summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp1671
1 files changed, 0 insertions, 1671 deletions
diff --git a/gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp b/gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp
deleted file mode 100644
index 9f123c2b875..00000000000
--- a/gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp
+++ /dev/null
@@ -1,1671 +0,0 @@
-//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the SampleProfileLoader transformation. This pass
-// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
-// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
-// profile information in the given profile.
-//
-// This pass generates branch weight annotations on the IR:
-//
-// - prof: Represents branch weights. This annotation is added to branches
-// to indicate the weights of each edge coming out of the branch.
-// The weight of each edge is the weight of the target block for
-// that edge. The weight of a block B is computed as the maximum
-// number of samples found in B.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/IPO/SampleProfile.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringMap.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/InlineCost.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/PostDominators.h"
-#include "llvm/Analysis/ProfileSummaryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/DiagnosticInfo.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/MDBuilder.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/ValueSymbolTable.h"
-#include "llvm/Pass.h"
-#include "llvm/ProfileData/InstrProf.h"
-#include "llvm/ProfileData/SampleProf.h"
-#include "llvm/ProfileData/SampleProfReader.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/ErrorOr.h"
-#include "llvm/Support/GenericDomTree.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/Transforms/Utils/CallPromotionUtils.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <functional>
-#include <limits>
-#include <map>
-#include <memory>
-#include <string>
-#include <system_error>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace sampleprof;
-using ProfileCount = Function::ProfileCount;
-#define DEBUG_TYPE "sample-profile"
-
-// Command line option to specify the file to read samples from. This is
-// mainly used for debugging.
-static cl::opt<std::string> SampleProfileFile(
- "sample-profile-file", cl::init(""), cl::value_desc("filename"),
- cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
-
-// The named file contains a set of transformations that may have been applied
-// to the symbol names between the program from which the sample data was
-// collected and the current program's symbols.
-static cl::opt<std::string> SampleProfileRemappingFile(
- "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
- cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
-
-static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
- "sample-profile-max-propagate-iterations", cl::init(100),
- cl::desc("Maximum number of iterations to go through when propagating "
- "sample block/edge weights through the CFG."));
-
-static cl::opt<unsigned> SampleProfileRecordCoverage(
- "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
- cl::desc("Emit a warning if less than N% of records in the input profile "
- "are matched to the IR."));
-
-static cl::opt<unsigned> SampleProfileSampleCoverage(
- "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
- cl::desc("Emit a warning if less than N% of samples in the input profile "
- "are matched to the IR."));
-
-static cl::opt<bool> NoWarnSampleUnused(
- "no-warn-sample-unused", cl::init(false), cl::Hidden,
- cl::desc("Use this option to turn off/on warnings about function with "
- "samples but without debug information to use those samples. "));
-
-static cl::opt<bool> ProfileSampleAccurate(
- "profile-sample-accurate", cl::Hidden, cl::init(false),
- cl::desc("If the sample profile is accurate, we will mark all un-sampled "
- "callsite and function as having 0 samples. Otherwise, treat "
- "un-sampled callsites and functions conservatively as unknown. "));
-
-namespace {
-
-using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
-using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
-using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
-using EdgeWeightMap = DenseMap<Edge, uint64_t>;
-using BlockEdgeMap =
- DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
-
-class SampleCoverageTracker {
-public:
- SampleCoverageTracker() = default;
-
- bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
- uint32_t Discriminator, uint64_t Samples);
- unsigned computeCoverage(unsigned Used, unsigned Total) const;
- unsigned countUsedRecords(const FunctionSamples *FS,
- ProfileSummaryInfo *PSI) const;
- unsigned countBodyRecords(const FunctionSamples *FS,
- ProfileSummaryInfo *PSI) const;
- uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
- uint64_t countBodySamples(const FunctionSamples *FS,
- ProfileSummaryInfo *PSI) const;
-
- void clear() {
- SampleCoverage.clear();
- TotalUsedSamples = 0;
- }
-
-private:
- using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
- using FunctionSamplesCoverageMap =
- DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
-
- /// Coverage map for sampling records.
- ///
- /// This map keeps a record of sampling records that have been matched to
- /// an IR instruction. This is used to detect some form of staleness in
- /// profiles (see flag -sample-profile-check-coverage).
- ///
- /// Each entry in the map corresponds to a FunctionSamples instance. This is
- /// another map that counts how many times the sample record at the
- /// given location has been used.
- FunctionSamplesCoverageMap SampleCoverage;
-
- /// Number of samples used from the profile.
- ///
- /// When a sampling record is used for the first time, the samples from
- /// that record are added to this accumulator. Coverage is later computed
- /// based on the total number of samples available in this function and
- /// its callsites.
- ///
- /// Note that this accumulator tracks samples used from a single function
- /// and all the inlined callsites. Strictly, we should have a map of counters
- /// keyed by FunctionSamples pointers, but these stats are cleared after
- /// every function, so we just need to keep a single counter.
- uint64_t TotalUsedSamples = 0;
-};
-
-/// Sample profile pass.
-///
-/// This pass reads profile data from the file specified by
-/// -sample-profile-file and annotates every affected function with the
-/// profile information found in that file.
-class SampleProfileLoader {
-public:
- SampleProfileLoader(
- StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
- std::function<AssumptionCache &(Function &)> GetAssumptionCache,
- std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
- : GetAC(std::move(GetAssumptionCache)),
- GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
- RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {}
-
- bool doInitialization(Module &M);
- bool runOnModule(Module &M, ModuleAnalysisManager *AM,
- ProfileSummaryInfo *_PSI);
-
- void dump() { Reader->dump(); }
-
-protected:
- bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
- unsigned getFunctionLoc(Function &F);
- bool emitAnnotations(Function &F);
- ErrorOr<uint64_t> getInstWeight(const Instruction &I);
- ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
- const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
- std::vector<const FunctionSamples *>
- findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
- mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
- const FunctionSamples *findFunctionSamples(const Instruction &I) const;
- bool inlineCallInstruction(Instruction *I);
- bool inlineHotFunctions(Function &F,
- DenseSet<GlobalValue::GUID> &InlinedGUIDs);
- void printEdgeWeight(raw_ostream &OS, Edge E);
- void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
- void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
- bool computeBlockWeights(Function &F);
- void findEquivalenceClasses(Function &F);
- template <bool IsPostDom>
- void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
- DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
-
- void propagateWeights(Function &F);
- uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
- void buildEdges(Function &F);
- bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
- void computeDominanceAndLoopInfo(Function &F);
- void clearFunctionData();
-
- /// Map basic blocks to their computed weights.
- ///
- /// The weight of a basic block is defined to be the maximum
- /// of all the instruction weights in that block.
- BlockWeightMap BlockWeights;
-
- /// Map edges to their computed weights.
- ///
- /// Edge weights are computed by propagating basic block weights in
- /// SampleProfile::propagateWeights.
- EdgeWeightMap EdgeWeights;
-
- /// Set of visited blocks during propagation.
- SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
-
- /// Set of visited edges during propagation.
- SmallSet<Edge, 32> VisitedEdges;
-
- /// Equivalence classes for block weights.
- ///
- /// Two blocks BB1 and BB2 are in the same equivalence class if they
- /// dominate and post-dominate each other, and they are in the same loop
- /// nest. When this happens, the two blocks are guaranteed to execute
- /// the same number of times.
- EquivalenceClassMap EquivalenceClass;
-
- /// Map from function name to Function *. Used to find the function from
- /// the function name. If the function name contains suffix, additional
- /// entry is added to map from the stripped name to the function if there
- /// is one-to-one mapping.
- StringMap<Function *> SymbolMap;
-
- /// Dominance, post-dominance and loop information.
- std::unique_ptr<DominatorTree> DT;
- std::unique_ptr<PostDominatorTree> PDT;
- std::unique_ptr<LoopInfo> LI;
-
- std::function<AssumptionCache &(Function &)> GetAC;
- std::function<TargetTransformInfo &(Function &)> GetTTI;
-
- /// Predecessors for each basic block in the CFG.
- BlockEdgeMap Predecessors;
-
- /// Successors for each basic block in the CFG.
- BlockEdgeMap Successors;
-
- SampleCoverageTracker CoverageTracker;
-
- /// Profile reader object.
- std::unique_ptr<SampleProfileReader> Reader;
-
- /// Samples collected for the body of this function.
- FunctionSamples *Samples = nullptr;
-
- /// Name of the profile file to load.
- std::string Filename;
-
- /// Name of the profile remapping file to load.
- std::string RemappingFilename;
-
- /// Flag indicating whether the profile input loaded successfully.
- bool ProfileIsValid = false;
-
- /// Flag indicating if the pass is invoked in ThinLTO compile phase.
- ///
- /// In this phase, in annotation, we should not promote indirect calls.
- /// Instead, we will mark GUIDs that needs to be annotated to the function.
- bool IsThinLTOPreLink;
-
- /// Profile Summary Info computed from sample profile.
- ProfileSummaryInfo *PSI = nullptr;
-
- /// Total number of samples collected in this profile.
- ///
- /// This is the sum of all the samples collected in all the functions executed
- /// at runtime.
- uint64_t TotalCollectedSamples = 0;
-
- /// Optimization Remark Emitter used to emit diagnostic remarks.
- OptimizationRemarkEmitter *ORE = nullptr;
-};
-
-class SampleProfileLoaderLegacyPass : public ModulePass {
-public:
- // Class identification, replacement for typeinfo
- static char ID;
-
- SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
- bool IsThinLTOPreLink = false)
- : ModulePass(ID),
- SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
- [&](Function &F) -> AssumptionCache & {
- return ACT->getAssumptionCache(F);
- },
- [&](Function &F) -> TargetTransformInfo & {
- return TTIWP->getTTI(F);
- }) {
- initializeSampleProfileLoaderLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
-
- void dump() { SampleLoader.dump(); }
-
- bool doInitialization(Module &M) override {
- return SampleLoader.doInitialization(M);
- }
-
- StringRef getPassName() const override { return "Sample profile pass"; }
- bool runOnModule(Module &M) override;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<ProfileSummaryInfoWrapperPass>();
- }
-
-private:
- SampleProfileLoader SampleLoader;
- AssumptionCacheTracker *ACT = nullptr;
- TargetTransformInfoWrapperPass *TTIWP = nullptr;
-};
-
-} // end anonymous namespace
-
-/// Return true if the given callsite is hot wrt to hot cutoff threshold.
-///
-/// Functions that were inlined in the original binary will be represented
-/// in the inline stack in the sample profile. If the profile shows that
-/// the original inline decision was "good" (i.e., the callsite is executed
-/// frequently), then we will recreate the inline decision and apply the
-/// profile from the inlined callsite.
-///
-/// To decide whether an inlined callsite is hot, we compare the callsite
-/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
-/// regarded as hot if the count is above the cutoff value.
-static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
- ProfileSummaryInfo *PSI) {
- if (!CallsiteFS)
- return false; // The callsite was not inlined in the original binary.
-
- assert(PSI && "PSI is expected to be non null");
- uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
- return PSI->isHotCount(CallsiteTotalSamples);
-}
-
-/// Mark as used the sample record for the given function samples at
-/// (LineOffset, Discriminator).
-///
-/// \returns true if this is the first time we mark the given record.
-bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
- uint32_t LineOffset,
- uint32_t Discriminator,
- uint64_t Samples) {
- LineLocation Loc(LineOffset, Discriminator);
- unsigned &Count = SampleCoverage[FS][Loc];
- bool FirstTime = (++Count == 1);
- if (FirstTime)
- TotalUsedSamples += Samples;
- return FirstTime;
-}
-
-/// Return the number of sample records that were applied from this profile.
-///
-/// This count does not include records from cold inlined callsites.
-unsigned
-SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
- ProfileSummaryInfo *PSI) const {
- auto I = SampleCoverage.find(FS);
-
- // The size of the coverage map for FS represents the number of records
- // that were marked used at least once.
- unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
-
- // If there are inlined callsites in this function, count the samples found
- // in the respective bodies. However, do not bother counting callees with 0
- // total samples, these are callees that were never invoked at runtime.
- for (const auto &I : FS->getCallsiteSamples())
- for (const auto &J : I.second) {
- const FunctionSamples *CalleeSamples = &J.second;
- if (callsiteIsHot(CalleeSamples, PSI))
- Count += countUsedRecords(CalleeSamples, PSI);
- }
-
- return Count;
-}
-
-/// Return the number of sample records in the body of this profile.
-///
-/// This count does not include records from cold inlined callsites.
-unsigned
-SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
- ProfileSummaryInfo *PSI) const {
- unsigned Count = FS->getBodySamples().size();
-
- // Only count records in hot callsites.
- for (const auto &I : FS->getCallsiteSamples())
- for (const auto &J : I.second) {
- const FunctionSamples *CalleeSamples = &J.second;
- if (callsiteIsHot(CalleeSamples, PSI))
- Count += countBodyRecords(CalleeSamples, PSI);
- }
-
- return Count;
-}
-
-/// Return the number of samples collected in the body of this profile.
-///
-/// This count does not include samples from cold inlined callsites.
-uint64_t
-SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
- ProfileSummaryInfo *PSI) const {
- uint64_t Total = 0;
- for (const auto &I : FS->getBodySamples())
- Total += I.second.getSamples();
-
- // Only count samples in hot callsites.
- for (const auto &I : FS->getCallsiteSamples())
- for (const auto &J : I.second) {
- const FunctionSamples *CalleeSamples = &J.second;
- if (callsiteIsHot(CalleeSamples, PSI))
- Total += countBodySamples(CalleeSamples, PSI);
- }
-
- return Total;
-}
-
-/// Return the fraction of sample records used in this profile.
-///
-/// The returned value is an unsigned integer in the range 0-100 indicating
-/// the percentage of sample records that were used while applying this
-/// profile to the associated function.
-unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
- unsigned Total) const {
- assert(Used <= Total &&
- "number of used records cannot exceed the total number of records");
- return Total > 0 ? Used * 100 / Total : 100;
-}
-
-/// Clear all the per-function data used to load samples and propagate weights.
-void SampleProfileLoader::clearFunctionData() {
- BlockWeights.clear();
- EdgeWeights.clear();
- VisitedBlocks.clear();
- VisitedEdges.clear();
- EquivalenceClass.clear();
- DT = nullptr;
- PDT = nullptr;
- LI = nullptr;
- Predecessors.clear();
- Successors.clear();
- CoverageTracker.clear();
-}
-
-#ifndef NDEBUG
-/// Print the weight of edge \p E on stream \p OS.
-///
-/// \param OS Stream to emit the output to.
-/// \param E Edge to print.
-void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
- OS << "weight[" << E.first->getName() << "->" << E.second->getName()
- << "]: " << EdgeWeights[E] << "\n";
-}
-
-/// Print the equivalence class of block \p BB on stream \p OS.
-///
-/// \param OS Stream to emit the output to.
-/// \param BB Block to print.
-void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
- const BasicBlock *BB) {
- const BasicBlock *Equiv = EquivalenceClass[BB];
- OS << "equivalence[" << BB->getName()
- << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
-}
-
-/// Print the weight of block \p BB on stream \p OS.
-///
-/// \param OS Stream to emit the output to.
-/// \param BB Block to print.
-void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
- const BasicBlock *BB) const {
- const auto &I = BlockWeights.find(BB);
- uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
- OS << "weight[" << BB->getName() << "]: " << W << "\n";
-}
-#endif
-
-/// Get the weight for an instruction.
-///
-/// The "weight" of an instruction \p Inst is the number of samples
-/// collected on that instruction at runtime. To retrieve it, we
-/// need to compute the line number of \p Inst relative to the start of its
-/// function. We use HeaderLineno to compute the offset. We then
-/// look up the samples collected for \p Inst using BodySamples.
-///
-/// \param Inst Instruction to query.
-///
-/// \returns the weight of \p Inst.
-ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
- const DebugLoc &DLoc = Inst.getDebugLoc();
- if (!DLoc)
- return std::error_code();
-
- const FunctionSamples *FS = findFunctionSamples(Inst);
- if (!FS)
- return std::error_code();
-
- // Ignore all intrinsics, phinodes and branch instructions.
- // Branch and phinodes instruction usually contains debug info from sources outside of
- // the residing basic block, thus we ignore them during annotation.
- if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
- return std::error_code();
-
- // If a direct call/invoke instruction is inlined in profile
- // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
- // it means that the inlined callsite has no sample, thus the call
- // instruction should have 0 count.
- if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
- !ImmutableCallSite(&Inst).isIndirectCall() &&
- findCalleeFunctionSamples(Inst))
- return 0;
-
- const DILocation *DIL = DLoc;
- uint32_t LineOffset = FunctionSamples::getOffset(DIL);
- uint32_t Discriminator = DIL->getBaseDiscriminator();
- ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
- if (R) {
- bool FirstMark =
- CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
- if (FirstMark) {
- ORE->emit([&]() {
- OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
- Remark << "Applied " << ore::NV("NumSamples", *R);
- Remark << " samples from profile (offset: ";
- Remark << ore::NV("LineOffset", LineOffset);
- if (Discriminator) {
- Remark << ".";
- Remark << ore::NV("Discriminator", Discriminator);
- }
- Remark << ")";
- return Remark;
- });
- }
- LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."
- << DIL->getBaseDiscriminator() << ":" << Inst
- << " (line offset: " << LineOffset << "."
- << DIL->getBaseDiscriminator() << " - weight: " << R.get()
- << ")\n");
- }
- return R;
-}
-
-/// Compute the weight of a basic block.
-///
-/// The weight of basic block \p BB is the maximum weight of all the
-/// instructions in BB.
-///
-/// \param BB The basic block to query.
-///
-/// \returns the weight for \p BB.
-ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
- uint64_t Max = 0;
- bool HasWeight = false;
- for (auto &I : BB->getInstList()) {
- const ErrorOr<uint64_t> &R = getInstWeight(I);
- if (R) {
- Max = std::max(Max, R.get());
- HasWeight = true;
- }
- }
- return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
-}
-
-/// Compute and store the weights of every basic block.
-///
-/// This populates the BlockWeights map by computing
-/// the weights of every basic block in the CFG.
-///
-/// \param F The function to query.
-bool SampleProfileLoader::computeBlockWeights(Function &F) {
- bool Changed = false;
- LLVM_DEBUG(dbgs() << "Block weights\n");
- for (const auto &BB : F) {
- ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
- if (Weight) {
- BlockWeights[&BB] = Weight.get();
- VisitedBlocks.insert(&BB);
- Changed = true;
- }
- LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
- }
-
- return Changed;
-}
-
-/// Get the FunctionSamples for a call instruction.
-///
-/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
-/// instance in which that call instruction is calling to. It contains
-/// all samples that resides in the inlined instance. We first find the
-/// inlined instance in which the call instruction is from, then we
-/// traverse its children to find the callsite with the matching
-/// location.
-///
-/// \param Inst Call/Invoke instruction to query.
-///
-/// \returns The FunctionSamples pointer to the inlined instance.
-const FunctionSamples *
-SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
- const DILocation *DIL = Inst.getDebugLoc();
- if (!DIL) {
- return nullptr;
- }
-
- StringRef CalleeName;
- if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
- if (Function *Callee = CI->getCalledFunction())
- CalleeName = Callee->getName();
-
- const FunctionSamples *FS = findFunctionSamples(Inst);
- if (FS == nullptr)
- return nullptr;
-
- return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
- DIL->getBaseDiscriminator()),
- CalleeName);
-}
-
-/// Returns a vector of FunctionSamples that are the indirect call targets
-/// of \p Inst. The vector is sorted by the total number of samples. Stores
-/// the total call count of the indirect call in \p Sum.
-std::vector<const FunctionSamples *>
-SampleProfileLoader::findIndirectCallFunctionSamples(
- const Instruction &Inst, uint64_t &Sum) const {
- const DILocation *DIL = Inst.getDebugLoc();
- std::vector<const FunctionSamples *> R;
-
- if (!DIL) {
- return R;
- }
-
- const FunctionSamples *FS = findFunctionSamples(Inst);
- if (FS == nullptr)
- return R;
-
- uint32_t LineOffset = FunctionSamples::getOffset(DIL);
- uint32_t Discriminator = DIL->getBaseDiscriminator();
-
- auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
- Sum = 0;
- if (T)
- for (const auto &T_C : T.get())
- Sum += T_C.second;
- if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
- FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
- if (M->empty())
- return R;
- for (const auto &NameFS : *M) {
- Sum += NameFS.second.getEntrySamples();
- R.push_back(&NameFS.second);
- }
- llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
- if (L->getEntrySamples() != R->getEntrySamples())
- return L->getEntrySamples() > R->getEntrySamples();
- return FunctionSamples::getGUID(L->getName()) <
- FunctionSamples::getGUID(R->getName());
- });
- }
- return R;
-}
-
-/// Get the FunctionSamples for an instruction.
-///
-/// The FunctionSamples of an instruction \p Inst is the inlined instance
-/// in which that instruction is coming from. We traverse the inline stack
-/// of that instruction, and match it with the tree nodes in the profile.
-///
-/// \param Inst Instruction to query.
-///
-/// \returns the FunctionSamples pointer to the inlined instance.
-const FunctionSamples *
-SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
- const DILocation *DIL = Inst.getDebugLoc();
- if (!DIL)
- return Samples;
-
- auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
- if (it.second)
- it.first->second = Samples->findFunctionSamples(DIL);
- return it.first->second;
-}
-
-bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
- assert(isa<CallInst>(I) || isa<InvokeInst>(I));
- CallSite CS(I);
- Function *CalledFunction = CS.getCalledFunction();
- assert(CalledFunction);
- DebugLoc DLoc = I->getDebugLoc();
- BasicBlock *BB = I->getParent();
- InlineParams Params = getInlineParams();
- Params.ComputeFullInlineCost = true;
- // Checks if there is anything in the reachable portion of the callee at
- // this callsite that makes this inlining potentially illegal. Need to
- // set ComputeFullInlineCost, otherwise getInlineCost may return early
- // when cost exceeds threshold without checking all IRs in the callee.
- // The acutal cost does not matter because we only checks isNever() to
- // see if it is legal to inline the callsite.
- InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
- None, nullptr, nullptr);
- if (Cost.isNever()) {
- ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
- << "incompatible inlining");
- return false;
- }
- InlineFunctionInfo IFI(nullptr, &GetAC);
- if (InlineFunction(CS, IFI)) {
- // The call to InlineFunction erases I, so we can't pass it here.
- ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
- << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
- << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
- return true;
- }
- return false;
-}
-
-/// Iteratively inline hot callsites of a function.
-///
-/// Iteratively traverse all callsites of the function \p F, and find if
-/// the corresponding inlined instance exists and is hot in profile. If
-/// it is hot enough, inline the callsites and adds new callsites of the
-/// callee into the caller. If the call is an indirect call, first promote
-/// it to direct call. Each indirect call is limited with a single target.
-///
-/// \param F function to perform iterative inlining.
-/// \param InlinedGUIDs a set to be updated to include all GUIDs that are
-/// inlined in the profiled binary.
-///
-/// \returns True if there is any inline happened.
-bool SampleProfileLoader::inlineHotFunctions(
- Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
- DenseSet<Instruction *> PromotedInsns;
- bool Changed = false;
- while (true) {
- bool LocalChanged = false;
- SmallVector<Instruction *, 10> CIS;
- for (auto &BB : F) {
- bool Hot = false;
- SmallVector<Instruction *, 10> Candidates;
- for (auto &I : BB.getInstList()) {
- const FunctionSamples *FS = nullptr;
- if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
- !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
- Candidates.push_back(&I);
- if (callsiteIsHot(FS, PSI))
- Hot = true;
- }
- }
- if (Hot) {
- CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
- }
- }
- for (auto I : CIS) {
- Function *CalledFunction = CallSite(I).getCalledFunction();
- // Do not inline recursive calls.
- if (CalledFunction == &F)
- continue;
- if (CallSite(I).isIndirectCall()) {
- if (PromotedInsns.count(I))
- continue;
- uint64_t Sum;
- for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
- if (IsThinLTOPreLink) {
- FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
- PSI->getOrCompHotCountThreshold());
- continue;
- }
- auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
- // If it is a recursive call, we do not inline it as it could bloat
- // the code exponentially. There is way to better handle this, e.g.
- // clone the caller first, and inline the cloned caller if it is
- // recursive. As llvm does not inline recursive calls, we will
- // simply ignore it instead of handling it explicitly.
- if (CalleeFunctionName == F.getName())
- continue;
-
- const char *Reason = "Callee function not available";
- auto R = SymbolMap.find(CalleeFunctionName);
- if (R != SymbolMap.end() && R->getValue() &&
- !R->getValue()->isDeclaration() &&
- R->getValue()->getSubprogram() &&
- isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
- uint64_t C = FS->getEntrySamples();
- Instruction *DI =
- pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
- Sum -= C;
- PromotedInsns.insert(I);
- // If profile mismatches, we should not attempt to inline DI.
- if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
- inlineCallInstruction(DI))
- LocalChanged = true;
- } else {
- LLVM_DEBUG(dbgs()
- << "\nFailed to promote indirect call to "
- << CalleeFunctionName << " because " << Reason << "\n");
- }
- }
- } else if (CalledFunction && CalledFunction->getSubprogram() &&
- !CalledFunction->isDeclaration()) {
- if (inlineCallInstruction(I))
- LocalChanged = true;
- } else if (IsThinLTOPreLink) {
- findCalleeFunctionSamples(*I)->findInlinedFunctions(
- InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
- }
- }
- if (LocalChanged) {
- Changed = true;
- } else {
- break;
- }
- }
- return Changed;
-}
-
-/// Find equivalence classes for the given block.
-///
-/// This finds all the blocks that are guaranteed to execute the same
-/// number of times as \p BB1. To do this, it traverses all the
-/// descendants of \p BB1 in the dominator or post-dominator tree.
-///
-/// A block BB2 will be in the same equivalence class as \p BB1 if
-/// the following holds:
-///
-/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
-/// is a descendant of \p BB1 in the dominator tree, then BB2 should
-/// dominate BB1 in the post-dominator tree.
-///
-/// 2- Both BB2 and \p BB1 must be in the same loop.
-///
-/// For every block BB2 that meets those two requirements, we set BB2's
-/// equivalence class to \p BB1.
-///
-/// \param BB1 Block to check.
-/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
-/// \param DomTree Opposite dominator tree. If \p Descendants is filled
-/// with blocks from \p BB1's dominator tree, then
-/// this is the post-dominator tree, and vice versa.
-template <bool IsPostDom>
-void SampleProfileLoader::findEquivalencesFor(
- BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
- DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
- const BasicBlock *EC = EquivalenceClass[BB1];
- uint64_t Weight = BlockWeights[EC];
- for (const auto *BB2 : Descendants) {
- bool IsDomParent = DomTree->dominates(BB2, BB1);
- bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
- if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
- EquivalenceClass[BB2] = EC;
- // If BB2 is visited, then the entire EC should be marked as visited.
- if (VisitedBlocks.count(BB2)) {
- VisitedBlocks.insert(EC);
- }
-
- // If BB2 is heavier than BB1, make BB2 have the same weight
- // as BB1.
- //
- // Note that we don't worry about the opposite situation here
- // (when BB2 is lighter than BB1). We will deal with this
- // during the propagation phase. Right now, we just want to
- // make sure that BB1 has the largest weight of all the
- // members of its equivalence set.
- Weight = std::max(Weight, BlockWeights[BB2]);
- }
- }
- if (EC == &EC->getParent()->getEntryBlock()) {
- BlockWeights[EC] = Samples->getHeadSamples() + 1;
- } else {
- BlockWeights[EC] = Weight;
- }
-}
-
-/// Find equivalence classes.
-///
-/// Since samples may be missing from blocks, we can fill in the gaps by setting
-/// the weights of all the blocks in the same equivalence class to the same
-/// weight. To compute the concept of equivalence, we use dominance and loop
-/// information. Two blocks B1 and B2 are in the same equivalence class if B1
-/// dominates B2, B2 post-dominates B1 and both are in the same loop.
-///
-/// \param F The function to query.
-void SampleProfileLoader::findEquivalenceClasses(Function &F) {
- SmallVector<BasicBlock *, 8> DominatedBBs;
- LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
- // Find equivalence sets based on dominance and post-dominance information.
- for (auto &BB : F) {
- BasicBlock *BB1 = &BB;
-
- // Compute BB1's equivalence class once.
- if (EquivalenceClass.count(BB1)) {
- LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
- continue;
- }
-
- // By default, blocks are in their own equivalence class.
- EquivalenceClass[BB1] = BB1;
-
- // Traverse all the blocks dominated by BB1. We are looking for
- // every basic block BB2 such that:
- //
- // 1- BB1 dominates BB2.
- // 2- BB2 post-dominates BB1.
- // 3- BB1 and BB2 are in the same loop nest.
- //
- // If all those conditions hold, it means that BB2 is executed
- // as many times as BB1, so they are placed in the same equivalence
- // class by making BB2's equivalence class be BB1.
- DominatedBBs.clear();
- DT->getDescendants(BB1, DominatedBBs);
- findEquivalencesFor(BB1, DominatedBBs, PDT.get());
-
- LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
- }
-
- // Assign weights to equivalence classes.
- //
- // All the basic blocks in the same equivalence class will execute
- // the same number of times. Since we know that the head block in
- // each equivalence class has the largest weight, assign that weight
- // to all the blocks in that equivalence class.
- LLVM_DEBUG(
- dbgs() << "\nAssign the same weight to all blocks in the same class\n");
- for (auto &BI : F) {
- const BasicBlock *BB = &BI;
- const BasicBlock *EquivBB = EquivalenceClass[BB];
- if (BB != EquivBB)
- BlockWeights[BB] = BlockWeights[EquivBB];
- LLVM_DEBUG(printBlockWeight(dbgs(), BB));
- }
-}
-
-/// Visit the given edge to decide if it has a valid weight.
-///
-/// If \p E has not been visited before, we copy to \p UnknownEdge
-/// and increment the count of unknown edges.
-///
-/// \param E Edge to visit.
-/// \param NumUnknownEdges Current number of unknown edges.
-/// \param UnknownEdge Set if E has not been visited before.
-///
-/// \returns E's weight, if known. Otherwise, return 0.
-uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
- Edge *UnknownEdge) {
- if (!VisitedEdges.count(E)) {
- (*NumUnknownEdges)++;
- *UnknownEdge = E;
- return 0;
- }
-
- return EdgeWeights[E];
-}
-
-/// Propagate weights through incoming/outgoing edges.
-///
-/// If the weight of a basic block is known, and there is only one edge
-/// with an unknown weight, we can calculate the weight of that edge.
-///
-/// Similarly, if all the edges have a known count, we can calculate the
-/// count of the basic block, if needed.
-///
-/// \param F Function to process.
-/// \param UpdateBlockCount Whether we should update basic block counts that
-/// has already been annotated.
-///
-/// \returns True if new weights were assigned to edges or blocks.
-bool SampleProfileLoader::propagateThroughEdges(Function &F,
- bool UpdateBlockCount) {
- bool Changed = false;
- LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
- for (const auto &BI : F) {
- const BasicBlock *BB = &BI;
- const BasicBlock *EC = EquivalenceClass[BB];
-
- // Visit all the predecessor and successor edges to determine
- // which ones have a weight assigned already. Note that it doesn't
- // matter that we only keep track of a single unknown edge. The
- // only case we are interested in handling is when only a single
- // edge is unknown (see setEdgeOrBlockWeight).
- for (unsigned i = 0; i < 2; i++) {
- uint64_t TotalWeight = 0;
- unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
- Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
-
- if (i == 0) {
- // First, visit all predecessor edges.
- NumTotalEdges = Predecessors[BB].size();
- for (auto *Pred : Predecessors[BB]) {
- Edge E = std::make_pair(Pred, BB);
- TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
- if (E.first == E.second)
- SelfReferentialEdge = E;
- }
- if (NumTotalEdges == 1) {
- SingleEdge = std::make_pair(Predecessors[BB][0], BB);
- }
- } else {
- // On the second round, visit all successor edges.
- NumTotalEdges = Successors[BB].size();
- for (auto *Succ : Successors[BB]) {
- Edge E = std::make_pair(BB, Succ);
- TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
- }
- if (NumTotalEdges == 1) {
- SingleEdge = std::make_pair(BB, Successors[BB][0]);
- }
- }
-
- // After visiting all the edges, there are three cases that we
- // can handle immediately:
- //
- // - All the edge weights are known (i.e., NumUnknownEdges == 0).
- // In this case, we simply check that the sum of all the edges
- // is the same as BB's weight. If not, we change BB's weight
- // to match. Additionally, if BB had not been visited before,
- // we mark it visited.
- //
- // - Only one edge is unknown and BB has already been visited.
- // In this case, we can compute the weight of the edge by
- // subtracting the total block weight from all the known
- // edge weights. If the edges weight more than BB, then the
- // edge of the last remaining edge is set to zero.
- //
- // - There exists a self-referential edge and the weight of BB is
- // known. In this case, this edge can be based on BB's weight.
- // We add up all the other known edges and set the weight on
- // the self-referential edge as we did in the previous case.
- //
- // In any other case, we must continue iterating. Eventually,
- // all edges will get a weight, or iteration will stop when
- // it reaches SampleProfileMaxPropagateIterations.
- if (NumUnknownEdges <= 1) {
- uint64_t &BBWeight = BlockWeights[EC];
- if (NumUnknownEdges == 0) {
- if (!VisitedBlocks.count(EC)) {
- // If we already know the weight of all edges, the weight of the
- // basic block can be computed. It should be no larger than the sum
- // of all edge weights.
- if (TotalWeight > BBWeight) {
- BBWeight = TotalWeight;
- Changed = true;
- LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
- << " known. Set weight for block: ";
- printBlockWeight(dbgs(), BB););
- }
- } else if (NumTotalEdges == 1 &&
- EdgeWeights[SingleEdge] < BlockWeights[EC]) {
- // If there is only one edge for the visited basic block, use the
- // block weight to adjust edge weight if edge weight is smaller.
- EdgeWeights[SingleEdge] = BlockWeights[EC];
- Changed = true;
- }
- } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
- // If there is a single unknown edge and the block has been
- // visited, then we can compute E's weight.
- if (BBWeight >= TotalWeight)
- EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
- else
- EdgeWeights[UnknownEdge] = 0;
- const BasicBlock *OtherEC;
- if (i == 0)
- OtherEC = EquivalenceClass[UnknownEdge.first];
- else
- OtherEC = EquivalenceClass[UnknownEdge.second];
- // Edge weights should never exceed the BB weights it connects.
- if (VisitedBlocks.count(OtherEC) &&
- EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
- EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
- VisitedEdges.insert(UnknownEdge);
- Changed = true;
- LLVM_DEBUG(dbgs() << "Set weight for edge: ";
- printEdgeWeight(dbgs(), UnknownEdge));
- }
- } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
- // If a block Weights 0, all its in/out edges should weight 0.
- if (i == 0) {
- for (auto *Pred : Predecessors[BB]) {
- Edge E = std::make_pair(Pred, BB);
- EdgeWeights[E] = 0;
- VisitedEdges.insert(E);
- }
- } else {
- for (auto *Succ : Successors[BB]) {
- Edge E = std::make_pair(BB, Succ);
- EdgeWeights[E] = 0;
- VisitedEdges.insert(E);
- }
- }
- } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
- uint64_t &BBWeight = BlockWeights[BB];
- // We have a self-referential edge and the weight of BB is known.
- if (BBWeight >= TotalWeight)
- EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
- else
- EdgeWeights[SelfReferentialEdge] = 0;
- VisitedEdges.insert(SelfReferentialEdge);
- Changed = true;
- LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
- printEdgeWeight(dbgs(), SelfReferentialEdge));
- }
- if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
- BlockWeights[EC] = TotalWeight;
- VisitedBlocks.insert(EC);
- Changed = true;
- }
- }
- }
-
- return Changed;
-}
-
-/// Build in/out edge lists for each basic block in the CFG.
-///
-/// We are interested in unique edges. If a block B1 has multiple
-/// edges to another block B2, we only add a single B1->B2 edge.
-void SampleProfileLoader::buildEdges(Function &F) {
- for (auto &BI : F) {
- BasicBlock *B1 = &BI;
-
- // Add predecessors for B1.
- SmallPtrSet<BasicBlock *, 16> Visited;
- if (!Predecessors[B1].empty())
- llvm_unreachable("Found a stale predecessors list in a basic block.");
- for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
- BasicBlock *B2 = *PI;
- if (Visited.insert(B2).second)
- Predecessors[B1].push_back(B2);
- }
-
- // Add successors for B1.
- Visited.clear();
- if (!Successors[B1].empty())
- llvm_unreachable("Found a stale successors list in a basic block.");
- for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
- BasicBlock *B2 = *SI;
- if (Visited.insert(B2).second)
- Successors[B1].push_back(B2);
- }
- }
-}
-
-/// Returns the sorted CallTargetMap \p M by count in descending order.
-static SmallVector<InstrProfValueData, 2> SortCallTargets(
- const SampleRecord::CallTargetMap &M) {
- SmallVector<InstrProfValueData, 2> R;
- for (auto I = M.begin(); I != M.end(); ++I)
- R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()});
- llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) {
- if (L.Count == R.Count)
- return L.Value > R.Value;
- else
- return L.Count > R.Count;
- });
- return R;
-}
-
-/// Propagate weights into edges
-///
-/// The following rules are applied to every block BB in the CFG:
-///
-/// - If BB has a single predecessor/successor, then the weight
-/// of that edge is the weight of the block.
-///
-/// - If all incoming or outgoing edges are known except one, and the
-/// weight of the block is already known, the weight of the unknown
-/// edge will be the weight of the block minus the sum of all the known
-/// edges. If the sum of all the known edges is larger than BB's weight,
-/// we set the unknown edge weight to zero.
-///
-/// - If there is a self-referential edge, and the weight of the block is
-/// known, the weight for that edge is set to the weight of the block
-/// minus the weight of the other incoming edges to that block (if
-/// known).
-void SampleProfileLoader::propagateWeights(Function &F) {
- bool Changed = true;
- unsigned I = 0;
-
- // If BB weight is larger than its corresponding loop's header BB weight,
- // use the BB weight to replace the loop header BB weight.
- for (auto &BI : F) {
- BasicBlock *BB = &BI;
- Loop *L = LI->getLoopFor(BB);
- if (!L) {
- continue;
- }
- BasicBlock *Header = L->getHeader();
- if (Header && BlockWeights[BB] > BlockWeights[Header]) {
- BlockWeights[Header] = BlockWeights[BB];
- }
- }
-
- // Before propagation starts, build, for each block, a list of
- // unique predecessors and successors. This is necessary to handle
- // identical edges in multiway branches. Since we visit all blocks and all
- // edges of the CFG, it is cleaner to build these lists once at the start
- // of the pass.
- buildEdges(F);
-
- // Propagate until we converge or we go past the iteration limit.
- while (Changed && I++ < SampleProfileMaxPropagateIterations) {
- Changed = propagateThroughEdges(F, false);
- }
-
- // The first propagation propagates BB counts from annotated BBs to unknown
- // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
- // to propagate edge weights.
- VisitedEdges.clear();
- Changed = true;
- while (Changed && I++ < SampleProfileMaxPropagateIterations) {
- Changed = propagateThroughEdges(F, false);
- }
-
- // The 3rd propagation pass allows adjust annotated BB weights that are
- // obviously wrong.
- Changed = true;
- while (Changed && I++ < SampleProfileMaxPropagateIterations) {
- Changed = propagateThroughEdges(F, true);
- }
-
- // Generate MD_prof metadata for every branch instruction using the
- // edge weights computed during propagation.
- LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
- LLVMContext &Ctx = F.getContext();
- MDBuilder MDB(Ctx);
- for (auto &BI : F) {
- BasicBlock *BB = &BI;
-
- if (BlockWeights[BB]) {
- for (auto &I : BB->getInstList()) {
- if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
- continue;
- CallSite CS(&I);
- if (!CS.getCalledFunction()) {
- const DebugLoc &DLoc = I.getDebugLoc();
- if (!DLoc)
- continue;
- const DILocation *DIL = DLoc;
- uint32_t LineOffset = FunctionSamples::getOffset(DIL);
- uint32_t Discriminator = DIL->getBaseDiscriminator();
-
- const FunctionSamples *FS = findFunctionSamples(I);
- if (!FS)
- continue;
- auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
- if (!T || T.get().empty())
- continue;
- SmallVector<InstrProfValueData, 2> SortedCallTargets =
- SortCallTargets(T.get());
- uint64_t Sum;
- findIndirectCallFunctionSamples(I, Sum);
- annotateValueSite(*I.getParent()->getParent()->getParent(), I,
- SortedCallTargets, Sum, IPVK_IndirectCallTarget,
- SortedCallTargets.size());
- } else if (!dyn_cast<IntrinsicInst>(&I)) {
- SmallVector<uint32_t, 1> Weights;
- Weights.push_back(BlockWeights[BB]);
- I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
- }
- }
- }
- Instruction *TI = BB->getTerminator();
- if (TI->getNumSuccessors() == 1)
- continue;
- if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
- continue;
-
- DebugLoc BranchLoc = TI->getDebugLoc();
- LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
- << ((BranchLoc) ? Twine(BranchLoc.getLine())
- : Twine("<UNKNOWN LOCATION>"))
- << ".\n");
- SmallVector<uint32_t, 4> Weights;
- uint32_t MaxWeight = 0;
- Instruction *MaxDestInst;
- for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
- BasicBlock *Succ = TI->getSuccessor(I);
- Edge E = std::make_pair(BB, Succ);
- uint64_t Weight = EdgeWeights[E];
- LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
- // Use uint32_t saturated arithmetic to adjust the incoming weights,
- // if needed. Sample counts in profiles are 64-bit unsigned values,
- // but internally branch weights are expressed as 32-bit values.
- if (Weight > std::numeric_limits<uint32_t>::max()) {
- LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
- Weight = std::numeric_limits<uint32_t>::max();
- }
- // Weight is added by one to avoid propagation errors introduced by
- // 0 weights.
- Weights.push_back(static_cast<uint32_t>(Weight + 1));
- if (Weight != 0) {
- if (Weight > MaxWeight) {
- MaxWeight = Weight;
- MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
- }
- }
- }
-
- uint64_t TempWeight;
- // Only set weights if there is at least one non-zero weight.
- // In any other case, let the analyzer set weights.
- // Do not set weights if the weights are present. In ThinLTO, the profile
- // annotation is done twice. If the first annotation already set the
- // weights, the second pass does not need to set it.
- if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
- LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
- TI->setMetadata(LLVMContext::MD_prof,
- MDB.createBranchWeights(Weights));
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
- << "most popular destination for conditional branches at "
- << ore::NV("CondBranchesLoc", BranchLoc);
- });
- } else {
- LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
- }
- }
-}
-
-/// Get the line number for the function header.
-///
-/// This looks up function \p F in the current compilation unit and
-/// retrieves the line number where the function is defined. This is
-/// line 0 for all the samples read from the profile file. Every line
-/// number is relative to this line.
-///
-/// \param F Function object to query.
-///
-/// \returns the line number where \p F is defined. If it returns 0,
-/// it means that there is no debug information available for \p F.
-unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
- if (DISubprogram *S = F.getSubprogram())
- return S->getLine();
-
- if (NoWarnSampleUnused)
- return 0;
-
- // If the start of \p F is missing, emit a diagnostic to inform the user
- // about the missed opportunity.
- F.getContext().diagnose(DiagnosticInfoSampleProfile(
- "No debug information found in function " + F.getName() +
- ": Function profile not used",
- DS_Warning));
- return 0;
-}
-
-void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
- DT.reset(new DominatorTree);
- DT->recalculate(F);
-
- PDT.reset(new PostDominatorTree(F));
-
- LI.reset(new LoopInfo);
- LI->analyze(*DT);
-}
-
-/// Generate branch weight metadata for all branches in \p F.
-///
-/// Branch weights are computed out of instruction samples using a
-/// propagation heuristic. Propagation proceeds in 3 phases:
-///
-/// 1- Assignment of block weights. All the basic blocks in the function
-/// are initial assigned the same weight as their most frequently
-/// executed instruction.
-///
-/// 2- Creation of equivalence classes. Since samples may be missing from
-/// blocks, we can fill in the gaps by setting the weights of all the
-/// blocks in the same equivalence class to the same weight. To compute
-/// the concept of equivalence, we use dominance and loop information.
-/// Two blocks B1 and B2 are in the same equivalence class if B1
-/// dominates B2, B2 post-dominates B1 and both are in the same loop.
-///
-/// 3- Propagation of block weights into edges. This uses a simple
-/// propagation heuristic. The following rules are applied to every
-/// block BB in the CFG:
-///
-/// - If BB has a single predecessor/successor, then the weight
-/// of that edge is the weight of the block.
-///
-/// - If all the edges are known except one, and the weight of the
-/// block is already known, the weight of the unknown edge will
-/// be the weight of the block minus the sum of all the known
-/// edges. If the sum of all the known edges is larger than BB's weight,
-/// we set the unknown edge weight to zero.
-///
-/// - If there is a self-referential edge, and the weight of the block is
-/// known, the weight for that edge is set to the weight of the block
-/// minus the weight of the other incoming edges to that block (if
-/// known).
-///
-/// Since this propagation is not guaranteed to finalize for every CFG, we
-/// only allow it to proceed for a limited number of iterations (controlled
-/// by -sample-profile-max-propagate-iterations).
-///
-/// FIXME: Try to replace this propagation heuristic with a scheme
-/// that is guaranteed to finalize. A work-list approach similar to
-/// the standard value propagation algorithm used by SSA-CCP might
-/// work here.
-///
-/// Once all the branch weights are computed, we emit the MD_prof
-/// metadata on BB using the computed values for each of its branches.
-///
-/// \param F The function to query.
-///
-/// \returns true if \p F was modified. Returns false, otherwise.
-bool SampleProfileLoader::emitAnnotations(Function &F) {
- bool Changed = false;
-
- if (getFunctionLoc(F) == 0)
- return false;
-
- LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
- << F.getName() << ": " << getFunctionLoc(F) << "\n");
-
- DenseSet<GlobalValue::GUID> InlinedGUIDs;
- Changed |= inlineHotFunctions(F, InlinedGUIDs);
-
- // Compute basic block weights.
- Changed |= computeBlockWeights(F);
-
- if (Changed) {
- // Add an entry count to the function using the samples gathered at the
- // function entry.
- // Sets the GUIDs that are inlined in the profiled binary. This is used
- // for ThinLink to make correct liveness analysis, and also make the IR
- // match the profiled binary before annotation.
- F.setEntryCount(
- ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
- &InlinedGUIDs);
-
- // Compute dominance and loop info needed for propagation.
- computeDominanceAndLoopInfo(F);
-
- // Find equivalence classes.
- findEquivalenceClasses(F);
-
- // Propagate weights to all edges.
- propagateWeights(F);
- }
-
- // If coverage checking was requested, compute it now.
- if (SampleProfileRecordCoverage) {
- unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
- unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
- unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
- if (Coverage < SampleProfileRecordCoverage) {
- F.getContext().diagnose(DiagnosticInfoSampleProfile(
- F.getSubprogram()->getFilename(), getFunctionLoc(F),
- Twine(Used) + " of " + Twine(Total) + " available profile records (" +
- Twine(Coverage) + "%) were applied",
- DS_Warning));
- }
- }
-
- if (SampleProfileSampleCoverage) {
- uint64_t Used = CoverageTracker.getTotalUsedSamples();
- uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
- unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
- if (Coverage < SampleProfileSampleCoverage) {
- F.getContext().diagnose(DiagnosticInfoSampleProfile(
- F.getSubprogram()->getFilename(), getFunctionLoc(F),
- Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
- Twine(Coverage) + "%) were applied",
- DS_Warning));
- }
- }
- return Changed;
-}
-
-char SampleProfileLoaderLegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
- "Sample Profile loader", false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
-INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
- "Sample Profile loader", false, false)
-
-bool SampleProfileLoader::doInitialization(Module &M) {
- auto &Ctx = M.getContext();
- auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
- if (std::error_code EC = ReaderOrErr.getError()) {
- std::string Msg = "Could not open profile: " + EC.message();
- Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
- return false;
- }
- Reader = std::move(ReaderOrErr.get());
- Reader->collectFuncsToUse(M);
- ProfileIsValid = (Reader->read() == sampleprof_error::success);
-
- if (!RemappingFilename.empty()) {
- // Apply profile remappings to the loaded profile data if requested.
- // For now, we only support remapping symbols encoded using the Itanium
- // C++ ABI's name mangling scheme.
- ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
- RemappingFilename, Ctx, std::move(Reader));
- if (std::error_code EC = ReaderOrErr.getError()) {
- std::string Msg = "Could not open profile remapping file: " + EC.message();
- Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
- return false;
- }
- Reader = std::move(ReaderOrErr.get());
- ProfileIsValid = (Reader->read() == sampleprof_error::success);
- }
- return true;
-}
-
-ModulePass *llvm::createSampleProfileLoaderPass() {
- return new SampleProfileLoaderLegacyPass();
-}
-
-ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
- return new SampleProfileLoaderLegacyPass(Name);
-}
-
-bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
- ProfileSummaryInfo *_PSI) {
- FunctionSamples::GUIDToFuncNameMapper Mapper(M);
- if (!ProfileIsValid)
- return false;
-
- PSI = _PSI;
- if (M.getProfileSummary() == nullptr)
- M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
-
- // Compute the total number of samples collected in this profile.
- for (const auto &I : Reader->getProfiles())
- TotalCollectedSamples += I.second.getTotalSamples();
-
- // Populate the symbol map.
- for (const auto &N_F : M.getValueSymbolTable()) {
- StringRef OrigName = N_F.getKey();
- Function *F = dyn_cast<Function>(N_F.getValue());
- if (F == nullptr)
- continue;
- SymbolMap[OrigName] = F;
- auto pos = OrigName.find('.');
- if (pos != StringRef::npos) {
- StringRef NewName = OrigName.substr(0, pos);
- auto r = SymbolMap.insert(std::make_pair(NewName, F));
- // Failiing to insert means there is already an entry in SymbolMap,
- // thus there are multiple functions that are mapped to the same
- // stripped name. In this case of name conflicting, set the value
- // to nullptr to avoid confusion.
- if (!r.second)
- r.first->second = nullptr;
- }
- }
-
- bool retval = false;
- for (auto &F : M)
- if (!F.isDeclaration()) {
- clearFunctionData();
- retval |= runOnFunction(F, AM);
- }
- return retval;
-}
-
-bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
- ACT = &getAnalysis<AssumptionCacheTracker>();
- TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
- ProfileSummaryInfo *PSI =
- &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
- return SampleLoader.runOnModule(M, nullptr, PSI);
-}
-
-bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
-
- DILocation2SampleMap.clear();
- // By default the entry count is initialized to -1, which will be treated
- // conservatively by getEntryCount as the same as unknown (None). This is
- // to avoid newly added code to be treated as cold. If we have samples
- // this will be overwritten in emitAnnotations.
- // If ProfileSampleAccurate is true or F has profile-sample-accurate
- // attribute, initialize the entry count to 0 so callsites or functions
- // unsampled will be treated as cold.
- uint64_t initialEntryCount =
- (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate"))
- ? 0
- : -1;
- F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
- std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
- if (AM) {
- auto &FAM =
- AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
- .getManager();
- ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- } else {
- OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
- ORE = OwnedORE.get();
- }
- Samples = Reader->getSamplesFor(F);
- if (Samples && !Samples->empty())
- return emitAnnotations(F);
- return false;
-}
-
-PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
- ModuleAnalysisManager &AM) {
- FunctionAnalysisManager &FAM =
- AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
-
- auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
- return FAM.getResult<AssumptionAnalysis>(F);
- };
- auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
- return FAM.getResult<TargetIRAnalysis>(F);
- };
-
- SampleProfileLoader SampleLoader(
- ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
- ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
- : ProfileRemappingFileName,
- IsThinLTOPreLink, GetAssumptionCache, GetTTI);
-
- SampleLoader.doInitialization(M);
-
- ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
- if (!SampleLoader.runOnModule(M, &AM, PSI))
- return PreservedAnalyses::all();
-
- return PreservedAnalyses::none();
-}