summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp4739
1 files changed, 0 insertions, 4739 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
deleted file mode 100644
index aeb25d530d7..00000000000
--- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ /dev/null
@@ -1,4739 +0,0 @@
-//===- InstCombineCalls.cpp -----------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the visitCall and visitInvoke functions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Statepoint.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Support/AtomicOrdering.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
-#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <cstring>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-STATISTIC(NumSimplified, "Number of library calls simplified");
-
-static cl::opt<unsigned> GuardWideningWindow(
- "instcombine-guard-widening-window",
- cl::init(3),
- cl::desc("How wide an instruction window to bypass looking for "
- "another guard"));
-
-/// Return the specified type promoted as it would be to pass though a va_arg
-/// area.
-static Type *getPromotedType(Type *Ty) {
- if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
- if (ITy->getBitWidth() < 32)
- return Type::getInt32Ty(Ty->getContext());
- }
- return Ty;
-}
-
-/// Return a constant boolean vector that has true elements in all positions
-/// where the input constant data vector has an element with the sign bit set.
-static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
- SmallVector<Constant *, 32> BoolVec;
- IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
- for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
- Constant *Elt = V->getElementAsConstant(I);
- assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
- "Unexpected constant data vector element type");
- bool Sign = V->getElementType()->isIntegerTy()
- ? cast<ConstantInt>(Elt)->isNegative()
- : cast<ConstantFP>(Elt)->isNegative();
- BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
- }
- return ConstantVector::get(BoolVec);
-}
-
-Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
- unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
- unsigned CopyDstAlign = MI->getDestAlignment();
- if (CopyDstAlign < DstAlign){
- MI->setDestAlignment(DstAlign);
- return MI;
- }
-
- unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
- unsigned CopySrcAlign = MI->getSourceAlignment();
- if (CopySrcAlign < SrcAlign) {
- MI->setSourceAlignment(SrcAlign);
- return MI;
- }
-
- // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
- // load/store.
- ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
- if (!MemOpLength) return nullptr;
-
- // Source and destination pointer types are always "i8*" for intrinsic. See
- // if the size is something we can handle with a single primitive load/store.
- // A single load+store correctly handles overlapping memory in the memmove
- // case.
- uint64_t Size = MemOpLength->getLimitedValue();
- assert(Size && "0-sized memory transferring should be removed already.");
-
- if (Size > 8 || (Size&(Size-1)))
- return nullptr; // If not 1/2/4/8 bytes, exit.
-
- // If it is an atomic and alignment is less than the size then we will
- // introduce the unaligned memory access which will be later transformed
- // into libcall in CodeGen. This is not evident performance gain so disable
- // it now.
- if (isa<AtomicMemTransferInst>(MI))
- if (CopyDstAlign < Size || CopySrcAlign < Size)
- return nullptr;
-
- // Use an integer load+store unless we can find something better.
- unsigned SrcAddrSp =
- cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
- unsigned DstAddrSp =
- cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
-
- IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
- Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
- Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
-
- // If the memcpy has metadata describing the members, see if we can get the
- // TBAA tag describing our copy.
- MDNode *CopyMD = nullptr;
- if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
- CopyMD = M;
- } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
- if (M->getNumOperands() == 3 && M->getOperand(0) &&
- mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
- mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
- M->getOperand(1) &&
- mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
- mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
- Size &&
- M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
- CopyMD = cast<MDNode>(M->getOperand(2));
- }
-
- Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
- Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
- LoadInst *L = Builder.CreateLoad(Src);
- // Alignment from the mem intrinsic will be better, so use it.
- L->setAlignment(CopySrcAlign);
- if (CopyMD)
- L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
- MDNode *LoopMemParallelMD =
- MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
- if (LoopMemParallelMD)
- L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
- MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
- if (AccessGroupMD)
- L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
-
- StoreInst *S = Builder.CreateStore(L, Dest);
- // Alignment from the mem intrinsic will be better, so use it.
- S->setAlignment(CopyDstAlign);
- if (CopyMD)
- S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
- if (LoopMemParallelMD)
- S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
- if (AccessGroupMD)
- S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
-
- if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
- // non-atomics can be volatile
- L->setVolatile(MT->isVolatile());
- S->setVolatile(MT->isVolatile());
- }
- if (isa<AtomicMemTransferInst>(MI)) {
- // atomics have to be unordered
- L->setOrdering(AtomicOrdering::Unordered);
- S->setOrdering(AtomicOrdering::Unordered);
- }
-
- // Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setLength(Constant::getNullValue(MemOpLength->getType()));
- return MI;
-}
-
-Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
- unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
- if (MI->getDestAlignment() < Alignment) {
- MI->setDestAlignment(Alignment);
- return MI;
- }
-
- // Extract the length and alignment and fill if they are constant.
- ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
- ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
- if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
- return nullptr;
- uint64_t Len = LenC->getLimitedValue();
- Alignment = MI->getDestAlignment();
- assert(Len && "0-sized memory setting should be removed already.");
-
- // Alignment 0 is identity for alignment 1 for memset, but not store.
- if (Alignment == 0)
- Alignment = 1;
-
- // If it is an atomic and alignment is less than the size then we will
- // introduce the unaligned memory access which will be later transformed
- // into libcall in CodeGen. This is not evident performance gain so disable
- // it now.
- if (isa<AtomicMemSetInst>(MI))
- if (Alignment < Len)
- return nullptr;
-
- // memset(s,c,n) -> store s, c (for n=1,2,4,8)
- if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
- Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
-
- Value *Dest = MI->getDest();
- unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
- Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
- Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
-
- // Extract the fill value and store.
- uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
- StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
- MI->isVolatile());
- S->setAlignment(Alignment);
- if (isa<AtomicMemSetInst>(MI))
- S->setOrdering(AtomicOrdering::Unordered);
-
- // Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setLength(Constant::getNullValue(LenC->getType()));
- return MI;
- }
-
- return nullptr;
-}
-
-static Value *simplifyX86immShift(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- bool LogicalShift = false;
- bool ShiftLeft = false;
-
- switch (II.getIntrinsicID()) {
- default: llvm_unreachable("Unexpected intrinsic!");
- case Intrinsic::x86_sse2_psra_d:
- case Intrinsic::x86_sse2_psra_w:
- case Intrinsic::x86_sse2_psrai_d:
- case Intrinsic::x86_sse2_psrai_w:
- case Intrinsic::x86_avx2_psra_d:
- case Intrinsic::x86_avx2_psra_w:
- case Intrinsic::x86_avx2_psrai_d:
- case Intrinsic::x86_avx2_psrai_w:
- case Intrinsic::x86_avx512_psra_q_128:
- case Intrinsic::x86_avx512_psrai_q_128:
- case Intrinsic::x86_avx512_psra_q_256:
- case Intrinsic::x86_avx512_psrai_q_256:
- case Intrinsic::x86_avx512_psra_d_512:
- case Intrinsic::x86_avx512_psra_q_512:
- case Intrinsic::x86_avx512_psra_w_512:
- case Intrinsic::x86_avx512_psrai_d_512:
- case Intrinsic::x86_avx512_psrai_q_512:
- case Intrinsic::x86_avx512_psrai_w_512:
- LogicalShift = false; ShiftLeft = false;
- break;
- case Intrinsic::x86_sse2_psrl_d:
- case Intrinsic::x86_sse2_psrl_q:
- case Intrinsic::x86_sse2_psrl_w:
- case Intrinsic::x86_sse2_psrli_d:
- case Intrinsic::x86_sse2_psrli_q:
- case Intrinsic::x86_sse2_psrli_w:
- case Intrinsic::x86_avx2_psrl_d:
- case Intrinsic::x86_avx2_psrl_q:
- case Intrinsic::x86_avx2_psrl_w:
- case Intrinsic::x86_avx2_psrli_d:
- case Intrinsic::x86_avx2_psrli_q:
- case Intrinsic::x86_avx2_psrli_w:
- case Intrinsic::x86_avx512_psrl_d_512:
- case Intrinsic::x86_avx512_psrl_q_512:
- case Intrinsic::x86_avx512_psrl_w_512:
- case Intrinsic::x86_avx512_psrli_d_512:
- case Intrinsic::x86_avx512_psrli_q_512:
- case Intrinsic::x86_avx512_psrli_w_512:
- LogicalShift = true; ShiftLeft = false;
- break;
- case Intrinsic::x86_sse2_psll_d:
- case Intrinsic::x86_sse2_psll_q:
- case Intrinsic::x86_sse2_psll_w:
- case Intrinsic::x86_sse2_pslli_d:
- case Intrinsic::x86_sse2_pslli_q:
- case Intrinsic::x86_sse2_pslli_w:
- case Intrinsic::x86_avx2_psll_d:
- case Intrinsic::x86_avx2_psll_q:
- case Intrinsic::x86_avx2_psll_w:
- case Intrinsic::x86_avx2_pslli_d:
- case Intrinsic::x86_avx2_pslli_q:
- case Intrinsic::x86_avx2_pslli_w:
- case Intrinsic::x86_avx512_psll_d_512:
- case Intrinsic::x86_avx512_psll_q_512:
- case Intrinsic::x86_avx512_psll_w_512:
- case Intrinsic::x86_avx512_pslli_d_512:
- case Intrinsic::x86_avx512_pslli_q_512:
- case Intrinsic::x86_avx512_pslli_w_512:
- LogicalShift = true; ShiftLeft = true;
- break;
- }
- assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
-
- // Simplify if count is constant.
- auto Arg1 = II.getArgOperand(1);
- auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
- auto CDV = dyn_cast<ConstantDataVector>(Arg1);
- auto CInt = dyn_cast<ConstantInt>(Arg1);
- if (!CAZ && !CDV && !CInt)
- return nullptr;
-
- APInt Count(64, 0);
- if (CDV) {
- // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
- // operand to compute the shift amount.
- auto VT = cast<VectorType>(CDV->getType());
- unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
- assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
- unsigned NumSubElts = 64 / BitWidth;
-
- // Concatenate the sub-elements to create the 64-bit value.
- for (unsigned i = 0; i != NumSubElts; ++i) {
- unsigned SubEltIdx = (NumSubElts - 1) - i;
- auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
- Count <<= BitWidth;
- Count |= SubElt->getValue().zextOrTrunc(64);
- }
- }
- else if (CInt)
- Count = CInt->getValue();
-
- auto Vec = II.getArgOperand(0);
- auto VT = cast<VectorType>(Vec->getType());
- auto SVT = VT->getElementType();
- unsigned VWidth = VT->getNumElements();
- unsigned BitWidth = SVT->getPrimitiveSizeInBits();
-
- // If shift-by-zero then just return the original value.
- if (Count.isNullValue())
- return Vec;
-
- // Handle cases when Shift >= BitWidth.
- if (Count.uge(BitWidth)) {
- // If LogicalShift - just return zero.
- if (LogicalShift)
- return ConstantAggregateZero::get(VT);
-
- // If ArithmeticShift - clamp Shift to (BitWidth - 1).
- Count = APInt(64, BitWidth - 1);
- }
-
- // Get a constant vector of the same type as the first operand.
- auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
- auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
-
- if (ShiftLeft)
- return Builder.CreateShl(Vec, ShiftVec);
-
- if (LogicalShift)
- return Builder.CreateLShr(Vec, ShiftVec);
-
- return Builder.CreateAShr(Vec, ShiftVec);
-}
-
-// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
-// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
-// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
-static Value *simplifyX86varShift(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- bool LogicalShift = false;
- bool ShiftLeft = false;
-
- switch (II.getIntrinsicID()) {
- default: llvm_unreachable("Unexpected intrinsic!");
- case Intrinsic::x86_avx2_psrav_d:
- case Intrinsic::x86_avx2_psrav_d_256:
- case Intrinsic::x86_avx512_psrav_q_128:
- case Intrinsic::x86_avx512_psrav_q_256:
- case Intrinsic::x86_avx512_psrav_d_512:
- case Intrinsic::x86_avx512_psrav_q_512:
- case Intrinsic::x86_avx512_psrav_w_128:
- case Intrinsic::x86_avx512_psrav_w_256:
- case Intrinsic::x86_avx512_psrav_w_512:
- LogicalShift = false;
- ShiftLeft = false;
- break;
- case Intrinsic::x86_avx2_psrlv_d:
- case Intrinsic::x86_avx2_psrlv_d_256:
- case Intrinsic::x86_avx2_psrlv_q:
- case Intrinsic::x86_avx2_psrlv_q_256:
- case Intrinsic::x86_avx512_psrlv_d_512:
- case Intrinsic::x86_avx512_psrlv_q_512:
- case Intrinsic::x86_avx512_psrlv_w_128:
- case Intrinsic::x86_avx512_psrlv_w_256:
- case Intrinsic::x86_avx512_psrlv_w_512:
- LogicalShift = true;
- ShiftLeft = false;
- break;
- case Intrinsic::x86_avx2_psllv_d:
- case Intrinsic::x86_avx2_psllv_d_256:
- case Intrinsic::x86_avx2_psllv_q:
- case Intrinsic::x86_avx2_psllv_q_256:
- case Intrinsic::x86_avx512_psllv_d_512:
- case Intrinsic::x86_avx512_psllv_q_512:
- case Intrinsic::x86_avx512_psllv_w_128:
- case Intrinsic::x86_avx512_psllv_w_256:
- case Intrinsic::x86_avx512_psllv_w_512:
- LogicalShift = true;
- ShiftLeft = true;
- break;
- }
- assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
-
- // Simplify if all shift amounts are constant/undef.
- auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
- if (!CShift)
- return nullptr;
-
- auto Vec = II.getArgOperand(0);
- auto VT = cast<VectorType>(II.getType());
- auto SVT = VT->getVectorElementType();
- int NumElts = VT->getNumElements();
- int BitWidth = SVT->getIntegerBitWidth();
-
- // Collect each element's shift amount.
- // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
- bool AnyOutOfRange = false;
- SmallVector<int, 8> ShiftAmts;
- for (int I = 0; I < NumElts; ++I) {
- auto *CElt = CShift->getAggregateElement(I);
- if (CElt && isa<UndefValue>(CElt)) {
- ShiftAmts.push_back(-1);
- continue;
- }
-
- auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
- if (!COp)
- return nullptr;
-
- // Handle out of range shifts.
- // If LogicalShift - set to BitWidth (special case).
- // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
- APInt ShiftVal = COp->getValue();
- if (ShiftVal.uge(BitWidth)) {
- AnyOutOfRange = LogicalShift;
- ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
- continue;
- }
-
- ShiftAmts.push_back((int)ShiftVal.getZExtValue());
- }
-
- // If all elements out of range or UNDEF, return vector of zeros/undefs.
- // ArithmeticShift should only hit this if they are all UNDEF.
- auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
- if (llvm::all_of(ShiftAmts, OutOfRange)) {
- SmallVector<Constant *, 8> ConstantVec;
- for (int Idx : ShiftAmts) {
- if (Idx < 0) {
- ConstantVec.push_back(UndefValue::get(SVT));
- } else {
- assert(LogicalShift && "Logical shift expected");
- ConstantVec.push_back(ConstantInt::getNullValue(SVT));
- }
- }
- return ConstantVector::get(ConstantVec);
- }
-
- // We can't handle only some out of range values with generic logical shifts.
- if (AnyOutOfRange)
- return nullptr;
-
- // Build the shift amount constant vector.
- SmallVector<Constant *, 8> ShiftVecAmts;
- for (int Idx : ShiftAmts) {
- if (Idx < 0)
- ShiftVecAmts.push_back(UndefValue::get(SVT));
- else
- ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
- }
- auto ShiftVec = ConstantVector::get(ShiftVecAmts);
-
- if (ShiftLeft)
- return Builder.CreateShl(Vec, ShiftVec);
-
- if (LogicalShift)
- return Builder.CreateLShr(Vec, ShiftVec);
-
- return Builder.CreateAShr(Vec, ShiftVec);
-}
-
-static Value *simplifyX86pack(IntrinsicInst &II, bool IsSigned) {
- Value *Arg0 = II.getArgOperand(0);
- Value *Arg1 = II.getArgOperand(1);
- Type *ResTy = II.getType();
-
- // Fast all undef handling.
- if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
- return UndefValue::get(ResTy);
-
- Type *ArgTy = Arg0->getType();
- unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
- unsigned NumDstElts = ResTy->getVectorNumElements();
- unsigned NumSrcElts = ArgTy->getVectorNumElements();
- assert(NumDstElts == (2 * NumSrcElts) && "Unexpected packing types");
-
- unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
- unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
- unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
- assert(ArgTy->getScalarSizeInBits() == (2 * DstScalarSizeInBits) &&
- "Unexpected packing types");
-
- // Constant folding.
- auto *Cst0 = dyn_cast<Constant>(Arg0);
- auto *Cst1 = dyn_cast<Constant>(Arg1);
- if (!Cst0 || !Cst1)
- return nullptr;
-
- SmallVector<Constant *, 32> Vals;
- for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
- for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
- unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
- auto *Cst = (Elt >= NumSrcEltsPerLane) ? Cst1 : Cst0;
- auto *COp = Cst->getAggregateElement(SrcIdx);
- if (COp && isa<UndefValue>(COp)) {
- Vals.push_back(UndefValue::get(ResTy->getScalarType()));
- continue;
- }
-
- auto *CInt = dyn_cast_or_null<ConstantInt>(COp);
- if (!CInt)
- return nullptr;
-
- APInt Val = CInt->getValue();
- assert(Val.getBitWidth() == ArgTy->getScalarSizeInBits() &&
- "Unexpected constant bitwidth");
-
- if (IsSigned) {
- // PACKSS: Truncate signed value with signed saturation.
- // Source values less than dst minint are saturated to minint.
- // Source values greater than dst maxint are saturated to maxint.
- if (Val.isSignedIntN(DstScalarSizeInBits))
- Val = Val.trunc(DstScalarSizeInBits);
- else if (Val.isNegative())
- Val = APInt::getSignedMinValue(DstScalarSizeInBits);
- else
- Val = APInt::getSignedMaxValue(DstScalarSizeInBits);
- } else {
- // PACKUS: Truncate signed value with unsigned saturation.
- // Source values less than zero are saturated to zero.
- // Source values greater than dst maxuint are saturated to maxuint.
- if (Val.isIntN(DstScalarSizeInBits))
- Val = Val.trunc(DstScalarSizeInBits);
- else if (Val.isNegative())
- Val = APInt::getNullValue(DstScalarSizeInBits);
- else
- Val = APInt::getAllOnesValue(DstScalarSizeInBits);
- }
-
- Vals.push_back(ConstantInt::get(ResTy->getScalarType(), Val));
- }
- }
-
- return ConstantVector::get(Vals);
-}
-
-// Replace X86-specific intrinsics with generic floor-ceil where applicable.
-static Value *simplifyX86round(IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- ConstantInt *Arg = nullptr;
- Intrinsic::ID IntrinsicID = II.getIntrinsicID();
-
- if (IntrinsicID == Intrinsic::x86_sse41_round_ss ||
- IntrinsicID == Intrinsic::x86_sse41_round_sd)
- Arg = dyn_cast<ConstantInt>(II.getArgOperand(2));
- else if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd)
- Arg = dyn_cast<ConstantInt>(II.getArgOperand(4));
- else
- Arg = dyn_cast<ConstantInt>(II.getArgOperand(1));
- if (!Arg)
- return nullptr;
- unsigned RoundControl = Arg->getZExtValue();
-
- Arg = nullptr;
- unsigned SAE = 0;
- if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_512 ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_512)
- Arg = dyn_cast<ConstantInt>(II.getArgOperand(4));
- else if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd)
- Arg = dyn_cast<ConstantInt>(II.getArgOperand(5));
- else
- SAE = 4;
- if (!SAE) {
- if (!Arg)
- return nullptr;
- SAE = Arg->getZExtValue();
- }
-
- if (SAE != 4 || (RoundControl != 2 /*ceil*/ && RoundControl != 1 /*floor*/))
- return nullptr;
-
- Value *Src, *Dst, *Mask;
- bool IsScalar = false;
- if (IntrinsicID == Intrinsic::x86_sse41_round_ss ||
- IntrinsicID == Intrinsic::x86_sse41_round_sd ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
- IsScalar = true;
- if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
- Mask = II.getArgOperand(3);
- Value *Zero = Constant::getNullValue(Mask->getType());
- Mask = Builder.CreateAnd(Mask, 1);
- Mask = Builder.CreateICmp(ICmpInst::ICMP_NE, Mask, Zero);
- Dst = II.getArgOperand(2);
- } else
- Dst = II.getArgOperand(0);
- Src = Builder.CreateExtractElement(II.getArgOperand(1), (uint64_t)0);
- } else {
- Src = II.getArgOperand(0);
- if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_128 ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_256 ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_512 ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_128 ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_256 ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_512) {
- Dst = II.getArgOperand(2);
- Mask = II.getArgOperand(3);
- } else {
- Dst = Src;
- Mask = ConstantInt::getAllOnesValue(
- Builder.getIntNTy(Src->getType()->getVectorNumElements()));
- }
- }
-
- Intrinsic::ID ID = (RoundControl == 2) ? Intrinsic::ceil : Intrinsic::floor;
- Value *Res = Builder.CreateUnaryIntrinsic(ID, Src, &II);
- if (!IsScalar) {
- if (auto *C = dyn_cast<Constant>(Mask))
- if (C->isAllOnesValue())
- return Res;
- auto *MaskTy = VectorType::get(
- Builder.getInt1Ty(), cast<IntegerType>(Mask->getType())->getBitWidth());
- Mask = Builder.CreateBitCast(Mask, MaskTy);
- unsigned Width = Src->getType()->getVectorNumElements();
- if (MaskTy->getVectorNumElements() > Width) {
- uint32_t Indices[4];
- for (unsigned i = 0; i != Width; ++i)
- Indices[i] = i;
- Mask = Builder.CreateShuffleVector(Mask, Mask,
- makeArrayRef(Indices, Width));
- }
- return Builder.CreateSelect(Mask, Res, Dst);
- }
- if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
- IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
- Dst = Builder.CreateExtractElement(Dst, (uint64_t)0);
- Res = Builder.CreateSelect(Mask, Res, Dst);
- Dst = II.getArgOperand(0);
- }
- return Builder.CreateInsertElement(Dst, Res, (uint64_t)0);
-}
-
-static Value *simplifyX86movmsk(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- Value *Arg = II.getArgOperand(0);
- Type *ResTy = II.getType();
- Type *ArgTy = Arg->getType();
-
- // movmsk(undef) -> zero as we must ensure the upper bits are zero.
- if (isa<UndefValue>(Arg))
- return Constant::getNullValue(ResTy);
-
- // We can't easily peek through x86_mmx types.
- if (!ArgTy->isVectorTy())
- return nullptr;
-
- if (auto *C = dyn_cast<Constant>(Arg)) {
- // Extract signbits of the vector input and pack into integer result.
- APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
- for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
- auto *COp = C->getAggregateElement(I);
- if (!COp)
- return nullptr;
- if (isa<UndefValue>(COp))
- continue;
-
- auto *CInt = dyn_cast<ConstantInt>(COp);
- auto *CFp = dyn_cast<ConstantFP>(COp);
- if (!CInt && !CFp)
- return nullptr;
-
- if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
- Result.setBit(I);
- }
- return Constant::getIntegerValue(ResTy, Result);
- }
-
- // Look for a sign-extended boolean source vector as the argument to this
- // movmsk. If the argument is bitcast, look through that, but make sure the
- // source of that bitcast is still a vector with the same number of elements.
- // TODO: We can also convert a bitcast with wider elements, but that requires
- // duplicating the bool source sign bits to match the number of elements
- // expected by the movmsk call.
- Arg = peekThroughBitcast(Arg);
- Value *X;
- if (Arg->getType()->isVectorTy() &&
- Arg->getType()->getVectorNumElements() == ArgTy->getVectorNumElements() &&
- match(Arg, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- // call iM movmsk(sext <N x i1> X) --> zext (bitcast <N x i1> X to iN) to iM
- unsigned NumElts = X->getType()->getVectorNumElements();
- Type *ScalarTy = Type::getIntNTy(Arg->getContext(), NumElts);
- Value *BC = Builder.CreateBitCast(X, ScalarTy);
- return Builder.CreateZExtOrTrunc(BC, ResTy);
- }
-
- return nullptr;
-}
-
-static Value *simplifyX86insertps(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
- if (!CInt)
- return nullptr;
-
- VectorType *VecTy = cast<VectorType>(II.getType());
- assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
-
- // The immediate permute control byte looks like this:
- // [3:0] - zero mask for each 32-bit lane
- // [5:4] - select one 32-bit destination lane
- // [7:6] - select one 32-bit source lane
-
- uint8_t Imm = CInt->getZExtValue();
- uint8_t ZMask = Imm & 0xf;
- uint8_t DestLane = (Imm >> 4) & 0x3;
- uint8_t SourceLane = (Imm >> 6) & 0x3;
-
- ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
-
- // If all zero mask bits are set, this was just a weird way to
- // generate a zero vector.
- if (ZMask == 0xf)
- return ZeroVector;
-
- // Initialize by passing all of the first source bits through.
- uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
-
- // We may replace the second operand with the zero vector.
- Value *V1 = II.getArgOperand(1);
-
- if (ZMask) {
- // If the zero mask is being used with a single input or the zero mask
- // overrides the destination lane, this is a shuffle with the zero vector.
- if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
- (ZMask & (1 << DestLane))) {
- V1 = ZeroVector;
- // We may still move 32-bits of the first source vector from one lane
- // to another.
- ShuffleMask[DestLane] = SourceLane;
- // The zero mask may override the previous insert operation.
- for (unsigned i = 0; i < 4; ++i)
- if ((ZMask >> i) & 0x1)
- ShuffleMask[i] = i + 4;
- } else {
- // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
- return nullptr;
- }
- } else {
- // Replace the selected destination lane with the selected source lane.
- ShuffleMask[DestLane] = SourceLane + 4;
- }
-
- return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
-}
-
-/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
-/// or conversion to a shuffle vector.
-static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
- ConstantInt *CILength, ConstantInt *CIIndex,
- InstCombiner::BuilderTy &Builder) {
- auto LowConstantHighUndef = [&](uint64_t Val) {
- Type *IntTy64 = Type::getInt64Ty(II.getContext());
- Constant *Args[] = {ConstantInt::get(IntTy64, Val),
- UndefValue::get(IntTy64)};
- return ConstantVector::get(Args);
- };
-
- // See if we're dealing with constant values.
- Constant *C0 = dyn_cast<Constant>(Op0);
- ConstantInt *CI0 =
- C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
- : nullptr;
-
- // Attempt to constant fold.
- if (CILength && CIIndex) {
- // From AMD documentation: "The bit index and field length are each six
- // bits in length other bits of the field are ignored."
- APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
- APInt APLength = CILength->getValue().zextOrTrunc(6);
-
- unsigned Index = APIndex.getZExtValue();
-
- // From AMD documentation: "a value of zero in the field length is
- // defined as length of 64".
- unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
-
- // From AMD documentation: "If the sum of the bit index + length field
- // is greater than 64, the results are undefined".
- unsigned End = Index + Length;
-
- // Note that both field index and field length are 8-bit quantities.
- // Since variables 'Index' and 'Length' are unsigned values
- // obtained from zero-extending field index and field length
- // respectively, their sum should never wrap around.
- if (End > 64)
- return UndefValue::get(II.getType());
-
- // If we are inserting whole bytes, we can convert this to a shuffle.
- // Lowering can recognize EXTRQI shuffle masks.
- if ((Length % 8) == 0 && (Index % 8) == 0) {
- // Convert bit indices to byte indices.
- Length /= 8;
- Index /= 8;
-
- Type *IntTy8 = Type::getInt8Ty(II.getContext());
- Type *IntTy32 = Type::getInt32Ty(II.getContext());
- VectorType *ShufTy = VectorType::get(IntTy8, 16);
-
- SmallVector<Constant *, 16> ShuffleMask;
- for (int i = 0; i != (int)Length; ++i)
- ShuffleMask.push_back(
- Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
- for (int i = Length; i != 8; ++i)
- ShuffleMask.push_back(
- Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
- for (int i = 8; i != 16; ++i)
- ShuffleMask.push_back(UndefValue::get(IntTy32));
-
- Value *SV = Builder.CreateShuffleVector(
- Builder.CreateBitCast(Op0, ShufTy),
- ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
- return Builder.CreateBitCast(SV, II.getType());
- }
-
- // Constant Fold - shift Index'th bit to lowest position and mask off
- // Length bits.
- if (CI0) {
- APInt Elt = CI0->getValue();
- Elt.lshrInPlace(Index);
- Elt = Elt.zextOrTrunc(Length);
- return LowConstantHighUndef(Elt.getZExtValue());
- }
-
- // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
- if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
- Value *Args[] = {Op0, CILength, CIIndex};
- Module *M = II.getModule();
- Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
- return Builder.CreateCall(F, Args);
- }
- }
-
- // Constant Fold - extraction from zero is always {zero, undef}.
- if (CI0 && CI0->isZero())
- return LowConstantHighUndef(0);
-
- return nullptr;
-}
-
-/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
-/// folding or conversion to a shuffle vector.
-static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
- APInt APLength, APInt APIndex,
- InstCombiner::BuilderTy &Builder) {
- // From AMD documentation: "The bit index and field length are each six bits
- // in length other bits of the field are ignored."
- APIndex = APIndex.zextOrTrunc(6);
- APLength = APLength.zextOrTrunc(6);
-
- // Attempt to constant fold.
- unsigned Index = APIndex.getZExtValue();
-
- // From AMD documentation: "a value of zero in the field length is
- // defined as length of 64".
- unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
-
- // From AMD documentation: "If the sum of the bit index + length field
- // is greater than 64, the results are undefined".
- unsigned End = Index + Length;
-
- // Note that both field index and field length are 8-bit quantities.
- // Since variables 'Index' and 'Length' are unsigned values
- // obtained from zero-extending field index and field length
- // respectively, their sum should never wrap around.
- if (End > 64)
- return UndefValue::get(II.getType());
-
- // If we are inserting whole bytes, we can convert this to a shuffle.
- // Lowering can recognize INSERTQI shuffle masks.
- if ((Length % 8) == 0 && (Index % 8) == 0) {
- // Convert bit indices to byte indices.
- Length /= 8;
- Index /= 8;
-
- Type *IntTy8 = Type::getInt8Ty(II.getContext());
- Type *IntTy32 = Type::getInt32Ty(II.getContext());
- VectorType *ShufTy = VectorType::get(IntTy8, 16);
-
- SmallVector<Constant *, 16> ShuffleMask;
- for (int i = 0; i != (int)Index; ++i)
- ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
- for (int i = 0; i != (int)Length; ++i)
- ShuffleMask.push_back(
- Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
- for (int i = Index + Length; i != 8; ++i)
- ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
- for (int i = 8; i != 16; ++i)
- ShuffleMask.push_back(UndefValue::get(IntTy32));
-
- Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
- Builder.CreateBitCast(Op1, ShufTy),
- ConstantVector::get(ShuffleMask));
- return Builder.CreateBitCast(SV, II.getType());
- }
-
- // See if we're dealing with constant values.
- Constant *C0 = dyn_cast<Constant>(Op0);
- Constant *C1 = dyn_cast<Constant>(Op1);
- ConstantInt *CI00 =
- C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
- : nullptr;
- ConstantInt *CI10 =
- C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
- : nullptr;
-
- // Constant Fold - insert bottom Length bits starting at the Index'th bit.
- if (CI00 && CI10) {
- APInt V00 = CI00->getValue();
- APInt V10 = CI10->getValue();
- APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
- V00 = V00 & ~Mask;
- V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
- APInt Val = V00 | V10;
- Type *IntTy64 = Type::getInt64Ty(II.getContext());
- Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
- UndefValue::get(IntTy64)};
- return ConstantVector::get(Args);
- }
-
- // If we were an INSERTQ call, we'll save demanded elements if we convert to
- // INSERTQI.
- if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
- Type *IntTy8 = Type::getInt8Ty(II.getContext());
- Constant *CILength = ConstantInt::get(IntTy8, Length, false);
- Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
-
- Value *Args[] = {Op0, Op1, CILength, CIIndex};
- Module *M = II.getModule();
- Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
- return Builder.CreateCall(F, Args);
- }
-
- return nullptr;
-}
-
-/// Attempt to convert pshufb* to shufflevector if the mask is constant.
-static Value *simplifyX86pshufb(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
- if (!V)
- return nullptr;
-
- auto *VecTy = cast<VectorType>(II.getType());
- auto *MaskEltTy = Type::getInt32Ty(II.getContext());
- unsigned NumElts = VecTy->getNumElements();
- assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
- "Unexpected number of elements in shuffle mask!");
-
- // Construct a shuffle mask from constant integers or UNDEFs.
- Constant *Indexes[64] = {nullptr};
-
- // Each byte in the shuffle control mask forms an index to permute the
- // corresponding byte in the destination operand.
- for (unsigned I = 0; I < NumElts; ++I) {
- Constant *COp = V->getAggregateElement(I);
- if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
- return nullptr;
-
- if (isa<UndefValue>(COp)) {
- Indexes[I] = UndefValue::get(MaskEltTy);
- continue;
- }
-
- int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
-
- // If the most significant bit (bit[7]) of each byte of the shuffle
- // control mask is set, then zero is written in the result byte.
- // The zero vector is in the right-hand side of the resulting
- // shufflevector.
-
- // The value of each index for the high 128-bit lane is the least
- // significant 4 bits of the respective shuffle control byte.
- Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
- Indexes[I] = ConstantInt::get(MaskEltTy, Index);
- }
-
- auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
- auto V1 = II.getArgOperand(0);
- auto V2 = Constant::getNullValue(VecTy);
- return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
-}
-
-/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
-static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
- if (!V)
- return nullptr;
-
- auto *VecTy = cast<VectorType>(II.getType());
- auto *MaskEltTy = Type::getInt32Ty(II.getContext());
- unsigned NumElts = VecTy->getVectorNumElements();
- bool IsPD = VecTy->getScalarType()->isDoubleTy();
- unsigned NumLaneElts = IsPD ? 2 : 4;
- assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
-
- // Construct a shuffle mask from constant integers or UNDEFs.
- Constant *Indexes[16] = {nullptr};
-
- // The intrinsics only read one or two bits, clear the rest.
- for (unsigned I = 0; I < NumElts; ++I) {
- Constant *COp = V->getAggregateElement(I);
- if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
- return nullptr;
-
- if (isa<UndefValue>(COp)) {
- Indexes[I] = UndefValue::get(MaskEltTy);
- continue;
- }
-
- APInt Index = cast<ConstantInt>(COp)->getValue();
- Index = Index.zextOrTrunc(32).getLoBits(2);
-
- // The PD variants uses bit 1 to select per-lane element index, so
- // shift down to convert to generic shuffle mask index.
- if (IsPD)
- Index.lshrInPlace(1);
-
- // The _256 variants are a bit trickier since the mask bits always index
- // into the corresponding 128 half. In order to convert to a generic
- // shuffle, we have to make that explicit.
- Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
-
- Indexes[I] = ConstantInt::get(MaskEltTy, Index);
- }
-
- auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
- auto V1 = II.getArgOperand(0);
- auto V2 = UndefValue::get(V1->getType());
- return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
-}
-
-/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
-static Value *simplifyX86vpermv(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- auto *V = dyn_cast<Constant>(II.getArgOperand(1));
- if (!V)
- return nullptr;
-
- auto *VecTy = cast<VectorType>(II.getType());
- auto *MaskEltTy = Type::getInt32Ty(II.getContext());
- unsigned Size = VecTy->getNumElements();
- assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
- "Unexpected shuffle mask size");
-
- // Construct a shuffle mask from constant integers or UNDEFs.
- Constant *Indexes[64] = {nullptr};
-
- for (unsigned I = 0; I < Size; ++I) {
- Constant *COp = V->getAggregateElement(I);
- if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
- return nullptr;
-
- if (isa<UndefValue>(COp)) {
- Indexes[I] = UndefValue::get(MaskEltTy);
- continue;
- }
-
- uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
- Index &= Size - 1;
- Indexes[I] = ConstantInt::get(MaskEltTy, Index);
- }
-
- auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
- auto V1 = II.getArgOperand(0);
- auto V2 = UndefValue::get(VecTy);
- return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
-}
-
-/// Decode XOP integer vector comparison intrinsics.
-static Value *simplifyX86vpcom(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder,
- bool IsSigned) {
- if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
- uint64_t Imm = CInt->getZExtValue() & 0x7;
- VectorType *VecTy = cast<VectorType>(II.getType());
- CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
-
- switch (Imm) {
- case 0x0:
- Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
- break;
- case 0x1:
- Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
- break;
- case 0x2:
- Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
- break;
- case 0x3:
- Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
- break;
- case 0x4:
- Pred = ICmpInst::ICMP_EQ; break;
- case 0x5:
- Pred = ICmpInst::ICMP_NE; break;
- case 0x6:
- return ConstantInt::getSigned(VecTy, 0); // FALSE
- case 0x7:
- return ConstantInt::getSigned(VecTy, -1); // TRUE
- }
-
- if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
- II.getArgOperand(1)))
- return Builder.CreateSExtOrTrunc(Cmp, VecTy);
- }
- return nullptr;
-}
-
-static bool maskIsAllOneOrUndef(Value *Mask) {
- auto *ConstMask = dyn_cast<Constant>(Mask);
- if (!ConstMask)
- return false;
- if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
- return true;
- for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
- ++I) {
- if (auto *MaskElt = ConstMask->getAggregateElement(I))
- if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
- continue;
- return false;
- }
- return true;
-}
-
-static Value *simplifyMaskedLoad(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- // If the mask is all ones or undefs, this is a plain vector load of the 1st
- // argument.
- if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
- Value *LoadPtr = II.getArgOperand(0);
- unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
- return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
- }
-
- return nullptr;
-}
-
-static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
- auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
- if (!ConstMask)
- return nullptr;
-
- // If the mask is all zeros, this instruction does nothing.
- if (ConstMask->isNullValue())
- return IC.eraseInstFromFunction(II);
-
- // If the mask is all ones, this is a plain vector store of the 1st argument.
- if (ConstMask->isAllOnesValue()) {
- Value *StorePtr = II.getArgOperand(1);
- unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
- return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
- }
-
- return nullptr;
-}
-
-static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
- // If the mask is all zeros, return the "passthru" argument of the gather.
- auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
- if (ConstMask && ConstMask->isNullValue())
- return IC.replaceInstUsesWith(II, II.getArgOperand(3));
-
- return nullptr;
-}
-
-/// This function transforms launder.invariant.group and strip.invariant.group
-/// like:
-/// launder(launder(%x)) -> launder(%x) (the result is not the argument)
-/// launder(strip(%x)) -> launder(%x)
-/// strip(strip(%x)) -> strip(%x) (the result is not the argument)
-/// strip(launder(%x)) -> strip(%x)
-/// This is legal because it preserves the most recent information about
-/// the presence or absence of invariant.group.
-static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
- InstCombiner &IC) {
- auto *Arg = II.getArgOperand(0);
- auto *StrippedArg = Arg->stripPointerCasts();
- auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
- if (StrippedArg == StrippedInvariantGroupsArg)
- return nullptr; // No launders/strips to remove.
-
- Value *Result = nullptr;
-
- if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
- Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
- else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
- Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
- else
- llvm_unreachable(
- "simplifyInvariantGroupIntrinsic only handles launder and strip");
- if (Result->getType()->getPointerAddressSpace() !=
- II.getType()->getPointerAddressSpace())
- Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
- if (Result->getType() != II.getType())
- Result = IC.Builder.CreateBitCast(Result, II.getType());
-
- return cast<Instruction>(Result);
-}
-
-static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
- // If the mask is all zeros, a scatter does nothing.
- auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
- if (ConstMask && ConstMask->isNullValue())
- return IC.eraseInstFromFunction(II);
-
- return nullptr;
-}
-
-static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
- assert((II.getIntrinsicID() == Intrinsic::cttz ||
- II.getIntrinsicID() == Intrinsic::ctlz) &&
- "Expected cttz or ctlz intrinsic");
- Value *Op0 = II.getArgOperand(0);
-
- KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
-
- // Create a mask for bits above (ctlz) or below (cttz) the first known one.
- bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
- unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
- : Known.countMaxLeadingZeros();
- unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
- : Known.countMinLeadingZeros();
-
- // If all bits above (ctlz) or below (cttz) the first known one are known
- // zero, this value is constant.
- // FIXME: This should be in InstSimplify because we're replacing an
- // instruction with a constant.
- if (PossibleZeros == DefiniteZeros) {
- auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
- return IC.replaceInstUsesWith(II, C);
- }
-
- // If the input to cttz/ctlz is known to be non-zero,
- // then change the 'ZeroIsUndef' parameter to 'true'
- // because we know the zero behavior can't affect the result.
- if (!Known.One.isNullValue() ||
- isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
- &IC.getDominatorTree())) {
- if (!match(II.getArgOperand(1), m_One())) {
- II.setOperand(1, IC.Builder.getTrue());
- return &II;
- }
- }
-
- // Add range metadata since known bits can't completely reflect what we know.
- // TODO: Handle splat vectors.
- auto *IT = dyn_cast<IntegerType>(Op0->getType());
- if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
- Metadata *LowAndHigh[] = {
- ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
- ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
- II.setMetadata(LLVMContext::MD_range,
- MDNode::get(II.getContext(), LowAndHigh));
- return &II;
- }
-
- return nullptr;
-}
-
-static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
- assert(II.getIntrinsicID() == Intrinsic::ctpop &&
- "Expected ctpop intrinsic");
- Value *Op0 = II.getArgOperand(0);
- // FIXME: Try to simplify vectors of integers.
- auto *IT = dyn_cast<IntegerType>(Op0->getType());
- if (!IT)
- return nullptr;
-
- unsigned BitWidth = IT->getBitWidth();
- KnownBits Known(BitWidth);
- IC.computeKnownBits(Op0, Known, 0, &II);
-
- unsigned MinCount = Known.countMinPopulation();
- unsigned MaxCount = Known.countMaxPopulation();
-
- // Add range metadata since known bits can't completely reflect what we know.
- if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
- Metadata *LowAndHigh[] = {
- ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
- ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
- II.setMetadata(LLVMContext::MD_range,
- MDNode::get(II.getContext(), LowAndHigh));
- return &II;
- }
-
- return nullptr;
-}
-
-// TODO: If the x86 backend knew how to convert a bool vector mask back to an
-// XMM register mask efficiently, we could transform all x86 masked intrinsics
-// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
-static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
- Value *Ptr = II.getOperand(0);
- Value *Mask = II.getOperand(1);
- Constant *ZeroVec = Constant::getNullValue(II.getType());
-
- // Special case a zero mask since that's not a ConstantDataVector.
- // This masked load instruction creates a zero vector.
- if (isa<ConstantAggregateZero>(Mask))
- return IC.replaceInstUsesWith(II, ZeroVec);
-
- auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
- if (!ConstMask)
- return nullptr;
-
- // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
- // to allow target-independent optimizations.
-
- // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
- // the LLVM intrinsic definition for the pointer argument.
- unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
- PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
- Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
-
- // Second, convert the x86 XMM integer vector mask to a vector of bools based
- // on each element's most significant bit (the sign bit).
- Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
-
- // The pass-through vector for an x86 masked load is a zero vector.
- CallInst *NewMaskedLoad =
- IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
- return IC.replaceInstUsesWith(II, NewMaskedLoad);
-}
-
-// TODO: If the x86 backend knew how to convert a bool vector mask back to an
-// XMM register mask efficiently, we could transform all x86 masked intrinsics
-// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
-static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
- Value *Ptr = II.getOperand(0);
- Value *Mask = II.getOperand(1);
- Value *Vec = II.getOperand(2);
-
- // Special case a zero mask since that's not a ConstantDataVector:
- // this masked store instruction does nothing.
- if (isa<ConstantAggregateZero>(Mask)) {
- IC.eraseInstFromFunction(II);
- return true;
- }
-
- // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
- // anything else at this level.
- if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
- return false;
-
- auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
- if (!ConstMask)
- return false;
-
- // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
- // to allow target-independent optimizations.
-
- // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
- // the LLVM intrinsic definition for the pointer argument.
- unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
- PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
- Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
-
- // Second, convert the x86 XMM integer vector mask to a vector of bools based
- // on each element's most significant bit (the sign bit).
- Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
-
- IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
-
- // 'Replace uses' doesn't work for stores. Erase the original masked store.
- IC.eraseInstFromFunction(II);
- return true;
-}
-
-// Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
-//
-// A single NaN input is folded to minnum, so we rely on that folding for
-// handling NaNs.
-static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
- const APFloat &Src2) {
- APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
-
- APFloat::cmpResult Cmp0 = Max3.compare(Src0);
- assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
- if (Cmp0 == APFloat::cmpEqual)
- return maxnum(Src1, Src2);
-
- APFloat::cmpResult Cmp1 = Max3.compare(Src1);
- assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
- if (Cmp1 == APFloat::cmpEqual)
- return maxnum(Src0, Src2);
-
- return maxnum(Src0, Src1);
-}
-
-/// Convert a table lookup to shufflevector if the mask is constant.
-/// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
-/// which case we could lower the shufflevector with rev64 instructions
-/// as it's actually a byte reverse.
-static Value *simplifyNeonTbl1(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- // Bail out if the mask is not a constant.
- auto *C = dyn_cast<Constant>(II.getArgOperand(1));
- if (!C)
- return nullptr;
-
- auto *VecTy = cast<VectorType>(II.getType());
- unsigned NumElts = VecTy->getNumElements();
-
- // Only perform this transformation for <8 x i8> vector types.
- if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
- return nullptr;
-
- uint32_t Indexes[8];
-
- for (unsigned I = 0; I < NumElts; ++I) {
- Constant *COp = C->getAggregateElement(I);
-
- if (!COp || !isa<ConstantInt>(COp))
- return nullptr;
-
- Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
-
- // Make sure the mask indices are in range.
- if (Indexes[I] >= NumElts)
- return nullptr;
- }
-
- auto *ShuffleMask = ConstantDataVector::get(II.getContext(),
- makeArrayRef(Indexes));
- auto *V1 = II.getArgOperand(0);
- auto *V2 = Constant::getNullValue(V1->getType());
- return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
-}
-
-/// Convert a vector load intrinsic into a simple llvm load instruction.
-/// This is beneficial when the underlying object being addressed comes
-/// from a constant, since we get constant-folding for free.
-static Value *simplifyNeonVld1(const IntrinsicInst &II,
- unsigned MemAlign,
- InstCombiner::BuilderTy &Builder) {
- auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
-
- if (!IntrAlign)
- return nullptr;
-
- unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
- MemAlign : IntrAlign->getLimitedValue();
-
- if (!isPowerOf2_32(Alignment))
- return nullptr;
-
- auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
- PointerType::get(II.getType(), 0));
- return Builder.CreateAlignedLoad(BCastInst, Alignment);
-}
-
-// Returns true iff the 2 intrinsics have the same operands, limiting the
-// comparison to the first NumOperands.
-static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
- unsigned NumOperands) {
- assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
- assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
- for (unsigned i = 0; i < NumOperands; i++)
- if (I.getArgOperand(i) != E.getArgOperand(i))
- return false;
- return true;
-}
-
-// Remove trivially empty start/end intrinsic ranges, i.e. a start
-// immediately followed by an end (ignoring debuginfo or other
-// start/end intrinsics in between). As this handles only the most trivial
-// cases, tracking the nesting level is not needed:
-//
-// call @llvm.foo.start(i1 0) ; &I
-// call @llvm.foo.start(i1 0)
-// call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
-// call @llvm.foo.end(i1 0)
-static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
- unsigned EndID, InstCombiner &IC) {
- assert(I.getIntrinsicID() == StartID &&
- "Start intrinsic does not have expected ID");
- BasicBlock::iterator BI(I), BE(I.getParent()->end());
- for (++BI; BI != BE; ++BI) {
- if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
- if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
- continue;
- if (E->getIntrinsicID() == EndID &&
- haveSameOperands(I, *E, E->getNumArgOperands())) {
- IC.eraseInstFromFunction(*E);
- IC.eraseInstFromFunction(I);
- return true;
- }
- }
- break;
- }
-
- return false;
-}
-
-// Convert NVVM intrinsics to target-generic LLVM code where possible.
-static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
- // Each NVVM intrinsic we can simplify can be replaced with one of:
- //
- // * an LLVM intrinsic,
- // * an LLVM cast operation,
- // * an LLVM binary operation, or
- // * ad-hoc LLVM IR for the particular operation.
-
- // Some transformations are only valid when the module's
- // flush-denormals-to-zero (ftz) setting is true/false, whereas other
- // transformations are valid regardless of the module's ftz setting.
- enum FtzRequirementTy {
- FTZ_Any, // Any ftz setting is ok.
- FTZ_MustBeOn, // Transformation is valid only if ftz is on.
- FTZ_MustBeOff, // Transformation is valid only if ftz is off.
- };
- // Classes of NVVM intrinsics that can't be replaced one-to-one with a
- // target-generic intrinsic, cast op, or binary op but that we can nonetheless
- // simplify.
- enum SpecialCase {
- SPC_Reciprocal,
- };
-
- // SimplifyAction is a poor-man's variant (plus an additional flag) that
- // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
- struct SimplifyAction {
- // Invariant: At most one of these Optionals has a value.
- Optional<Intrinsic::ID> IID;
- Optional<Instruction::CastOps> CastOp;
- Optional<Instruction::BinaryOps> BinaryOp;
- Optional<SpecialCase> Special;
-
- FtzRequirementTy FtzRequirement = FTZ_Any;
-
- SimplifyAction() = default;
-
- SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
- : IID(IID), FtzRequirement(FtzReq) {}
-
- // Cast operations don't have anything to do with FTZ, so we skip that
- // argument.
- SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
-
- SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
- : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
-
- SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
- : Special(Special), FtzRequirement(FtzReq) {}
- };
-
- // Try to generate a SimplifyAction describing how to replace our
- // IntrinsicInstr with target-generic LLVM IR.
- const SimplifyAction Action = [II]() -> SimplifyAction {
- switch (II->getIntrinsicID()) {
- // NVVM intrinsics that map directly to LLVM intrinsics.
- case Intrinsic::nvvm_ceil_d:
- return {Intrinsic::ceil, FTZ_Any};
- case Intrinsic::nvvm_ceil_f:
- return {Intrinsic::ceil, FTZ_MustBeOff};
- case Intrinsic::nvvm_ceil_ftz_f:
- return {Intrinsic::ceil, FTZ_MustBeOn};
- case Intrinsic::nvvm_fabs_d:
- return {Intrinsic::fabs, FTZ_Any};
- case Intrinsic::nvvm_fabs_f:
- return {Intrinsic::fabs, FTZ_MustBeOff};
- case Intrinsic::nvvm_fabs_ftz_f:
- return {Intrinsic::fabs, FTZ_MustBeOn};
- case Intrinsic::nvvm_floor_d:
- return {Intrinsic::floor, FTZ_Any};
- case Intrinsic::nvvm_floor_f:
- return {Intrinsic::floor, FTZ_MustBeOff};
- case Intrinsic::nvvm_floor_ftz_f:
- return {Intrinsic::floor, FTZ_MustBeOn};
- case Intrinsic::nvvm_fma_rn_d:
- return {Intrinsic::fma, FTZ_Any};
- case Intrinsic::nvvm_fma_rn_f:
- return {Intrinsic::fma, FTZ_MustBeOff};
- case Intrinsic::nvvm_fma_rn_ftz_f:
- return {Intrinsic::fma, FTZ_MustBeOn};
- case Intrinsic::nvvm_fmax_d:
- return {Intrinsic::maxnum, FTZ_Any};
- case Intrinsic::nvvm_fmax_f:
- return {Intrinsic::maxnum, FTZ_MustBeOff};
- case Intrinsic::nvvm_fmax_ftz_f:
- return {Intrinsic::maxnum, FTZ_MustBeOn};
- case Intrinsic::nvvm_fmin_d:
- return {Intrinsic::minnum, FTZ_Any};
- case Intrinsic::nvvm_fmin_f:
- return {Intrinsic::minnum, FTZ_MustBeOff};
- case Intrinsic::nvvm_fmin_ftz_f:
- return {Intrinsic::minnum, FTZ_MustBeOn};
- case Intrinsic::nvvm_round_d:
- return {Intrinsic::round, FTZ_Any};
- case Intrinsic::nvvm_round_f:
- return {Intrinsic::round, FTZ_MustBeOff};
- case Intrinsic::nvvm_round_ftz_f:
- return {Intrinsic::round, FTZ_MustBeOn};
- case Intrinsic::nvvm_sqrt_rn_d:
- return {Intrinsic::sqrt, FTZ_Any};
- case Intrinsic::nvvm_sqrt_f:
- // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
- // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
- // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
- // the versions with explicit ftz-ness.
- return {Intrinsic::sqrt, FTZ_Any};
- case Intrinsic::nvvm_sqrt_rn_f:
- return {Intrinsic::sqrt, FTZ_MustBeOff};
- case Intrinsic::nvvm_sqrt_rn_ftz_f:
- return {Intrinsic::sqrt, FTZ_MustBeOn};
- case Intrinsic::nvvm_trunc_d:
- return {Intrinsic::trunc, FTZ_Any};
- case Intrinsic::nvvm_trunc_f:
- return {Intrinsic::trunc, FTZ_MustBeOff};
- case Intrinsic::nvvm_trunc_ftz_f:
- return {Intrinsic::trunc, FTZ_MustBeOn};
-
- // NVVM intrinsics that map to LLVM cast operations.
- //
- // Note that llvm's target-generic conversion operators correspond to the rz
- // (round to zero) versions of the nvvm conversion intrinsics, even though
- // most everything else here uses the rn (round to nearest even) nvvm ops.
- case Intrinsic::nvvm_d2i_rz:
- case Intrinsic::nvvm_f2i_rz:
- case Intrinsic::nvvm_d2ll_rz:
- case Intrinsic::nvvm_f2ll_rz:
- return {Instruction::FPToSI};
- case Intrinsic::nvvm_d2ui_rz:
- case Intrinsic::nvvm_f2ui_rz:
- case Intrinsic::nvvm_d2ull_rz:
- case Intrinsic::nvvm_f2ull_rz:
- return {Instruction::FPToUI};
- case Intrinsic::nvvm_i2d_rz:
- case Intrinsic::nvvm_i2f_rz:
- case Intrinsic::nvvm_ll2d_rz:
- case Intrinsic::nvvm_ll2f_rz:
- return {Instruction::SIToFP};
- case Intrinsic::nvvm_ui2d_rz:
- case Intrinsic::nvvm_ui2f_rz:
- case Intrinsic::nvvm_ull2d_rz:
- case Intrinsic::nvvm_ull2f_rz:
- return {Instruction::UIToFP};
-
- // NVVM intrinsics that map to LLVM binary ops.
- case Intrinsic::nvvm_add_rn_d:
- return {Instruction::FAdd, FTZ_Any};
- case Intrinsic::nvvm_add_rn_f:
- return {Instruction::FAdd, FTZ_MustBeOff};
- case Intrinsic::nvvm_add_rn_ftz_f:
- return {Instruction::FAdd, FTZ_MustBeOn};
- case Intrinsic::nvvm_mul_rn_d:
- return {Instruction::FMul, FTZ_Any};
- case Intrinsic::nvvm_mul_rn_f:
- return {Instruction::FMul, FTZ_MustBeOff};
- case Intrinsic::nvvm_mul_rn_ftz_f:
- return {Instruction::FMul, FTZ_MustBeOn};
- case Intrinsic::nvvm_div_rn_d:
- return {Instruction::FDiv, FTZ_Any};
- case Intrinsic::nvvm_div_rn_f:
- return {Instruction::FDiv, FTZ_MustBeOff};
- case Intrinsic::nvvm_div_rn_ftz_f:
- return {Instruction::FDiv, FTZ_MustBeOn};
-
- // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
- // need special handling.
- //
- // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
- // as well.
- case Intrinsic::nvvm_rcp_rn_d:
- return {SPC_Reciprocal, FTZ_Any};
- case Intrinsic::nvvm_rcp_rn_f:
- return {SPC_Reciprocal, FTZ_MustBeOff};
- case Intrinsic::nvvm_rcp_rn_ftz_f:
- return {SPC_Reciprocal, FTZ_MustBeOn};
-
- // We do not currently simplify intrinsics that give an approximate answer.
- // These include:
- //
- // - nvvm_cos_approx_{f,ftz_f}
- // - nvvm_ex2_approx_{d,f,ftz_f}
- // - nvvm_lg2_approx_{d,f,ftz_f}
- // - nvvm_sin_approx_{f,ftz_f}
- // - nvvm_sqrt_approx_{f,ftz_f}
- // - nvvm_rsqrt_approx_{d,f,ftz_f}
- // - nvvm_div_approx_{ftz_d,ftz_f,f}
- // - nvvm_rcp_approx_ftz_d
- //
- // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
- // means that fastmath is enabled in the intrinsic. Unfortunately only
- // binary operators (currently) have a fastmath bit in SelectionDAG, so this
- // information gets lost and we can't select on it.
- //
- // TODO: div and rcp are lowered to a binary op, so these we could in theory
- // lower them to "fast fdiv".
-
- default:
- return {};
- }
- }();
-
- // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
- // can bail out now. (Notice that in the case that IID is not an NVVM
- // intrinsic, we don't have to look up any module metadata, as
- // FtzRequirementTy will be FTZ_Any.)
- if (Action.FtzRequirement != FTZ_Any) {
- bool FtzEnabled =
- II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
- "true";
-
- if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
- return nullptr;
- }
-
- // Simplify to target-generic intrinsic.
- if (Action.IID) {
- SmallVector<Value *, 4> Args(II->arg_operands());
- // All the target-generic intrinsics currently of interest to us have one
- // type argument, equal to that of the nvvm intrinsic's argument.
- Type *Tys[] = {II->getArgOperand(0)->getType()};
- return CallInst::Create(
- Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
- }
-
- // Simplify to target-generic binary op.
- if (Action.BinaryOp)
- return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
- II->getArgOperand(1), II->getName());
-
- // Simplify to target-generic cast op.
- if (Action.CastOp)
- return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
- II->getName());
-
- // All that's left are the special cases.
- if (!Action.Special)
- return nullptr;
-
- switch (*Action.Special) {
- case SPC_Reciprocal:
- // Simplify reciprocal.
- return BinaryOperator::Create(
- Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
- II->getArgOperand(0), II->getName());
- }
- llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
-}
-
-Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
- removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
- return nullptr;
-}
-
-Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
- removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
- return nullptr;
-}
-
-static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) {
- assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap");
- Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
- if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
- Call.setArgOperand(0, Arg1);
- Call.setArgOperand(1, Arg0);
- return &Call;
- }
- return nullptr;
-}
-
-/// CallInst simplification. This mostly only handles folding of intrinsic
-/// instructions. For normal calls, it allows visitCallSite to do the heavy
-/// lifting.
-Instruction *InstCombiner::visitCallInst(CallInst &CI) {
- if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
- return replaceInstUsesWith(CI, V);
-
- if (isFreeCall(&CI, &TLI))
- return visitFree(CI);
-
- // If the caller function is nounwind, mark the call as nounwind, even if the
- // callee isn't.
- if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
- CI.setDoesNotThrow();
- return &CI;
- }
-
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
- if (!II) return visitCallSite(&CI);
-
- // Intrinsics cannot occur in an invoke, so handle them here instead of in
- // visitCallSite.
- if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
- bool Changed = false;
-
- // memmove/cpy/set of zero bytes is a noop.
- if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
- if (NumBytes->isNullValue())
- return eraseInstFromFunction(CI);
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
- if (CI->getZExtValue() == 1) {
- // Replace the instruction with just byte operations. We would
- // transform other cases to loads/stores, but we don't know if
- // alignment is sufficient.
- }
- }
-
- // No other transformations apply to volatile transfers.
- if (auto *M = dyn_cast<MemIntrinsic>(MI))
- if (M->isVolatile())
- return nullptr;
-
- // If we have a memmove and the source operation is a constant global,
- // then the source and dest pointers can't alias, so we can change this
- // into a call to memcpy.
- if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
- if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
- if (GVSrc->isConstant()) {
- Module *M = CI.getModule();
- Intrinsic::ID MemCpyID =
- isa<AtomicMemMoveInst>(MMI)
- ? Intrinsic::memcpy_element_unordered_atomic
- : Intrinsic::memcpy;
- Type *Tys[3] = { CI.getArgOperand(0)->getType(),
- CI.getArgOperand(1)->getType(),
- CI.getArgOperand(2)->getType() };
- CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
- Changed = true;
- }
- }
-
- if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
- // memmove(x,x,size) -> noop.
- if (MTI->getSource() == MTI->getDest())
- return eraseInstFromFunction(CI);
- }
-
- // If we can determine a pointer alignment that is bigger than currently
- // set, update the alignment.
- if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
- if (Instruction *I = SimplifyAnyMemTransfer(MTI))
- return I;
- } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
- if (Instruction *I = SimplifyAnyMemSet(MSI))
- return I;
- }
-
- if (Changed) return II;
- }
-
- if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
- return I;
-
- auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
- unsigned DemandedWidth) {
- APInt UndefElts(Width, 0);
- APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
- return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
- };
-
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::objectsize:
- if (ConstantInt *N =
- lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
- return replaceInstUsesWith(CI, N);
- return nullptr;
- case Intrinsic::bswap: {
- Value *IIOperand = II->getArgOperand(0);
- Value *X = nullptr;
-
- // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
- if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
- unsigned C = X->getType()->getPrimitiveSizeInBits() -
- IIOperand->getType()->getPrimitiveSizeInBits();
- Value *CV = ConstantInt::get(X->getType(), C);
- Value *V = Builder.CreateLShr(X, CV);
- return new TruncInst(V, IIOperand->getType());
- }
- break;
- }
- case Intrinsic::masked_load:
- if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, Builder))
- return replaceInstUsesWith(CI, SimplifiedMaskedOp);
- break;
- case Intrinsic::masked_store:
- return simplifyMaskedStore(*II, *this);
- case Intrinsic::masked_gather:
- return simplifyMaskedGather(*II, *this);
- case Intrinsic::masked_scatter:
- return simplifyMaskedScatter(*II, *this);
- case Intrinsic::launder_invariant_group:
- case Intrinsic::strip_invariant_group:
- if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
- return replaceInstUsesWith(*II, SkippedBarrier);
- break;
- case Intrinsic::powi:
- if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
- // 0 and 1 are handled in instsimplify
-
- // powi(x, -1) -> 1/x
- if (Power->isMinusOne())
- return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
- II->getArgOperand(0));
- // powi(x, 2) -> x*x
- if (Power->equalsInt(2))
- return BinaryOperator::CreateFMul(II->getArgOperand(0),
- II->getArgOperand(0));
- }
- break;
-
- case Intrinsic::cttz:
- case Intrinsic::ctlz:
- if (auto *I = foldCttzCtlz(*II, *this))
- return I;
- break;
-
- case Intrinsic::ctpop:
- if (auto *I = foldCtpop(*II, *this))
- return I;
- break;
-
- case Intrinsic::fshl:
- case Intrinsic::fshr: {
- const APInt *SA;
- if (match(II->getArgOperand(2), m_APInt(SA))) {
- Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
- unsigned BitWidth = SA->getBitWidth();
- uint64_t ShiftAmt = SA->urem(BitWidth);
- assert(ShiftAmt != 0 && "SimplifyCall should have handled zero shift");
- // Normalize to funnel shift left.
- if (II->getIntrinsicID() == Intrinsic::fshr)
- ShiftAmt = BitWidth - ShiftAmt;
-
- // fshl(X, 0, C) -> shl X, C
- // fshl(X, undef, C) -> shl X, C
- if (match(Op1, m_Zero()) || match(Op1, m_Undef()))
- return BinaryOperator::CreateShl(
- Op0, ConstantInt::get(II->getType(), ShiftAmt));
-
- // fshl(0, X, C) -> lshr X, (BW-C)
- // fshl(undef, X, C) -> lshr X, (BW-C)
- if (match(Op0, m_Zero()) || match(Op0, m_Undef()))
- return BinaryOperator::CreateLShr(
- Op1, ConstantInt::get(II->getType(), BitWidth - ShiftAmt));
- }
-
- // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
- // so only the low bits of the shift amount are demanded if the bitwidth is
- // a power-of-2.
- unsigned BitWidth = II->getType()->getScalarSizeInBits();
- if (!isPowerOf2_32(BitWidth))
- break;
- APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
- KnownBits Op2Known(BitWidth);
- if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
- return &CI;
- break;
- }
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
- return I;
- LLVM_FALLTHROUGH;
-
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow: {
- OverflowCheckFlavor OCF =
- IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
- assert(OCF != OCF_INVALID && "unexpected!");
-
- Value *OperationResult = nullptr;
- Constant *OverflowResult = nullptr;
- if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
- *II, OperationResult, OverflowResult))
- return CreateOverflowTuple(II, OperationResult, OverflowResult);
-
- break;
- }
-
- case Intrinsic::uadd_sat:
- case Intrinsic::sadd_sat:
- if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
- return I;
- LLVM_FALLTHROUGH;
- case Intrinsic::usub_sat:
- case Intrinsic::ssub_sat: {
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
- Intrinsic::ID IID = II->getIntrinsicID();
-
- // Make use of known overflow information.
- OverflowResult OR;
- switch (IID) {
- default:
- llvm_unreachable("Unexpected intrinsic!");
- case Intrinsic::uadd_sat:
- OR = computeOverflowForUnsignedAdd(Arg0, Arg1, II);
- if (OR == OverflowResult::NeverOverflows)
- return BinaryOperator::CreateNUWAdd(Arg0, Arg1);
- if (OR == OverflowResult::AlwaysOverflows)
- return replaceInstUsesWith(*II,
- ConstantInt::getAllOnesValue(II->getType()));
- break;
- case Intrinsic::usub_sat:
- OR = computeOverflowForUnsignedSub(Arg0, Arg1, II);
- if (OR == OverflowResult::NeverOverflows)
- return BinaryOperator::CreateNUWSub(Arg0, Arg1);
- if (OR == OverflowResult::AlwaysOverflows)
- return replaceInstUsesWith(*II,
- ConstantInt::getNullValue(II->getType()));
- break;
- case Intrinsic::sadd_sat:
- if (willNotOverflowSignedAdd(Arg0, Arg1, *II))
- return BinaryOperator::CreateNSWAdd(Arg0, Arg1);
- break;
- case Intrinsic::ssub_sat:
- if (willNotOverflowSignedSub(Arg0, Arg1, *II))
- return BinaryOperator::CreateNSWSub(Arg0, Arg1);
- break;
- }
-
- // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
- Constant *C;
- if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
- C->isNotMinSignedValue()) {
- Value *NegVal = ConstantExpr::getNeg(C);
- return replaceInstUsesWith(
- *II, Builder.CreateBinaryIntrinsic(
- Intrinsic::sadd_sat, Arg0, NegVal));
- }
-
- // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
- // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
- // if Val and Val2 have the same sign
- if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
- Value *X;
- const APInt *Val, *Val2;
- APInt NewVal;
- bool IsUnsigned =
- IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
- if (Other->getIntrinsicID() == II->getIntrinsicID() &&
- match(Arg1, m_APInt(Val)) &&
- match(Other->getArgOperand(0), m_Value(X)) &&
- match(Other->getArgOperand(1), m_APInt(Val2))) {
- if (IsUnsigned)
- NewVal = Val->uadd_sat(*Val2);
- else if (Val->isNonNegative() == Val2->isNonNegative()) {
- bool Overflow;
- NewVal = Val->sadd_ov(*Val2, Overflow);
- if (Overflow) {
- // Both adds together may add more than SignedMaxValue
- // without saturating the final result.
- break;
- }
- } else {
- // Cannot fold saturated addition with different signs.
- break;
- }
-
- return replaceInstUsesWith(
- *II, Builder.CreateBinaryIntrinsic(
- IID, X, ConstantInt::get(II->getType(), NewVal)));
- }
- }
- break;
- }
-
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- case Intrinsic::minimum:
- case Intrinsic::maximum: {
- if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
- return I;
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
- Intrinsic::ID IID = II->getIntrinsicID();
- Value *X, *Y;
- if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
- (Arg0->hasOneUse() || Arg1->hasOneUse())) {
- // If both operands are negated, invert the call and negate the result:
- // min(-X, -Y) --> -(max(X, Y))
- // max(-X, -Y) --> -(min(X, Y))
- Intrinsic::ID NewIID;
- switch (IID) {
- case Intrinsic::maxnum:
- NewIID = Intrinsic::minnum;
- break;
- case Intrinsic::minnum:
- NewIID = Intrinsic::maxnum;
- break;
- case Intrinsic::maximum:
- NewIID = Intrinsic::minimum;
- break;
- case Intrinsic::minimum:
- NewIID = Intrinsic::maximum;
- break;
- default:
- llvm_unreachable("unexpected intrinsic ID");
- }
- Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
- Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall);
- FNeg->copyIRFlags(II);
- return FNeg;
- }
-
- // m(m(X, C2), C1) -> m(X, C)
- const APFloat *C1, *C2;
- if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
- if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
- ((match(M->getArgOperand(0), m_Value(X)) &&
- match(M->getArgOperand(1), m_APFloat(C2))) ||
- (match(M->getArgOperand(1), m_Value(X)) &&
- match(M->getArgOperand(0), m_APFloat(C2))))) {
- APFloat Res(0.0);
- switch (IID) {
- case Intrinsic::maxnum:
- Res = maxnum(*C1, *C2);
- break;
- case Intrinsic::minnum:
- Res = minnum(*C1, *C2);
- break;
- case Intrinsic::maximum:
- Res = maximum(*C1, *C2);
- break;
- case Intrinsic::minimum:
- Res = minimum(*C1, *C2);
- break;
- default:
- llvm_unreachable("unexpected intrinsic ID");
- }
- Instruction *NewCall = Builder.CreateBinaryIntrinsic(
- IID, X, ConstantFP::get(Arg0->getType(), Res));
- NewCall->copyIRFlags(II);
- return replaceInstUsesWith(*II, NewCall);
- }
- }
-
- break;
- }
- case Intrinsic::fmuladd: {
- // Canonicalize fast fmuladd to the separate fmul + fadd.
- if (II->isFast()) {
- BuilderTy::FastMathFlagGuard Guard(Builder);
- Builder.setFastMathFlags(II->getFastMathFlags());
- Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
- II->getArgOperand(1));
- Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
- Add->takeName(II);
- return replaceInstUsesWith(*II, Add);
- }
-
- LLVM_FALLTHROUGH;
- }
- case Intrinsic::fma: {
- if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
- return I;
-
- // fma fneg(x), fneg(y), z -> fma x, y, z
- Value *Src0 = II->getArgOperand(0);
- Value *Src1 = II->getArgOperand(1);
- Value *X, *Y;
- if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
- II->setArgOperand(0, X);
- II->setArgOperand(1, Y);
- return II;
- }
-
- // fma fabs(x), fabs(x), z -> fma x, x, z
- if (match(Src0, m_FAbs(m_Value(X))) &&
- match(Src1, m_FAbs(m_Specific(X)))) {
- II->setArgOperand(0, X);
- II->setArgOperand(1, X);
- return II;
- }
-
- // fma x, 1, z -> fadd x, z
- if (match(Src1, m_FPOne())) {
- auto *FAdd = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
- FAdd->copyFastMathFlags(II);
- return FAdd;
- }
-
- break;
- }
- case Intrinsic::fabs: {
- Value *Cond;
- Constant *LHS, *RHS;
- if (match(II->getArgOperand(0),
- m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
- CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
- CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
- return SelectInst::Create(Cond, Call0, Call1);
- }
-
- LLVM_FALLTHROUGH;
- }
- case Intrinsic::ceil:
- case Intrinsic::floor:
- case Intrinsic::round:
- case Intrinsic::nearbyint:
- case Intrinsic::rint:
- case Intrinsic::trunc: {
- Value *ExtSrc;
- if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
- // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
- Value *NarrowII =
- Builder.CreateUnaryIntrinsic(II->getIntrinsicID(), ExtSrc, II);
- return new FPExtInst(NarrowII, II->getType());
- }
- break;
- }
- case Intrinsic::cos:
- case Intrinsic::amdgcn_cos: {
- Value *X;
- Value *Src = II->getArgOperand(0);
- if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
- // cos(-x) -> cos(x)
- // cos(fabs(x)) -> cos(x)
- II->setArgOperand(0, X);
- return II;
- }
- break;
- }
- case Intrinsic::sin: {
- Value *X;
- if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
- // sin(-x) --> -sin(x)
- Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
- Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin);
- FNeg->copyFastMathFlags(II);
- return FNeg;
- }
- break;
- }
- case Intrinsic::ppc_altivec_lvx:
- case Intrinsic::ppc_altivec_lvxl:
- // Turn PPC lvx -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
- &DT) >= 16) {
- Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
- PointerType::getUnqual(II->getType()));
- return new LoadInst(Ptr);
- }
- break;
- case Intrinsic::ppc_vsx_lxvw4x:
- case Intrinsic::ppc_vsx_lxvd2x: {
- // Turn PPC VSX loads into normal loads.
- Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
- PointerType::getUnqual(II->getType()));
- return new LoadInst(Ptr, Twine(""), false, 1);
- }
- case Intrinsic::ppc_altivec_stvx:
- case Intrinsic::ppc_altivec_stvxl:
- // Turn stvx -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
- &DT) >= 16) {
- Type *OpPtrTy =
- PointerType::getUnqual(II->getArgOperand(0)->getType());
- Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
- return new StoreInst(II->getArgOperand(0), Ptr);
- }
- break;
- case Intrinsic::ppc_vsx_stxvw4x:
- case Intrinsic::ppc_vsx_stxvd2x: {
- // Turn PPC VSX stores into normal stores.
- Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
- Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
- return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
- }
- case Intrinsic::ppc_qpx_qvlfs:
- // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
- &DT) >= 16) {
- Type *VTy = VectorType::get(Builder.getFloatTy(),
- II->getType()->getVectorNumElements());
- Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
- PointerType::getUnqual(VTy));
- Value *Load = Builder.CreateLoad(Ptr);
- return new FPExtInst(Load, II->getType());
- }
- break;
- case Intrinsic::ppc_qpx_qvlfd:
- // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
- &DT) >= 32) {
- Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
- PointerType::getUnqual(II->getType()));
- return new LoadInst(Ptr);
- }
- break;
- case Intrinsic::ppc_qpx_qvstfs:
- // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
- &DT) >= 16) {
- Type *VTy = VectorType::get(Builder.getFloatTy(),
- II->getArgOperand(0)->getType()->getVectorNumElements());
- Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
- Type *OpPtrTy = PointerType::getUnqual(VTy);
- Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
- return new StoreInst(TOp, Ptr);
- }
- break;
- case Intrinsic::ppc_qpx_qvstfd:
- // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
- &DT) >= 32) {
- Type *OpPtrTy =
- PointerType::getUnqual(II->getArgOperand(0)->getType());
- Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
- return new StoreInst(II->getArgOperand(0), Ptr);
- }
- break;
-
- case Intrinsic::x86_bmi_bextr_32:
- case Intrinsic::x86_bmi_bextr_64:
- case Intrinsic::x86_tbm_bextri_u32:
- case Intrinsic::x86_tbm_bextri_u64:
- // If the RHS is a constant we can try some simplifications.
- if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
- uint64_t Shift = C->getZExtValue();
- uint64_t Length = (Shift >> 8) & 0xff;
- Shift &= 0xff;
- unsigned BitWidth = II->getType()->getIntegerBitWidth();
- // If the length is 0 or the shift is out of range, replace with zero.
- if (Length == 0 || Shift >= BitWidth)
- return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
- // If the LHS is also a constant, we can completely constant fold this.
- if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
- uint64_t Result = InC->getZExtValue() >> Shift;
- if (Length > BitWidth)
- Length = BitWidth;
- Result &= maskTrailingOnes<uint64_t>(Length);
- return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
- }
- // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
- // are only masking bits that a shift already cleared?
- }
- break;
-
- case Intrinsic::x86_bmi_bzhi_32:
- case Intrinsic::x86_bmi_bzhi_64:
- // If the RHS is a constant we can try some simplifications.
- if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
- uint64_t Index = C->getZExtValue() & 0xff;
- unsigned BitWidth = II->getType()->getIntegerBitWidth();
- if (Index >= BitWidth)
- return replaceInstUsesWith(CI, II->getArgOperand(0));
- if (Index == 0)
- return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
- // If the LHS is also a constant, we can completely constant fold this.
- if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
- uint64_t Result = InC->getZExtValue();
- Result &= maskTrailingOnes<uint64_t>(Index);
- return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
- }
- // TODO should we convert this to an AND if the RHS is constant?
- }
- break;
-
- case Intrinsic::x86_vcvtph2ps_128:
- case Intrinsic::x86_vcvtph2ps_256: {
- auto Arg = II->getArgOperand(0);
- auto ArgType = cast<VectorType>(Arg->getType());
- auto RetType = cast<VectorType>(II->getType());
- unsigned ArgWidth = ArgType->getNumElements();
- unsigned RetWidth = RetType->getNumElements();
- assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
- assert(ArgType->isIntOrIntVectorTy() &&
- ArgType->getScalarSizeInBits() == 16 &&
- "CVTPH2PS input type should be 16-bit integer vector");
- assert(RetType->getScalarType()->isFloatTy() &&
- "CVTPH2PS output type should be 32-bit float vector");
-
- // Constant folding: Convert to generic half to single conversion.
- if (isa<ConstantAggregateZero>(Arg))
- return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
-
- if (isa<ConstantDataVector>(Arg)) {
- auto VectorHalfAsShorts = Arg;
- if (RetWidth < ArgWidth) {
- SmallVector<uint32_t, 8> SubVecMask;
- for (unsigned i = 0; i != RetWidth; ++i)
- SubVecMask.push_back((int)i);
- VectorHalfAsShorts = Builder.CreateShuffleVector(
- Arg, UndefValue::get(ArgType), SubVecMask);
- }
-
- auto VectorHalfType =
- VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
- auto VectorHalfs =
- Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType);
- auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType);
- return replaceInstUsesWith(*II, VectorFloats);
- }
-
- // We only use the lowest lanes of the argument.
- if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
- II->setArgOperand(0, V);
- return II;
- }
- break;
- }
-
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64:
- case Intrinsic::x86_avx512_vcvtss2si32:
- case Intrinsic::x86_avx512_vcvtss2si64:
- case Intrinsic::x86_avx512_vcvtss2usi32:
- case Intrinsic::x86_avx512_vcvtss2usi64:
- case Intrinsic::x86_avx512_vcvtsd2si32:
- case Intrinsic::x86_avx512_vcvtsd2si64:
- case Intrinsic::x86_avx512_vcvtsd2usi32:
- case Intrinsic::x86_avx512_vcvtsd2usi64:
- case Intrinsic::x86_avx512_cvttss2si:
- case Intrinsic::x86_avx512_cvttss2si64:
- case Intrinsic::x86_avx512_cvttss2usi:
- case Intrinsic::x86_avx512_cvttss2usi64:
- case Intrinsic::x86_avx512_cvttsd2si:
- case Intrinsic::x86_avx512_cvttsd2si64:
- case Intrinsic::x86_avx512_cvttsd2usi:
- case Intrinsic::x86_avx512_cvttsd2usi64: {
- // These intrinsics only demand the 0th element of their input vectors. If
- // we can simplify the input based on that, do so now.
- Value *Arg = II->getArgOperand(0);
- unsigned VWidth = Arg->getType()->getVectorNumElements();
- if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
- II->setArgOperand(0, V);
- return II;
- }
- break;
- }
-
- case Intrinsic::x86_sse41_round_ps:
- case Intrinsic::x86_sse41_round_pd:
- case Intrinsic::x86_avx_round_ps_256:
- case Intrinsic::x86_avx_round_pd_256:
- case Intrinsic::x86_avx512_mask_rndscale_ps_128:
- case Intrinsic::x86_avx512_mask_rndscale_ps_256:
- case Intrinsic::x86_avx512_mask_rndscale_ps_512:
- case Intrinsic::x86_avx512_mask_rndscale_pd_128:
- case Intrinsic::x86_avx512_mask_rndscale_pd_256:
- case Intrinsic::x86_avx512_mask_rndscale_pd_512:
- case Intrinsic::x86_avx512_mask_rndscale_ss:
- case Intrinsic::x86_avx512_mask_rndscale_sd:
- if (Value *V = simplifyX86round(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_mmx_pmovmskb:
- case Intrinsic::x86_sse_movmsk_ps:
- case Intrinsic::x86_sse2_movmsk_pd:
- case Intrinsic::x86_sse2_pmovmskb_128:
- case Intrinsic::x86_avx_movmsk_pd_256:
- case Intrinsic::x86_avx_movmsk_ps_256:
- case Intrinsic::x86_avx2_pmovmskb:
- if (Value *V = simplifyX86movmsk(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_sse_comieq_ss:
- case Intrinsic::x86_sse_comige_ss:
- case Intrinsic::x86_sse_comigt_ss:
- case Intrinsic::x86_sse_comile_ss:
- case Intrinsic::x86_sse_comilt_ss:
- case Intrinsic::x86_sse_comineq_ss:
- case Intrinsic::x86_sse_ucomieq_ss:
- case Intrinsic::x86_sse_ucomige_ss:
- case Intrinsic::x86_sse_ucomigt_ss:
- case Intrinsic::x86_sse_ucomile_ss:
- case Intrinsic::x86_sse_ucomilt_ss:
- case Intrinsic::x86_sse_ucomineq_ss:
- case Intrinsic::x86_sse2_comieq_sd:
- case Intrinsic::x86_sse2_comige_sd:
- case Intrinsic::x86_sse2_comigt_sd:
- case Intrinsic::x86_sse2_comile_sd:
- case Intrinsic::x86_sse2_comilt_sd:
- case Intrinsic::x86_sse2_comineq_sd:
- case Intrinsic::x86_sse2_ucomieq_sd:
- case Intrinsic::x86_sse2_ucomige_sd:
- case Intrinsic::x86_sse2_ucomigt_sd:
- case Intrinsic::x86_sse2_ucomile_sd:
- case Intrinsic::x86_sse2_ucomilt_sd:
- case Intrinsic::x86_sse2_ucomineq_sd:
- case Intrinsic::x86_avx512_vcomi_ss:
- case Intrinsic::x86_avx512_vcomi_sd:
- case Intrinsic::x86_avx512_mask_cmp_ss:
- case Intrinsic::x86_avx512_mask_cmp_sd: {
- // These intrinsics only demand the 0th element of their input vectors. If
- // we can simplify the input based on that, do so now.
- bool MadeChange = false;
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
- unsigned VWidth = Arg0->getType()->getVectorNumElements();
- if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
- II->setArgOperand(0, V);
- MadeChange = true;
- }
- if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
- II->setArgOperand(1, V);
- MadeChange = true;
- }
- if (MadeChange)
- return II;
- break;
- }
- case Intrinsic::x86_avx512_cmp_pd_128:
- case Intrinsic::x86_avx512_cmp_pd_256:
- case Intrinsic::x86_avx512_cmp_pd_512:
- case Intrinsic::x86_avx512_cmp_ps_128:
- case Intrinsic::x86_avx512_cmp_ps_256:
- case Intrinsic::x86_avx512_cmp_ps_512: {
- // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
- bool Arg0IsZero = match(Arg0, m_PosZeroFP());
- if (Arg0IsZero)
- std::swap(Arg0, Arg1);
- Value *A, *B;
- // This fold requires only the NINF(not +/- inf) since inf minus
- // inf is nan.
- // NSZ(No Signed Zeros) is not needed because zeros of any sign are
- // equal for both compares.
- // NNAN is not needed because nans compare the same for both compares.
- // The compare intrinsic uses the above assumptions and therefore
- // doesn't require additional flags.
- if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
- match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
- cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
- if (Arg0IsZero)
- std::swap(A, B);
- II->setArgOperand(0, A);
- II->setArgOperand(1, B);
- return II;
- }
- break;
- }
-
- case Intrinsic::x86_avx512_add_ps_512:
- case Intrinsic::x86_avx512_div_ps_512:
- case Intrinsic::x86_avx512_mul_ps_512:
- case Intrinsic::x86_avx512_sub_ps_512:
- case Intrinsic::x86_avx512_add_pd_512:
- case Intrinsic::x86_avx512_div_pd_512:
- case Intrinsic::x86_avx512_mul_pd_512:
- case Intrinsic::x86_avx512_sub_pd_512:
- // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
- // IR operations.
- if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
- if (R->getValue() == 4) {
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
-
- Value *V;
- switch (II->getIntrinsicID()) {
- default: llvm_unreachable("Case stmts out of sync!");
- case Intrinsic::x86_avx512_add_ps_512:
- case Intrinsic::x86_avx512_add_pd_512:
- V = Builder.CreateFAdd(Arg0, Arg1);
- break;
- case Intrinsic::x86_avx512_sub_ps_512:
- case Intrinsic::x86_avx512_sub_pd_512:
- V = Builder.CreateFSub(Arg0, Arg1);
- break;
- case Intrinsic::x86_avx512_mul_ps_512:
- case Intrinsic::x86_avx512_mul_pd_512:
- V = Builder.CreateFMul(Arg0, Arg1);
- break;
- case Intrinsic::x86_avx512_div_ps_512:
- case Intrinsic::x86_avx512_div_pd_512:
- V = Builder.CreateFDiv(Arg0, Arg1);
- break;
- }
-
- return replaceInstUsesWith(*II, V);
- }
- }
- break;
-
- case Intrinsic::x86_avx512_mask_add_ss_round:
- case Intrinsic::x86_avx512_mask_div_ss_round:
- case Intrinsic::x86_avx512_mask_mul_ss_round:
- case Intrinsic::x86_avx512_mask_sub_ss_round:
- case Intrinsic::x86_avx512_mask_add_sd_round:
- case Intrinsic::x86_avx512_mask_div_sd_round:
- case Intrinsic::x86_avx512_mask_mul_sd_round:
- case Intrinsic::x86_avx512_mask_sub_sd_round:
- // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
- // IR operations.
- if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
- if (R->getValue() == 4) {
- // Extract the element as scalars.
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
- Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
- Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
-
- Value *V;
- switch (II->getIntrinsicID()) {
- default: llvm_unreachable("Case stmts out of sync!");
- case Intrinsic::x86_avx512_mask_add_ss_round:
- case Intrinsic::x86_avx512_mask_add_sd_round:
- V = Builder.CreateFAdd(LHS, RHS);
- break;
- case Intrinsic::x86_avx512_mask_sub_ss_round:
- case Intrinsic::x86_avx512_mask_sub_sd_round:
- V = Builder.CreateFSub(LHS, RHS);
- break;
- case Intrinsic::x86_avx512_mask_mul_ss_round:
- case Intrinsic::x86_avx512_mask_mul_sd_round:
- V = Builder.CreateFMul(LHS, RHS);
- break;
- case Intrinsic::x86_avx512_mask_div_ss_round:
- case Intrinsic::x86_avx512_mask_div_sd_round:
- V = Builder.CreateFDiv(LHS, RHS);
- break;
- }
-
- // Handle the masking aspect of the intrinsic.
- Value *Mask = II->getArgOperand(3);
- auto *C = dyn_cast<ConstantInt>(Mask);
- // We don't need a select if we know the mask bit is a 1.
- if (!C || !C->getValue()[0]) {
- // Cast the mask to an i1 vector and then extract the lowest element.
- auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
- cast<IntegerType>(Mask->getType())->getBitWidth());
- Mask = Builder.CreateBitCast(Mask, MaskTy);
- Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
- // Extract the lowest element from the passthru operand.
- Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
- (uint64_t)0);
- V = Builder.CreateSelect(Mask, V, Passthru);
- }
-
- // Insert the result back into the original argument 0.
- V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
-
- return replaceInstUsesWith(*II, V);
- }
- }
- LLVM_FALLTHROUGH;
-
- // X86 scalar intrinsics simplified with SimplifyDemandedVectorElts.
- case Intrinsic::x86_avx512_mask_max_ss_round:
- case Intrinsic::x86_avx512_mask_min_ss_round:
- case Intrinsic::x86_avx512_mask_max_sd_round:
- case Intrinsic::x86_avx512_mask_min_sd_round:
- case Intrinsic::x86_sse_cmp_ss:
- case Intrinsic::x86_sse_min_ss:
- case Intrinsic::x86_sse_max_ss:
- case Intrinsic::x86_sse2_cmp_sd:
- case Intrinsic::x86_sse2_min_sd:
- case Intrinsic::x86_sse2_max_sd:
- case Intrinsic::x86_xop_vfrcz_ss:
- case Intrinsic::x86_xop_vfrcz_sd: {
- unsigned VWidth = II->getType()->getVectorNumElements();
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
- if (V != II)
- return replaceInstUsesWith(*II, V);
- return II;
- }
- break;
- }
- case Intrinsic::x86_sse41_round_ss:
- case Intrinsic::x86_sse41_round_sd: {
- unsigned VWidth = II->getType()->getVectorNumElements();
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
- if (V != II)
- return replaceInstUsesWith(*II, V);
- return II;
- } else if (Value *V = simplifyX86round(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
- }
-
- // Constant fold ashr( <A x Bi>, Ci ).
- // Constant fold lshr( <A x Bi>, Ci ).
- // Constant fold shl( <A x Bi>, Ci ).
- case Intrinsic::x86_sse2_psrai_d:
- case Intrinsic::x86_sse2_psrai_w:
- case Intrinsic::x86_avx2_psrai_d:
- case Intrinsic::x86_avx2_psrai_w:
- case Intrinsic::x86_avx512_psrai_q_128:
- case Intrinsic::x86_avx512_psrai_q_256:
- case Intrinsic::x86_avx512_psrai_d_512:
- case Intrinsic::x86_avx512_psrai_q_512:
- case Intrinsic::x86_avx512_psrai_w_512:
- case Intrinsic::x86_sse2_psrli_d:
- case Intrinsic::x86_sse2_psrli_q:
- case Intrinsic::x86_sse2_psrli_w:
- case Intrinsic::x86_avx2_psrli_d:
- case Intrinsic::x86_avx2_psrli_q:
- case Intrinsic::x86_avx2_psrli_w:
- case Intrinsic::x86_avx512_psrli_d_512:
- case Intrinsic::x86_avx512_psrli_q_512:
- case Intrinsic::x86_avx512_psrli_w_512:
- case Intrinsic::x86_sse2_pslli_d:
- case Intrinsic::x86_sse2_pslli_q:
- case Intrinsic::x86_sse2_pslli_w:
- case Intrinsic::x86_avx2_pslli_d:
- case Intrinsic::x86_avx2_pslli_q:
- case Intrinsic::x86_avx2_pslli_w:
- case Intrinsic::x86_avx512_pslli_d_512:
- case Intrinsic::x86_avx512_pslli_q_512:
- case Intrinsic::x86_avx512_pslli_w_512:
- if (Value *V = simplifyX86immShift(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_sse2_psra_d:
- case Intrinsic::x86_sse2_psra_w:
- case Intrinsic::x86_avx2_psra_d:
- case Intrinsic::x86_avx2_psra_w:
- case Intrinsic::x86_avx512_psra_q_128:
- case Intrinsic::x86_avx512_psra_q_256:
- case Intrinsic::x86_avx512_psra_d_512:
- case Intrinsic::x86_avx512_psra_q_512:
- case Intrinsic::x86_avx512_psra_w_512:
- case Intrinsic::x86_sse2_psrl_d:
- case Intrinsic::x86_sse2_psrl_q:
- case Intrinsic::x86_sse2_psrl_w:
- case Intrinsic::x86_avx2_psrl_d:
- case Intrinsic::x86_avx2_psrl_q:
- case Intrinsic::x86_avx2_psrl_w:
- case Intrinsic::x86_avx512_psrl_d_512:
- case Intrinsic::x86_avx512_psrl_q_512:
- case Intrinsic::x86_avx512_psrl_w_512:
- case Intrinsic::x86_sse2_psll_d:
- case Intrinsic::x86_sse2_psll_q:
- case Intrinsic::x86_sse2_psll_w:
- case Intrinsic::x86_avx2_psll_d:
- case Intrinsic::x86_avx2_psll_q:
- case Intrinsic::x86_avx2_psll_w:
- case Intrinsic::x86_avx512_psll_d_512:
- case Intrinsic::x86_avx512_psll_q_512:
- case Intrinsic::x86_avx512_psll_w_512: {
- if (Value *V = simplifyX86immShift(*II, Builder))
- return replaceInstUsesWith(*II, V);
-
- // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
- // operand to compute the shift amount.
- Value *Arg1 = II->getArgOperand(1);
- assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
- "Unexpected packed shift size");
- unsigned VWidth = Arg1->getType()->getVectorNumElements();
-
- if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
- II->setArgOperand(1, V);
- return II;
- }
- break;
- }
-
- case Intrinsic::x86_avx2_psllv_d:
- case Intrinsic::x86_avx2_psllv_d_256:
- case Intrinsic::x86_avx2_psllv_q:
- case Intrinsic::x86_avx2_psllv_q_256:
- case Intrinsic::x86_avx512_psllv_d_512:
- case Intrinsic::x86_avx512_psllv_q_512:
- case Intrinsic::x86_avx512_psllv_w_128:
- case Intrinsic::x86_avx512_psllv_w_256:
- case Intrinsic::x86_avx512_psllv_w_512:
- case Intrinsic::x86_avx2_psrav_d:
- case Intrinsic::x86_avx2_psrav_d_256:
- case Intrinsic::x86_avx512_psrav_q_128:
- case Intrinsic::x86_avx512_psrav_q_256:
- case Intrinsic::x86_avx512_psrav_d_512:
- case Intrinsic::x86_avx512_psrav_q_512:
- case Intrinsic::x86_avx512_psrav_w_128:
- case Intrinsic::x86_avx512_psrav_w_256:
- case Intrinsic::x86_avx512_psrav_w_512:
- case Intrinsic::x86_avx2_psrlv_d:
- case Intrinsic::x86_avx2_psrlv_d_256:
- case Intrinsic::x86_avx2_psrlv_q:
- case Intrinsic::x86_avx2_psrlv_q_256:
- case Intrinsic::x86_avx512_psrlv_d_512:
- case Intrinsic::x86_avx512_psrlv_q_512:
- case Intrinsic::x86_avx512_psrlv_w_128:
- case Intrinsic::x86_avx512_psrlv_w_256:
- case Intrinsic::x86_avx512_psrlv_w_512:
- if (Value *V = simplifyX86varShift(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_sse2_packssdw_128:
- case Intrinsic::x86_sse2_packsswb_128:
- case Intrinsic::x86_avx2_packssdw:
- case Intrinsic::x86_avx2_packsswb:
- case Intrinsic::x86_avx512_packssdw_512:
- case Intrinsic::x86_avx512_packsswb_512:
- if (Value *V = simplifyX86pack(*II, true))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_sse2_packuswb_128:
- case Intrinsic::x86_sse41_packusdw:
- case Intrinsic::x86_avx2_packusdw:
- case Intrinsic::x86_avx2_packuswb:
- case Intrinsic::x86_avx512_packusdw_512:
- case Intrinsic::x86_avx512_packuswb_512:
- if (Value *V = simplifyX86pack(*II, false))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_pclmulqdq:
- case Intrinsic::x86_pclmulqdq_256:
- case Intrinsic::x86_pclmulqdq_512: {
- if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
- unsigned Imm = C->getZExtValue();
-
- bool MadeChange = false;
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
- unsigned VWidth = Arg0->getType()->getVectorNumElements();
-
- APInt UndefElts1(VWidth, 0);
- APInt DemandedElts1 = APInt::getSplat(VWidth,
- APInt(2, (Imm & 0x01) ? 2 : 1));
- if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
- UndefElts1)) {
- II->setArgOperand(0, V);
- MadeChange = true;
- }
-
- APInt UndefElts2(VWidth, 0);
- APInt DemandedElts2 = APInt::getSplat(VWidth,
- APInt(2, (Imm & 0x10) ? 2 : 1));
- if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
- UndefElts2)) {
- II->setArgOperand(1, V);
- MadeChange = true;
- }
-
- // If either input elements are undef, the result is zero.
- if (DemandedElts1.isSubsetOf(UndefElts1) ||
- DemandedElts2.isSubsetOf(UndefElts2))
- return replaceInstUsesWith(*II,
- ConstantAggregateZero::get(II->getType()));
-
- if (MadeChange)
- return II;
- }
- break;
- }
-
- case Intrinsic::x86_sse41_insertps:
- if (Value *V = simplifyX86insertps(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_sse4a_extrq: {
- Value *Op0 = II->getArgOperand(0);
- Value *Op1 = II->getArgOperand(1);
- unsigned VWidth0 = Op0->getType()->getVectorNumElements();
- unsigned VWidth1 = Op1->getType()->getVectorNumElements();
- assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
- Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
- VWidth1 == 16 && "Unexpected operand sizes");
-
- // See if we're dealing with constant values.
- Constant *C1 = dyn_cast<Constant>(Op1);
- ConstantInt *CILength =
- C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
- : nullptr;
- ConstantInt *CIIndex =
- C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
- : nullptr;
-
- // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
- if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
- return replaceInstUsesWith(*II, V);
-
- // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
- // operands and the lowest 16-bits of the second.
- bool MadeChange = false;
- if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
- II->setArgOperand(0, V);
- MadeChange = true;
- }
- if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
- II->setArgOperand(1, V);
- MadeChange = true;
- }
- if (MadeChange)
- return II;
- break;
- }
-
- case Intrinsic::x86_sse4a_extrqi: {
- // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
- // bits of the lower 64-bits. The upper 64-bits are undefined.
- Value *Op0 = II->getArgOperand(0);
- unsigned VWidth = Op0->getType()->getVectorNumElements();
- assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
- "Unexpected operand size");
-
- // See if we're dealing with constant values.
- ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
- ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
-
- // Attempt to simplify to a constant or shuffle vector.
- if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
- return replaceInstUsesWith(*II, V);
-
- // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
- // operand.
- if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
- II->setArgOperand(0, V);
- return II;
- }
- break;
- }
-
- case Intrinsic::x86_sse4a_insertq: {
- Value *Op0 = II->getArgOperand(0);
- Value *Op1 = II->getArgOperand(1);
- unsigned VWidth = Op0->getType()->getVectorNumElements();
- assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
- Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
- Op1->getType()->getVectorNumElements() == 2 &&
- "Unexpected operand size");
-
- // See if we're dealing with constant values.
- Constant *C1 = dyn_cast<Constant>(Op1);
- ConstantInt *CI11 =
- C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
- : nullptr;
-
- // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
- if (CI11) {
- const APInt &V11 = CI11->getValue();
- APInt Len = V11.zextOrTrunc(6);
- APInt Idx = V11.lshr(8).zextOrTrunc(6);
- if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
- return replaceInstUsesWith(*II, V);
- }
-
- // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
- // operand.
- if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
- II->setArgOperand(0, V);
- return II;
- }
- break;
- }
-
- case Intrinsic::x86_sse4a_insertqi: {
- // INSERTQI: Extract lowest Length bits from lower half of second source and
- // insert over first source starting at Index bit. The upper 64-bits are
- // undefined.
- Value *Op0 = II->getArgOperand(0);
- Value *Op1 = II->getArgOperand(1);
- unsigned VWidth0 = Op0->getType()->getVectorNumElements();
- unsigned VWidth1 = Op1->getType()->getVectorNumElements();
- assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
- Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
- VWidth1 == 2 && "Unexpected operand sizes");
-
- // See if we're dealing with constant values.
- ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
- ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
-
- // Attempt to simplify to a constant or shuffle vector.
- if (CILength && CIIndex) {
- APInt Len = CILength->getValue().zextOrTrunc(6);
- APInt Idx = CIIndex->getValue().zextOrTrunc(6);
- if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
- return replaceInstUsesWith(*II, V);
- }
-
- // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
- // operands.
- bool MadeChange = false;
- if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
- II->setArgOperand(0, V);
- MadeChange = true;
- }
- if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
- II->setArgOperand(1, V);
- MadeChange = true;
- }
- if (MadeChange)
- return II;
- break;
- }
-
- case Intrinsic::x86_sse41_pblendvb:
- case Intrinsic::x86_sse41_blendvps:
- case Intrinsic::x86_sse41_blendvpd:
- case Intrinsic::x86_avx_blendv_ps_256:
- case Intrinsic::x86_avx_blendv_pd_256:
- case Intrinsic::x86_avx2_pblendvb: {
- // fold (blend A, A, Mask) -> A
- Value *Op0 = II->getArgOperand(0);
- Value *Op1 = II->getArgOperand(1);
- Value *Mask = II->getArgOperand(2);
- if (Op0 == Op1)
- return replaceInstUsesWith(CI, Op0);
-
- // Zero Mask - select 1st argument.
- if (isa<ConstantAggregateZero>(Mask))
- return replaceInstUsesWith(CI, Op0);
-
- // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
- if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
- Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
- return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
- }
-
- // Convert to a vector select if we can bypass casts and find a boolean
- // vector condition value.
- Value *BoolVec;
- Mask = peekThroughBitcast(Mask);
- if (match(Mask, m_SExt(m_Value(BoolVec))) &&
- BoolVec->getType()->isVectorTy() &&
- BoolVec->getType()->getScalarSizeInBits() == 1) {
- assert(Mask->getType()->getPrimitiveSizeInBits() ==
- II->getType()->getPrimitiveSizeInBits() &&
- "Not expecting mask and operands with different sizes");
-
- unsigned NumMaskElts = Mask->getType()->getVectorNumElements();
- unsigned NumOperandElts = II->getType()->getVectorNumElements();
- if (NumMaskElts == NumOperandElts)
- return SelectInst::Create(BoolVec, Op1, Op0);
-
- // If the mask has less elements than the operands, each mask bit maps to
- // multiple elements of the operands. Bitcast back and forth.
- if (NumMaskElts < NumOperandElts) {
- Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType());
- Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType());
- Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
- return new BitCastInst(Sel, II->getType());
- }
- }
-
- break;
- }
-
- case Intrinsic::x86_ssse3_pshuf_b_128:
- case Intrinsic::x86_avx2_pshuf_b:
- case Intrinsic::x86_avx512_pshuf_b_512:
- if (Value *V = simplifyX86pshufb(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_avx_vpermilvar_ps:
- case Intrinsic::x86_avx_vpermilvar_ps_256:
- case Intrinsic::x86_avx512_vpermilvar_ps_512:
- case Intrinsic::x86_avx_vpermilvar_pd:
- case Intrinsic::x86_avx_vpermilvar_pd_256:
- case Intrinsic::x86_avx512_vpermilvar_pd_512:
- if (Value *V = simplifyX86vpermilvar(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_avx2_permd:
- case Intrinsic::x86_avx2_permps:
- case Intrinsic::x86_avx512_permvar_df_256:
- case Intrinsic::x86_avx512_permvar_df_512:
- case Intrinsic::x86_avx512_permvar_di_256:
- case Intrinsic::x86_avx512_permvar_di_512:
- case Intrinsic::x86_avx512_permvar_hi_128:
- case Intrinsic::x86_avx512_permvar_hi_256:
- case Intrinsic::x86_avx512_permvar_hi_512:
- case Intrinsic::x86_avx512_permvar_qi_128:
- case Intrinsic::x86_avx512_permvar_qi_256:
- case Intrinsic::x86_avx512_permvar_qi_512:
- case Intrinsic::x86_avx512_permvar_sf_512:
- case Intrinsic::x86_avx512_permvar_si_512:
- if (Value *V = simplifyX86vpermv(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_avx_maskload_ps:
- case Intrinsic::x86_avx_maskload_pd:
- case Intrinsic::x86_avx_maskload_ps_256:
- case Intrinsic::x86_avx_maskload_pd_256:
- case Intrinsic::x86_avx2_maskload_d:
- case Intrinsic::x86_avx2_maskload_q:
- case Intrinsic::x86_avx2_maskload_d_256:
- case Intrinsic::x86_avx2_maskload_q_256:
- if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
- return I;
- break;
-
- case Intrinsic::x86_sse2_maskmov_dqu:
- case Intrinsic::x86_avx_maskstore_ps:
- case Intrinsic::x86_avx_maskstore_pd:
- case Intrinsic::x86_avx_maskstore_ps_256:
- case Intrinsic::x86_avx_maskstore_pd_256:
- case Intrinsic::x86_avx2_maskstore_d:
- case Intrinsic::x86_avx2_maskstore_q:
- case Intrinsic::x86_avx2_maskstore_d_256:
- case Intrinsic::x86_avx2_maskstore_q_256:
- if (simplifyX86MaskedStore(*II, *this))
- return nullptr;
- break;
-
- case Intrinsic::x86_xop_vpcomb:
- case Intrinsic::x86_xop_vpcomd:
- case Intrinsic::x86_xop_vpcomq:
- case Intrinsic::x86_xop_vpcomw:
- if (Value *V = simplifyX86vpcom(*II, Builder, true))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_xop_vpcomub:
- case Intrinsic::x86_xop_vpcomud:
- case Intrinsic::x86_xop_vpcomuq:
- case Intrinsic::x86_xop_vpcomuw:
- if (Value *V = simplifyX86vpcom(*II, Builder, false))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::ppc_altivec_vperm:
- // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
- // Note that ppc_altivec_vperm has a big-endian bias, so when creating
- // a vectorshuffle for little endian, we must undo the transformation
- // performed on vec_perm in altivec.h. That is, we must complement
- // the permutation mask with respect to 31 and reverse the order of
- // V1 and V2.
- if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
- assert(Mask->getType()->getVectorNumElements() == 16 &&
- "Bad type for intrinsic!");
-
- // Check that all of the elements are integer constants or undefs.
- bool AllEltsOk = true;
- for (unsigned i = 0; i != 16; ++i) {
- Constant *Elt = Mask->getAggregateElement(i);
- if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
- AllEltsOk = false;
- break;
- }
- }
-
- if (AllEltsOk) {
- // Cast the input vectors to byte vectors.
- Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
- Mask->getType());
- Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
- Mask->getType());
- Value *Result = UndefValue::get(Op0->getType());
-
- // Only extract each element once.
- Value *ExtractedElts[32];
- memset(ExtractedElts, 0, sizeof(ExtractedElts));
-
- for (unsigned i = 0; i != 16; ++i) {
- if (isa<UndefValue>(Mask->getAggregateElement(i)))
- continue;
- unsigned Idx =
- cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
- Idx &= 31; // Match the hardware behavior.
- if (DL.isLittleEndian())
- Idx = 31 - Idx;
-
- if (!ExtractedElts[Idx]) {
- Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
- Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
- ExtractedElts[Idx] =
- Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
- Builder.getInt32(Idx&15));
- }
-
- // Insert this value into the result vector.
- Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
- Builder.getInt32(i));
- }
- return CastInst::Create(Instruction::BitCast, Result, CI.getType());
- }
- }
- break;
-
- case Intrinsic::arm_neon_vld1: {
- unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
- DL, II, &AC, &DT);
- if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
- return replaceInstUsesWith(*II, V);
- break;
- }
-
- case Intrinsic::arm_neon_vld2:
- case Intrinsic::arm_neon_vld3:
- case Intrinsic::arm_neon_vld4:
- case Intrinsic::arm_neon_vld2lane:
- case Intrinsic::arm_neon_vld3lane:
- case Intrinsic::arm_neon_vld4lane:
- case Intrinsic::arm_neon_vst1:
- case Intrinsic::arm_neon_vst2:
- case Intrinsic::arm_neon_vst3:
- case Intrinsic::arm_neon_vst4:
- case Intrinsic::arm_neon_vst2lane:
- case Intrinsic::arm_neon_vst3lane:
- case Intrinsic::arm_neon_vst4lane: {
- unsigned MemAlign =
- getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
- unsigned AlignArg = II->getNumArgOperands() - 1;
- ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
- if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
- II->setArgOperand(AlignArg,
- ConstantInt::get(Type::getInt32Ty(II->getContext()),
- MemAlign, false));
- return II;
- }
- break;
- }
-
- case Intrinsic::arm_neon_vtbl1:
- case Intrinsic::aarch64_neon_tbl1:
- if (Value *V = simplifyNeonTbl1(*II, Builder))
- return replaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::arm_neon_vmulls:
- case Intrinsic::arm_neon_vmullu:
- case Intrinsic::aarch64_neon_smull:
- case Intrinsic::aarch64_neon_umull: {
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
-
- // Handle mul by zero first:
- if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
- return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
- }
-
- // Check for constant LHS & RHS - in this case we just simplify.
- bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
- II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
- VectorType *NewVT = cast<VectorType>(II->getType());
- if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
- if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
- CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
- CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
-
- return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
- }
-
- // Couldn't simplify - canonicalize constant to the RHS.
- std::swap(Arg0, Arg1);
- }
-
- // Handle mul by one:
- if (Constant *CV1 = dyn_cast<Constant>(Arg1))
- if (ConstantInt *Splat =
- dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
- if (Splat->isOne())
- return CastInst::CreateIntegerCast(Arg0, II->getType(),
- /*isSigned=*/!Zext);
-
- break;
- }
- case Intrinsic::arm_neon_aesd:
- case Intrinsic::arm_neon_aese:
- case Intrinsic::aarch64_crypto_aesd:
- case Intrinsic::aarch64_crypto_aese: {
- Value *DataArg = II->getArgOperand(0);
- Value *KeyArg = II->getArgOperand(1);
-
- // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
- Value *Data, *Key;
- if (match(KeyArg, m_ZeroInt()) &&
- match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
- II->setArgOperand(0, Data);
- II->setArgOperand(1, Key);
- return II;
- }
- break;
- }
- case Intrinsic::amdgcn_rcp: {
- Value *Src = II->getArgOperand(0);
-
- // TODO: Move to ConstantFolding/InstSimplify?
- if (isa<UndefValue>(Src))
- return replaceInstUsesWith(CI, Src);
-
- if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
- const APFloat &ArgVal = C->getValueAPF();
- APFloat Val(ArgVal.getSemantics(), 1.0);
- APFloat::opStatus Status = Val.divide(ArgVal,
- APFloat::rmNearestTiesToEven);
- // Only do this if it was exact and therefore not dependent on the
- // rounding mode.
- if (Status == APFloat::opOK)
- return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
- }
-
- break;
- }
- case Intrinsic::amdgcn_rsq: {
- Value *Src = II->getArgOperand(0);
-
- // TODO: Move to ConstantFolding/InstSimplify?
- if (isa<UndefValue>(Src))
- return replaceInstUsesWith(CI, Src);
- break;
- }
- case Intrinsic::amdgcn_frexp_mant:
- case Intrinsic::amdgcn_frexp_exp: {
- Value *Src = II->getArgOperand(0);
- if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
- int Exp;
- APFloat Significand = frexp(C->getValueAPF(), Exp,
- APFloat::rmNearestTiesToEven);
-
- if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
- return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
- Significand));
- }
-
- // Match instruction special case behavior.
- if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
- Exp = 0;
-
- return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
- }
-
- if (isa<UndefValue>(Src))
- return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
- break;
- }
- case Intrinsic::amdgcn_class: {
- enum {
- S_NAN = 1 << 0, // Signaling NaN
- Q_NAN = 1 << 1, // Quiet NaN
- N_INFINITY = 1 << 2, // Negative infinity
- N_NORMAL = 1 << 3, // Negative normal
- N_SUBNORMAL = 1 << 4, // Negative subnormal
- N_ZERO = 1 << 5, // Negative zero
- P_ZERO = 1 << 6, // Positive zero
- P_SUBNORMAL = 1 << 7, // Positive subnormal
- P_NORMAL = 1 << 8, // Positive normal
- P_INFINITY = 1 << 9 // Positive infinity
- };
-
- const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
- N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
-
- Value *Src0 = II->getArgOperand(0);
- Value *Src1 = II->getArgOperand(1);
- const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
- if (!CMask) {
- if (isa<UndefValue>(Src0))
- return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
-
- if (isa<UndefValue>(Src1))
- return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
- break;
- }
-
- uint32_t Mask = CMask->getZExtValue();
-
- // If all tests are made, it doesn't matter what the value is.
- if ((Mask & FullMask) == FullMask)
- return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
-
- if ((Mask & FullMask) == 0)
- return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
-
- if (Mask == (S_NAN | Q_NAN)) {
- // Equivalent of isnan. Replace with standard fcmp.
- Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
- FCmp->takeName(II);
- return replaceInstUsesWith(*II, FCmp);
- }
-
- if (Mask == (N_ZERO | P_ZERO)) {
- // Equivalent of == 0.
- Value *FCmp = Builder.CreateFCmpOEQ(
- Src0, ConstantFP::get(Src0->getType(), 0.0));
-
- FCmp->takeName(II);
- return replaceInstUsesWith(*II, FCmp);
- }
-
- // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
- if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) {
- II->setArgOperand(1, ConstantInt::get(Src1->getType(),
- Mask & ~(S_NAN | Q_NAN)));
- return II;
- }
-
- const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
- if (!CVal) {
- if (isa<UndefValue>(Src0))
- return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
-
- // Clamp mask to used bits
- if ((Mask & FullMask) != Mask) {
- CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
- { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
- );
-
- NewCall->takeName(II);
- return replaceInstUsesWith(*II, NewCall);
- }
-
- break;
- }
-
- const APFloat &Val = CVal->getValueAPF();
-
- bool Result =
- ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
- ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
- ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
- ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
- ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
- ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
- ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
- ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
- ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
- ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
-
- return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
- }
- case Intrinsic::amdgcn_cvt_pkrtz: {
- Value *Src0 = II->getArgOperand(0);
- Value *Src1 = II->getArgOperand(1);
- if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
- if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
- const fltSemantics &HalfSem
- = II->getType()->getScalarType()->getFltSemantics();
- bool LosesInfo;
- APFloat Val0 = C0->getValueAPF();
- APFloat Val1 = C1->getValueAPF();
- Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
- Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
-
- Constant *Folded = ConstantVector::get({
- ConstantFP::get(II->getContext(), Val0),
- ConstantFP::get(II->getContext(), Val1) });
- return replaceInstUsesWith(*II, Folded);
- }
- }
-
- if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
- return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
-
- break;
- }
- case Intrinsic::amdgcn_cvt_pknorm_i16:
- case Intrinsic::amdgcn_cvt_pknorm_u16:
- case Intrinsic::amdgcn_cvt_pk_i16:
- case Intrinsic::amdgcn_cvt_pk_u16: {
- Value *Src0 = II->getArgOperand(0);
- Value *Src1 = II->getArgOperand(1);
-
- if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
- return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
-
- break;
- }
- case Intrinsic::amdgcn_ubfe:
- case Intrinsic::amdgcn_sbfe: {
- // Decompose simple cases into standard shifts.
- Value *Src = II->getArgOperand(0);
- if (isa<UndefValue>(Src))
- return replaceInstUsesWith(*II, Src);
-
- unsigned Width;
- Type *Ty = II->getType();
- unsigned IntSize = Ty->getIntegerBitWidth();
-
- ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
- if (CWidth) {
- Width = CWidth->getZExtValue();
- if ((Width & (IntSize - 1)) == 0)
- return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
-
- if (Width >= IntSize) {
- // Hardware ignores high bits, so remove those.
- II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
- Width & (IntSize - 1)));
- return II;
- }
- }
-
- unsigned Offset;
- ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
- if (COffset) {
- Offset = COffset->getZExtValue();
- if (Offset >= IntSize) {
- II->setArgOperand(1, ConstantInt::get(COffset->getType(),
- Offset & (IntSize - 1)));
- return II;
- }
- }
-
- bool Signed = II->getIntrinsicID() == Intrinsic::amdgcn_sbfe;
-
- if (!CWidth || !COffset)
- break;
-
- // The case of Width == 0 is handled above, which makes this tranformation
- // safe. If Width == 0, then the ashr and lshr instructions become poison
- // value since the shift amount would be equal to the bit size.
- assert(Width != 0);
-
- // TODO: This allows folding to undef when the hardware has specific
- // behavior?
- if (Offset + Width < IntSize) {
- Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
- Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
- : Builder.CreateLShr(Shl, IntSize - Width);
- RightShift->takeName(II);
- return replaceInstUsesWith(*II, RightShift);
- }
-
- Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
- : Builder.CreateLShr(Src, Offset);
-
- RightShift->takeName(II);
- return replaceInstUsesWith(*II, RightShift);
- }
- case Intrinsic::amdgcn_exp:
- case Intrinsic::amdgcn_exp_compr: {
- ConstantInt *En = dyn_cast<ConstantInt>(II->getArgOperand(1));
- if (!En) // Illegal.
- break;
-
- unsigned EnBits = En->getZExtValue();
- if (EnBits == 0xf)
- break; // All inputs enabled.
-
- bool IsCompr = II->getIntrinsicID() == Intrinsic::amdgcn_exp_compr;
- bool Changed = false;
- for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
- if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
- (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
- Value *Src = II->getArgOperand(I + 2);
- if (!isa<UndefValue>(Src)) {
- II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
- Changed = true;
- }
- }
- }
-
- if (Changed)
- return II;
-
- break;
- }
- case Intrinsic::amdgcn_fmed3: {
- // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
- // for the shader.
-
- Value *Src0 = II->getArgOperand(0);
- Value *Src1 = II->getArgOperand(1);
- Value *Src2 = II->getArgOperand(2);
-
- // Checking for NaN before canonicalization provides better fidelity when
- // mapping other operations onto fmed3 since the order of operands is
- // unchanged.
- CallInst *NewCall = nullptr;
- if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
- NewCall = Builder.CreateMinNum(Src1, Src2);
- } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
- NewCall = Builder.CreateMinNum(Src0, Src2);
- } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
- NewCall = Builder.CreateMaxNum(Src0, Src1);
- }
-
- if (NewCall) {
- NewCall->copyFastMathFlags(II);
- NewCall->takeName(II);
- return replaceInstUsesWith(*II, NewCall);
- }
-
- bool Swap = false;
- // Canonicalize constants to RHS operands.
- //
- // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
- if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
- std::swap(Src0, Src1);
- Swap = true;
- }
-
- if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
- std::swap(Src1, Src2);
- Swap = true;
- }
-
- if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
- std::swap(Src0, Src1);
- Swap = true;
- }
-
- if (Swap) {
- II->setArgOperand(0, Src0);
- II->setArgOperand(1, Src1);
- II->setArgOperand(2, Src2);
- return II;
- }
-
- if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
- if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
- if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
- APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
- C2->getValueAPF());
- return replaceInstUsesWith(*II,
- ConstantFP::get(Builder.getContext(), Result));
- }
- }
- }
-
- break;
- }
- case Intrinsic::amdgcn_icmp:
- case Intrinsic::amdgcn_fcmp: {
- const ConstantInt *CC = dyn_cast<ConstantInt>(II->getArgOperand(2));
- if (!CC)
- break;
-
- // Guard against invalid arguments.
- int64_t CCVal = CC->getZExtValue();
- bool IsInteger = II->getIntrinsicID() == Intrinsic::amdgcn_icmp;
- if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
- CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
- (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
- CCVal > CmpInst::LAST_FCMP_PREDICATE)))
- break;
-
- Value *Src0 = II->getArgOperand(0);
- Value *Src1 = II->getArgOperand(1);
-
- if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
- if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
- Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
- if (CCmp->isNullValue()) {
- return replaceInstUsesWith(
- *II, ConstantExpr::getSExt(CCmp, II->getType()));
- }
-
- // The result of V_ICMP/V_FCMP assembly instructions (which this
- // intrinsic exposes) is one bit per thread, masked with the EXEC
- // register (which contains the bitmask of live threads). So a
- // comparison that always returns true is the same as a read of the
- // EXEC register.
- Value *NewF = Intrinsic::getDeclaration(
- II->getModule(), Intrinsic::read_register, II->getType());
- Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
- MDNode *MD = MDNode::get(II->getContext(), MDArgs);
- Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
- CallInst *NewCall = Builder.CreateCall(NewF, Args);
- NewCall->addAttribute(AttributeList::FunctionIndex,
- Attribute::Convergent);
- NewCall->takeName(II);
- return replaceInstUsesWith(*II, NewCall);
- }
-
- // Canonicalize constants to RHS.
- CmpInst::Predicate SwapPred
- = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
- II->setArgOperand(0, Src1);
- II->setArgOperand(1, Src0);
- II->setArgOperand(2, ConstantInt::get(CC->getType(),
- static_cast<int>(SwapPred)));
- return II;
- }
-
- if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
- break;
-
- // Canonicalize compare eq with true value to compare != 0
- // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
- // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
- // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
- // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
- Value *ExtSrc;
- if (CCVal == CmpInst::ICMP_EQ &&
- ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
- (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
- ExtSrc->getType()->isIntegerTy(1)) {
- II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
- II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
- return II;
- }
-
- CmpInst::Predicate SrcPred;
- Value *SrcLHS;
- Value *SrcRHS;
-
- // Fold compare eq/ne with 0 from a compare result as the predicate to the
- // intrinsic. The typical use is a wave vote function in the library, which
- // will be fed from a user code condition compared with 0. Fold in the
- // redundant compare.
-
- // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
- // -> llvm.amdgcn.[if]cmp(a, b, pred)
- //
- // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
- // -> llvm.amdgcn.[if]cmp(a, b, inv pred)
- if (match(Src1, m_Zero()) &&
- match(Src0,
- m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
- if (CCVal == CmpInst::ICMP_EQ)
- SrcPred = CmpInst::getInversePredicate(SrcPred);
-
- Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
- Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
-
- Type *Ty = SrcLHS->getType();
- if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
- // Promote to next legal integer type.
- unsigned Width = CmpType->getBitWidth();
- unsigned NewWidth = Width;
-
- // Don't do anything for i1 comparisons.
- if (Width == 1)
- break;
-
- if (Width <= 16)
- NewWidth = 16;
- else if (Width <= 32)
- NewWidth = 32;
- else if (Width <= 64)
- NewWidth = 64;
- else if (Width > 64)
- break; // Can't handle this.
-
- if (Width != NewWidth) {
- IntegerType *CmpTy = Builder.getIntNTy(NewWidth);
- if (CmpInst::isSigned(SrcPred)) {
- SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy);
- SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy);
- } else {
- SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy);
- SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy);
- }
- }
- } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
- break;
-
- Value *NewF = Intrinsic::getDeclaration(II->getModule(), NewIID,
- SrcLHS->getType());
- Value *Args[] = { SrcLHS, SrcRHS,
- ConstantInt::get(CC->getType(), SrcPred) };
- CallInst *NewCall = Builder.CreateCall(NewF, Args);
- NewCall->takeName(II);
- return replaceInstUsesWith(*II, NewCall);
- }
-
- break;
- }
- case Intrinsic::amdgcn_wqm_vote: {
- // wqm_vote is identity when the argument is constant.
- if (!isa<Constant>(II->getArgOperand(0)))
- break;
-
- return replaceInstUsesWith(*II, II->getArgOperand(0));
- }
- case Intrinsic::amdgcn_kill: {
- const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
- if (!C || !C->getZExtValue())
- break;
-
- // amdgcn.kill(i1 1) is a no-op
- return eraseInstFromFunction(CI);
- }
- case Intrinsic::amdgcn_update_dpp: {
- Value *Old = II->getArgOperand(0);
-
- auto BC = dyn_cast<ConstantInt>(II->getArgOperand(5));
- auto RM = dyn_cast<ConstantInt>(II->getArgOperand(3));
- auto BM = dyn_cast<ConstantInt>(II->getArgOperand(4));
- if (!BC || !RM || !BM ||
- BC->isZeroValue() ||
- RM->getZExtValue() != 0xF ||
- BM->getZExtValue() != 0xF ||
- isa<UndefValue>(Old))
- break;
-
- // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
- II->setOperand(0, UndefValue::get(Old->getType()));
- return II;
- }
- case Intrinsic::stackrestore: {
- // If the save is right next to the restore, remove the restore. This can
- // happen when variable allocas are DCE'd.
- if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
- if (SS->getIntrinsicID() == Intrinsic::stacksave) {
- // Skip over debug info.
- if (SS->getNextNonDebugInstruction() == II) {
- return eraseInstFromFunction(CI);
- }
- }
- }
-
- // Scan down this block to see if there is another stack restore in the
- // same block without an intervening call/alloca.
- BasicBlock::iterator BI(II);
- Instruction *TI = II->getParent()->getTerminator();
- bool CannotRemove = false;
- for (++BI; &*BI != TI; ++BI) {
- if (isa<AllocaInst>(BI)) {
- CannotRemove = true;
- break;
- }
- if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
- // If there is a stackrestore below this one, remove this one.
- if (II->getIntrinsicID() == Intrinsic::stackrestore)
- return eraseInstFromFunction(CI);
-
- // Bail if we cross over an intrinsic with side effects, such as
- // llvm.stacksave, llvm.read_register, or llvm.setjmp.
- if (II->mayHaveSideEffects()) {
- CannotRemove = true;
- break;
- }
- } else {
- // If we found a non-intrinsic call, we can't remove the stack
- // restore.
- CannotRemove = true;
- break;
- }
- }
- }
-
- // If the stack restore is in a return, resume, or unwind block and if there
- // are no allocas or calls between the restore and the return, nuke the
- // restore.
- if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
- return eraseInstFromFunction(CI);
- break;
- }
- case Intrinsic::lifetime_start:
- // Asan needs to poison memory to detect invalid access which is possible
- // even for empty lifetime range.
- if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
- II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
- break;
-
- if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
- Intrinsic::lifetime_end, *this))
- return nullptr;
- break;
- case Intrinsic::assume: {
- Value *IIOperand = II->getArgOperand(0);
- // Remove an assume if it is followed by an identical assume.
- // TODO: Do we need this? Unless there are conflicting assumptions, the
- // computeKnownBits(IIOperand) below here eliminates redundant assumes.
- Instruction *Next = II->getNextNonDebugInstruction();
- if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
- return eraseInstFromFunction(CI);
-
- // Canonicalize assume(a && b) -> assume(a); assume(b);
- // Note: New assumption intrinsics created here are registered by
- // the InstCombineIRInserter object.
- Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
- if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
- Builder.CreateCall(AssumeIntrinsic, A, II->getName());
- Builder.CreateCall(AssumeIntrinsic, B, II->getName());
- return eraseInstFromFunction(*II);
- }
- // assume(!(a || b)) -> assume(!a); assume(!b);
- if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
- Builder.CreateCall(AssumeIntrinsic, Builder.CreateNot(A), II->getName());
- Builder.CreateCall(AssumeIntrinsic, Builder.CreateNot(B), II->getName());
- return eraseInstFromFunction(*II);
- }
-
- // assume( (load addr) != null ) -> add 'nonnull' metadata to load
- // (if assume is valid at the load)
- CmpInst::Predicate Pred;
- Instruction *LHS;
- if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
- Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
- LHS->getType()->isPointerTy() &&
- isValidAssumeForContext(II, LHS, &DT)) {
- MDNode *MD = MDNode::get(II->getContext(), None);
- LHS->setMetadata(LLVMContext::MD_nonnull, MD);
- return eraseInstFromFunction(*II);
-
- // TODO: apply nonnull return attributes to calls and invokes
- // TODO: apply range metadata for range check patterns?
- }
-
- // If there is a dominating assume with the same condition as this one,
- // then this one is redundant, and should be removed.
- KnownBits Known(1);
- computeKnownBits(IIOperand, Known, 0, II);
- if (Known.isAllOnes())
- return eraseInstFromFunction(*II);
-
- // Update the cache of affected values for this assumption (we might be
- // here because we just simplified the condition).
- AC.updateAffectedValues(II);
- break;
- }
- case Intrinsic::experimental_gc_relocate: {
- // Translate facts known about a pointer before relocating into
- // facts about the relocate value, while being careful to
- // preserve relocation semantics.
- Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
-
- // Remove the relocation if unused, note that this check is required
- // to prevent the cases below from looping forever.
- if (II->use_empty())
- return eraseInstFromFunction(*II);
-
- // Undef is undef, even after relocation.
- // TODO: provide a hook for this in GCStrategy. This is clearly legal for
- // most practical collectors, but there was discussion in the review thread
- // about whether it was legal for all possible collectors.
- if (isa<UndefValue>(DerivedPtr))
- // Use undef of gc_relocate's type to replace it.
- return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
-
- if (auto *PT = dyn_cast<PointerType>(II->getType())) {
- // The relocation of null will be null for most any collector.
- // TODO: provide a hook for this in GCStrategy. There might be some
- // weird collector this property does not hold for.
- if (isa<ConstantPointerNull>(DerivedPtr))
- // Use null-pointer of gc_relocate's type to replace it.
- return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
-
- // isKnownNonNull -> nonnull attribute
- if (!II->hasRetAttr(Attribute::NonNull) &&
- isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) {
- II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
- return II;
- }
- }
-
- // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
- // Canonicalize on the type from the uses to the defs
-
- // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
- break;
- }
-
- case Intrinsic::experimental_guard: {
- // Is this guard followed by another guard? We scan forward over a small
- // fixed window of instructions to handle common cases with conditions
- // computed between guards.
- Instruction *NextInst = II->getNextNode();
- for (unsigned i = 0; i < GuardWideningWindow; i++) {
- // Note: Using context-free form to avoid compile time blow up
- if (!isSafeToSpeculativelyExecute(NextInst))
- break;
- NextInst = NextInst->getNextNode();
- }
- Value *NextCond = nullptr;
- if (match(NextInst,
- m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
- Value *CurrCond = II->getArgOperand(0);
-
- // Remove a guard that it is immediately preceded by an identical guard.
- if (CurrCond == NextCond)
- return eraseInstFromFunction(*NextInst);
-
- // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
- Instruction* MoveI = II->getNextNode();
- while (MoveI != NextInst) {
- auto *Temp = MoveI;
- MoveI = MoveI->getNextNode();
- Temp->moveBefore(II);
- }
- II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond));
- return eraseInstFromFunction(*NextInst);
- }
- break;
- }
- }
- return visitCallSite(II);
-}
-
-// Fence instruction simplification
-Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
- // Remove identical consecutive fences.
- Instruction *Next = FI.getNextNonDebugInstruction();
- if (auto *NFI = dyn_cast<FenceInst>(Next))
- if (FI.isIdenticalTo(NFI))
- return eraseInstFromFunction(FI);
- return nullptr;
-}
-
-// InvokeInst simplification
-Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
- return visitCallSite(&II);
-}
-
-/// If this cast does not affect the value passed through the varargs area, we
-/// can eliminate the use of the cast.
-static bool isSafeToEliminateVarargsCast(const CallSite CS,
- const DataLayout &DL,
- const CastInst *const CI,
- const int ix) {
- if (!CI->isLosslessCast())
- return false;
-
- // If this is a GC intrinsic, avoid munging types. We need types for
- // statepoint reconstruction in SelectionDAG.
- // TODO: This is probably something which should be expanded to all
- // intrinsics since the entire point of intrinsics is that
- // they are understandable by the optimizer.
- if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
- return false;
-
- // The size of ByVal or InAlloca arguments is derived from the type, so we
- // can't change to a type with a different size. If the size were
- // passed explicitly we could avoid this check.
- if (!CS.isByValOrInAllocaArgument(ix))
- return true;
-
- Type* SrcTy =
- cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
- Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
- if (!SrcTy->isSized() || !DstTy->isSized())
- return false;
- if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
- return false;
- return true;
-}
-
-Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
- if (!CI->getCalledFunction()) return nullptr;
-
- auto InstCombineRAUW = [this](Instruction *From, Value *With) {
- replaceInstUsesWith(*From, With);
- };
- auto InstCombineErase = [this](Instruction *I) {
- eraseInstFromFunction(*I);
- };
- LibCallSimplifier Simplifier(DL, &TLI, ORE, InstCombineRAUW,
- InstCombineErase);
- if (Value *With = Simplifier.optimizeCall(CI)) {
- ++NumSimplified;
- return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
- }
-
- return nullptr;
-}
-
-static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
- // Strip off at most one level of pointer casts, looking for an alloca. This
- // is good enough in practice and simpler than handling any number of casts.
- Value *Underlying = TrampMem->stripPointerCasts();
- if (Underlying != TrampMem &&
- (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
- return nullptr;
- if (!isa<AllocaInst>(Underlying))
- return nullptr;
-
- IntrinsicInst *InitTrampoline = nullptr;
- for (User *U : TrampMem->users()) {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- if (!II)
- return nullptr;
- if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
- if (InitTrampoline)
- // More than one init_trampoline writes to this value. Give up.
- return nullptr;
- InitTrampoline = II;
- continue;
- }
- if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
- // Allow any number of calls to adjust.trampoline.
- continue;
- return nullptr;
- }
-
- // No call to init.trampoline found.
- if (!InitTrampoline)
- return nullptr;
-
- // Check that the alloca is being used in the expected way.
- if (InitTrampoline->getOperand(0) != TrampMem)
- return nullptr;
-
- return InitTrampoline;
-}
-
-static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
- Value *TrampMem) {
- // Visit all the previous instructions in the basic block, and try to find a
- // init.trampoline which has a direct path to the adjust.trampoline.
- for (BasicBlock::iterator I = AdjustTramp->getIterator(),
- E = AdjustTramp->getParent()->begin();
- I != E;) {
- Instruction *Inst = &*--I;
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
- II->getOperand(0) == TrampMem)
- return II;
- if (Inst->mayWriteToMemory())
- return nullptr;
- }
- return nullptr;
-}
-
-// Given a call to llvm.adjust.trampoline, find and return the corresponding
-// call to llvm.init.trampoline if the call to the trampoline can be optimized
-// to a direct call to a function. Otherwise return NULL.
-static IntrinsicInst *findInitTrampoline(Value *Callee) {
- Callee = Callee->stripPointerCasts();
- IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
- if (!AdjustTramp ||
- AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
- return nullptr;
-
- Value *TrampMem = AdjustTramp->getOperand(0);
-
- if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
- return IT;
- if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
- return IT;
- return nullptr;
-}
-
-/// Improvements for call and invoke instructions.
-Instruction *InstCombiner::visitCallSite(CallSite CS) {
- if (isAllocLikeFn(CS.getInstruction(), &TLI))
- return visitAllocSite(*CS.getInstruction());
-
- bool Changed = false;
-
- // Mark any parameters that are known to be non-null with the nonnull
- // attribute. This is helpful for inlining calls to functions with null
- // checks on their arguments.
- SmallVector<unsigned, 4> ArgNos;
- unsigned ArgNo = 0;
-
- for (Value *V : CS.args()) {
- if (V->getType()->isPointerTy() &&
- !CS.paramHasAttr(ArgNo, Attribute::NonNull) &&
- isKnownNonZero(V, DL, 0, &AC, CS.getInstruction(), &DT))
- ArgNos.push_back(ArgNo);
- ArgNo++;
- }
-
- assert(ArgNo == CS.arg_size() && "sanity check");
-
- if (!ArgNos.empty()) {
- AttributeList AS = CS.getAttributes();
- LLVMContext &Ctx = CS.getInstruction()->getContext();
- AS = AS.addParamAttribute(Ctx, ArgNos,
- Attribute::get(Ctx, Attribute::NonNull));
- CS.setAttributes(AS);
- Changed = true;
- }
-
- // If the callee is a pointer to a function, attempt to move any casts to the
- // arguments of the call/invoke.
- Value *Callee = CS.getCalledValue();
- if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
- return nullptr;
-
- if (Function *CalleeF = dyn_cast<Function>(Callee)) {
- // Remove the convergent attr on calls when the callee is not convergent.
- if (CS.isConvergent() && !CalleeF->isConvergent() &&
- !CalleeF->isIntrinsic()) {
- LLVM_DEBUG(dbgs() << "Removing convergent attr from instr "
- << CS.getInstruction() << "\n");
- CS.setNotConvergent();
- return CS.getInstruction();
- }
-
- // If the call and callee calling conventions don't match, this call must
- // be unreachable, as the call is undefined.
- if (CalleeF->getCallingConv() != CS.getCallingConv() &&
- // Only do this for calls to a function with a body. A prototype may
- // not actually end up matching the implementation's calling conv for a
- // variety of reasons (e.g. it may be written in assembly).
- !CalleeF->isDeclaration()) {
- Instruction *OldCall = CS.getInstruction();
- new StoreInst(ConstantInt::getTrue(Callee->getContext()),
- UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
- OldCall);
- // If OldCall does not return void then replaceAllUsesWith undef.
- // This allows ValueHandlers and custom metadata to adjust itself.
- if (!OldCall->getType()->isVoidTy())
- replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
- if (isa<CallInst>(OldCall))
- return eraseInstFromFunction(*OldCall);
-
- // We cannot remove an invoke, because it would change the CFG, just
- // change the callee to a null pointer.
- cast<InvokeInst>(OldCall)->setCalledFunction(
- Constant::getNullValue(CalleeF->getType()));
- return nullptr;
- }
- }
-
- if ((isa<ConstantPointerNull>(Callee) &&
- !NullPointerIsDefined(CS.getInstruction()->getFunction())) ||
- isa<UndefValue>(Callee)) {
- // If CS does not return void then replaceAllUsesWith undef.
- // This allows ValueHandlers and custom metadata to adjust itself.
- if (!CS.getInstruction()->getType()->isVoidTy())
- replaceInstUsesWith(*CS.getInstruction(),
- UndefValue::get(CS.getInstruction()->getType()));
-
- if (isa<InvokeInst>(CS.getInstruction())) {
- // Can't remove an invoke because we cannot change the CFG.
- return nullptr;
- }
-
- // This instruction is not reachable, just remove it. We insert a store to
- // undef so that we know that this code is not reachable, despite the fact
- // that we can't modify the CFG here.
- new StoreInst(ConstantInt::getTrue(Callee->getContext()),
- UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
- CS.getInstruction());
-
- return eraseInstFromFunction(*CS.getInstruction());
- }
-
- if (IntrinsicInst *II = findInitTrampoline(Callee))
- return transformCallThroughTrampoline(CS, II);
-
- PointerType *PTy = cast<PointerType>(Callee->getType());
- FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- if (FTy->isVarArg()) {
- int ix = FTy->getNumParams();
- // See if we can optimize any arguments passed through the varargs area of
- // the call.
- for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
- E = CS.arg_end(); I != E; ++I, ++ix) {
- CastInst *CI = dyn_cast<CastInst>(*I);
- if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
- *I = CI->getOperand(0);
- Changed = true;
- }
- }
- }
-
- if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
- // Inline asm calls cannot throw - mark them 'nounwind'.
- CS.setDoesNotThrow();
- Changed = true;
- }
-
- // Try to optimize the call if possible, we require DataLayout for most of
- // this. None of these calls are seen as possibly dead so go ahead and
- // delete the instruction now.
- if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
- Instruction *I = tryOptimizeCall(CI);
- // If we changed something return the result, etc. Otherwise let
- // the fallthrough check.
- if (I) return eraseInstFromFunction(*I);
- }
-
- return Changed ? CS.getInstruction() : nullptr;
-}
-
-/// If the callee is a constexpr cast of a function, attempt to move the cast to
-/// the arguments of the call/invoke.
-bool InstCombiner::transformConstExprCastCall(CallSite CS) {
- auto *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
- if (!Callee)
- return false;
-
- // If this is a call to a thunk function, don't remove the cast. Thunks are
- // used to transparently forward all incoming parameters and outgoing return
- // values, so it's important to leave the cast in place.
- if (Callee->hasFnAttribute("thunk"))
- return false;
-
- // If this is a musttail call, the callee's prototype must match the caller's
- // prototype with the exception of pointee types. The code below doesn't
- // implement that, so we can't do this transform.
- // TODO: Do the transform if it only requires adding pointer casts.
- if (CS.isMustTailCall())
- return false;
-
- Instruction *Caller = CS.getInstruction();
- const AttributeList &CallerPAL = CS.getAttributes();
-
- // Okay, this is a cast from a function to a different type. Unless doing so
- // would cause a type conversion of one of our arguments, change this call to
- // be a direct call with arguments casted to the appropriate types.
- FunctionType *FT = Callee->getFunctionType();
- Type *OldRetTy = Caller->getType();
- Type *NewRetTy = FT->getReturnType();
-
- // Check to see if we are changing the return type...
- if (OldRetTy != NewRetTy) {
-
- if (NewRetTy->isStructTy())
- return false; // TODO: Handle multiple return values.
-
- if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
- if (Callee->isDeclaration())
- return false; // Cannot transform this return value.
-
- if (!Caller->use_empty() &&
- // void -> non-void is handled specially
- !NewRetTy->isVoidTy())
- return false; // Cannot transform this return value.
- }
-
- if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
- AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
- if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
- return false; // Attribute not compatible with transformed value.
- }
-
- // If the callsite is an invoke instruction, and the return value is used by
- // a PHI node in a successor, we cannot change the return type of the call
- // because there is no place to put the cast instruction (without breaking
- // the critical edge). Bail out in this case.
- if (!Caller->use_empty())
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
- for (User *U : II->users())
- if (PHINode *PN = dyn_cast<PHINode>(U))
- if (PN->getParent() == II->getNormalDest() ||
- PN->getParent() == II->getUnwindDest())
- return false;
- }
-
- unsigned NumActualArgs = CS.arg_size();
- unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
-
- // Prevent us turning:
- // declare void @takes_i32_inalloca(i32* inalloca)
- // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
- //
- // into:
- // call void @takes_i32_inalloca(i32* null)
- //
- // Similarly, avoid folding away bitcasts of byval calls.
- if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
- Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
- return false;
-
- CallSite::arg_iterator AI = CS.arg_begin();
- for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
- Type *ParamTy = FT->getParamType(i);
- Type *ActTy = (*AI)->getType();
-
- if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
- return false; // Cannot transform this parameter value.
-
- if (AttrBuilder(CallerPAL.getParamAttributes(i))
- .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
- return false; // Attribute not compatible with transformed value.
-
- if (CS.isInAllocaArgument(i))
- return false; // Cannot transform to and from inalloca.
-
- // If the parameter is passed as a byval argument, then we have to have a
- // sized type and the sized type has to have the same size as the old type.
- if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
- PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
- if (!ParamPTy || !ParamPTy->getElementType()->isSized())
- return false;
-
- Type *CurElTy = ActTy->getPointerElementType();
- if (DL.getTypeAllocSize(CurElTy) !=
- DL.getTypeAllocSize(ParamPTy->getElementType()))
- return false;
- }
- }
-
- if (Callee->isDeclaration()) {
- // Do not delete arguments unless we have a function body.
- if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
- return false;
-
- // If the callee is just a declaration, don't change the varargsness of the
- // call. We don't want to introduce a varargs call where one doesn't
- // already exist.
- PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
- if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
- return false;
-
- // If both the callee and the cast type are varargs, we still have to make
- // sure the number of fixed parameters are the same or we have the same
- // ABI issues as if we introduce a varargs call.
- if (FT->isVarArg() &&
- cast<FunctionType>(APTy->getElementType())->isVarArg() &&
- FT->getNumParams() !=
- cast<FunctionType>(APTy->getElementType())->getNumParams())
- return false;
- }
-
- if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
- !CallerPAL.isEmpty()) {
- // In this case we have more arguments than the new function type, but we
- // won't be dropping them. Check that these extra arguments have attributes
- // that are compatible with being a vararg call argument.
- unsigned SRetIdx;
- if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
- SRetIdx > FT->getNumParams())
- return false;
- }
-
- // Okay, we decided that this is a safe thing to do: go ahead and start
- // inserting cast instructions as necessary.
- SmallVector<Value *, 8> Args;
- SmallVector<AttributeSet, 8> ArgAttrs;
- Args.reserve(NumActualArgs);
- ArgAttrs.reserve(NumActualArgs);
-
- // Get any return attributes.
- AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
-
- // If the return value is not being used, the type may not be compatible
- // with the existing attributes. Wipe out any problematic attributes.
- RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
-
- AI = CS.arg_begin();
- for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
- Type *ParamTy = FT->getParamType(i);
-
- Value *NewArg = *AI;
- if ((*AI)->getType() != ParamTy)
- NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
- Args.push_back(NewArg);
-
- // Add any parameter attributes.
- ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
- }
-
- // If the function takes more arguments than the call was taking, add them
- // now.
- for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
- Args.push_back(Constant::getNullValue(FT->getParamType(i)));
- ArgAttrs.push_back(AttributeSet());
- }
-
- // If we are removing arguments to the function, emit an obnoxious warning.
- if (FT->getNumParams() < NumActualArgs) {
- // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
- if (FT->isVarArg()) {
- // Add all of the arguments in their promoted form to the arg list.
- for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
- Type *PTy = getPromotedType((*AI)->getType());
- Value *NewArg = *AI;
- if (PTy != (*AI)->getType()) {
- // Must promote to pass through va_arg area!
- Instruction::CastOps opcode =
- CastInst::getCastOpcode(*AI, false, PTy, false);
- NewArg = Builder.CreateCast(opcode, *AI, PTy);
- }
- Args.push_back(NewArg);
-
- // Add any parameter attributes.
- ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
- }
- }
- }
-
- AttributeSet FnAttrs = CallerPAL.getFnAttributes();
-
- if (NewRetTy->isVoidTy())
- Caller->setName(""); // Void type should not have a name.
-
- assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
- "missing argument attributes");
- LLVMContext &Ctx = Callee->getContext();
- AttributeList NewCallerPAL = AttributeList::get(
- Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
-
- SmallVector<OperandBundleDef, 1> OpBundles;
- CS.getOperandBundlesAsDefs(OpBundles);
-
- CallSite NewCS;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- NewCS = Builder.CreateInvoke(Callee, II->getNormalDest(),
- II->getUnwindDest(), Args, OpBundles);
- } else {
- NewCS = Builder.CreateCall(Callee, Args, OpBundles);
- cast<CallInst>(NewCS.getInstruction())
- ->setTailCallKind(cast<CallInst>(Caller)->getTailCallKind());
- }
- NewCS->takeName(Caller);
- NewCS.setCallingConv(CS.getCallingConv());
- NewCS.setAttributes(NewCallerPAL);
-
- // Preserve the weight metadata for the new call instruction. The metadata
- // is used by SamplePGO to check callsite's hotness.
- uint64_t W;
- if (Caller->extractProfTotalWeight(W))
- NewCS->setProfWeight(W);
-
- // Insert a cast of the return type as necessary.
- Instruction *NC = NewCS.getInstruction();
- Value *NV = NC;
- if (OldRetTy != NV->getType() && !Caller->use_empty()) {
- if (!NV->getType()->isVoidTy()) {
- NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
- NC->setDebugLoc(Caller->getDebugLoc());
-
- // If this is an invoke instruction, we should insert it after the first
- // non-phi, instruction in the normal successor block.
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
- InsertNewInstBefore(NC, *I);
- } else {
- // Otherwise, it's a call, just insert cast right after the call.
- InsertNewInstBefore(NC, *Caller);
- }
- Worklist.AddUsersToWorkList(*Caller);
- } else {
- NV = UndefValue::get(Caller->getType());
- }
- }
-
- if (!Caller->use_empty())
- replaceInstUsesWith(*Caller, NV);
- else if (Caller->hasValueHandle()) {
- if (OldRetTy == NV->getType())
- ValueHandleBase::ValueIsRAUWd(Caller, NV);
- else
- // We cannot call ValueIsRAUWd with a different type, and the
- // actual tracked value will disappear.
- ValueHandleBase::ValueIsDeleted(Caller);
- }
-
- eraseInstFromFunction(*Caller);
- return true;
-}
-
-/// Turn a call to a function created by init_trampoline / adjust_trampoline
-/// intrinsic pair into a direct call to the underlying function.
-Instruction *
-InstCombiner::transformCallThroughTrampoline(CallSite CS,
- IntrinsicInst *Tramp) {
- Value *Callee = CS.getCalledValue();
- PointerType *PTy = cast<PointerType>(Callee->getType());
- FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- AttributeList Attrs = CS.getAttributes();
-
- // If the call already has the 'nest' attribute somewhere then give up -
- // otherwise 'nest' would occur twice after splicing in the chain.
- if (Attrs.hasAttrSomewhere(Attribute::Nest))
- return nullptr;
-
- assert(Tramp &&
- "transformCallThroughTrampoline called with incorrect CallSite.");
-
- Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
- FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
-
- AttributeList NestAttrs = NestF->getAttributes();
- if (!NestAttrs.isEmpty()) {
- unsigned NestArgNo = 0;
- Type *NestTy = nullptr;
- AttributeSet NestAttr;
-
- // Look for a parameter marked with the 'nest' attribute.
- for (FunctionType::param_iterator I = NestFTy->param_begin(),
- E = NestFTy->param_end();
- I != E; ++NestArgNo, ++I) {
- AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
- if (AS.hasAttribute(Attribute::Nest)) {
- // Record the parameter type and any other attributes.
- NestTy = *I;
- NestAttr = AS;
- break;
- }
- }
-
- if (NestTy) {
- Instruction *Caller = CS.getInstruction();
- std::vector<Value*> NewArgs;
- std::vector<AttributeSet> NewArgAttrs;
- NewArgs.reserve(CS.arg_size() + 1);
- NewArgAttrs.reserve(CS.arg_size());
-
- // Insert the nest argument into the call argument list, which may
- // mean appending it. Likewise for attributes.
-
- {
- unsigned ArgNo = 0;
- CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- do {
- if (ArgNo == NestArgNo) {
- // Add the chain argument and attributes.
- Value *NestVal = Tramp->getArgOperand(2);
- if (NestVal->getType() != NestTy)
- NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
- NewArgs.push_back(NestVal);
- NewArgAttrs.push_back(NestAttr);
- }
-
- if (I == E)
- break;
-
- // Add the original argument and attributes.
- NewArgs.push_back(*I);
- NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
-
- ++ArgNo;
- ++I;
- } while (true);
- }
-
- // The trampoline may have been bitcast to a bogus type (FTy).
- // Handle this by synthesizing a new function type, equal to FTy
- // with the chain parameter inserted.
-
- std::vector<Type*> NewTypes;
- NewTypes.reserve(FTy->getNumParams()+1);
-
- // Insert the chain's type into the list of parameter types, which may
- // mean appending it.
- {
- unsigned ArgNo = 0;
- FunctionType::param_iterator I = FTy->param_begin(),
- E = FTy->param_end();
-
- do {
- if (ArgNo == NestArgNo)
- // Add the chain's type.
- NewTypes.push_back(NestTy);
-
- if (I == E)
- break;
-
- // Add the original type.
- NewTypes.push_back(*I);
-
- ++ArgNo;
- ++I;
- } while (true);
- }
-
- // Replace the trampoline call with a direct call. Let the generic
- // code sort out any function type mismatches.
- FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
- FTy->isVarArg());
- Constant *NewCallee =
- NestF->getType() == PointerType::getUnqual(NewFTy) ?
- NestF : ConstantExpr::getBitCast(NestF,
- PointerType::getUnqual(NewFTy));
- AttributeList NewPAL =
- AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
- Attrs.getRetAttributes(), NewArgAttrs);
-
- SmallVector<OperandBundleDef, 1> OpBundles;
- CS.getOperandBundlesAsDefs(OpBundles);
-
- Instruction *NewCaller;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- NewCaller = InvokeInst::Create(NewCallee,
- II->getNormalDest(), II->getUnwindDest(),
- NewArgs, OpBundles);
- cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
- cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
- } else {
- NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
- cast<CallInst>(NewCaller)->setTailCallKind(
- cast<CallInst>(Caller)->getTailCallKind());
- cast<CallInst>(NewCaller)->setCallingConv(
- cast<CallInst>(Caller)->getCallingConv());
- cast<CallInst>(NewCaller)->setAttributes(NewPAL);
- }
- NewCaller->setDebugLoc(Caller->getDebugLoc());
-
- return NewCaller;
- }
- }
-
- // Replace the trampoline call with a direct call. Since there is no 'nest'
- // parameter, there is no need to adjust the argument list. Let the generic
- // code sort out any function type mismatches.
- Constant *NewCallee =
- NestF->getType() == PTy ? NestF :
- ConstantExpr::getBitCast(NestF, PTy);
- CS.setCalledFunction(NewCallee);
- return CS.getInstruction();
-}