPI, GV);
- GEPI->eraseFromParent();
- continue;
- }
- }
-
- // Insert a load from the global, and use it instead of the malloc.
- Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
- U->replaceUsesOfWith(Alloc, NL);
- }
-}
-
-/// Verify that all uses of V (a load, or a phi of a load) are simple enough to
-/// perform heap SRA on. This permits GEP's that index through the array and
-/// struct field, icmps of null, and PHIs.
-static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
- SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
- SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
- // We permit two users of the load: setcc comparing against the null
- // pointer, and a getelementptr of a specific form.
- for (const User *U : V->users()) {
- const Instruction *UI = cast<Instruction>(U);
-
- // Comparison against null is ok.
- if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
- if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
- return false;
- continue;
- }
-
- // getelementptr is also ok, but only a simple form.
- if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
- // Must index into the array and into the struct.
- if (GEPI->getNumOperands() < 3)
- return false;
-
- // Otherwise the GEP is ok.
- continue;
- }
-
- if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
- if (!LoadUsingPHIsPerLoad.insert(PN).second)
- // This means some phi nodes are dependent on each other.
- // Avoid infinite looping!
- return false;
- if (!LoadUsingPHIs.insert(PN).second)
- // If we have already analyzed this PHI, then it is safe.
- continue;
-
- // Make sure all uses of the PHI are simple enough to transform.
- if (!LoadUsesSimpleEnoughForHeapSRA(PN,
- LoadUsingPHIs, LoadUsingPHIsPerLoad))
- return false;
-
- continue;
- }
-
- // Otherwise we don't know what this is, not ok.
- return false;
- }
-
- return true;
-}
-
-/// If all users of values loaded from GV are simple enough to perform HeapSRA,
-/// return true.
-static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
- Instruction *StoredVal) {
- SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
- SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
- for (const User *U : GV->users())
- if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
- if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
- LoadUsingPHIsPerLoad))
- return false;
- LoadUsingPHIsPerLoad.clear();
- }
-
- // If we reach here, we know that all uses of the loads and transitive uses
- // (through PHI nodes) are simple enough to transform. However, we don't know
- // that all inputs the to the PHI nodes are in the same equivalence sets.
- // Check to verify that all operands of the PHIs are either PHIS that can be
- // transformed, loads from GV, or MI itself.
- for (const PHINode *PN : LoadUsingPHIs) {
- for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
- Value *InVal = PN->getIncomingValue(op);
-
- // PHI of the stored value itself is ok.
- if (InVal == StoredVal) continue;
-
- if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
- // One of the PHIs in our set is (optimistically) ok.
- if (LoadUsingPHIs.count(InPN))
- continue;
- return false;
- }
-
- // Load from GV is ok.
- if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
- if (LI->getOperand(0) == GV)
- continue;
-
- // UNDEF? NULL?
-
- // Anything else is rejected.
- return false;
- }
- }
-
- return true;
-}
-
-static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
- DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
- std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
- std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
-
- if (FieldNo >= FieldVals.size())
- FieldVals.resize(FieldNo+1);
-
- // If we already have this value, just reuse the previously scalarized
- // version.
- if (Value *FieldVal = FieldVals[FieldNo])
- return FieldVal;
-
- // Depending on what instruction this is, we have several cases.
- Value *Result;
- if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
- // This is a scalarized version of the load from the global. Just create
- // a new Load of the scalarized global.
- Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
- InsertedScalarizedValues,
- PHIsToRewrite),
- LI->getName()+".f"+Twine(FieldNo), LI);
- } else {
- PHINode *PN = cast<PHINode>(V);
- // PN's type is pointer to struct. Make a new PHI of pointer to struct
- // field.
-
- PointerType *PTy = cast<PointerType>(PN->getType());
- StructType *ST = cast<StructType>(PTy->getElementType());
-
- unsigned AS = PTy->getAddressSpace();
- PHINode *NewPN =
- PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
- PN->getNumIncomingValues(),
- PN->getName()+".f"+Twine(FieldNo), PN);
- Result = NewPN;
- PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
- }
-
- return FieldVals[FieldNo] = Result;
-}
-
-/// Given a load instruction and a value derived from the load, rewrite the
-/// derived value to use the HeapSRoA'd load.
-static void RewriteHeapSROALoadUser(Instruction *LoadUser,
- DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
- std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
- // If this is a comparison against null, handle it.
- if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
- assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
- // If we have a setcc of the loaded pointer, we can use a setcc of any
- // field.
- Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
- InsertedScalarizedValues, PHIsToRewrite);
-
- Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
- Constant::getNullValue(NPtr->getType()),
- SCI->getName());
- SCI->replaceAllUsesWith(New);
- SCI->eraseFromParent();
- return;
- }
-
- // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
- assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
- && "Unexpected GEPI!");
-
- // Load the pointer for this field.
- unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
- Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
- InsertedScalarizedValues, PHIsToRewrite);
-
- // Create the new GEP idx vector.
- SmallVector<Value*, 8> GEPIdx;
- GEPIdx.push_back(GEPI->getOperand(1));
- GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
-
- Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
- GEPI->getName(), GEPI);
- GEPI->replaceAllUsesWith(NGEPI);
- GEPI->eraseFromParent();
- return;
- }
-
- // Recursively transform the users of PHI nodes. This will lazily create the
- // PHIs that are needed for individual elements. Keep track of what PHIs we
- // see in InsertedScalarizedValues so that we don't get infinite loops (very
- // antisocial). If the PHI is already in InsertedScalarizedValues, it has
- // already been seen first by another load, so its uses have already been
- // processed.
- PHINode *PN = cast<PHINode>(LoadUser);
- if (!InsertedScalarizedValues.insert(std::make_pair(PN,
- std::vector<Value *>())).second)
- return;
-
- // If this is the first time we've seen this PHI, recursively process all
- // users.
- for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
- RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
- }
-}
-
-/// We are performing Heap SRoA on a global. Ptr is a value loaded from the
-/// global. Eliminate all uses of Ptr, making them use FieldGlobals instead.
-/// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
-static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
- DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
- std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
- for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
- RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
- }
-
- if (Load->use_empty()) {
- Load->eraseFromParent();
- InsertedScalarizedValues.erase(Load);
- }
-}
-
-/// CI is an allocation of an array of structures. Break it up into multiple
-/// allocations of arrays of the fields.
-static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
- Value *NElems, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI
- << '\n');
- Type *MAT = getMallocAllocatedType(CI, TLI);
- StructType *STy = cast<StructType>(MAT);
-
- // There is guaranteed to be at least one use of the malloc (storing
- // it into GV). If there are other uses, change them to be uses of
- // the global to simplify later code. This also deletes the store
- // into GV.
- ReplaceUsesOfMallocWithGlobal(CI, GV);
-
- // Okay, at this point, there are no users of the malloc. Insert N
- // new mallocs at the same place as CI, and N globals.
- std::vector<Value *> FieldGlobals;
- std::vector<Value *> FieldMallocs;
-
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
-
- unsigned AS = GV->getType()->getPointerAddressSpace();
- for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
- Type *FieldTy = STy->getElementType(FieldNo);
- PointerType *PFieldTy = PointerType::get(FieldTy, AS);
-
- GlobalVariable *NGV = new GlobalVariable(
- *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
- Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
- nullptr, GV->getThreadLocalMode());
- NGV->copyAttributesFrom(GV);
- FieldGlobals.push_back(NGV);
-
- unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
- if (StructType *ST = dyn_cast<StructType>(FieldTy))
- TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
- Type *IntPtrTy = DL.getIntPtrType(CI->getType());
- Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
- ConstantInt::get(IntPtrTy, TypeSize),
- NElems, OpBundles, nullptr,
- CI->getName() + ".f" + Twine(FieldNo));
- FieldMallocs.push_back(NMI);
- new StoreInst(NMI, NGV, CI);
- }
-
- // The tricky aspect of this transformation is handling the case when malloc
- // fails. In the original code, malloc failing would set the result pointer
- // of malloc to null. In this case, some mallocs could succeed and others
- // could fail. As such, we emit code that looks like this:
- // F0 = malloc(field0)
- // F1 = malloc(field1)
- // F2 = malloc(field2)
- // if (F0 == 0 || F1 == 0 || F2 == 0) {
- // if (F0) { free(F0); F0 = 0; }
- // if (F1) { free(F1); F1 = 0; }
- // if (F2) { free(F2); F2 = 0; }
- // }
- // The malloc can also fail if its argument is too large.
- Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
- Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
- ConstantZero, "isneg");
- for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
- Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
- Constant::getNullValue(FieldMallocs[i]->getType()),
- "isnull");
- RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
- }
-
- // Split the basic block at the old malloc.
- BasicBlock *OrigBB = CI->getParent();
- BasicBlock *ContBB =
- OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
-
- // Create the block to check the first condition. Put all these blocks at the
- // end of the function as they are unlikely to be executed.
- BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
- "malloc_ret_null",
- OrigBB->getParent());
-
- // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
- // branch on RunningOr.
- OrigBB->getTerminator()->eraseFromParent();
- BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
-
- // Within the NullPtrBlock, we need to emit a comparison and branch for each
- // pointer, because some may be null while others are not.
- for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
- Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
- Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
- Constant::getNullValue(GVVal->getType()));
- BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
- OrigBB->getParent());
- BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
- OrigBB->getParent());
- Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
- Cmp, NullPtrBlock);
-
- // Fill in FreeBlock.
- CallInst::CreateFree(GVVal, OpBundles, BI);
- new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
- FreeBlock);
- BranchInst::Create(NextBlock, FreeBlock);
-
- NullPtrBlock = NextBlock;
- }
-
- BranchInst::Create(ContBB, NullPtrBlock);
-
- // CI is no longer needed, remove it.
- CI->eraseFromParent();
-
- /// As we process loads, if we can't immediately update all uses of the load,
- /// keep track of what scalarized loads are inserted for a given load.
- DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
- InsertedScalarizedValues[GV] = FieldGlobals;
-
- std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
-
- // Okay, the malloc site is completely handled. All of the uses of GV are now
- // loads, and all uses of those loads are simple. Rewrite them to use loads
- // of the per-field globals instead.
- for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
-
- if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
- continue;
- }
-
- // Must be a store of null.
- StoreInst *SI = cast<StoreInst>(User);
- assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
- "Unexpected heap-sra user!");
-
- // Insert a store of null into each global.
- for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
- Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
- Constant *Null = Constant::getNullValue(ValTy);
- new StoreInst(Null, FieldGlobals[i], SI);
- }
- // Erase the original store.
- SI->eraseFromParent();
- }
-
- // While we have PHIs that are interesting to rewrite, do it.
- while (!PHIsToRewrite.empty()) {
- PHINode *PN = PHIsToRewrite.back().first;
- unsigned FieldNo = PHIsToRewrite.back().second;
- PHIsToRewrite.pop_back();
- PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
- assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
-
- // Add all the incoming values. This can materialize more phis.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *InVal = PN->getIncomingValue(i);
- InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
- PHIsToRewrite);
- FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
- }
- }
-
- // Drop all inter-phi links and any loads that made it this far.
- for (DenseMap<Value *, std::vector<Value *>>::iterator
- I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
- I != E; ++I) {
- if (PHINode *PN = dyn_cast<PHINode>(I->first))
- PN->dropAllReferences();
- else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
- LI->dropAllReferences();
- }
-
- // Delete all the phis and loads now that inter-references are dead.
- for (DenseMap<Value *, std::vector<Value *>>::iterator
- I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
- I != E; ++I) {
- if (PHINode *PN = dyn_cast<PHINode>(I->first))
- PN->eraseFromParent();
- else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
- LI->eraseFromParent();
- }
-
- // The old global is now dead, remove it.
- GV->eraseFromParent();
-
- ++NumHeapSRA;
- return cast<GlobalVariable>(FieldGlobals[0]);
-}
-
-/// This function is called when we see a pointer global variable with a single
-/// value stored it that is a malloc or cast of malloc.
-static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
- Type *AllocTy,
- AtomicOrdering Ordering,
- const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- // If this is a malloc of an abstract type, don't touch it.
- if (!AllocTy->isSized())
- return false;
-
- // We can't optimize this global unless all uses of it are *known* to be
- // of the malloc value, not of the null initializer value (consider a use
- // that compares the global's value against zero to see if the malloc has
- // been reached). To do this, we check to see if all uses of the global
- // would trap if the global were null: this proves that they must all
- // happen after the malloc.
- if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
- return false;
-
- // We can't optimize this if the malloc itself is used in a complex way,
- // for example, being stored into multiple globals. This allows the
- // malloc to be stored into the specified global, loaded icmp'd, and
- // GEP'd. These are all things we could transform to using the global
- // for.
- SmallPtrSet<const PHINode*, 8> PHIs;
- if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
- return false;
-
- // If we have a global that is only initialized with a fixed size malloc,
- // transform the program to use global memory instead of malloc'd memory.
- // This eliminates dynamic allocation, avoids an indirection accessing the
- // data, and exposes the resultant global to further GlobalOpt.
- // We cannot optimize the malloc if we cannot determine malloc array size.
- Value *NElems = getMallocArraySize(CI, DL, TLI, true);
- if (!NElems)
- return false;
-
- if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
- // Restrict this transformation to only working on small allocations
- // (2048 bytes currently), as we don't want to introduce a 16M global or
- // something.
- if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
- OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
- return true;
- }
-
- // If the allocation is an array of structures, consider transforming this
- // into multiple malloc'd arrays, one for each field. This is basically
- // SRoA for malloc'd memory.
-
- if (Ordering != AtomicOrdering::NotAtomic)
- return false;
-
- // If this is an allocation of a fixed size array of structs, analyze as a
- // variable size array. malloc [100 x struct],1 -> malloc struct, 100
- if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
- if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
- AllocTy = AT->getElementType();
-
- StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
- if (!AllocSTy)
- return false;
-
- // This the structure has an unreasonable number of fields, leave it
- // alone.
- if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
- AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
-
- // If this is a fixed size array, transform the Malloc to be an alloc of
- // structs. malloc [100 x struct],1 -> malloc struct, 100
- if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
- Type *IntPtrTy = DL.getIntPtrType(CI->getType());
- unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
- Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
- Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- Instruction *Malloc =
- CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
- OpBundles, nullptr, CI->getName());
- Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
- CI->replaceAllUsesWith(Cast);
- CI->eraseFromParent();
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
- CI = cast<CallInst>(BCI->getOperand(0));
- else
- CI = cast<CallInst>(Malloc);
- }
-
- PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
- TLI);
- return true;
- }
-
- return false;
-}
-
-// Try to optimize globals based on the knowledge that only one value (besides
-// its initializer) is ever stored to the global.
-static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
- AtomicOrdering Ordering,
- const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- // Ignore no-op GEPs and bitcasts.
- StoredOnceVal = StoredOnceVal->stripPointerCasts();
-
- // If we are dealing with a pointer global that is initialized to null and
- // only has one (non-null) value stored into it, then we can optimize any
- // users of the loaded value (often calls and loads) that would trap if the
- // value was null.
- if (GV->getInitializer()->getType()->isPointerTy() &&
- GV->getInitializer()->isNullValue() &&
- !NullPointerIsDefined(
- nullptr /* F */,
- GV->getInitializer()->getType()->getPointerAddressSpace())) {
- if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
- if (GV->getInitializer()->getType() != SOVC->getType())
- SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
-
- // Optimize away any trapping uses of the loaded value.
- if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
- return true;
- } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
- Type *MallocType = getMallocAllocatedType(CI, TLI);
- if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
- Ordering, DL, TLI))
- return true;
- }
- }
-
- return false;
-}
-
-/// At this point, we have learned that the only two values ever stored into GV
-/// are its initializer and OtherVal. See if we can shrink the global into a
-/// boolean and select between the two values whenever it is used. This exposes
-/// the values to other scalar optimizations.
-static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
- Type *GVElType = GV->getValueType();
-
- // If GVElType is already i1, it is already shrunk. If the type of the GV is
- // an FP value, pointer or vector, don't do this optimization because a select
- // between them is very expensive and unlikely to lead to later
- // simplification. In these cases, we typically end up with "cond ? v1 : v2"
- // where v1 and v2 both require constant pool loads, a big loss.
- if (GVElType == Type::getInt1Ty(GV->getContext()) ||
- GVElType->isFloatingPointTy() ||
- GVElType->isPointerTy() || GVElType->isVectorTy())
- return false;
-
- // Walk the use list of the global seeing if all the uses are load or store.
- // If there is anything else, bail out.
- for (User *U : GV->users())
- if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
- return false;
-
- LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n");
-
- // Create the new global, initializing it to false.
- GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
- false,
- GlobalValue::InternalLinkage,
- ConstantInt::getFalse(GV->getContext()),
- GV->getName()+".b",
- GV->getThreadLocalMode(),
- GV->getType()->getAddressSpace());
- NewGV->copyAttributesFrom(GV);
- GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
-
- Constant *InitVal = GV->getInitializer();
- assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
- "No reason to shrink to bool!");
-
- SmallVector<DIGlobalVariableExpression *, 1> GVs;
- GV->getDebugInfo(GVs);
-
- // If initialized to zero and storing one into the global, we can use a cast
- // instead of a select to synthesize the desired value.
- bool IsOneZero = false;
- bool EmitOneOrZero = true;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){
- IsOneZero = InitVal->isNullValue() && CI->isOne();
-
- if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){
- uint64_t ValInit = CIInit->getZExtValue();
- uint64_t ValOther = CI->getZExtValue();
- uint64_t ValMinus = ValOther - ValInit;
-
- for(auto *GVe : GVs){
- DIGlobalVariable *DGV = GVe->getVariable();
- DIExpression *E = GVe->getExpression();
-
- // It is expected that the address of global optimized variable is on
- // top of the stack. After optimization, value of that variable will
- // be ether 0 for initial value or 1 for other value. The following
- // expression should return constant integer value depending on the
- // value at global object address:
- // val * (ValOther - ValInit) + ValInit:
- // DW_OP_deref DW_OP_constu <ValMinus>
- // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
- SmallVector<uint64_t, 12> Ops = {
- dwarf::DW_OP_deref, dwarf::DW_OP_constu, ValMinus,
- dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
- dwarf::DW_OP_plus};
- E = DIExpression::prependOpcodes(E, Ops, DIExpression::WithStackValue);
- DIGlobalVariableExpression *DGVE =
- DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
- NewGV->addDebugInfo(DGVE);
- }
- EmitOneOrZero = false;
- }
- }
-
- if (EmitOneOrZero) {
- // FIXME: This will only emit address for debugger on which will
- // be written only 0 or 1.
- for(auto *GV : GVs)
- NewGV->addDebugInfo(GV);
- }
-
- while (!GV->use_empty()) {
- Instruction *UI = cast<Instruction>(GV->user_back());
- if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
- // Change the store into a boolean store.
- bool StoringOther = SI->getOperand(0) == OtherVal;
- // Only do this if we weren't storing a loaded value.
- Value *StoreVal;
- if (StoringOther || SI->getOperand(0) == InitVal) {
- StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
- StoringOther);
- } else {
- // Otherwise, we are storing a previously loaded copy. To do this,
- // change the copy from copying the original value to just copying the
- // bool.
- Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
-
- // If we've already replaced the input, StoredVal will be a cast or
- // select instruction. If not, it will be a load of the original
- // global.
- if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
- assert(LI->getOperand(0) == GV && "Not a copy!");
- // Insert a new load, to preserve the saved value.
- StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
- LI->getOrdering(), LI->getSyncScopeID(), LI);
- } else {
- assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
- "This is not a form that we understand!");
- StoreVal = StoredVal->getOperand(0);
- assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
- }
- }
- StoreInst *NSI =
- new StoreInst(StoreVal, NewGV, false, 0, SI->getOrdering(),
- SI->getSyncScopeID(), SI);
- NSI->setDebugLoc(SI->getDebugLoc());
- } else {
- // Change the load into a load of bool then a select.
- LoadInst *LI = cast<LoadInst>(UI);
- LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
- LI->getOrdering(), LI->getSyncScopeID(), LI);
- Instruction *NSI;
- if (IsOneZero)
- NSI = new ZExtInst(NLI, LI->getType(), "", LI);
- else
- NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
- NSI->takeName(LI);
- // Since LI is split into two instructions, NLI and NSI both inherit the
- // same DebugLoc
- NLI->setDebugLoc(LI->getDebugLoc());
- NSI->setDebugLoc(LI->getDebugLoc());
- LI->replaceAllUsesWith(NSI);
- }
- UI->eraseFromParent();
- }
-
- // Retain the name of the old global variable. People who are debugging their
- // programs may expect these variables to be named the same.
- NewGV->takeName(GV);
- GV->eraseFromParent();
- return true;
-}
-
-static bool deleteIfDead(
- GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
- GV.removeDeadConstantUsers();
-
- if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
- return false;
-
- if (const Comdat *C = GV.getComdat())
- if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
- return false;
-
- bool Dead;
- if (auto *F = dyn_cast<Function>(&GV))
- Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
- else
- Dead = GV.use_empty();
- if (!Dead)
- return false;
-
- LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
- GV.eraseFromParent();
- ++NumDeleted;
- return true;
-}
-
-static bool isPointerValueDeadOnEntryToFunction(
- const Function *F, GlobalValue *GV,
- function_ref<DominatorTree &(Function &)> LookupDomTree) {
- // Find all uses of GV. We expect them all to be in F, and if we can't
- // identify any of the uses we bail out.
- //
- // On each of these uses, identify if the memory that GV points to is
- // used/required/live at the start of the function. If it is not, for example
- // if the first thing the function does is store to the GV, the GV can
- // possibly be demoted.
- //
- // We don't do an exhaustive search for memory operations - simply look
- // through bitcasts as they're quite common and benign.
- const DataLayout &DL = GV->getParent()->getDataLayout();
- SmallVector<LoadInst *, 4> Loads;
- SmallVector<StoreInst *, 4> Stores;
- for (auto *U : GV->users()) {
- if (Operator::getOpcode(U) == Instruction::BitCast) {
- for (auto *UU : U->users()) {
- if (auto *LI = dyn_cast<LoadInst>(UU))
- Loads.push_back(LI);
- else if (auto *SI = dyn_cast<StoreInst>(UU))
- Stores.push_back(SI);
- else
- return false;
- }
- continue;
- }
-
- Instruction *I = dyn_cast<Instruction>(U);
- if (!I)
- return false;
- assert(I->getParent()->getParent() == F);
-
- if (auto *LI = dyn_cast<LoadInst>(I))
- Loads.push_back(LI);
- else if (auto *SI = dyn_cast<StoreInst>(I))
- Stores.push_back(SI);
- else
- return false;
- }
-
- // We have identified all uses of GV into loads and stores. Now check if all
- // of them are known not to depend on the value of the global at the function
- // entry point. We do this by ensuring that every load is dominated by at
- // least one store.
- auto &DT = LookupDomTree(*const_cast<Function *>(F));
-
- // The below check is quadratic. Check we're not going to do too many tests.
- // FIXME: Even though this will always have worst-case quadratic time, we
- // could put effort into minimizing the average time by putting stores that
- // have been shown to dominate at least one load at the beginning of the
- // Stores array, making subsequent dominance checks more likely to succeed
- // early.
- //
- // The threshold here is fairly large because global->local demotion is a
- // very powerful optimization should it fire.
- const unsigned Threshold = 100;
- if (Loads.size() * Stores.size() > Threshold)
- return false;
-
- for (auto *L : Loads) {
- auto *LTy = L->getType();
- if (none_of(Stores, [&](const StoreInst *S) {
- auto *STy = S->getValueOperand()->getType();
- // The load is only dominated by the store if DomTree says so
- // and the number of bits loaded in L is less than or equal to
- // the number of bits stored in S.
- return DT.dominates(S, L) &&
- DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
- }))
- return false;
- }
- // All loads have known dependences inside F, so the global can be localized.
- return true;
-}
-
-/// C may have non-instruction users. Can all of those users be turned into
-/// instructions?
-static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
- // We don't do this exhaustively. The most common pattern that we really need
- // to care about is a constant GEP or constant bitcast - so just looking
- // through one single ConstantExpr.
- //
- // The set of constants that this function returns true for must be able to be
- // handled by makeAllConstantUsesInstructions.
- for (auto *U : C->users()) {
- if (isa<Instruction>(U))
- continue;
- if (!isa<ConstantExpr>(U))
- // Non instruction, non-constantexpr user; cannot convert this.
- return false;
- for (auto *UU : U->users())
- if (!isa<Instruction>(UU))
- // A constantexpr used by another constant. We don't try and recurse any
- // further but just bail out at this point.
- return false;
- }
-
- return true;
-}
-
-/// C may have non-instruction users, and
-/// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
-/// non-instruction users to instructions.
-static void makeAllConstantUsesInstructions(Constant *C) {
- SmallVector<ConstantExpr*,4> Users;
- for (auto *U : C->users()) {
- if (isa<ConstantExpr>(U))
- Users.push_back(cast<ConstantExpr>(U));
- else
- // We should never get here; allNonInstructionUsersCanBeMadeInstructions
- // should not have returned true for C.
- assert(
- isa<Instruction>(U) &&
- "Can't transform non-constantexpr non-instruction to instruction!");
- }
-
- SmallVector<Value*,4> UUsers;
- for (auto *U : Users) {
- UUsers.clear();
- for (auto *UU : U->users())
- UUsers.push_back(UU);
- for (auto *UU : UUsers) {
- Instruction *UI = cast<Instruction>(UU);
- Instruction *NewU = U->getAsInstruction();
- NewU->insertBefore(UI);
- UI->replaceUsesOfWith(U, NewU);
- }
- // We've replaced all the uses, so destroy the constant. (destroyConstant
- // will update value handles and metadata.)
- U->destroyConstant();
- }
-}
-
-/// Analyze the specified global variable and optimize
-/// it if possible. If we make a change, return true.
-static bool processInternalGlobal(
- GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
- function_ref<DominatorTree &(Function &)> LookupDomTree) {
- auto &DL = GV->getParent()->getDataLayout();
- // If this is a first class global and has only one accessing function and
- // this function is non-recursive, we replace the global with a local alloca
- // in this function.
- //
- // NOTE: It doesn't make sense to promote non-single-value types since we
- // are just replacing static memory to stack memory.
- //
- // If the global is in different address space, don't bring it to stack.
- if (!GS.HasMultipleAccessingFunctions &&
- GS.AccessingFunction &&
- GV->getValueType()->isSingleValueType() &&
- GV->getType()->getAddressSpace() == 0 &&
- !GV->isExternallyInitialized() &&
- allNonInstructionUsersCanBeMadeInstructions(GV) &&
- GS.AccessingFunction->doesNotRecurse() &&
- isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
- LookupDomTree)) {
- const DataLayout &DL = GV->getParent()->getDataLayout();
-
- LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
- Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
- ->getEntryBlock().begin());
- Type *ElemTy = GV->getValueType();
- // FIXME: Pass Global's alignment when globals have alignment
- AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
- GV->getName(), &FirstI);
- if (!isa<UndefValue>(GV->getInitializer()))
- new StoreInst(GV->getInitializer(), Alloca, &FirstI);
-
- makeAllConstantUsesInstructions(GV);
-
- GV->replaceAllUsesWith(Alloca);
- GV->eraseFromParent();
- ++NumLocalized;
- return true;
- }
-
- // If the global is never loaded (but may be stored to), it is dead.
- // Delete it now.
- if (!GS.IsLoaded) {
- LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
-
- bool Changed;
- if (isLeakCheckerRoot(GV)) {
- // Delete any constant stores to the global.
- Changed = CleanupPointerRootUsers(GV, TLI);
- } else {
- // Delete any stores we can find to the global. We may not be able to
- // make it completely dead though.
- Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
- }
-
- // If the global is dead now, delete it.
- if (GV->use_empty()) {
- GV->eraseFromParent();
- ++NumDeleted;
- Changed = true;
- }
- return Changed;
-
- }
- if (GS.StoredType <= GlobalStatus::InitializerStored) {
- LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
- GV->setConstant(true);
-
- // Clean up any obviously simplifiable users now.
- CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
-
- // If the global is dead now, just nuke it.
- if (GV->use_empty()) {
- LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
- << "all users and delete global!\n");
- GV->eraseFromParent();
- ++NumDeleted;
- return true;
- }
-
- // Fall through to the next check; see if we can optimize further.
- ++NumMarked;
- }
- if (!GV->getInitializer()->getType()->isSingleValueType()) {
- const DataLayout &DL = GV->getParent()->getDataLayout();
- if (SRAGlobal(GV, DL))
- return true;
- }
- if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
- // If the initial value for the global was an undef value, and if only
- // one other value was stored into it, we can just change the
- // initializer to be the stored value, then delete all stores to the
- // global. This allows us to mark it constant.
- if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
- if (isa<UndefValue>(GV->getInitializer())) {
- // Change the initial value here.
- GV->setInitializer(SOVConstant);
-
- // Clean up any obviously simplifiable users now.
- CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
-
- if (GV->use_empty()) {
- LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to "
- << "simplify all users and delete global!\n");
- GV->eraseFromParent();
- ++NumDeleted;
- }
- ++NumSubstitute;
- return true;
- }
-
- // Try to optimize globals based on the knowledge that only one value
- // (besides its initializer) is ever stored to the global.
- if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
- return true;
-
- // Otherwise, if the global was not a boolean, we can shrink it to be a
- // boolean.
- if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
- if (GS.Ordering == AtomicOrdering::NotAtomic) {
- if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
- ++NumShrunkToBool;
- return true;
- }
- }
- }
- }
-
- return false;
-}
-
-/// Analyze the specified global variable and optimize it if possible. If we
-/// make a change, return true.
-static bool
-processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
- function_ref<DominatorTree &(Function &)> LookupDomTree) {
- if (GV.getName().startswith("llvm."))
- return false;
-
- GlobalStatus GS;
-
- if (GlobalStatus::analyzeGlobal(&GV, GS))
- return false;
-
- bool Changed = false;
- if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
- auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
- : GlobalValue::UnnamedAddr::Local;
- if (NewUnnamedAddr != GV.getUnnamedAddr()) {
- GV.setUnnamedAddr(NewUnnamedAddr);
- NumUnnamed++;
- Changed = true;
- }
- }
-
- // Do more involved optimizations if the global is internal.
- if (!GV.hasLocalLinkage())
- return Changed;
-
- auto *GVar = dyn_cast<GlobalVariable>(&GV);
- if (!GVar)
- return Changed;
-
- if (GVar->isConstant() || !GVar->hasInitializer())
- return Changed;
-
- return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
-}
-
-/// Walk all of the direct calls of the specified function, changing them to
-/// FastCC.
-static void ChangeCalleesToFastCall(Function *F) {
- for (User *U : F->users()) {
- if (isa<BlockAddress>(U))
- continue;
- CallSite CS(cast<Instruction>(U));
- CS.setCallingConv(CallingConv::Fast);
- }
-}
-
-static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
- // There can be at most one attribute set with a nest attribute.
- unsigned NestIndex;
- if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
- return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
- return Attrs;
-}
-
-static void RemoveNestAttribute(Function *F) {
- F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
- for (User *U : F->users()) {
- if (isa<BlockAddress>(U))
- continue;
- CallSite CS(cast<Instruction>(U));
- CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
- }
-}
-
-/// Return true if this is a calling convention that we'd like to change. The
-/// idea here is that we don't want to mess with the convention if the user
-/// explicitly requested something with performance implications like coldcc,
-/// GHC, or anyregcc.
-static bool hasChangeableCC(Function *F) {
- CallingConv::ID CC = F->getCallingConv();
-
- // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
- if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
- return false;
-
- // Don't break the invariant that the inalloca parameter is the only parameter
- // passed in memory.
- // FIXME: GlobalOpt should remove inalloca when possible and hoist the dynamic
- // alloca it uses to the entry block if possible.
- if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
- return false;
-
- // FIXME: Change CC for the whole chain of musttail calls when possible.
- //
- // Can't change CC of the function that either has musttail calls, or is a
- // musttail callee itself
- for (User *U : F->users()) {
- if (isa<BlockAddress>(U))
- continue;
- CallInst* CI = dyn_cast<CallInst>(U);
- if (!CI)
- continue;
-
- if (CI->isMustTailCall())
- return false;
- }
-
- for (BasicBlock &BB : *F)
- if (BB.getTerminatingMustTailCall())
- return false;
-
- return true;
-}
-
-/// Return true if the block containing the call site has a BlockFrequency of
-/// less than ColdCCRelFreq% of the entry block.
-static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
- const BranchProbability ColdProb(ColdCCRelFreq, 100);
- auto CallSiteBB = CS.getInstruction()->getParent();
- auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
- auto CallerEntryFreq =
- CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
- return CallSiteFreq < CallerEntryFreq * ColdProb;
-}
-
-// This function checks if the input function F is cold at all call sites. It
-// also looks each call site's containing function, returning false if the
-// caller function contains other non cold calls. The input vector AllCallsCold
-// contains a list of functions that only have call sites in cold blocks.
-static bool
-isValidCandidateForColdCC(Function &F,
- function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
- const std::vector<Function *> &AllCallsCold) {
-
- if (F.user_empty())
- return false;
-
- for (User *U : F.users()) {
- if (isa<BlockAddress>(U))
- continue;
-
- CallSite CS(cast<Instruction>(U));
- Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
- BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
- if (!isColdCallSite(CS, CallerBFI))
- return false;
- auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
- if (It == AllCallsCold.end())
- return false;
- }
- return true;
-}
-
-static void changeCallSitesToColdCC(Function *F) {
- for (User *U : F->users()) {
- if (isa<BlockAddress>(U))
- continue;
- CallSite CS(cast<Instruction>(U));
- CS.setCallingConv(CallingConv::Cold);
- }
-}
-
-// This function iterates over all the call instructions in the input Function
-// and checks that all call sites are in cold blocks and are allowed to use the
-// coldcc calling convention.
-static bool
-hasOnlyColdCalls(Function &F,
- function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
- for (BasicBlock &BB : F) {
- for (Instruction &I : BB) {
- if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- CallSite CS(cast<Instruction>(CI));
- // Skip over isline asm instructions since they aren't function calls.
- if (CI->isInlineAsm())
- continue;
- Function *CalledFn = CI->getCalledFunction();
- if (!CalledFn)
- return false;
- if (!CalledFn->hasLocalLinkage())
- return false;
- // Skip over instrinsics since they won't remain as function calls.
- if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
- continue;
- // Check if it's valid to use coldcc calling convention.
- if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
- CalledFn->hasAddressTaken())
- return false;
- BlockFrequencyInfo &CallerBFI = GetBFI(F);
- if (!isColdCallSite(CS, CallerBFI))
- return false;
- }
- }
- }
- return true;
-}
-
-static bool
-OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
- function_ref<TargetTransformInfo &(Function &)> GetTTI,
- function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
- function_ref<DominatorTree &(Function &)> LookupDomTree,
- SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
-
- bool Changed = false;
-
- std::vector<Function *> AllCallsCold;
- for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
- Function *F = &*FI++;
- if (hasOnlyColdCalls(*F, GetBFI))
- AllCallsCold.push_back(F);
- }
-
- // Optimize functions.
- for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
- Function *F = &*FI++;
-
- // Don't perform global opt pass on naked functions; we don't want fast
- // calling conventions for naked functions.
- if (F->hasFnAttribute(Attribute::Naked))
- continue;
-
- // Functions without names cannot be referenced outside this module.
- if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
- F->setLinkage(GlobalValue::InternalLinkage);
-
- if (deleteIfDead(*F, NotDiscardableComdats)) {
- Changed = true;
- continue;
- }
-
- // LLVM's definition of dominance allows instructions that are cyclic
- // in unreachable blocks, e.g.:
- // %pat = select i1 %condition, @global, i16* %pat
- // because any instruction dominates an instruction in a block that's
- // not reachable from entry.
- // So, remove unreachable blocks from the function, because a) there's
- // no point in analyzing them and b) GlobalOpt should otherwise grow
- // some more complicated logic to break these cycles.
- // Removing unreachable blocks might invalidate the dominator so we
- // recalculate it.
- if (!F->isDeclaration()) {
- if (removeUnreachableBlocks(*F)) {
- auto &DT = LookupDomTree(*F);
- DT.recalculate(*F);
- Changed = true;
- }
- }
-
- Changed |= processGlobal(*F, TLI, LookupDomTree);
-
- if (!F->hasLocalLinkage())
- continue;
-
- if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
- NumInternalFunc++;
- TargetTransformInfo &TTI = GetTTI(*F);
- // Change the calling convention to coldcc if either stress testing is
- // enabled or the target would like to use coldcc on functions which are
- // cold at all call sites and the callers contain no other non coldcc
- // calls.
- if (EnableColdCCStressTest ||
- (isValidCandidateForColdCC(*F, GetBFI, AllCallsCold) &&
- TTI.useColdCCForColdCall(*F))) {
- F->setCallingConv(CallingConv::Cold);
- changeCallSitesToColdCC(F);
- Changed = true;
- NumColdCC++;
- }
- }
-
- if (hasChangeableCC(F) && !F->isVarArg() &&
- !F->hasAddressTaken()) {
- // If this function has a calling convention worth changing, is not a
- // varargs function, and is only called directly, promote it to use the
- // Fast calling convention.
- F->setCallingConv(CallingConv::Fast);
- ChangeCalleesToFastCall(F);
- ++NumFastCallFns;
- Changed = true;
- }
-
- if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
- !F->hasAddressTaken()) {
- // The function is not used by a trampoline intrinsic, so it is safe
- // to remove the 'nest' attribute.
- RemoveNestAttribute(F);
- ++NumNestRemoved;
- Changed = true;
- }
- }
- return Changed;
-}
-
-static bool
-OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
- function_ref<DominatorTree &(Function &)> LookupDomTree,
- SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
- bool Changed = false;
-
- for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
- GVI != E; ) {
- GlobalVariable *GV = &*GVI++;
- // Global variables without names cannot be referenced outside this module.
- if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
- GV->setLinkage(GlobalValue::InternalLinkage);
- // Simplify the initializer.
- if (GV->hasInitializer())
- if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
- auto &DL = M.getDataLayout();
- Constant *New = ConstantFoldConstant(C, DL, TLI);
- if (New && New != C)
- GV->setInitializer(New);
- }
-
- if (deleteIfDead(*GV, NotDiscardableComdats)) {
- Changed = true;
- continue;
- }
-
- Changed |= processGlobal(*GV, TLI, LookupDomTree);
- }
- return Changed;
-}
-
-/// Evaluate a piece of a constantexpr store into a global initializer. This
-/// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
-/// GEP operands of Addr [0, OpNo) have been stepped into.
-static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
- ConstantExpr *Addr, unsigned OpNo) {
- // Base case of the recursion.
- if (OpNo == Addr->getNumOperands()) {
- assert(Val->getType() == Init->getType() && "Type mismatch!");
- return Val;
- }
-
- SmallVector<Constant*, 32> Elts;
- if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
- // Break up the constant into its elements.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- Elts.push_back(Init->getAggregateElement(i));
-
- // Replace the element that we are supposed to.
- ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
- unsigned Idx = CU->getZExtValue();
- assert(Idx < STy->getNumElements() && "Struct index out of range!");
- Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
-
- // Return the modified struct.
- return ConstantStruct::get(STy, Elts);
- }
-
- ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
- SequentialType *InitTy = cast<SequentialType>(Init->getType());
- uint64_t NumElts = InitTy->getNumElements();
-
- // Break up the array into elements.
- for (uint64_t i = 0, e = NumElts; i != e; ++i)
- Elts.push_back(Init->getAggregateElement(i));
-
- assert(CI->getZExtValue() < NumElts);
- Elts[CI->getZExtValue()] =
- EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
-
- if (Init->getType()->isArrayTy())
- return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
- return ConstantVector::get(Elts);
-}
-
-/// We have decided that Addr (which satisfies the predicate
-/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
-static void CommitValueTo(Constant *Val, Constant *Addr) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
- assert(GV->hasInitializer());
- GV->setInitializer(Val);
- return;
- }
-
- ConstantExpr *CE = cast<ConstantExpr>(Addr);
- GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
- GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
-}
-
-/// Given a map of address -> value, where addresses are expected to be some form
-/// of either a global or a constant GEP, set the initializer for the address to
-/// be the value. This performs mostly the same function as CommitValueTo()
-/// and EvaluateStoreInto() but is optimized to be more efficient for the common
-/// case where the set of addresses are GEPs sharing the same underlying global,
-/// processing the GEPs in batches rather than individually.
-///
-/// To give an example, consider the following C++ code adapted from the clang
-/// regression tests:
-/// struct S {
-/// int n = 10;
-/// int m = 2 * n;
-/// S(int a) : n(a) {}
-/// };
-///
-/// template<typename T>
-/// struct U {
-/// T *r = &q;
-/// T q = 42;
-/// U *p = this;
-/// };
-///
-/// U<S> e;
-///
-/// The global static constructor for 'e' will need to initialize 'r' and 'p' of
-/// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
-/// members. This batch algorithm will simply use general CommitValueTo() method
-/// to handle the complex nested S struct initialization of 'q', before
-/// processing the outermost members in a single batch. Using CommitValueTo() to
-/// handle member in the outer struct is inefficient when the struct/array is
-/// very large as we end up creating and destroy constant arrays for each
-/// initialization.
-/// For the above case, we expect the following IR to be generated:
-///
-/// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
-/// %struct.S = type { i32, i32 }
-/// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
-/// i64 0, i32 1),
-/// %struct.S { i32 42, i32 84 }, %struct.U* @e }
-/// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
-/// constant expression, while the other two elements of @e are "simple".
-static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
- SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
- SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
- SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
- SimpleCEs.reserve(Mem.size());
-
- for (const auto &I : Mem) {
- if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
- GVs.push_back(std::make_pair(GV, I.second));
- } else {
- ConstantExpr *GEP = cast<ConstantExpr>(I.first);
- // We don't handle the deeply recursive case using the batch method.
- if (GEP->getNumOperands() > 3)
- ComplexCEs.push_back(std::make_pair(GEP, I.second));
- else
- SimpleCEs.push_back(std::make_pair(GEP, I.second));
- }
- }
-
- // The algorithm below doesn't handle cases like nested structs, so use the
- // slower fully general method if we have to.
- for (auto ComplexCE : ComplexCEs)
- CommitValueTo(ComplexCE.second, ComplexCE.first);
-
- for (auto GVPair : GVs) {
- assert(GVPair.first->hasInitializer());
- GVPair.first->setInitializer(GVPair.second);
- }
-
- if (SimpleCEs.empty())
- return;
-
- // We cache a single global's initializer elements in the case where the
- // subsequent address/val pair uses the same one. This avoids throwing away and
- // rebuilding the constant struct/vector/array just because one element is
- // modified at a time.
- SmallVector<Constant *, 32> Elts;
- Elts.reserve(SimpleCEs.size());
- GlobalVariable *CurrentGV = nullptr;
-
- auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
- Constant *Init = GV->getInitializer();
- Type *Ty = Init->getType();
- if (Update) {
- if (CurrentGV) {
- assert(CurrentGV && "Expected a GV to commit to!");
- Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
- // We have a valid cache that needs to be committed.
- if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
- CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
- else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
- CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
- else
- CurrentGV->setInitializer(ConstantVector::get(Elts));
- }
- if (CurrentGV == GV)
- return;
- // Need to clear and set up cache for new initializer.
- CurrentGV = GV;
- Elts.clear();
- unsigned NumElts;
- if (auto *STy = dyn_cast<StructType>(Ty))
- NumElts = STy->getNumElements();
- else
- NumElts = cast<SequentialType>(Ty)->getNumElements();
- for (unsigned i = 0, e = NumElts; i != e; ++i)
- Elts.push_back(Init->getAggregateElement(i));
- }
- };
-
- for (auto CEPair : SimpleCEs) {
- ConstantExpr *GEP = CEPair.first;
- Constant *Val = CEPair.second;
-
- GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
- commitAndSetupCache(GV, GV != CurrentGV);
- ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
- Elts[CI->getZExtValue()] = Val;
- }
- // The last initializer in the list needs to be committed, others
- // will be committed on a new initializer being processed.
- commitAndSetupCache(CurrentGV, true);
-}
-
-/// Evaluate static constructors in the function, if we can. Return true if we
-/// can, false otherwise.
-static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- // Call the function.
- Evaluator Eval(DL, TLI);
- Constant *RetValDummy;
- bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
- SmallVector<Constant*, 0>());
-
- if (EvalSuccess) {
- ++NumCtorsEvaluated;
-
- // We succeeded at evaluation: commit the result.
- LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
- << F->getName() << "' to "
- << Eval.getMutatedMemory().size() << " stores.\n");
- BatchCommitValueTo(Eval.getMutatedMemory());
- for (GlobalVariable *GV : Eval.getInvariants())
- GV->setConstant(true);
- }
-
- return EvalSuccess;
-}
-
-static int compareNames(Constant *const *A, Constant *const *B) {
- Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
- Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
- return AStripped->getName().compare(BStripped->getName());
-}
-
-static void setUsedInitializer(GlobalVariable &V,
- const SmallPtrSetImpl<GlobalValue *> &Init) {
- if (Init.empty()) {
- V.eraseFromParent();
- return;
- }
-
- // Type of pointer to the array of pointers.
- PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
-
- SmallVector<Constant *, 8> UsedArray;
- for (GlobalValue *GV : Init) {
- Constant *Cast
- = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
- UsedArray.push_back(Cast);
- }
- // Sort to get deterministic order.
- array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
- ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
-
- Module *M = V.getParent();
- V.removeFromParent();
- GlobalVariable *NV =
- new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
- ConstantArray::get(ATy, UsedArray), "");
- NV->takeName(&V);
- NV->setSection("llvm.metadata");
- delete &V;
-}
-
-namespace {
-
-/// An easy to access representation of llvm.used and llvm.compiler.used.
-class LLVMUsed {
- SmallPtrSet<GlobalValue *, 8> Used;
- SmallPtrSet<GlobalValue *, 8> CompilerUsed;
- GlobalVariable *UsedV;
- GlobalVariable *CompilerUsedV;
-
-public:
- LLVMUsed(Module &M) {
- UsedV = collectUsedGlobalVariables(M, Used, false);
- CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
- }
-
- using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
- using used_iterator_range = iterator_range<iterator>;
-
- iterator usedBegin() { return Used.begin(); }
- iterator usedEnd() { return Used.end(); }
-
- used_iterator_range used() {
- return used_iterator_range(usedBegin(), usedEnd());
- }
-
- iterator compilerUsedBegin() { return CompilerUsed.begin(); }
- iterator compilerUsedEnd() { return CompilerUsed.end(); }
-
- used_iterator_range compilerUsed() {
- return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
- }
-
- bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
-
- bool compilerUsedCount(GlobalValue *GV) const {
- return CompilerUsed.count(GV);
- }
-
- bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
- bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
- bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
-
- bool compilerUsedInsert(GlobalValue *GV) {
- return CompilerUsed.insert(GV).second;
- }
-
- void syncVariablesAndSets() {
- if (UsedV)
- setUsedInitializer(*UsedV, Used);
- if (CompilerUsedV)
- setUsedInitializer(*CompilerUsedV, CompilerUsed);
- }
-};
-
-} // end anonymous namespace
-
-static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
- if (GA.use_empty()) // No use at all.
- return false;
-
- assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
- "We should have removed the duplicated "
- "element from llvm.compiler.used");
- if (!GA.hasOneUse())
- // Strictly more than one use. So at least one is not in llvm.used and
- // llvm.compiler.used.
- return true;
-
- // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
- return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
-}
-
-static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
- const LLVMUsed &U) {
- unsigned N = 2;
- assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
- "We should have removed the duplicated "
- "element from llvm.compiler.used");
- if (U.usedCount(&V) || U.compilerUsedCount(&V))
- ++N;
- return V.hasNUsesOrMore(N);
-}
-
-static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
- if (!GA.hasLocalLinkage())
- return true;
-
- return U.usedCount(&GA) || U.compilerUsedCount(&GA);
-}
-
-static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
- bool &RenameTarget) {
- RenameTarget = false;
- bool Ret = false;
- if (hasUseOtherThanLLVMUsed(GA, U))
- Ret = true;
-
- // If the alias is externally visible, we may still be able to simplify it.
- if (!mayHaveOtherReferences(GA, U))
- return Ret;
-
- // If the aliasee has internal linkage, give it the name and linkage
- // of the alias, and delete the alias. This turns:
- // define internal ... @f(...)
- // @a = alias ... @f
- // into:
- // define ... @a(...)
- Constant *Aliasee = GA.getAliasee();
- GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
- if (!Target->hasLocalLinkage())
- return Ret;
-
- // Do not perform the transform if multiple aliases potentially target the
- // aliasee. This check also ensures that it is safe to replace the section
- // and other attributes of the aliasee with those of the alias.
- if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
- return Ret;
-
- RenameTarget = true;
- return true;
-}
-
-static bool
-OptimizeGlobalAliases(Module &M,
- SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
- bool Changed = false;
- LLVMUsed Used(M);
-
- for (GlobalValue *GV : Used.used())
- Used.compilerUsedErase(GV);
-
- for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
- I != E;) {
- GlobalAlias *J = &*I++;
-
- // Aliases without names cannot be referenced outside this module.
- if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
- J->setLinkage(GlobalValue::InternalLinkage);
-
- if (deleteIfDead(*J, NotDiscardableComdats)) {
- Changed = true;
- continue;
- }
-
- // If the alias can change at link time, nothing can be done - bail out.
- if (J->isInterposable())
- continue;
-
- Constant *Aliasee = J->getAliasee();
- GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
- // We can't trivially replace the alias with the aliasee if the aliasee is
- // non-trivial in some way.
- // TODO: Try to handle non-zero GEPs of local aliasees.
- if (!Target)
- continue;
- Target->removeDeadConstantUsers();
-
- // Make all users of the alias use the aliasee instead.
- bool RenameTarget;
- if (!hasUsesToReplace(*J, Used, RenameTarget))
- continue;
-
- J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
- ++NumAliasesResolved;
- Changed = true;
-
- if (RenameTarget) {
- // Give the aliasee the name, linkage and other attributes of the alias.
- Target->takeName(&*J);
- Target->setLinkage(J->getLinkage());
- Target->setDSOLocal(J->isDSOLocal());
- Target->setVisibility(J->getVisibility());
- Target->setDLLStorageClass(J->getDLLStorageClass());
-
- if (Used.usedErase(&*J))
- Used.usedInsert(Target);
-
- if (Used.compilerUsedErase(&*J))
- Used.compilerUsedInsert(Target);
- } else if (mayHaveOtherReferences(*J, Used))
- continue;
-
- // Delete the alias.
- M.getAliasList().erase(J);
- ++NumAliasesRemoved;
- Changed = true;
- }
-
- Used.syncVariablesAndSets();
-
- return Changed;
-}
-
-static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
- LibFunc F = LibFunc_cxa_atexit;
- if (!TLI->has(F))
- return nullptr;
-
- Function *Fn = M.getFunction(TLI->getName(F));
- if (!Fn)
- return nullptr;
-
- // Make sure that the function has the correct prototype.
- if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
- return nullptr;
-
- return Fn;
-}
-
-/// Returns whether the given function is an empty C++ destructor and can
-/// therefore be eliminated.
-/// Note that we assume that other optimization passes have already simplified
-/// the code so we only look for a function with a single basic block, where
-/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
-/// other side-effect free instructions.
-static bool cxxDtorIsEmpty(const Function &Fn,
- SmallPtrSet<const Function *, 8> &CalledFunctions) {
- // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
- // nounwind, but that doesn't seem worth doing.
- if (Fn.isDeclaration())
- return false;
-
- if (++Fn.begin() != Fn.end())
- return false;
-
- const BasicBlock &EntryBlock = Fn.getEntryBlock();
- for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
- I != E; ++I) {
- if (const CallInst *CI = dyn_cast<CallInst>(I)) {
- // Ignore debug intrinsics.
- if (isa<DbgInfoIntrinsic>(CI))
- continue;
-
- const Function *CalledFn = CI->getCalledFunction();
-
- if (!CalledFn)
- return false;
-
- SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
-
- // Don't treat recursive functions as empty.
- if (!NewCalledFunctions.insert(CalledFn).second)
- return false;
-
- if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
- return false;
- } else if (isa<ReturnInst>(*I))
- return true; // We're done.
- else if (I->mayHaveSideEffects())
- return false; // Destructor with side effects, bail.
- }
-
- return false;
-}
-
-static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
- /// Itanium C++ ABI p3.3.5:
- ///
- /// After constructing a global (or local static) object, that will require
- /// destruction on exit, a termination function is registered as follows:
- ///
- /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
- ///
- /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
- /// call f(p) when DSO d is unloaded, before all such termination calls
- /// registered before this one. It returns zero if registration is
- /// successful, nonzero on failure.
-
- // This pass will look for calls to __cxa_atexit where the function is trivial
- // and remove them.
- bool Changed = false;
-
- for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
- I != E;) {
- // We're only interested in calls. Theoretically, we could handle invoke
- // instructions as well, but neither llvm-gcc nor clang generate invokes
- // to __cxa_atexit.
- CallInst *CI = dyn_cast<CallInst>(*I++);
- if (!CI)
- continue;
-
- Function *DtorFn =
- dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
- if (!DtorFn)
- continue;
-
- SmallPtrSet<const Function *, 8> CalledFunctions;
- if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
- continue;
-
- // Just remove the call.
- CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
- CI->eraseFromParent();
-
- ++NumCXXDtorsRemoved;
-
- Changed |= true;
- }
-
- return Changed;
-}
-
-static bool optimizeGlobalsInModule(
- Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
- function_ref<TargetTransformInfo &(Function &)> GetTTI,
- function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
- function_ref<DominatorTree &(Function &)> LookupDomTree) {
- SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
- bool Changed = false;
- bool LocalChange = true;
- while (LocalChange) {
- LocalChange = false;
-
- NotDiscardableComdats.clear();
- for (const GlobalVariable &GV : M.globals())
- if (const Comdat *C = GV.getComdat())
- if (!GV.isDiscardableIfUnused() || !GV.use_empty())
- NotDiscardableComdats.insert(C);
- for (Function &F : M)
- if (const Comdat *C = F.getComdat())
- if (!F.isDefTriviallyDead())
- NotDiscardableComdats.insert(C);
- for (GlobalAlias &GA : M.aliases())
- if (const Comdat *C = GA.getComdat())
- if (!GA.isDiscardableIfUnused() || !GA.use_empty())
- NotDiscardableComdats.insert(C);
-
- // Delete functions that are trivially dead, ccc -> fastcc
- LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree,
- NotDiscardableComdats);
-
- // Optimize global_ctors list.
- LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
- return EvaluateStaticConstructor(F, DL, TLI);
- });
-
- // Optimize non-address-taken globals.
- LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
- NotDiscardableComdats);
-
- // Resolve aliases, when possible.
- LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
-
- // Try to remove trivial global destructors if they are not removed
- // already.
- Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
- if (CXAAtExitFn)
- LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
-
- Changed |= LocalChange;
- }
-
- // TODO: Move all global ctors functions to the end of the module for code
- // layout.
-
- return Changed;
-}
-
-PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
- auto &DL = M.getDataLayout();
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
- auto &FAM =
- AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
- auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
- return FAM.getResult<DominatorTreeAnalysis>(F);
- };
- auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
- return FAM.getResult<TargetIRAnalysis>(F);
- };
-
- auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
- return FAM.getResult<BlockFrequencyAnalysis>(F);
- };
-
- if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree))
- return PreservedAnalyses::all();
- return PreservedAnalyses::none();
-}
-
-namespace {
-
-struct GlobalOptLegacyPass : public ModulePass {
- static char ID; // Pass identification, replacement for typeid
-
- GlobalOptLegacyPass() : ModulePass(ID) {
- initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnModule(Module &M) override {
- if (skipModule(M))
- return false;
-
- auto &DL = M.getDataLayout();
- auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- auto LookupDomTree = [this](Function &F) -> DominatorTree & {
- return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
- };
- auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
- return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- };
-
- auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
- return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
- };
-
- return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree);
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<BlockFrequencyInfoWrapperPass>();
- }
-};
-
-} // end anonymous namespace
-
-char GlobalOptLegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
- "Global Variable Optimizer", false, false)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
- "Global Variable Optimizer", false, false)
-
-ModulePass *llvm::createGlobalOptimizerPass() {
- return new GlobalOptLegacyPass();
-}