summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp415
1 files changed, 249 insertions, 166 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
index e74b590e2b7..dfdfd3e9da8 100644
--- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/gnu/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -14,9 +14,10 @@
#include "InstCombineInternal.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/PatternMatch.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Support/KnownBits.h"
using namespace llvm;
using namespace PatternMatch;
@@ -83,7 +84,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
AllocaInst &AI) {
PointerType *PTy = cast<PointerType>(CI.getType());
- BuilderTy AllocaBuilder(*Builder);
+ BuilderTy AllocaBuilder(Builder);
AllocaBuilder.SetInsertPoint(&AI);
// Get the type really allocated and the type casted to.
@@ -274,12 +275,12 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
return NV;
// If we are casting a PHI, then fold the cast into the PHI.
- if (isa<PHINode>(Src)) {
+ if (auto *PN = dyn_cast<PHINode>(Src)) {
// Don't do this if it would create a PHI node with an illegal type from a
// legal type.
if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
- ShouldChangeType(CI.getType(), Src->getType()))
- if (Instruction *NV = FoldOpIntoPhi(CI))
+ shouldChangeType(CI.getType(), Src->getType()))
+ if (Instruction *NV = foldOpIntoPhi(CI, PN))
return NV;
}
@@ -405,8 +406,7 @@ static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
/// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
/// --->
/// extractelement <4 x i32> %X, 1
-static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC,
- const DataLayout &DL) {
+static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
Value *TruncOp = Trunc.getOperand(0);
Type *DestType = Trunc.getType();
if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
@@ -433,21 +433,21 @@ static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC,
unsigned NumVecElts = VecWidth / DestWidth;
if (VecType->getElementType() != DestType) {
VecType = VectorType::get(DestType, NumVecElts);
- VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc");
+ VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
}
unsigned Elt = ShiftAmount / DestWidth;
- if (DL.isBigEndian())
+ if (IC.getDataLayout().isBigEndian())
Elt = NumVecElts - 1 - Elt;
- return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
+ return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
}
/// Try to narrow the width of bitwise logic instructions with constants.
Instruction *InstCombiner::shrinkBitwiseLogic(TruncInst &Trunc) {
Type *SrcTy = Trunc.getSrcTy();
Type *DestTy = Trunc.getType();
- if (isa<IntegerType>(SrcTy) && !ShouldChangeType(SrcTy, DestTy))
+ if (isa<IntegerType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
return nullptr;
BinaryOperator *LogicOp;
@@ -459,10 +459,60 @@ Instruction *InstCombiner::shrinkBitwiseLogic(TruncInst &Trunc) {
// trunc (logic X, C) --> logic (trunc X, C')
Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
- Value *NarrowOp0 = Builder->CreateTrunc(LogicOp->getOperand(0), DestTy);
+ Value *NarrowOp0 = Builder.CreateTrunc(LogicOp->getOperand(0), DestTy);
return BinaryOperator::Create(LogicOp->getOpcode(), NarrowOp0, NarrowC);
}
+/// Try to narrow the width of a splat shuffle. This could be generalized to any
+/// shuffle with a constant operand, but we limit the transform to avoid
+/// creating a shuffle type that targets may not be able to lower effectively.
+static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
+ InstCombiner::BuilderTy &Builder) {
+ auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
+ if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
+ Shuf->getMask()->getSplatValue() &&
+ Shuf->getType() == Shuf->getOperand(0)->getType()) {
+ // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
+ Constant *NarrowUndef = UndefValue::get(Trunc.getType());
+ Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
+ return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
+ }
+
+ return nullptr;
+}
+
+/// Try to narrow the width of an insert element. This could be generalized for
+/// any vector constant, but we limit the transform to insertion into undef to
+/// avoid potential backend problems from unsupported insertion widths. This
+/// could also be extended to handle the case of inserting a scalar constant
+/// into a vector variable.
+static Instruction *shrinkInsertElt(CastInst &Trunc,
+ InstCombiner::BuilderTy &Builder) {
+ Instruction::CastOps Opcode = Trunc.getOpcode();
+ assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
+ "Unexpected instruction for shrinking");
+
+ auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
+ if (!InsElt || !InsElt->hasOneUse())
+ return nullptr;
+
+ Type *DestTy = Trunc.getType();
+ Type *DestScalarTy = DestTy->getScalarType();
+ Value *VecOp = InsElt->getOperand(0);
+ Value *ScalarOp = InsElt->getOperand(1);
+ Value *Index = InsElt->getOperand(2);
+
+ if (isa<UndefValue>(VecOp)) {
+ // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
+ // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
+ UndefValue *NarrowUndef = UndefValue::get(DestTy);
+ Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
+ return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
+ }
+
+ return nullptr;
+}
+
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
@@ -488,7 +538,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
- if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
+ if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
canEvaluateTruncated(Src, DestTy, *this, &CI)) {
// If this cast is a truncate, evaluting in a different type always
@@ -503,11 +553,14 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
// Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
if (DestTy->getScalarSizeInBits() == 1) {
Constant *One = ConstantInt::get(SrcTy, 1);
- Src = Builder->CreateAnd(Src, One);
+ Src = Builder.CreateAnd(Src, One);
Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
+ // FIXME: Maybe combine the next two transforms to handle the no cast case
+ // more efficiently. Support vector types. Cleanup code by using m_OneUse.
+
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
Value *A = nullptr; ConstantInt *Cst = nullptr;
if (Src->hasOneUse() &&
@@ -526,36 +579,54 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
// Since we're doing an lshr and a zero extend, and know that the shift
// amount is smaller than ASize, it is always safe to do the shift in A's
// type, then zero extend or truncate to the result.
- Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
+ Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
Shift->takeName(Src);
return CastInst::CreateIntegerCast(Shift, DestTy, false);
}
+ // FIXME: We should canonicalize to zext/trunc and remove this transform.
// Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
// conversion.
// It works because bits coming from sign extension have the same value as
// the sign bit of the original value; performing ashr instead of lshr
// generates bits of the same value as the sign bit.
if (Src->hasOneUse() &&
- match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) &&
- cast<Instruction>(Src)->getOperand(0)->hasOneUse()) {
+ match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
+ Value *SExt = cast<Instruction>(Src)->getOperand(0);
+ const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
+ const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
+ const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
+ unsigned ShiftAmt = Cst->getZExtValue();
+
// This optimization can be only performed when zero bits generated by
// the original lshr aren't pulled into the value after truncation, so we
- // can only shift by values smaller than the size of destination type (in
- // bits).
- if (Cst->getValue().ult(ASize)) {
- Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue());
- Shift->takeName(Src);
- return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
+ // can only shift by values no larger than the number of extension bits.
+ // FIXME: Instead of bailing when the shift is too large, use and to clear
+ // the extra bits.
+ if (ShiftAmt <= MaxAmt) {
+ if (CISize == ASize)
+ return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
+ std::min(ShiftAmt, ASize - 1)));
+ if (SExt->hasOneUse()) {
+ Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
+ Shift->takeName(Src);
+ return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
+ }
}
}
if (Instruction *I = shrinkBitwiseLogic(CI))
return I;
+ if (Instruction *I = shrinkSplatShuffle(CI, Builder))
+ return I;
+
+ if (Instruction *I = shrinkInsertElt(CI, Builder))
+ return I;
+
if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
- ShouldChangeType(SrcTy, DestTy)) {
+ shouldChangeType(SrcTy, DestTy)) {
// Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
// dest type is native and cst < dest size.
if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
@@ -564,7 +635,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
// FoldShiftByConstant and is the extend in reg pattern.
const unsigned DestSize = DestTy->getScalarSizeInBits();
if (Cst->getValue().ult(DestSize)) {
- Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr");
+ Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
return BinaryOperator::Create(
Instruction::Shl, NewTrunc,
@@ -573,7 +644,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
}
}
- if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL))
+ if (Instruction *I = foldVecTruncToExtElt(CI, *this))
return I;
return nullptr;
@@ -589,20 +660,20 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
- if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
+ if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) ||
(ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
if (!DoTransform) return ICI;
Value *In = ICI->getOperand(0);
Value *Sh = ConstantInt::get(In->getType(),
In->getType()->getScalarSizeInBits() - 1);
- In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit");
+ In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
if (In->getType() != CI.getType())
- In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
+ In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
Constant *One = ConstantInt::get(In->getType(), 1);
- In = Builder->CreateXor(In, One, In->getName() + ".not");
+ In = Builder.CreateXor(In, One, In->getName() + ".not");
}
return replaceInstUsesWith(CI, In);
@@ -616,20 +687,18 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
+ if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) &&
// This only works for EQ and NE
ICI->isEquality()) {
// If Op1C some other power of two, convert:
- uint32_t BitWidth = Op1C->getType()->getBitWidth();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
+ KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
- APInt KnownZeroMask(~KnownZero);
+ APInt KnownZeroMask(~Known.Zero);
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
if (!DoTransform) return ICI;
bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
- if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
+ if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) {
// (X&4) == 2 --> false
// (X&4) != 2 --> true
Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
@@ -643,19 +712,19 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
if (ShAmt) {
// Perform a logical shr by shiftamt.
// Insert the shift to put the result in the low bit.
- In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
- In->getName() + ".lobit");
+ In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
+ In->getName() + ".lobit");
}
- if ((Op1CV != 0) == isNE) { // Toggle the low bit.
+ if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit.
Constant *One = ConstantInt::get(In->getType(), 1);
- In = Builder->CreateXor(In, One);
+ In = Builder.CreateXor(In, One);
}
if (CI.getType() == In->getType())
return replaceInstUsesWith(CI, In);
- Value *IntCast = Builder->CreateIntCast(In, CI.getType(), false);
+ Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
return replaceInstUsesWith(CI, IntCast);
}
}
@@ -666,34 +735,31 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
// may lead to additional simplifications.
if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
- uint32_t BitWidth = ITy->getBitWidth();
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
- APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
- APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
- computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
- computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
+ KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
+ KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
- if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
- APInt KnownBits = KnownZeroLHS | KnownOneLHS;
+ if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
+ APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
APInt UnknownBit = ~KnownBits;
if (UnknownBit.countPopulation() == 1) {
if (!DoTransform) return ICI;
- Value *Result = Builder->CreateXor(LHS, RHS);
+ Value *Result = Builder.CreateXor(LHS, RHS);
// Mask off any bits that are set and won't be shifted away.
- if (KnownOneLHS.uge(UnknownBit))
- Result = Builder->CreateAnd(Result,
+ if (KnownLHS.One.uge(UnknownBit))
+ Result = Builder.CreateAnd(Result,
ConstantInt::get(ITy, UnknownBit));
// Shift the bit we're testing down to the lsb.
- Result = Builder->CreateLShr(
+ Result = Builder.CreateLShr(
Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
+ Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
Result->takeName(ICI);
return replaceInstUsesWith(CI, Result);
}
@@ -838,11 +904,6 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
- // See if we can simplify any instructions used by the input whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(CI))
- return &CI;
-
Value *Src = CI.getOperand(0);
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
@@ -851,10 +912,10 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// expression tree to something weird like i93 unless the source is also
// strange.
unsigned BitsToClear;
- if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
+ if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
- assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
- "Unreasonable BitsToClear");
+ assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
+ "Can't clear more bits than in SrcTy");
// Okay, we can transform this! Insert the new expression now.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
@@ -898,7 +959,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (SrcSize < DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
- Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
+ Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
return new ZExtInst(And, CI.getType());
}
@@ -908,7 +969,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
AndValue));
}
if (SrcSize > DstSize) {
- Value *Trunc = Builder->CreateTrunc(A, CI.getType());
+ Value *Trunc = Builder.CreateTrunc(A, CI.getType());
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
return BinaryOperator::CreateAnd(Trunc,
ConstantInt::get(Trunc->getType(),
@@ -930,8 +991,8 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
(transformZExtICmp(LHS, CI, false) ||
transformZExtICmp(RHS, CI, false))) {
// zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
- Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
- Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
+ Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
+ Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
// Perform the elimination.
@@ -958,7 +1019,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
X->getType() == CI.getType()) {
Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
- return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
+ return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
}
return nullptr;
@@ -981,12 +1042,12 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
Value *Sh = ConstantInt::get(Op0->getType(),
Op0->getType()->getScalarSizeInBits()-1);
- Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
+ Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
if (In->getType() != CI.getType())
- In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
+ In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
if (Pred == ICmpInst::ICMP_SGT)
- In = Builder->CreateNot(In, In->getName()+".not");
+ In = Builder.CreateNot(In, In->getName() + ".not");
return replaceInstUsesWith(CI, In);
}
}
@@ -997,11 +1058,9 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
// the icmp and sext into bitwise/integer operations.
if (ICI->hasOneUse() &&
ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
- unsigned BitWidth = Op1C->getType()->getBitWidth();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
+ KnownBits Known = computeKnownBits(Op0, 0, &CI);
- APInt KnownZeroMask(~KnownZero);
+ APInt KnownZeroMask(~Known.Zero);
if (KnownZeroMask.isPowerOf2()) {
Value *In = ICI->getOperand(0);
@@ -1019,26 +1078,26 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
// Perform a right shift to place the desired bit in the LSB.
if (ShiftAmt)
- In = Builder->CreateLShr(In,
- ConstantInt::get(In->getType(), ShiftAmt));
+ In = Builder.CreateLShr(In,
+ ConstantInt::get(In->getType(), ShiftAmt));
// At this point "In" is either 1 or 0. Subtract 1 to turn
// {1, 0} -> {0, -1}.
- In = Builder->CreateAdd(In,
- ConstantInt::getAllOnesValue(In->getType()),
- "sext");
+ In = Builder.CreateAdd(In,
+ ConstantInt::getAllOnesValue(In->getType()),
+ "sext");
} else {
// sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
// sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
// Perform a left shift to place the desired bit in the MSB.
if (ShiftAmt)
- In = Builder->CreateShl(In,
- ConstantInt::get(In->getType(), ShiftAmt));
+ In = Builder.CreateShl(In,
+ ConstantInt::get(In->getType(), ShiftAmt));
// Distribute the bit over the whole bit width.
- In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
- BitWidth - 1), "sext");
+ In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
+ KnownZeroMask.getBitWidth() - 1), "sext");
}
if (CI.getType() == In->getType())
@@ -1124,20 +1183,14 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
- // See if we can simplify any instructions used by the input whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(CI))
- return &CI;
-
Value *Src = CI.getOperand(0);
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
// If we know that the value being extended is positive, we can use a zext
// instead.
- bool KnownZero, KnownOne;
- ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
- if (KnownZero) {
- Value *ZExt = Builder->CreateZExt(Src, DestTy);
+ KnownBits Known = computeKnownBits(Src, 0, &CI);
+ if (Known.isNonNegative()) {
+ Value *ZExt = Builder.CreateZExt(Src, DestTy);
return replaceInstUsesWith(CI, ZExt);
}
@@ -1145,7 +1198,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
- if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
+ if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
canEvaluateSExtd(Src, DestTy)) {
// Okay, we can transform this! Insert the new expression now.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
@@ -1163,22 +1216,20 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// We need to emit a shl + ashr to do the sign extend.
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
- return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
+ return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
ShAmt);
}
- // If this input is a trunc from our destination, then turn sext(trunc(x))
+ // If the input is a trunc from the destination type, then turn sext(trunc(x))
// into shifts.
- if (TruncInst *TI = dyn_cast<TruncInst>(Src))
- if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
- uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
- uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
- // We need to emit a shl + ashr to do the sign extend.
- Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
- Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
- return BinaryOperator::CreateAShr(Res, ShAmt);
- }
+ Value *X;
+ if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
+ // sext(trunc(X)) --> ashr(shl(X, C), C)
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+ Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
+ return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
+ }
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
return transformSExtICmp(ICI, CI);
@@ -1206,7 +1257,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
- A = Builder->CreateShl(A, ShAmtV, CI.getName());
+ A = Builder.CreateShl(A, ShAmtV, CI.getName());
return BinaryOperator::CreateAShr(A, ShAmtV);
}
@@ -1225,17 +1276,15 @@ static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
return nullptr;
}
-/// If this is a floating-point extension instruction, look
-/// through it until we get the source value.
+/// Look through floating-point extensions until we get the source value.
static Value *lookThroughFPExtensions(Value *V) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (I->getOpcode() == Instruction::FPExt)
- return lookThroughFPExtensions(I->getOperand(0));
+ while (auto *FPExt = dyn_cast<FPExtInst>(V))
+ V = FPExt->getOperand(0);
// If this value is a constant, return the constant in the smallest FP type
// that can accurately represent it. This allows us to turn
// (float)((double)X+2.0) into x+2.0f.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+ if (auto *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
return V; // No constant folding of this.
// See if the value can be truncated to half and then reextended.
@@ -1297,9 +1346,9 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
// case of interest here is (float)((double)float + float)).
if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
if (LHSOrig->getType() != CI.getType())
- LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
+ LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
if (RHSOrig->getType() != CI.getType())
- RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
+ RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
Instruction *RI =
BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
RI->copyFastMathFlags(OpI);
@@ -1314,9 +1363,9 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
// in the destination format if it can represent both sources.
if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
if (LHSOrig->getType() != CI.getType())
- LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
+ LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
if (RHSOrig->getType() != CI.getType())
- RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
+ RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
Instruction *RI =
BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
RI->copyFastMathFlags(OpI);
@@ -1332,9 +1381,9 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
// TODO: Tighten bound via rigorous analysis of the unbalanced case.
if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
if (LHSOrig->getType() != CI.getType())
- LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
+ LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
if (RHSOrig->getType() != CI.getType())
- RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
+ RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
Instruction *RI =
BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
RI->copyFastMathFlags(OpI);
@@ -1349,11 +1398,11 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
if (SrcWidth == OpWidth)
break;
if (LHSWidth < SrcWidth)
- LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
+ LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType());
else if (RHSWidth <= SrcWidth)
- RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
+ RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType());
if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
- Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
+ Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig);
if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
RI->copyFastMathFlags(OpI);
return CastInst::CreateFPCast(ExactResult, CI.getType());
@@ -1362,8 +1411,8 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
// (fptrunc (fneg x)) -> (fneg (fptrunc x))
if (BinaryOperator::isFNeg(OpI)) {
- Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
- CI.getType());
+ Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1),
+ CI.getType());
Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
RI->copyFastMathFlags(OpI);
return RI;
@@ -1382,34 +1431,57 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
(isa<ConstantFP>(SI->getOperand(1)) ||
isa<ConstantFP>(SI->getOperand(2))) &&
matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
- Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
- CI.getType());
- Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
- CI.getType());
+ Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType());
+ Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType());
return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
}
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
if (II) {
switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::fabs: {
- // (fptrunc (fabs x)) -> (fabs (fptrunc x))
- Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
- CI.getType());
- Type *IntrinsicType[] = { CI.getType() };
- Function *Overload = Intrinsic::getDeclaration(
- CI.getModule(), II->getIntrinsicID(), IntrinsicType);
-
- SmallVector<OperandBundleDef, 1> OpBundles;
- II->getOperandBundlesAsDefs(OpBundles);
-
- Value *Args[] = { InnerTrunc };
- return CallInst::Create(Overload, Args, OpBundles, II->getName());
+ default: break;
+ case Intrinsic::fabs:
+ case Intrinsic::ceil:
+ case Intrinsic::floor:
+ case Intrinsic::rint:
+ case Intrinsic::round:
+ case Intrinsic::nearbyint:
+ case Intrinsic::trunc: {
+ Value *Src = II->getArgOperand(0);
+ if (!Src->hasOneUse())
+ break;
+
+ // Except for fabs, this transformation requires the input of the unary FP
+ // operation to be itself an fpext from the type to which we're
+ // truncating.
+ if (II->getIntrinsicID() != Intrinsic::fabs) {
+ FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
+ if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType())
+ break;
}
+
+ // Do unary FP operation on smaller type.
+ // (fptrunc (fabs x)) -> (fabs (fptrunc x))
+ Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType());
+ Type *IntrinsicType[] = { CI.getType() };
+ Function *Overload = Intrinsic::getDeclaration(
+ CI.getModule(), II->getIntrinsicID(), IntrinsicType);
+
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ II->getOperandBundlesAsDefs(OpBundles);
+
+ Value *Args[] = { InnerTrunc };
+ CallInst *NewCI = CallInst::Create(Overload, Args,
+ OpBundles, II->getName());
+ NewCI->copyFastMathFlags(II);
+ return NewCI;
+ }
}
}
+ if (Instruction *I = shrinkInsertElt(CI, Builder))
+ return I;
+
return nullptr;
}
@@ -1502,7 +1574,7 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
- Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
+ Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
return new IntToPtrInst(P, CI.getType());
}
@@ -1524,7 +1596,7 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// GEP into CI would undo canonicalizing addrspacecast with different
// pointer types, causing infinite loops.
(!isa<AddrSpaceCastInst>(CI) ||
- GEP->getType() == GEP->getPointerOperand()->getType())) {
+ GEP->getType() == GEP->getPointerOperandType())) {
// Changing the cast operand is usually not a good idea but it is safe
// here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
@@ -1552,7 +1624,7 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
if (Ty->isVectorTy()) // Handle vectors of pointers.
PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
- Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
+ Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
}
@@ -1578,7 +1650,7 @@ static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
return nullptr;
SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
- InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
+ InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
}
// Now that the element types match, get the shuffle mask and RHS of the
@@ -1758,8 +1830,8 @@ static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
if (!Elements[i]) continue; // Unset element.
- Result = IC.Builder->CreateInsertElement(Result, Elements[i],
- IC.Builder->getInt32(i));
+ Result = IC.Builder.CreateInsertElement(Result, Elements[i],
+ IC.Builder.getInt32(i));
}
return Result;
@@ -1770,8 +1842,7 @@ static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
/// vectors better than bitcasts of scalars because vector registers are
/// usually not type-specific like scalar integer or scalar floating-point.
static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
- InstCombiner &IC,
- const DataLayout &DL) {
+ InstCombiner &IC) {
// TODO: Create and use a pattern matcher for ExtractElementInst.
auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
if (!ExtElt || !ExtElt->hasOneUse())
@@ -1785,8 +1856,8 @@ static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
auto *NewVecType = VectorType::get(DestType, NumElts);
- auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(),
- NewVecType, "bc");
+ auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
+ NewVecType, "bc");
return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
}
@@ -1795,7 +1866,7 @@ static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
InstCombiner::BuilderTy &Builder) {
Type *DestTy = BitCast.getType();
BinaryOperator *BO;
- if (!DestTy->getScalarType()->isIntegerTy() ||
+ if (!DestTy->isIntOrIntVectorTy() ||
!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
!BO->isBitwiseLogicOp())
return nullptr;
@@ -1821,6 +1892,18 @@ static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
}
+ // Canonicalize vector bitcasts to come before vector bitwise logic with a
+ // constant. This eases recognition of special constants for later ops.
+ // Example:
+ // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
+ Constant *C;
+ if (match(BO->getOperand(1), m_Constant(C))) {
+ // bitcast (logic X, C) --> logic (bitcast X, C')
+ Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
+ Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
+ return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
+ }
+
return nullptr;
}
@@ -1946,8 +2029,8 @@ Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
// For each old PHI node, create a corresponding new PHI node with a type A.
SmallDenseMap<PHINode *, PHINode *> NewPNodes;
for (auto *OldPN : OldPhiNodes) {
- Builder->SetInsertPoint(OldPN);
- PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands());
+ Builder.SetInsertPoint(OldPN);
+ PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
NewPNodes[OldPN] = NewPN;
}
@@ -1960,8 +2043,8 @@ Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
if (auto *C = dyn_cast<Constant>(V)) {
NewV = ConstantExpr::getBitCast(C, DestTy);
} else if (auto *LI = dyn_cast<LoadInst>(V)) {
- Builder->SetInsertPoint(LI->getNextNode());
- NewV = Builder->CreateBitCast(LI, DestTy);
+ Builder.SetInsertPoint(LI->getNextNode());
+ NewV = Builder.CreateBitCast(LI, DestTy);
Worklist.Add(LI);
} else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
NewV = BCI->getOperand(0);
@@ -1977,9 +2060,9 @@ Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
for (User *U : PN->users()) {
auto *SI = dyn_cast<StoreInst>(U);
if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
- Builder->SetInsertPoint(SI);
+ Builder.SetInsertPoint(SI);
auto *NewBC =
- cast<BitCastInst>(Builder->CreateBitCast(NewPNodes[PN], SrcTy));
+ cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
SI->setOperand(0, NewBC);
Worklist.Add(SI);
assert(hasStoreUsersOnly(*NewBC));
@@ -2034,14 +2117,14 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If we found a path from the src to dest, create the getelementptr now.
if (SrcElTy == DstElTy) {
- SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
+ SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
return GetElementPtrInst::CreateInBounds(Src, Idxs);
}
}
if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
- Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
+ Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
@@ -2074,7 +2157,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// scalar-scalar cast.
if (!DestTy->isVectorTy()) {
Value *Elem =
- Builder->CreateExtractElement(Src,
+ Builder.CreateExtractElement(Src,
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
}
@@ -2103,8 +2186,8 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Tmp->getOperand(0)->getType() == DestTy) ||
((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
Tmp->getOperand(0)->getType() == DestTy)) {
- Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
- Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
+ Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
+ Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
// Return a new shuffle vector. Use the same element ID's, as we
// know the vector types match #elts.
return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
@@ -2117,13 +2200,13 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
return I;
- if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL))
+ if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
return I;
- if (Instruction *I = foldBitCastBitwiseLogic(CI, *Builder))
+ if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
return I;
- if (Instruction *I = foldBitCastSelect(CI, *Builder))
+ if (Instruction *I = foldBitCastSelect(CI, Builder))
return I;
if (SrcTy->isPointerTy())
@@ -2147,7 +2230,7 @@ Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
MidTy = VectorType::get(MidTy, VT->getNumElements());
}
- Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
+ Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
return new AddrSpaceCastInst(NewBitCast, CI.getType());
}