diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp | 1671 |
1 files changed, 0 insertions, 1671 deletions
diff --git a/gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp b/gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp deleted file mode 100644 index 9f123c2b875..00000000000 --- a/gnu/llvm/lib/Transforms/IPO/SampleProfile.cpp +++ /dev/null @@ -1,1671 +0,0 @@ -//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the SampleProfileLoader transformation. This pass -// reads a profile file generated by a sampling profiler (e.g. Linux Perf - -// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the -// profile information in the given profile. -// -// This pass generates branch weight annotations on the IR: -// -// - prof: Represents branch weights. This annotation is added to branches -// to indicate the weights of each edge coming out of the branch. -// The weight of each edge is the weight of the target block for -// that edge. The weight of a block B is computed as the maximum -// number of samples found in B. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/IPO/SampleProfile.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringMap.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/InlineCost.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/PostDominators.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DiagnosticInfo.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/ValueSymbolTable.h" -#include "llvm/Pass.h" -#include "llvm/ProfileData/InstrProf.h" -#include "llvm/ProfileData/SampleProf.h" -#include "llvm/ProfileData/SampleProfReader.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/ErrorOr.h" -#include "llvm/Support/GenericDomTree.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/IPO.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/CallPromotionUtils.h" -#include "llvm/Transforms/Utils/Cloning.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <functional> -#include <limits> -#include <map> -#include <memory> -#include <string> -#include <system_error> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace sampleprof; -using ProfileCount = Function::ProfileCount; -#define DEBUG_TYPE "sample-profile" - -// Command line option to specify the file to read samples from. This is -// mainly used for debugging. -static cl::opt<std::string> SampleProfileFile( - "sample-profile-file", cl::init(""), cl::value_desc("filename"), - cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); - -// The named file contains a set of transformations that may have been applied -// to the symbol names between the program from which the sample data was -// collected and the current program's symbols. -static cl::opt<std::string> SampleProfileRemappingFile( - "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), - cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); - -static cl::opt<unsigned> SampleProfileMaxPropagateIterations( - "sample-profile-max-propagate-iterations", cl::init(100), - cl::desc("Maximum number of iterations to go through when propagating " - "sample block/edge weights through the CFG.")); - -static cl::opt<unsigned> SampleProfileRecordCoverage( - "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), - cl::desc("Emit a warning if less than N% of records in the input profile " - "are matched to the IR.")); - -static cl::opt<unsigned> SampleProfileSampleCoverage( - "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), - cl::desc("Emit a warning if less than N% of samples in the input profile " - "are matched to the IR.")); - -static cl::opt<bool> NoWarnSampleUnused( - "no-warn-sample-unused", cl::init(false), cl::Hidden, - cl::desc("Use this option to turn off/on warnings about function with " - "samples but without debug information to use those samples. ")); - -static cl::opt<bool> ProfileSampleAccurate( - "profile-sample-accurate", cl::Hidden, cl::init(false), - cl::desc("If the sample profile is accurate, we will mark all un-sampled " - "callsite and function as having 0 samples. Otherwise, treat " - "un-sampled callsites and functions conservatively as unknown. ")); - -namespace { - -using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; -using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; -using Edge = std::pair<const BasicBlock *, const BasicBlock *>; -using EdgeWeightMap = DenseMap<Edge, uint64_t>; -using BlockEdgeMap = - DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; - -class SampleCoverageTracker { -public: - SampleCoverageTracker() = default; - - bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, - uint32_t Discriminator, uint64_t Samples); - unsigned computeCoverage(unsigned Used, unsigned Total) const; - unsigned countUsedRecords(const FunctionSamples *FS, - ProfileSummaryInfo *PSI) const; - unsigned countBodyRecords(const FunctionSamples *FS, - ProfileSummaryInfo *PSI) const; - uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } - uint64_t countBodySamples(const FunctionSamples *FS, - ProfileSummaryInfo *PSI) const; - - void clear() { - SampleCoverage.clear(); - TotalUsedSamples = 0; - } - -private: - using BodySampleCoverageMap = std::map<LineLocation, unsigned>; - using FunctionSamplesCoverageMap = - DenseMap<const FunctionSamples *, BodySampleCoverageMap>; - - /// Coverage map for sampling records. - /// - /// This map keeps a record of sampling records that have been matched to - /// an IR instruction. This is used to detect some form of staleness in - /// profiles (see flag -sample-profile-check-coverage). - /// - /// Each entry in the map corresponds to a FunctionSamples instance. This is - /// another map that counts how many times the sample record at the - /// given location has been used. - FunctionSamplesCoverageMap SampleCoverage; - - /// Number of samples used from the profile. - /// - /// When a sampling record is used for the first time, the samples from - /// that record are added to this accumulator. Coverage is later computed - /// based on the total number of samples available in this function and - /// its callsites. - /// - /// Note that this accumulator tracks samples used from a single function - /// and all the inlined callsites. Strictly, we should have a map of counters - /// keyed by FunctionSamples pointers, but these stats are cleared after - /// every function, so we just need to keep a single counter. - uint64_t TotalUsedSamples = 0; -}; - -/// Sample profile pass. -/// -/// This pass reads profile data from the file specified by -/// -sample-profile-file and annotates every affected function with the -/// profile information found in that file. -class SampleProfileLoader { -public: - SampleProfileLoader( - StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, - std::function<AssumptionCache &(Function &)> GetAssumptionCache, - std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) - : GetAC(std::move(GetAssumptionCache)), - GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), - RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {} - - bool doInitialization(Module &M); - bool runOnModule(Module &M, ModuleAnalysisManager *AM, - ProfileSummaryInfo *_PSI); - - void dump() { Reader->dump(); } - -protected: - bool runOnFunction(Function &F, ModuleAnalysisManager *AM); - unsigned getFunctionLoc(Function &F); - bool emitAnnotations(Function &F); - ErrorOr<uint64_t> getInstWeight(const Instruction &I); - ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); - const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; - std::vector<const FunctionSamples *> - findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; - mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; - const FunctionSamples *findFunctionSamples(const Instruction &I) const; - bool inlineCallInstruction(Instruction *I); - bool inlineHotFunctions(Function &F, - DenseSet<GlobalValue::GUID> &InlinedGUIDs); - void printEdgeWeight(raw_ostream &OS, Edge E); - void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; - void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); - bool computeBlockWeights(Function &F); - void findEquivalenceClasses(Function &F); - template <bool IsPostDom> - void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, - DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); - - void propagateWeights(Function &F); - uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); - void buildEdges(Function &F); - bool propagateThroughEdges(Function &F, bool UpdateBlockCount); - void computeDominanceAndLoopInfo(Function &F); - void clearFunctionData(); - - /// Map basic blocks to their computed weights. - /// - /// The weight of a basic block is defined to be the maximum - /// of all the instruction weights in that block. - BlockWeightMap BlockWeights; - - /// Map edges to their computed weights. - /// - /// Edge weights are computed by propagating basic block weights in - /// SampleProfile::propagateWeights. - EdgeWeightMap EdgeWeights; - - /// Set of visited blocks during propagation. - SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; - - /// Set of visited edges during propagation. - SmallSet<Edge, 32> VisitedEdges; - - /// Equivalence classes for block weights. - /// - /// Two blocks BB1 and BB2 are in the same equivalence class if they - /// dominate and post-dominate each other, and they are in the same loop - /// nest. When this happens, the two blocks are guaranteed to execute - /// the same number of times. - EquivalenceClassMap EquivalenceClass; - - /// Map from function name to Function *. Used to find the function from - /// the function name. If the function name contains suffix, additional - /// entry is added to map from the stripped name to the function if there - /// is one-to-one mapping. - StringMap<Function *> SymbolMap; - - /// Dominance, post-dominance and loop information. - std::unique_ptr<DominatorTree> DT; - std::unique_ptr<PostDominatorTree> PDT; - std::unique_ptr<LoopInfo> LI; - - std::function<AssumptionCache &(Function &)> GetAC; - std::function<TargetTransformInfo &(Function &)> GetTTI; - - /// Predecessors for each basic block in the CFG. - BlockEdgeMap Predecessors; - - /// Successors for each basic block in the CFG. - BlockEdgeMap Successors; - - SampleCoverageTracker CoverageTracker; - - /// Profile reader object. - std::unique_ptr<SampleProfileReader> Reader; - - /// Samples collected for the body of this function. - FunctionSamples *Samples = nullptr; - - /// Name of the profile file to load. - std::string Filename; - - /// Name of the profile remapping file to load. - std::string RemappingFilename; - - /// Flag indicating whether the profile input loaded successfully. - bool ProfileIsValid = false; - - /// Flag indicating if the pass is invoked in ThinLTO compile phase. - /// - /// In this phase, in annotation, we should not promote indirect calls. - /// Instead, we will mark GUIDs that needs to be annotated to the function. - bool IsThinLTOPreLink; - - /// Profile Summary Info computed from sample profile. - ProfileSummaryInfo *PSI = nullptr; - - /// Total number of samples collected in this profile. - /// - /// This is the sum of all the samples collected in all the functions executed - /// at runtime. - uint64_t TotalCollectedSamples = 0; - - /// Optimization Remark Emitter used to emit diagnostic remarks. - OptimizationRemarkEmitter *ORE = nullptr; -}; - -class SampleProfileLoaderLegacyPass : public ModulePass { -public: - // Class identification, replacement for typeinfo - static char ID; - - SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, - bool IsThinLTOPreLink = false) - : ModulePass(ID), - SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, - [&](Function &F) -> AssumptionCache & { - return ACT->getAssumptionCache(F); - }, - [&](Function &F) -> TargetTransformInfo & { - return TTIWP->getTTI(F); - }) { - initializeSampleProfileLoaderLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - void dump() { SampleLoader.dump(); } - - bool doInitialization(Module &M) override { - return SampleLoader.doInitialization(M); - } - - StringRef getPassName() const override { return "Sample profile pass"; } - bool runOnModule(Module &M) override; - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.addRequired<ProfileSummaryInfoWrapperPass>(); - } - -private: - SampleProfileLoader SampleLoader; - AssumptionCacheTracker *ACT = nullptr; - TargetTransformInfoWrapperPass *TTIWP = nullptr; -}; - -} // end anonymous namespace - -/// Return true if the given callsite is hot wrt to hot cutoff threshold. -/// -/// Functions that were inlined in the original binary will be represented -/// in the inline stack in the sample profile. If the profile shows that -/// the original inline decision was "good" (i.e., the callsite is executed -/// frequently), then we will recreate the inline decision and apply the -/// profile from the inlined callsite. -/// -/// To decide whether an inlined callsite is hot, we compare the callsite -/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is -/// regarded as hot if the count is above the cutoff value. -static bool callsiteIsHot(const FunctionSamples *CallsiteFS, - ProfileSummaryInfo *PSI) { - if (!CallsiteFS) - return false; // The callsite was not inlined in the original binary. - - assert(PSI && "PSI is expected to be non null"); - uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); - return PSI->isHotCount(CallsiteTotalSamples); -} - -/// Mark as used the sample record for the given function samples at -/// (LineOffset, Discriminator). -/// -/// \returns true if this is the first time we mark the given record. -bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, - uint32_t LineOffset, - uint32_t Discriminator, - uint64_t Samples) { - LineLocation Loc(LineOffset, Discriminator); - unsigned &Count = SampleCoverage[FS][Loc]; - bool FirstTime = (++Count == 1); - if (FirstTime) - TotalUsedSamples += Samples; - return FirstTime; -} - -/// Return the number of sample records that were applied from this profile. -/// -/// This count does not include records from cold inlined callsites. -unsigned -SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, - ProfileSummaryInfo *PSI) const { - auto I = SampleCoverage.find(FS); - - // The size of the coverage map for FS represents the number of records - // that were marked used at least once. - unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; - - // If there are inlined callsites in this function, count the samples found - // in the respective bodies. However, do not bother counting callees with 0 - // total samples, these are callees that were never invoked at runtime. - for (const auto &I : FS->getCallsiteSamples()) - for (const auto &J : I.second) { - const FunctionSamples *CalleeSamples = &J.second; - if (callsiteIsHot(CalleeSamples, PSI)) - Count += countUsedRecords(CalleeSamples, PSI); - } - - return Count; -} - -/// Return the number of sample records in the body of this profile. -/// -/// This count does not include records from cold inlined callsites. -unsigned -SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, - ProfileSummaryInfo *PSI) const { - unsigned Count = FS->getBodySamples().size(); - - // Only count records in hot callsites. - for (const auto &I : FS->getCallsiteSamples()) - for (const auto &J : I.second) { - const FunctionSamples *CalleeSamples = &J.second; - if (callsiteIsHot(CalleeSamples, PSI)) - Count += countBodyRecords(CalleeSamples, PSI); - } - - return Count; -} - -/// Return the number of samples collected in the body of this profile. -/// -/// This count does not include samples from cold inlined callsites. -uint64_t -SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, - ProfileSummaryInfo *PSI) const { - uint64_t Total = 0; - for (const auto &I : FS->getBodySamples()) - Total += I.second.getSamples(); - - // Only count samples in hot callsites. - for (const auto &I : FS->getCallsiteSamples()) - for (const auto &J : I.second) { - const FunctionSamples *CalleeSamples = &J.second; - if (callsiteIsHot(CalleeSamples, PSI)) - Total += countBodySamples(CalleeSamples, PSI); - } - - return Total; -} - -/// Return the fraction of sample records used in this profile. -/// -/// The returned value is an unsigned integer in the range 0-100 indicating -/// the percentage of sample records that were used while applying this -/// profile to the associated function. -unsigned SampleCoverageTracker::computeCoverage(unsigned Used, - unsigned Total) const { - assert(Used <= Total && - "number of used records cannot exceed the total number of records"); - return Total > 0 ? Used * 100 / Total : 100; -} - -/// Clear all the per-function data used to load samples and propagate weights. -void SampleProfileLoader::clearFunctionData() { - BlockWeights.clear(); - EdgeWeights.clear(); - VisitedBlocks.clear(); - VisitedEdges.clear(); - EquivalenceClass.clear(); - DT = nullptr; - PDT = nullptr; - LI = nullptr; - Predecessors.clear(); - Successors.clear(); - CoverageTracker.clear(); -} - -#ifndef NDEBUG -/// Print the weight of edge \p E on stream \p OS. -/// -/// \param OS Stream to emit the output to. -/// \param E Edge to print. -void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { - OS << "weight[" << E.first->getName() << "->" << E.second->getName() - << "]: " << EdgeWeights[E] << "\n"; -} - -/// Print the equivalence class of block \p BB on stream \p OS. -/// -/// \param OS Stream to emit the output to. -/// \param BB Block to print. -void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, - const BasicBlock *BB) { - const BasicBlock *Equiv = EquivalenceClass[BB]; - OS << "equivalence[" << BB->getName() - << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; -} - -/// Print the weight of block \p BB on stream \p OS. -/// -/// \param OS Stream to emit the output to. -/// \param BB Block to print. -void SampleProfileLoader::printBlockWeight(raw_ostream &OS, - const BasicBlock *BB) const { - const auto &I = BlockWeights.find(BB); - uint64_t W = (I == BlockWeights.end() ? 0 : I->second); - OS << "weight[" << BB->getName() << "]: " << W << "\n"; -} -#endif - -/// Get the weight for an instruction. -/// -/// The "weight" of an instruction \p Inst is the number of samples -/// collected on that instruction at runtime. To retrieve it, we -/// need to compute the line number of \p Inst relative to the start of its -/// function. We use HeaderLineno to compute the offset. We then -/// look up the samples collected for \p Inst using BodySamples. -/// -/// \param Inst Instruction to query. -/// -/// \returns the weight of \p Inst. -ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { - const DebugLoc &DLoc = Inst.getDebugLoc(); - if (!DLoc) - return std::error_code(); - - const FunctionSamples *FS = findFunctionSamples(Inst); - if (!FS) - return std::error_code(); - - // Ignore all intrinsics, phinodes and branch instructions. - // Branch and phinodes instruction usually contains debug info from sources outside of - // the residing basic block, thus we ignore them during annotation. - if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) - return std::error_code(); - - // If a direct call/invoke instruction is inlined in profile - // (findCalleeFunctionSamples returns non-empty result), but not inlined here, - // it means that the inlined callsite has no sample, thus the call - // instruction should have 0 count. - if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && - !ImmutableCallSite(&Inst).isIndirectCall() && - findCalleeFunctionSamples(Inst)) - return 0; - - const DILocation *DIL = DLoc; - uint32_t LineOffset = FunctionSamples::getOffset(DIL); - uint32_t Discriminator = DIL->getBaseDiscriminator(); - ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); - if (R) { - bool FirstMark = - CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); - if (FirstMark) { - ORE->emit([&]() { - OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); - Remark << "Applied " << ore::NV("NumSamples", *R); - Remark << " samples from profile (offset: "; - Remark << ore::NV("LineOffset", LineOffset); - if (Discriminator) { - Remark << "."; - Remark << ore::NV("Discriminator", Discriminator); - } - Remark << ")"; - return Remark; - }); - } - LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." - << DIL->getBaseDiscriminator() << ":" << Inst - << " (line offset: " << LineOffset << "." - << DIL->getBaseDiscriminator() << " - weight: " << R.get() - << ")\n"); - } - return R; -} - -/// Compute the weight of a basic block. -/// -/// The weight of basic block \p BB is the maximum weight of all the -/// instructions in BB. -/// -/// \param BB The basic block to query. -/// -/// \returns the weight for \p BB. -ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { - uint64_t Max = 0; - bool HasWeight = false; - for (auto &I : BB->getInstList()) { - const ErrorOr<uint64_t> &R = getInstWeight(I); - if (R) { - Max = std::max(Max, R.get()); - HasWeight = true; - } - } - return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); -} - -/// Compute and store the weights of every basic block. -/// -/// This populates the BlockWeights map by computing -/// the weights of every basic block in the CFG. -/// -/// \param F The function to query. -bool SampleProfileLoader::computeBlockWeights(Function &F) { - bool Changed = false; - LLVM_DEBUG(dbgs() << "Block weights\n"); - for (const auto &BB : F) { - ErrorOr<uint64_t> Weight = getBlockWeight(&BB); - if (Weight) { - BlockWeights[&BB] = Weight.get(); - VisitedBlocks.insert(&BB); - Changed = true; - } - LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); - } - - return Changed; -} - -/// Get the FunctionSamples for a call instruction. -/// -/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined -/// instance in which that call instruction is calling to. It contains -/// all samples that resides in the inlined instance. We first find the -/// inlined instance in which the call instruction is from, then we -/// traverse its children to find the callsite with the matching -/// location. -/// -/// \param Inst Call/Invoke instruction to query. -/// -/// \returns The FunctionSamples pointer to the inlined instance. -const FunctionSamples * -SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { - const DILocation *DIL = Inst.getDebugLoc(); - if (!DIL) { - return nullptr; - } - - StringRef CalleeName; - if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) - if (Function *Callee = CI->getCalledFunction()) - CalleeName = Callee->getName(); - - const FunctionSamples *FS = findFunctionSamples(Inst); - if (FS == nullptr) - return nullptr; - - return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), - DIL->getBaseDiscriminator()), - CalleeName); -} - -/// Returns a vector of FunctionSamples that are the indirect call targets -/// of \p Inst. The vector is sorted by the total number of samples. Stores -/// the total call count of the indirect call in \p Sum. -std::vector<const FunctionSamples *> -SampleProfileLoader::findIndirectCallFunctionSamples( - const Instruction &Inst, uint64_t &Sum) const { - const DILocation *DIL = Inst.getDebugLoc(); - std::vector<const FunctionSamples *> R; - - if (!DIL) { - return R; - } - - const FunctionSamples *FS = findFunctionSamples(Inst); - if (FS == nullptr) - return R; - - uint32_t LineOffset = FunctionSamples::getOffset(DIL); - uint32_t Discriminator = DIL->getBaseDiscriminator(); - - auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); - Sum = 0; - if (T) - for (const auto &T_C : T.get()) - Sum += T_C.second; - if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( - FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { - if (M->empty()) - return R; - for (const auto &NameFS : *M) { - Sum += NameFS.second.getEntrySamples(); - R.push_back(&NameFS.second); - } - llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { - if (L->getEntrySamples() != R->getEntrySamples()) - return L->getEntrySamples() > R->getEntrySamples(); - return FunctionSamples::getGUID(L->getName()) < - FunctionSamples::getGUID(R->getName()); - }); - } - return R; -} - -/// Get the FunctionSamples for an instruction. -/// -/// The FunctionSamples of an instruction \p Inst is the inlined instance -/// in which that instruction is coming from. We traverse the inline stack -/// of that instruction, and match it with the tree nodes in the profile. -/// -/// \param Inst Instruction to query. -/// -/// \returns the FunctionSamples pointer to the inlined instance. -const FunctionSamples * -SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { - const DILocation *DIL = Inst.getDebugLoc(); - if (!DIL) - return Samples; - - auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); - if (it.second) - it.first->second = Samples->findFunctionSamples(DIL); - return it.first->second; -} - -bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { - assert(isa<CallInst>(I) || isa<InvokeInst>(I)); - CallSite CS(I); - Function *CalledFunction = CS.getCalledFunction(); - assert(CalledFunction); - DebugLoc DLoc = I->getDebugLoc(); - BasicBlock *BB = I->getParent(); - InlineParams Params = getInlineParams(); - Params.ComputeFullInlineCost = true; - // Checks if there is anything in the reachable portion of the callee at - // this callsite that makes this inlining potentially illegal. Need to - // set ComputeFullInlineCost, otherwise getInlineCost may return early - // when cost exceeds threshold without checking all IRs in the callee. - // The acutal cost does not matter because we only checks isNever() to - // see if it is legal to inline the callsite. - InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, - None, nullptr, nullptr); - if (Cost.isNever()) { - ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) - << "incompatible inlining"); - return false; - } - InlineFunctionInfo IFI(nullptr, &GetAC); - if (InlineFunction(CS, IFI)) { - // The call to InlineFunction erases I, so we can't pass it here. - ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) - << "inlined hot callee '" << ore::NV("Callee", CalledFunction) - << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); - return true; - } - return false; -} - -/// Iteratively inline hot callsites of a function. -/// -/// Iteratively traverse all callsites of the function \p F, and find if -/// the corresponding inlined instance exists and is hot in profile. If -/// it is hot enough, inline the callsites and adds new callsites of the -/// callee into the caller. If the call is an indirect call, first promote -/// it to direct call. Each indirect call is limited with a single target. -/// -/// \param F function to perform iterative inlining. -/// \param InlinedGUIDs a set to be updated to include all GUIDs that are -/// inlined in the profiled binary. -/// -/// \returns True if there is any inline happened. -bool SampleProfileLoader::inlineHotFunctions( - Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { - DenseSet<Instruction *> PromotedInsns; - bool Changed = false; - while (true) { - bool LocalChanged = false; - SmallVector<Instruction *, 10> CIS; - for (auto &BB : F) { - bool Hot = false; - SmallVector<Instruction *, 10> Candidates; - for (auto &I : BB.getInstList()) { - const FunctionSamples *FS = nullptr; - if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && - !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { - Candidates.push_back(&I); - if (callsiteIsHot(FS, PSI)) - Hot = true; - } - } - if (Hot) { - CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); - } - } - for (auto I : CIS) { - Function *CalledFunction = CallSite(I).getCalledFunction(); - // Do not inline recursive calls. - if (CalledFunction == &F) - continue; - if (CallSite(I).isIndirectCall()) { - if (PromotedInsns.count(I)) - continue; - uint64_t Sum; - for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { - if (IsThinLTOPreLink) { - FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), - PSI->getOrCompHotCountThreshold()); - continue; - } - auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); - // If it is a recursive call, we do not inline it as it could bloat - // the code exponentially. There is way to better handle this, e.g. - // clone the caller first, and inline the cloned caller if it is - // recursive. As llvm does not inline recursive calls, we will - // simply ignore it instead of handling it explicitly. - if (CalleeFunctionName == F.getName()) - continue; - - const char *Reason = "Callee function not available"; - auto R = SymbolMap.find(CalleeFunctionName); - if (R != SymbolMap.end() && R->getValue() && - !R->getValue()->isDeclaration() && - R->getValue()->getSubprogram() && - isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { - uint64_t C = FS->getEntrySamples(); - Instruction *DI = - pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); - Sum -= C; - PromotedInsns.insert(I); - // If profile mismatches, we should not attempt to inline DI. - if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && - inlineCallInstruction(DI)) - LocalChanged = true; - } else { - LLVM_DEBUG(dbgs() - << "\nFailed to promote indirect call to " - << CalleeFunctionName << " because " << Reason << "\n"); - } - } - } else if (CalledFunction && CalledFunction->getSubprogram() && - !CalledFunction->isDeclaration()) { - if (inlineCallInstruction(I)) - LocalChanged = true; - } else if (IsThinLTOPreLink) { - findCalleeFunctionSamples(*I)->findInlinedFunctions( - InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); - } - } - if (LocalChanged) { - Changed = true; - } else { - break; - } - } - return Changed; -} - -/// Find equivalence classes for the given block. -/// -/// This finds all the blocks that are guaranteed to execute the same -/// number of times as \p BB1. To do this, it traverses all the -/// descendants of \p BB1 in the dominator or post-dominator tree. -/// -/// A block BB2 will be in the same equivalence class as \p BB1 if -/// the following holds: -/// -/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 -/// is a descendant of \p BB1 in the dominator tree, then BB2 should -/// dominate BB1 in the post-dominator tree. -/// -/// 2- Both BB2 and \p BB1 must be in the same loop. -/// -/// For every block BB2 that meets those two requirements, we set BB2's -/// equivalence class to \p BB1. -/// -/// \param BB1 Block to check. -/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. -/// \param DomTree Opposite dominator tree. If \p Descendants is filled -/// with blocks from \p BB1's dominator tree, then -/// this is the post-dominator tree, and vice versa. -template <bool IsPostDom> -void SampleProfileLoader::findEquivalencesFor( - BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, - DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { - const BasicBlock *EC = EquivalenceClass[BB1]; - uint64_t Weight = BlockWeights[EC]; - for (const auto *BB2 : Descendants) { - bool IsDomParent = DomTree->dominates(BB2, BB1); - bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); - if (BB1 != BB2 && IsDomParent && IsInSameLoop) { - EquivalenceClass[BB2] = EC; - // If BB2 is visited, then the entire EC should be marked as visited. - if (VisitedBlocks.count(BB2)) { - VisitedBlocks.insert(EC); - } - - // If BB2 is heavier than BB1, make BB2 have the same weight - // as BB1. - // - // Note that we don't worry about the opposite situation here - // (when BB2 is lighter than BB1). We will deal with this - // during the propagation phase. Right now, we just want to - // make sure that BB1 has the largest weight of all the - // members of its equivalence set. - Weight = std::max(Weight, BlockWeights[BB2]); - } - } - if (EC == &EC->getParent()->getEntryBlock()) { - BlockWeights[EC] = Samples->getHeadSamples() + 1; - } else { - BlockWeights[EC] = Weight; - } -} - -/// Find equivalence classes. -/// -/// Since samples may be missing from blocks, we can fill in the gaps by setting -/// the weights of all the blocks in the same equivalence class to the same -/// weight. To compute the concept of equivalence, we use dominance and loop -/// information. Two blocks B1 and B2 are in the same equivalence class if B1 -/// dominates B2, B2 post-dominates B1 and both are in the same loop. -/// -/// \param F The function to query. -void SampleProfileLoader::findEquivalenceClasses(Function &F) { - SmallVector<BasicBlock *, 8> DominatedBBs; - LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); - // Find equivalence sets based on dominance and post-dominance information. - for (auto &BB : F) { - BasicBlock *BB1 = &BB; - - // Compute BB1's equivalence class once. - if (EquivalenceClass.count(BB1)) { - LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); - continue; - } - - // By default, blocks are in their own equivalence class. - EquivalenceClass[BB1] = BB1; - - // Traverse all the blocks dominated by BB1. We are looking for - // every basic block BB2 such that: - // - // 1- BB1 dominates BB2. - // 2- BB2 post-dominates BB1. - // 3- BB1 and BB2 are in the same loop nest. - // - // If all those conditions hold, it means that BB2 is executed - // as many times as BB1, so they are placed in the same equivalence - // class by making BB2's equivalence class be BB1. - DominatedBBs.clear(); - DT->getDescendants(BB1, DominatedBBs); - findEquivalencesFor(BB1, DominatedBBs, PDT.get()); - - LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); - } - - // Assign weights to equivalence classes. - // - // All the basic blocks in the same equivalence class will execute - // the same number of times. Since we know that the head block in - // each equivalence class has the largest weight, assign that weight - // to all the blocks in that equivalence class. - LLVM_DEBUG( - dbgs() << "\nAssign the same weight to all blocks in the same class\n"); - for (auto &BI : F) { - const BasicBlock *BB = &BI; - const BasicBlock *EquivBB = EquivalenceClass[BB]; - if (BB != EquivBB) - BlockWeights[BB] = BlockWeights[EquivBB]; - LLVM_DEBUG(printBlockWeight(dbgs(), BB)); - } -} - -/// Visit the given edge to decide if it has a valid weight. -/// -/// If \p E has not been visited before, we copy to \p UnknownEdge -/// and increment the count of unknown edges. -/// -/// \param E Edge to visit. -/// \param NumUnknownEdges Current number of unknown edges. -/// \param UnknownEdge Set if E has not been visited before. -/// -/// \returns E's weight, if known. Otherwise, return 0. -uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, - Edge *UnknownEdge) { - if (!VisitedEdges.count(E)) { - (*NumUnknownEdges)++; - *UnknownEdge = E; - return 0; - } - - return EdgeWeights[E]; -} - -/// Propagate weights through incoming/outgoing edges. -/// -/// If the weight of a basic block is known, and there is only one edge -/// with an unknown weight, we can calculate the weight of that edge. -/// -/// Similarly, if all the edges have a known count, we can calculate the -/// count of the basic block, if needed. -/// -/// \param F Function to process. -/// \param UpdateBlockCount Whether we should update basic block counts that -/// has already been annotated. -/// -/// \returns True if new weights were assigned to edges or blocks. -bool SampleProfileLoader::propagateThroughEdges(Function &F, - bool UpdateBlockCount) { - bool Changed = false; - LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); - for (const auto &BI : F) { - const BasicBlock *BB = &BI; - const BasicBlock *EC = EquivalenceClass[BB]; - - // Visit all the predecessor and successor edges to determine - // which ones have a weight assigned already. Note that it doesn't - // matter that we only keep track of a single unknown edge. The - // only case we are interested in handling is when only a single - // edge is unknown (see setEdgeOrBlockWeight). - for (unsigned i = 0; i < 2; i++) { - uint64_t TotalWeight = 0; - unsigned NumUnknownEdges = 0, NumTotalEdges = 0; - Edge UnknownEdge, SelfReferentialEdge, SingleEdge; - - if (i == 0) { - // First, visit all predecessor edges. - NumTotalEdges = Predecessors[BB].size(); - for (auto *Pred : Predecessors[BB]) { - Edge E = std::make_pair(Pred, BB); - TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); - if (E.first == E.second) - SelfReferentialEdge = E; - } - if (NumTotalEdges == 1) { - SingleEdge = std::make_pair(Predecessors[BB][0], BB); - } - } else { - // On the second round, visit all successor edges. - NumTotalEdges = Successors[BB].size(); - for (auto *Succ : Successors[BB]) { - Edge E = std::make_pair(BB, Succ); - TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); - } - if (NumTotalEdges == 1) { - SingleEdge = std::make_pair(BB, Successors[BB][0]); - } - } - - // After visiting all the edges, there are three cases that we - // can handle immediately: - // - // - All the edge weights are known (i.e., NumUnknownEdges == 0). - // In this case, we simply check that the sum of all the edges - // is the same as BB's weight. If not, we change BB's weight - // to match. Additionally, if BB had not been visited before, - // we mark it visited. - // - // - Only one edge is unknown and BB has already been visited. - // In this case, we can compute the weight of the edge by - // subtracting the total block weight from all the known - // edge weights. If the edges weight more than BB, then the - // edge of the last remaining edge is set to zero. - // - // - There exists a self-referential edge and the weight of BB is - // known. In this case, this edge can be based on BB's weight. - // We add up all the other known edges and set the weight on - // the self-referential edge as we did in the previous case. - // - // In any other case, we must continue iterating. Eventually, - // all edges will get a weight, or iteration will stop when - // it reaches SampleProfileMaxPropagateIterations. - if (NumUnknownEdges <= 1) { - uint64_t &BBWeight = BlockWeights[EC]; - if (NumUnknownEdges == 0) { - if (!VisitedBlocks.count(EC)) { - // If we already know the weight of all edges, the weight of the - // basic block can be computed. It should be no larger than the sum - // of all edge weights. - if (TotalWeight > BBWeight) { - BBWeight = TotalWeight; - Changed = true; - LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() - << " known. Set weight for block: "; - printBlockWeight(dbgs(), BB);); - } - } else if (NumTotalEdges == 1 && - EdgeWeights[SingleEdge] < BlockWeights[EC]) { - // If there is only one edge for the visited basic block, use the - // block weight to adjust edge weight if edge weight is smaller. - EdgeWeights[SingleEdge] = BlockWeights[EC]; - Changed = true; - } - } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { - // If there is a single unknown edge and the block has been - // visited, then we can compute E's weight. - if (BBWeight >= TotalWeight) - EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; - else - EdgeWeights[UnknownEdge] = 0; - const BasicBlock *OtherEC; - if (i == 0) - OtherEC = EquivalenceClass[UnknownEdge.first]; - else - OtherEC = EquivalenceClass[UnknownEdge.second]; - // Edge weights should never exceed the BB weights it connects. - if (VisitedBlocks.count(OtherEC) && - EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) - EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; - VisitedEdges.insert(UnknownEdge); - Changed = true; - LLVM_DEBUG(dbgs() << "Set weight for edge: "; - printEdgeWeight(dbgs(), UnknownEdge)); - } - } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { - // If a block Weights 0, all its in/out edges should weight 0. - if (i == 0) { - for (auto *Pred : Predecessors[BB]) { - Edge E = std::make_pair(Pred, BB); - EdgeWeights[E] = 0; - VisitedEdges.insert(E); - } - } else { - for (auto *Succ : Successors[BB]) { - Edge E = std::make_pair(BB, Succ); - EdgeWeights[E] = 0; - VisitedEdges.insert(E); - } - } - } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { - uint64_t &BBWeight = BlockWeights[BB]; - // We have a self-referential edge and the weight of BB is known. - if (BBWeight >= TotalWeight) - EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; - else - EdgeWeights[SelfReferentialEdge] = 0; - VisitedEdges.insert(SelfReferentialEdge); - Changed = true; - LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; - printEdgeWeight(dbgs(), SelfReferentialEdge)); - } - if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { - BlockWeights[EC] = TotalWeight; - VisitedBlocks.insert(EC); - Changed = true; - } - } - } - - return Changed; -} - -/// Build in/out edge lists for each basic block in the CFG. -/// -/// We are interested in unique edges. If a block B1 has multiple -/// edges to another block B2, we only add a single B1->B2 edge. -void SampleProfileLoader::buildEdges(Function &F) { - for (auto &BI : F) { - BasicBlock *B1 = &BI; - - // Add predecessors for B1. - SmallPtrSet<BasicBlock *, 16> Visited; - if (!Predecessors[B1].empty()) - llvm_unreachable("Found a stale predecessors list in a basic block."); - for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { - BasicBlock *B2 = *PI; - if (Visited.insert(B2).second) - Predecessors[B1].push_back(B2); - } - - // Add successors for B1. - Visited.clear(); - if (!Successors[B1].empty()) - llvm_unreachable("Found a stale successors list in a basic block."); - for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { - BasicBlock *B2 = *SI; - if (Visited.insert(B2).second) - Successors[B1].push_back(B2); - } - } -} - -/// Returns the sorted CallTargetMap \p M by count in descending order. -static SmallVector<InstrProfValueData, 2> SortCallTargets( - const SampleRecord::CallTargetMap &M) { - SmallVector<InstrProfValueData, 2> R; - for (auto I = M.begin(); I != M.end(); ++I) - R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()}); - llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) { - if (L.Count == R.Count) - return L.Value > R.Value; - else - return L.Count > R.Count; - }); - return R; -} - -/// Propagate weights into edges -/// -/// The following rules are applied to every block BB in the CFG: -/// -/// - If BB has a single predecessor/successor, then the weight -/// of that edge is the weight of the block. -/// -/// - If all incoming or outgoing edges are known except one, and the -/// weight of the block is already known, the weight of the unknown -/// edge will be the weight of the block minus the sum of all the known -/// edges. If the sum of all the known edges is larger than BB's weight, -/// we set the unknown edge weight to zero. -/// -/// - If there is a self-referential edge, and the weight of the block is -/// known, the weight for that edge is set to the weight of the block -/// minus the weight of the other incoming edges to that block (if -/// known). -void SampleProfileLoader::propagateWeights(Function &F) { - bool Changed = true; - unsigned I = 0; - - // If BB weight is larger than its corresponding loop's header BB weight, - // use the BB weight to replace the loop header BB weight. - for (auto &BI : F) { - BasicBlock *BB = &BI; - Loop *L = LI->getLoopFor(BB); - if (!L) { - continue; - } - BasicBlock *Header = L->getHeader(); - if (Header && BlockWeights[BB] > BlockWeights[Header]) { - BlockWeights[Header] = BlockWeights[BB]; - } - } - - // Before propagation starts, build, for each block, a list of - // unique predecessors and successors. This is necessary to handle - // identical edges in multiway branches. Since we visit all blocks and all - // edges of the CFG, it is cleaner to build these lists once at the start - // of the pass. - buildEdges(F); - - // Propagate until we converge or we go past the iteration limit. - while (Changed && I++ < SampleProfileMaxPropagateIterations) { - Changed = propagateThroughEdges(F, false); - } - - // The first propagation propagates BB counts from annotated BBs to unknown - // BBs. The 2nd propagation pass resets edges weights, and use all BB weights - // to propagate edge weights. - VisitedEdges.clear(); - Changed = true; - while (Changed && I++ < SampleProfileMaxPropagateIterations) { - Changed = propagateThroughEdges(F, false); - } - - // The 3rd propagation pass allows adjust annotated BB weights that are - // obviously wrong. - Changed = true; - while (Changed && I++ < SampleProfileMaxPropagateIterations) { - Changed = propagateThroughEdges(F, true); - } - - // Generate MD_prof metadata for every branch instruction using the - // edge weights computed during propagation. - LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); - LLVMContext &Ctx = F.getContext(); - MDBuilder MDB(Ctx); - for (auto &BI : F) { - BasicBlock *BB = &BI; - - if (BlockWeights[BB]) { - for (auto &I : BB->getInstList()) { - if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) - continue; - CallSite CS(&I); - if (!CS.getCalledFunction()) { - const DebugLoc &DLoc = I.getDebugLoc(); - if (!DLoc) - continue; - const DILocation *DIL = DLoc; - uint32_t LineOffset = FunctionSamples::getOffset(DIL); - uint32_t Discriminator = DIL->getBaseDiscriminator(); - - const FunctionSamples *FS = findFunctionSamples(I); - if (!FS) - continue; - auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); - if (!T || T.get().empty()) - continue; - SmallVector<InstrProfValueData, 2> SortedCallTargets = - SortCallTargets(T.get()); - uint64_t Sum; - findIndirectCallFunctionSamples(I, Sum); - annotateValueSite(*I.getParent()->getParent()->getParent(), I, - SortedCallTargets, Sum, IPVK_IndirectCallTarget, - SortedCallTargets.size()); - } else if (!dyn_cast<IntrinsicInst>(&I)) { - SmallVector<uint32_t, 1> Weights; - Weights.push_back(BlockWeights[BB]); - I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); - } - } - } - Instruction *TI = BB->getTerminator(); - if (TI->getNumSuccessors() == 1) - continue; - if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) - continue; - - DebugLoc BranchLoc = TI->getDebugLoc(); - LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " - << ((BranchLoc) ? Twine(BranchLoc.getLine()) - : Twine("<UNKNOWN LOCATION>")) - << ".\n"); - SmallVector<uint32_t, 4> Weights; - uint32_t MaxWeight = 0; - Instruction *MaxDestInst; - for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { - BasicBlock *Succ = TI->getSuccessor(I); - Edge E = std::make_pair(BB, Succ); - uint64_t Weight = EdgeWeights[E]; - LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); - // Use uint32_t saturated arithmetic to adjust the incoming weights, - // if needed. Sample counts in profiles are 64-bit unsigned values, - // but internally branch weights are expressed as 32-bit values. - if (Weight > std::numeric_limits<uint32_t>::max()) { - LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); - Weight = std::numeric_limits<uint32_t>::max(); - } - // Weight is added by one to avoid propagation errors introduced by - // 0 weights. - Weights.push_back(static_cast<uint32_t>(Weight + 1)); - if (Weight != 0) { - if (Weight > MaxWeight) { - MaxWeight = Weight; - MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); - } - } - } - - uint64_t TempWeight; - // Only set weights if there is at least one non-zero weight. - // In any other case, let the analyzer set weights. - // Do not set weights if the weights are present. In ThinLTO, the profile - // annotation is done twice. If the first annotation already set the - // weights, the second pass does not need to set it. - if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { - LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); - TI->setMetadata(LLVMContext::MD_prof, - MDB.createBranchWeights(Weights)); - ORE->emit([&]() { - return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) - << "most popular destination for conditional branches at " - << ore::NV("CondBranchesLoc", BranchLoc); - }); - } else { - LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); - } - } -} - -/// Get the line number for the function header. -/// -/// This looks up function \p F in the current compilation unit and -/// retrieves the line number where the function is defined. This is -/// line 0 for all the samples read from the profile file. Every line -/// number is relative to this line. -/// -/// \param F Function object to query. -/// -/// \returns the line number where \p F is defined. If it returns 0, -/// it means that there is no debug information available for \p F. -unsigned SampleProfileLoader::getFunctionLoc(Function &F) { - if (DISubprogram *S = F.getSubprogram()) - return S->getLine(); - - if (NoWarnSampleUnused) - return 0; - - // If the start of \p F is missing, emit a diagnostic to inform the user - // about the missed opportunity. - F.getContext().diagnose(DiagnosticInfoSampleProfile( - "No debug information found in function " + F.getName() + - ": Function profile not used", - DS_Warning)); - return 0; -} - -void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { - DT.reset(new DominatorTree); - DT->recalculate(F); - - PDT.reset(new PostDominatorTree(F)); - - LI.reset(new LoopInfo); - LI->analyze(*DT); -} - -/// Generate branch weight metadata for all branches in \p F. -/// -/// Branch weights are computed out of instruction samples using a -/// propagation heuristic. Propagation proceeds in 3 phases: -/// -/// 1- Assignment of block weights. All the basic blocks in the function -/// are initial assigned the same weight as their most frequently -/// executed instruction. -/// -/// 2- Creation of equivalence classes. Since samples may be missing from -/// blocks, we can fill in the gaps by setting the weights of all the -/// blocks in the same equivalence class to the same weight. To compute -/// the concept of equivalence, we use dominance and loop information. -/// Two blocks B1 and B2 are in the same equivalence class if B1 -/// dominates B2, B2 post-dominates B1 and both are in the same loop. -/// -/// 3- Propagation of block weights into edges. This uses a simple -/// propagation heuristic. The following rules are applied to every -/// block BB in the CFG: -/// -/// - If BB has a single predecessor/successor, then the weight -/// of that edge is the weight of the block. -/// -/// - If all the edges are known except one, and the weight of the -/// block is already known, the weight of the unknown edge will -/// be the weight of the block minus the sum of all the known -/// edges. If the sum of all the known edges is larger than BB's weight, -/// we set the unknown edge weight to zero. -/// -/// - If there is a self-referential edge, and the weight of the block is -/// known, the weight for that edge is set to the weight of the block -/// minus the weight of the other incoming edges to that block (if -/// known). -/// -/// Since this propagation is not guaranteed to finalize for every CFG, we -/// only allow it to proceed for a limited number of iterations (controlled -/// by -sample-profile-max-propagate-iterations). -/// -/// FIXME: Try to replace this propagation heuristic with a scheme -/// that is guaranteed to finalize. A work-list approach similar to -/// the standard value propagation algorithm used by SSA-CCP might -/// work here. -/// -/// Once all the branch weights are computed, we emit the MD_prof -/// metadata on BB using the computed values for each of its branches. -/// -/// \param F The function to query. -/// -/// \returns true if \p F was modified. Returns false, otherwise. -bool SampleProfileLoader::emitAnnotations(Function &F) { - bool Changed = false; - - if (getFunctionLoc(F) == 0) - return false; - - LLVM_DEBUG(dbgs() << "Line number for the first instruction in " - << F.getName() << ": " << getFunctionLoc(F) << "\n"); - - DenseSet<GlobalValue::GUID> InlinedGUIDs; - Changed |= inlineHotFunctions(F, InlinedGUIDs); - - // Compute basic block weights. - Changed |= computeBlockWeights(F); - - if (Changed) { - // Add an entry count to the function using the samples gathered at the - // function entry. - // Sets the GUIDs that are inlined in the profiled binary. This is used - // for ThinLink to make correct liveness analysis, and also make the IR - // match the profiled binary before annotation. - F.setEntryCount( - ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), - &InlinedGUIDs); - - // Compute dominance and loop info needed for propagation. - computeDominanceAndLoopInfo(F); - - // Find equivalence classes. - findEquivalenceClasses(F); - - // Propagate weights to all edges. - propagateWeights(F); - } - - // If coverage checking was requested, compute it now. - if (SampleProfileRecordCoverage) { - unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); - unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); - unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); - if (Coverage < SampleProfileRecordCoverage) { - F.getContext().diagnose(DiagnosticInfoSampleProfile( - F.getSubprogram()->getFilename(), getFunctionLoc(F), - Twine(Used) + " of " + Twine(Total) + " available profile records (" + - Twine(Coverage) + "%) were applied", - DS_Warning)); - } - } - - if (SampleProfileSampleCoverage) { - uint64_t Used = CoverageTracker.getTotalUsedSamples(); - uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); - unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); - if (Coverage < SampleProfileSampleCoverage) { - F.getContext().diagnose(DiagnosticInfoSampleProfile( - F.getSubprogram()->getFilename(), getFunctionLoc(F), - Twine(Used) + " of " + Twine(Total) + " available profile samples (" + - Twine(Coverage) + "%) were applied", - DS_Warning)); - } - } - return Changed; -} - -char SampleProfileLoaderLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", - "Sample Profile loader", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) -INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", - "Sample Profile loader", false, false) - -bool SampleProfileLoader::doInitialization(Module &M) { - auto &Ctx = M.getContext(); - auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); - if (std::error_code EC = ReaderOrErr.getError()) { - std::string Msg = "Could not open profile: " + EC.message(); - Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); - return false; - } - Reader = std::move(ReaderOrErr.get()); - Reader->collectFuncsToUse(M); - ProfileIsValid = (Reader->read() == sampleprof_error::success); - - if (!RemappingFilename.empty()) { - // Apply profile remappings to the loaded profile data if requested. - // For now, we only support remapping symbols encoded using the Itanium - // C++ ABI's name mangling scheme. - ReaderOrErr = SampleProfileReaderItaniumRemapper::create( - RemappingFilename, Ctx, std::move(Reader)); - if (std::error_code EC = ReaderOrErr.getError()) { - std::string Msg = "Could not open profile remapping file: " + EC.message(); - Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); - return false; - } - Reader = std::move(ReaderOrErr.get()); - ProfileIsValid = (Reader->read() == sampleprof_error::success); - } - return true; -} - -ModulePass *llvm::createSampleProfileLoaderPass() { - return new SampleProfileLoaderLegacyPass(); -} - -ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { - return new SampleProfileLoaderLegacyPass(Name); -} - -bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, - ProfileSummaryInfo *_PSI) { - FunctionSamples::GUIDToFuncNameMapper Mapper(M); - if (!ProfileIsValid) - return false; - - PSI = _PSI; - if (M.getProfileSummary() == nullptr) - M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); - - // Compute the total number of samples collected in this profile. - for (const auto &I : Reader->getProfiles()) - TotalCollectedSamples += I.second.getTotalSamples(); - - // Populate the symbol map. - for (const auto &N_F : M.getValueSymbolTable()) { - StringRef OrigName = N_F.getKey(); - Function *F = dyn_cast<Function>(N_F.getValue()); - if (F == nullptr) - continue; - SymbolMap[OrigName] = F; - auto pos = OrigName.find('.'); - if (pos != StringRef::npos) { - StringRef NewName = OrigName.substr(0, pos); - auto r = SymbolMap.insert(std::make_pair(NewName, F)); - // Failiing to insert means there is already an entry in SymbolMap, - // thus there are multiple functions that are mapped to the same - // stripped name. In this case of name conflicting, set the value - // to nullptr to avoid confusion. - if (!r.second) - r.first->second = nullptr; - } - } - - bool retval = false; - for (auto &F : M) - if (!F.isDeclaration()) { - clearFunctionData(); - retval |= runOnFunction(F, AM); - } - return retval; -} - -bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { - ACT = &getAnalysis<AssumptionCacheTracker>(); - TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); - ProfileSummaryInfo *PSI = - &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); - return SampleLoader.runOnModule(M, nullptr, PSI); -} - -bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { - - DILocation2SampleMap.clear(); - // By default the entry count is initialized to -1, which will be treated - // conservatively by getEntryCount as the same as unknown (None). This is - // to avoid newly added code to be treated as cold. If we have samples - // this will be overwritten in emitAnnotations. - // If ProfileSampleAccurate is true or F has profile-sample-accurate - // attribute, initialize the entry count to 0 so callsites or functions - // unsampled will be treated as cold. - uint64_t initialEntryCount = - (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) - ? 0 - : -1; - F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); - std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; - if (AM) { - auto &FAM = - AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) - .getManager(); - ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); - } else { - OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); - ORE = OwnedORE.get(); - } - Samples = Reader->getSamplesFor(F); - if (Samples && !Samples->empty()) - return emitAnnotations(F); - return false; -} - -PreservedAnalyses SampleProfileLoaderPass::run(Module &M, - ModuleAnalysisManager &AM) { - FunctionAnalysisManager &FAM = - AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); - - auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { - return FAM.getResult<AssumptionAnalysis>(F); - }; - auto GetTTI = [&](Function &F) -> TargetTransformInfo & { - return FAM.getResult<TargetIRAnalysis>(F); - }; - - SampleProfileLoader SampleLoader( - ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, - ProfileRemappingFileName.empty() ? SampleProfileRemappingFile - : ProfileRemappingFileName, - IsThinLTOPreLink, GetAssumptionCache, GetTTI); - - SampleLoader.doInitialization(M); - - ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); - if (!SampleLoader.runOnModule(M, &AM, PSI)) - return PreservedAnalyses::all(); - - return PreservedAnalyses::none(); -} |
