summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp1368
1 files changed, 0 insertions, 1368 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
deleted file mode 100644
index 7e99f3e4e50..00000000000
--- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ /dev/null
@@ -1,1368 +0,0 @@
-//===- InstCombineMulDivRem.cpp -------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
-// srem, urem, frem.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
-#include "llvm/Transforms/Utils/BuildLibCalls.h"
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <utility>
-
-using namespace llvm;
-using namespace PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-/// The specific integer value is used in a context where it is known to be
-/// non-zero. If this allows us to simplify the computation, do so and return
-/// the new operand, otherwise return null.
-static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
- Instruction &CxtI) {
- // If V has multiple uses, then we would have to do more analysis to determine
- // if this is safe. For example, the use could be in dynamically unreached
- // code.
- if (!V->hasOneUse()) return nullptr;
-
- bool MadeChange = false;
-
- // ((1 << A) >>u B) --> (1 << (A-B))
- // Because V cannot be zero, we know that B is less than A.
- Value *A = nullptr, *B = nullptr, *One = nullptr;
- if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
- match(One, m_One())) {
- A = IC.Builder.CreateSub(A, B);
- return IC.Builder.CreateShl(One, A);
- }
-
- // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
- // inexact. Similarly for <<.
- BinaryOperator *I = dyn_cast<BinaryOperator>(V);
- if (I && I->isLogicalShift() &&
- IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
- // We know that this is an exact/nuw shift and that the input is a
- // non-zero context as well.
- if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
- I->setOperand(0, V2);
- MadeChange = true;
- }
-
- if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
- I->setIsExact();
- MadeChange = true;
- }
-
- if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
- I->setHasNoUnsignedWrap();
- MadeChange = true;
- }
- }
-
- // TODO: Lots more we could do here:
- // If V is a phi node, we can call this on each of its operands.
- // "select cond, X, 0" can simplify to "X".
-
- return MadeChange ? V : nullptr;
-}
-
-/// A helper routine of InstCombiner::visitMul().
-///
-/// If C is a scalar/vector of known powers of 2, then this function returns
-/// a new scalar/vector obtained from logBase2 of C.
-/// Return a null pointer otherwise.
-static Constant *getLogBase2(Type *Ty, Constant *C) {
- const APInt *IVal;
- if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
- return ConstantInt::get(Ty, IVal->logBase2());
-
- if (!Ty->isVectorTy())
- return nullptr;
-
- SmallVector<Constant *, 4> Elts;
- for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
- Constant *Elt = C->getAggregateElement(I);
- if (!Elt)
- return nullptr;
- if (isa<UndefValue>(Elt)) {
- Elts.push_back(UndefValue::get(Ty->getScalarType()));
- continue;
- }
- if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
- return nullptr;
- Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
- }
-
- return ConstantVector::get(Elts);
-}
-
-Instruction *InstCombiner::visitMul(BinaryOperator &I) {
- if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
-
- // X * -1 == 0 - X
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (match(Op1, m_AllOnes())) {
- BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
- if (I.hasNoSignedWrap())
- BO->setHasNoSignedWrap();
- return BO;
- }
-
- // Also allow combining multiply instructions on vectors.
- {
- Value *NewOp;
- Constant *C1, *C2;
- const APInt *IVal;
- if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
- m_Constant(C1))) &&
- match(C1, m_APInt(IVal))) {
- // ((X << C2)*C1) == (X * (C1 << C2))
- Constant *Shl = ConstantExpr::getShl(C1, C2);
- BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
- BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
- if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
- BO->setHasNoUnsignedWrap();
- if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
- Shl->isNotMinSignedValue())
- BO->setHasNoSignedWrap();
- return BO;
- }
-
- if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
- // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
- if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
- BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
-
- if (I.hasNoUnsignedWrap())
- Shl->setHasNoUnsignedWrap();
- if (I.hasNoSignedWrap()) {
- const APInt *V;
- if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
- Shl->setHasNoSignedWrap();
- }
-
- return Shl;
- }
- }
- }
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
- // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
- // The "* (2**n)" thus becomes a potential shifting opportunity.
- {
- const APInt & Val = CI->getValue();
- const APInt &PosVal = Val.abs();
- if (Val.isNegative() && PosVal.isPowerOf2()) {
- Value *X = nullptr, *Y = nullptr;
- if (Op0->hasOneUse()) {
- ConstantInt *C1;
- Value *Sub = nullptr;
- if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
- Sub = Builder.CreateSub(X, Y, "suba");
- else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
- Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
- if (Sub)
- return
- BinaryOperator::CreateMul(Sub,
- ConstantInt::get(Y->getType(), PosVal));
- }
- }
- }
- }
-
- if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
- return FoldedMul;
-
- // Simplify mul instructions with a constant RHS.
- if (isa<Constant>(Op1)) {
- // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
- Value *X;
- Constant *C1;
- if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
- Value *Mul = Builder.CreateMul(C1, Op1);
- // Only go forward with the transform if C1*CI simplifies to a tidier
- // constant.
- if (!match(Mul, m_Mul(m_Value(), m_Value())))
- return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
- }
- }
-
- // -X * C --> X * -C
- Value *X, *Y;
- Constant *Op1C;
- if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
- return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
-
- // -X * -Y --> X * Y
- if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
- auto *NewMul = BinaryOperator::CreateMul(X, Y);
- if (I.hasNoSignedWrap() &&
- cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
- cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
- NewMul->setHasNoSignedWrap();
- return NewMul;
- }
-
- // -X * Y --> -(X * Y)
- // X * -Y --> -(X * Y)
- if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
- return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
-
- // (X / Y) * Y = X - (X % Y)
- // (X / Y) * -Y = (X % Y) - X
- {
- Value *Y = Op1;
- BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
- if (!Div || (Div->getOpcode() != Instruction::UDiv &&
- Div->getOpcode() != Instruction::SDiv)) {
- Y = Op0;
- Div = dyn_cast<BinaryOperator>(Op1);
- }
- Value *Neg = dyn_castNegVal(Y);
- if (Div && Div->hasOneUse() &&
- (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
- (Div->getOpcode() == Instruction::UDiv ||
- Div->getOpcode() == Instruction::SDiv)) {
- Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
-
- // If the division is exact, X % Y is zero, so we end up with X or -X.
- if (Div->isExact()) {
- if (DivOp1 == Y)
- return replaceInstUsesWith(I, X);
- return BinaryOperator::CreateNeg(X);
- }
-
- auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
- : Instruction::SRem;
- Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
- if (DivOp1 == Y)
- return BinaryOperator::CreateSub(X, Rem);
- return BinaryOperator::CreateSub(Rem, X);
- }
- }
-
- /// i1 mul -> i1 and.
- if (I.getType()->isIntOrIntVectorTy(1))
- return BinaryOperator::CreateAnd(Op0, Op1);
-
- // X*(1 << Y) --> X << Y
- // (1 << Y)*X --> X << Y
- {
- Value *Y;
- BinaryOperator *BO = nullptr;
- bool ShlNSW = false;
- if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
- BO = BinaryOperator::CreateShl(Op1, Y);
- ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
- } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
- BO = BinaryOperator::CreateShl(Op0, Y);
- ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
- }
- if (BO) {
- if (I.hasNoUnsignedWrap())
- BO->setHasNoUnsignedWrap();
- if (I.hasNoSignedWrap() && ShlNSW)
- BO->setHasNoSignedWrap();
- return BO;
- }
- }
-
- // (bool X) * Y --> X ? Y : 0
- // Y * (bool X) --> X ? Y : 0
- if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
- if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
-
- // (lshr X, 31) * Y --> (ashr X, 31) & Y
- // Y * (lshr X, 31) --> (ashr X, 31) & Y
- // TODO: We are not checking one-use because the elimination of the multiply
- // is better for analysis?
- // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
- // more similar to what we're doing above.
- const APInt *C;
- if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
- return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
- if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
- return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
-
- if (Instruction *Ext = narrowMathIfNoOverflow(I))
- return Ext;
-
- bool Changed = false;
- if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoSignedWrap(true);
- }
-
- if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoUnsignedWrap(true);
- }
-
- return Changed ? &I : nullptr;
-}
-
-Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
- if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
- return FoldedMul;
-
- // X * -1.0 --> -X
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (match(Op1, m_SpecificFP(-1.0)))
- return BinaryOperator::CreateFNegFMF(Op0, &I);
-
- // -X * -Y --> X * Y
- Value *X, *Y;
- if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
- return BinaryOperator::CreateFMulFMF(X, Y, &I);
-
- // -X * C --> X * -C
- Constant *C;
- if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
- return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
-
- // Sink negation: -X * Y --> -(X * Y)
- if (match(Op0, m_OneUse(m_FNeg(m_Value(X)))))
- return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I);
-
- // Sink negation: Y * -X --> -(X * Y)
- if (match(Op1, m_OneUse(m_FNeg(m_Value(X)))))
- return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I);
-
- // fabs(X) * fabs(X) -> X * X
- if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
- return BinaryOperator::CreateFMulFMF(X, X, &I);
-
- // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
- if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
- return replaceInstUsesWith(I, V);
-
- if (I.hasAllowReassoc()) {
- // Reassociate constant RHS with another constant to form constant
- // expression.
- if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
- Constant *C1;
- if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
- // (C1 / X) * C --> (C * C1) / X
- Constant *CC1 = ConstantExpr::getFMul(C, C1);
- if (CC1->isNormalFP())
- return BinaryOperator::CreateFDivFMF(CC1, X, &I);
- }
- if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
- // (X / C1) * C --> X * (C / C1)
- Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
- if (CDivC1->isNormalFP())
- return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
-
- // If the constant was a denormal, try reassociating differently.
- // (X / C1) * C --> X / (C1 / C)
- Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
- if (Op0->hasOneUse() && C1DivC->isNormalFP())
- return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
- }
-
- // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
- // canonicalized to 'fadd X, C'. Distributing the multiply may allow
- // further folds and (X * C) + C2 is 'fma'.
- if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
- // (X + C1) * C --> (X * C) + (C * C1)
- Constant *CC1 = ConstantExpr::getFMul(C, C1);
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
- }
- if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
- // (C1 - X) * C --> (C * C1) - (X * C)
- Constant *CC1 = ConstantExpr::getFMul(C, C1);
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
- }
- }
-
- // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
- // nnan disallows the possibility of returning a number if both operands are
- // negative (in that case, we should return NaN).
- if (I.hasNoNaNs() &&
- match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
- match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
- Value *XY = Builder.CreateFMulFMF(X, Y, &I);
- Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
- return replaceInstUsesWith(I, Sqrt);
- }
-
- // (X*Y) * X => (X*X) * Y where Y != X
- // The purpose is two-fold:
- // 1) to form a power expression (of X).
- // 2) potentially shorten the critical path: After transformation, the
- // latency of the instruction Y is amortized by the expression of X*X,
- // and therefore Y is in a "less critical" position compared to what it
- // was before the transformation.
- if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
- Op1 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
- Op0 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- }
-
- // log2(X * 0.5) * Y = log2(X) * Y - Y
- if (I.isFast()) {
- IntrinsicInst *Log2 = nullptr;
- if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
- m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
- Log2 = cast<IntrinsicInst>(Op0);
- Y = Op1;
- }
- if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
- m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
- Log2 = cast<IntrinsicInst>(Op1);
- Y = Op0;
- }
- if (Log2) {
- Log2->setArgOperand(0, X);
- Log2->copyFastMathFlags(&I);
- Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
- return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
- }
- }
-
- return nullptr;
-}
-
-/// Fold a divide or remainder with a select instruction divisor when one of the
-/// select operands is zero. In that case, we can use the other select operand
-/// because div/rem by zero is undefined.
-bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
- SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
- if (!SI)
- return false;
-
- int NonNullOperand;
- if (match(SI->getTrueValue(), m_Zero()))
- // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
- NonNullOperand = 2;
- else if (match(SI->getFalseValue(), m_Zero()))
- // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
- NonNullOperand = 1;
- else
- return false;
-
- // Change the div/rem to use 'Y' instead of the select.
- I.setOperand(1, SI->getOperand(NonNullOperand));
-
- // Okay, we know we replace the operand of the div/rem with 'Y' with no
- // problem. However, the select, or the condition of the select may have
- // multiple uses. Based on our knowledge that the operand must be non-zero,
- // propagate the known value for the select into other uses of it, and
- // propagate a known value of the condition into its other users.
-
- // If the select and condition only have a single use, don't bother with this,
- // early exit.
- Value *SelectCond = SI->getCondition();
- if (SI->use_empty() && SelectCond->hasOneUse())
- return true;
-
- // Scan the current block backward, looking for other uses of SI.
- BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
- Type *CondTy = SelectCond->getType();
- while (BBI != BBFront) {
- --BBI;
- // If we found an instruction that we can't assume will return, so
- // information from below it cannot be propagated above it.
- if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
- break;
-
- // Replace uses of the select or its condition with the known values.
- for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
- I != E; ++I) {
- if (*I == SI) {
- *I = SI->getOperand(NonNullOperand);
- Worklist.Add(&*BBI);
- } else if (*I == SelectCond) {
- *I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
- : ConstantInt::getFalse(CondTy);
- Worklist.Add(&*BBI);
- }
- }
-
- // If we past the instruction, quit looking for it.
- if (&*BBI == SI)
- SI = nullptr;
- if (&*BBI == SelectCond)
- SelectCond = nullptr;
-
- // If we ran out of things to eliminate, break out of the loop.
- if (!SelectCond && !SI)
- break;
-
- }
- return true;
-}
-
-/// True if the multiply can not be expressed in an int this size.
-static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
- bool IsSigned) {
- bool Overflow;
- Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
- return Overflow;
-}
-
-/// True if C1 is a multiple of C2. Quotient contains C1/C2.
-static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
- bool IsSigned) {
- assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
-
- // Bail if we will divide by zero.
- if (C2.isNullValue())
- return false;
-
- // Bail if we would divide INT_MIN by -1.
- if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
- return false;
-
- APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
- if (IsSigned)
- APInt::sdivrem(C1, C2, Quotient, Remainder);
- else
- APInt::udivrem(C1, C2, Quotient, Remainder);
-
- return Remainder.isMinValue();
-}
-
-/// This function implements the transforms common to both integer division
-/// instructions (udiv and sdiv). It is called by the visitors to those integer
-/// division instructions.
-/// Common integer divide transforms
-Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- bool IsSigned = I.getOpcode() == Instruction::SDiv;
- Type *Ty = I.getType();
-
- // The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
- I.setOperand(1, V);
- return &I;
- }
-
- // Handle cases involving: [su]div X, (select Cond, Y, Z)
- // This does not apply for fdiv.
- if (simplifyDivRemOfSelectWithZeroOp(I))
- return &I;
-
- const APInt *C2;
- if (match(Op1, m_APInt(C2))) {
- Value *X;
- const APInt *C1;
-
- // (X / C1) / C2 -> X / (C1*C2)
- if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
- (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
- APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
- if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
- return BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, Product));
- }
-
- if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
- (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
- APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
-
- // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
- if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
- auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, Quotient));
- NewDiv->setIsExact(I.isExact());
- return NewDiv;
- }
-
- // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
- if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
- auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
- ConstantInt::get(Ty, Quotient));
- auto *OBO = cast<OverflowingBinaryOperator>(Op0);
- Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
- Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
- return Mul;
- }
- }
-
- if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
- *C1 != C1->getBitWidth() - 1) ||
- (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
- APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
- APInt C1Shifted = APInt::getOneBitSet(
- C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
-
- // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
- if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
- auto *BO = BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, Quotient));
- BO->setIsExact(I.isExact());
- return BO;
- }
-
- // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
- if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
- auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
- ConstantInt::get(Ty, Quotient));
- auto *OBO = cast<OverflowingBinaryOperator>(Op0);
- Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
- Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
- return Mul;
- }
- }
-
- if (!C2->isNullValue()) // avoid X udiv 0
- if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
- return FoldedDiv;
- }
-
- if (match(Op0, m_One())) {
- assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
- if (IsSigned) {
- // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
- // result is one, if Op1 is -1 then the result is minus one, otherwise
- // it's zero.
- Value *Inc = Builder.CreateAdd(Op1, Op0);
- Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
- return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
- } else {
- // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
- // result is one, otherwise it's zero.
- return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
- }
- }
-
- // See if we can fold away this div instruction.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
-
- // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
- Value *X, *Z;
- if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
- if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
- (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
- return BinaryOperator::Create(I.getOpcode(), X, Op1);
-
- // (X << Y) / X -> 1 << Y
- Value *Y;
- if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
- return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
- if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
- return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
-
- // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
- if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
- bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
- bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
- if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
- I.setOperand(0, ConstantInt::get(Ty, 1));
- I.setOperand(1, Y);
- return &I;
- }
- }
-
- return nullptr;
-}
-
-static const unsigned MaxDepth = 6;
-
-namespace {
-
-using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
- const BinaryOperator &I,
- InstCombiner &IC);
-
-/// Used to maintain state for visitUDivOperand().
-struct UDivFoldAction {
- /// Informs visitUDiv() how to fold this operand. This can be zero if this
- /// action joins two actions together.
- FoldUDivOperandCb FoldAction;
-
- /// Which operand to fold.
- Value *OperandToFold;
-
- union {
- /// The instruction returned when FoldAction is invoked.
- Instruction *FoldResult;
-
- /// Stores the LHS action index if this action joins two actions together.
- size_t SelectLHSIdx;
- };
-
- UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
- : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
- UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
- : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
-};
-
-} // end anonymous namespace
-
-// X udiv 2^C -> X >> C
-static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
- const BinaryOperator &I, InstCombiner &IC) {
- Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
- if (!C1)
- llvm_unreachable("Failed to constant fold udiv -> logbase2");
- BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
- if (I.isExact())
- LShr->setIsExact();
- return LShr;
-}
-
-// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
-// X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
-static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
- InstCombiner &IC) {
- Value *ShiftLeft;
- if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
- ShiftLeft = Op1;
-
- Constant *CI;
- Value *N;
- if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
- llvm_unreachable("match should never fail here!");
- Constant *Log2Base = getLogBase2(N->getType(), CI);
- if (!Log2Base)
- llvm_unreachable("getLogBase2 should never fail here!");
- N = IC.Builder.CreateAdd(N, Log2Base);
- if (Op1 != ShiftLeft)
- N = IC.Builder.CreateZExt(N, Op1->getType());
- BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
- if (I.isExact())
- LShr->setIsExact();
- return LShr;
-}
-
-// Recursively visits the possible right hand operands of a udiv
-// instruction, seeing through select instructions, to determine if we can
-// replace the udiv with something simpler. If we find that an operand is not
-// able to simplify the udiv, we abort the entire transformation.
-static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
- SmallVectorImpl<UDivFoldAction> &Actions,
- unsigned Depth = 0) {
- // Check to see if this is an unsigned division with an exact power of 2,
- // if so, convert to a right shift.
- if (match(Op1, m_Power2())) {
- Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
- return Actions.size();
- }
-
- // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
- if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
- match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
- Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
- return Actions.size();
- }
-
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxDepth)
- return 0;
-
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (size_t LHSIdx =
- visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
- if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
- Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
- return Actions.size();
- }
-
- return 0;
-}
-
-/// If we have zero-extended operands of an unsigned div or rem, we may be able
-/// to narrow the operation (sink the zext below the math).
-static Instruction *narrowUDivURem(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Instruction::BinaryOps Opcode = I.getOpcode();
- Value *N = I.getOperand(0);
- Value *D = I.getOperand(1);
- Type *Ty = I.getType();
- Value *X, *Y;
- if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
- X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
- // udiv (zext X), (zext Y) --> zext (udiv X, Y)
- // urem (zext X), (zext Y) --> zext (urem X, Y)
- Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
- return new ZExtInst(NarrowOp, Ty);
- }
-
- Constant *C;
- if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
- (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
- // If the constant is the same in the smaller type, use the narrow version.
- Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
- if (ConstantExpr::getZExt(TruncC, Ty) != C)
- return nullptr;
-
- // udiv (zext X), C --> zext (udiv X, C')
- // urem (zext X), C --> zext (urem X, C')
- // udiv C, (zext X) --> zext (udiv C', X)
- // urem C, (zext X) --> zext (urem C', X)
- Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
- : Builder.CreateBinOp(Opcode, TruncC, X);
- return new ZExtInst(NarrowOp, Ty);
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
- if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- // Handle the integer div common cases
- if (Instruction *Common = commonIDivTransforms(I))
- return Common;
-
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *X;
- const APInt *C1, *C2;
- if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
- // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
- bool Overflow;
- APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
- if (!Overflow) {
- bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
- BinaryOperator *BO = BinaryOperator::CreateUDiv(
- X, ConstantInt::get(X->getType(), C2ShlC1));
- if (IsExact)
- BO->setIsExact();
- return BO;
- }
- }
-
- // Op0 / C where C is large (negative) --> zext (Op0 >= C)
- // TODO: Could use isKnownNegative() to handle non-constant values.
- Type *Ty = I.getType();
- if (match(Op1, m_Negative())) {
- Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
- return CastInst::CreateZExtOrBitCast(Cmp, Ty);
- }
- // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
- return CastInst::CreateZExtOrBitCast(Cmp, Ty);
- }
-
- if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
- return NarrowDiv;
-
- // If the udiv operands are non-overflowing multiplies with a common operand,
- // then eliminate the common factor:
- // (A * B) / (A * X) --> B / X (and commuted variants)
- // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
- // TODO: If -reassociation handled this generally, we could remove this.
- Value *A, *B;
- if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
- if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
- match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
- return BinaryOperator::CreateUDiv(B, X);
- if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
- match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
- return BinaryOperator::CreateUDiv(A, X);
- }
-
- // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
- SmallVector<UDivFoldAction, 6> UDivActions;
- if (visitUDivOperand(Op0, Op1, I, UDivActions))
- for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
- FoldUDivOperandCb Action = UDivActions[i].FoldAction;
- Value *ActionOp1 = UDivActions[i].OperandToFold;
- Instruction *Inst;
- if (Action)
- Inst = Action(Op0, ActionOp1, I, *this);
- else {
- // This action joins two actions together. The RHS of this action is
- // simply the last action we processed, we saved the LHS action index in
- // the joining action.
- size_t SelectRHSIdx = i - 1;
- Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
- size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
- Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
- Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
- SelectLHS, SelectRHS);
- }
-
- // If this is the last action to process, return it to the InstCombiner.
- // Otherwise, we insert it before the UDiv and record it so that we may
- // use it as part of a joining action (i.e., a SelectInst).
- if (e - i != 1) {
- Inst->insertBefore(&I);
- UDivActions[i].FoldResult = Inst;
- } else
- return Inst;
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
- if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- // Handle the integer div common cases
- if (Instruction *Common = commonIDivTransforms(I))
- return Common;
-
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *X;
- // sdiv Op0, -1 --> -Op0
- // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
- if (match(Op1, m_AllOnes()) ||
- (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
- return BinaryOperator::CreateNeg(Op0);
-
- const APInt *Op1C;
- if (match(Op1, m_APInt(Op1C))) {
- // sdiv exact X, C --> ashr exact X, log2(C)
- if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
- Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
- return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
- }
-
- // If the dividend is sign-extended and the constant divisor is small enough
- // to fit in the source type, shrink the division to the narrower type:
- // (sext X) sdiv C --> sext (X sdiv C)
- Value *Op0Src;
- if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
- Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
-
- // In the general case, we need to make sure that the dividend is not the
- // minimum signed value because dividing that by -1 is UB. But here, we
- // know that the -1 divisor case is already handled above.
-
- Constant *NarrowDivisor =
- ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
- Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
- return new SExtInst(NarrowOp, Op0->getType());
- }
- }
-
- if (Constant *RHS = dyn_cast<Constant>(Op1)) {
- // X/INT_MIN -> X == INT_MIN
- if (RHS->isMinSignedValue())
- return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
-
- // -X/C --> X/-C provided the negation doesn't overflow.
- Value *X;
- if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
- auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
- BO->setIsExact(I.isExact());
- return BO;
- }
- }
-
- // If the sign bits of both operands are zero (i.e. we can prove they are
- // unsigned inputs), turn this into a udiv.
- APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
- if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
- if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
- // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
- auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- BO->setIsExact(I.isExact());
- return BO;
- }
-
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
- // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
- // Safe because the only negative value (1 << Y) can take on is
- // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
- // the sign bit set.
- auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- BO->setIsExact(I.isExact());
- return BO;
- }
- }
-
- return nullptr;
-}
-
-/// Remove negation and try to convert division into multiplication.
-static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
- Constant *C;
- if (!match(I.getOperand(1), m_Constant(C)))
- return nullptr;
-
- // -X / C --> X / -C
- Value *X;
- if (match(I.getOperand(0), m_FNeg(m_Value(X))))
- return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
-
- // If the constant divisor has an exact inverse, this is always safe. If not,
- // then we can still create a reciprocal if fast-math-flags allow it and the
- // constant is a regular number (not zero, infinite, or denormal).
- if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
- return nullptr;
-
- // Disallow denormal constants because we don't know what would happen
- // on all targets.
- // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
- // denorms are flushed?
- auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
- if (!RecipC->isNormalFP())
- return nullptr;
-
- // X / C --> X * (1 / C)
- return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
-}
-
-/// Remove negation and try to reassociate constant math.
-static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
- Constant *C;
- if (!match(I.getOperand(0), m_Constant(C)))
- return nullptr;
-
- // C / -X --> -C / X
- Value *X;
- if (match(I.getOperand(1), m_FNeg(m_Value(X))))
- return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
-
- if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
- return nullptr;
-
- // Try to reassociate C / X expressions where X includes another constant.
- Constant *C2, *NewC = nullptr;
- if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
- // C / (X * C2) --> (C / C2) / X
- NewC = ConstantExpr::getFDiv(C, C2);
- } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
- // C / (X / C2) --> (C * C2) / X
- NewC = ConstantExpr::getFMul(C, C2);
- }
- // Disallow denormal constants because we don't know what would happen
- // on all targets.
- // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
- // denorms are flushed?
- if (!NewC || !NewC->isNormalFP())
- return nullptr;
-
- return BinaryOperator::CreateFDivFMF(NewC, X, &I);
-}
-
-Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
- if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- if (Instruction *R = foldFDivConstantDivisor(I))
- return R;
-
- if (Instruction *R = foldFDivConstantDividend(I))
- return R;
-
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
-
- if (isa<Constant>(Op1))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
-
- if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
- Value *X, *Y;
- if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
- (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
- // (X / Y) / Z => X / (Y * Z)
- Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
- return BinaryOperator::CreateFDivFMF(X, YZ, &I);
- }
- if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
- (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
- // Z / (X / Y) => (Y * Z) / X
- Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
- return BinaryOperator::CreateFDivFMF(YZ, X, &I);
- }
- }
-
- if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
- // sin(X) / cos(X) -> tan(X)
- // cos(X) / sin(X) -> 1/tan(X) (cotangent)
- Value *X;
- bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
- bool IsCot =
- !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
-
- if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan,
- LibFunc_tanf, LibFunc_tanl)) {
- IRBuilder<> B(&I);
- IRBuilder<>::FastMathFlagGuard FMFGuard(B);
- B.setFastMathFlags(I.getFastMathFlags());
- AttributeList Attrs = CallSite(Op0).getCalledFunction()->getAttributes();
- Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
- LibFunc_tanl, B, Attrs);
- if (IsCot)
- Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
- return replaceInstUsesWith(I, Res);
- }
- }
-
- // -X / -Y -> X / Y
- Value *X, *Y;
- if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
- I.setOperand(0, X);
- I.setOperand(1, Y);
- return &I;
- }
-
- // X / (X * Y) --> 1.0 / Y
- // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
- // We can ignore the possibility that X is infinity because INF/INF is NaN.
- if (I.hasNoNaNs() && I.hasAllowReassoc() &&
- match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
- I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
- I.setOperand(1, Y);
- return &I;
- }
-
- return nullptr;
-}
-
-/// This function implements the transforms common to both integer remainder
-/// instructions (urem and srem). It is called by the visitors to those integer
-/// remainder instructions.
-/// Common integer remainder transforms
-Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
- I.setOperand(1, V);
- return &I;
- }
-
- // Handle cases involving: rem X, (select Cond, Y, Z)
- if (simplifyDivRemOfSelectWithZeroOp(I))
- return &I;
-
- if (isa<Constant>(Op1)) {
- if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
- const APInt *Op1Int;
- if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
- (I.getOpcode() == Instruction::URem ||
- !Op1Int->isMinSignedValue())) {
- // foldOpIntoPhi will speculate instructions to the end of the PHI's
- // predecessor blocks, so do this only if we know the srem or urem
- // will not fault.
- if (Instruction *NV = foldOpIntoPhi(I, PN))
- return NV;
- }
- }
-
- // See if we can fold away this rem instruction.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- }
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitURem(BinaryOperator &I) {
- if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- if (Instruction *common = commonIRemTransforms(I))
- return common;
-
- if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
- return NarrowRem;
-
- // X urem Y -> X and Y-1, where Y is a power of 2,
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
- Constant *N1 = Constant::getAllOnesValue(Ty);
- Value *Add = Builder.CreateAdd(Op1, N1);
- return BinaryOperator::CreateAnd(Op0, Add);
- }
-
- // 1 urem X -> zext(X != 1)
- if (match(Op0, m_One()))
- return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty);
-
- // X urem C -> X < C ? X : X - C, where C >= signbit.
- if (match(Op1, m_Negative())) {
- Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
- Value *Sub = Builder.CreateSub(Op0, Op1);
- return SelectInst::Create(Cmp, Op0, Sub);
- }
-
- // If the divisor is a sext of a boolean, then the divisor must be max
- // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
- // max unsigned value. In that case, the remainder is 0:
- // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
- Value *X;
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
- return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
- if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- // Handle the integer rem common cases
- if (Instruction *Common = commonIRemTransforms(I))
- return Common;
-
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- {
- const APInt *Y;
- // X % -Y -> X % Y
- if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
- Worklist.AddValue(I.getOperand(1));
- I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
- return &I;
- }
- }
-
- // If the sign bits of both operands are zero (i.e. we can prove they are
- // unsigned inputs), turn this into a urem.
- APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
- if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
- MaskedValueIsZero(Op0, Mask, 0, &I)) {
- // X srem Y -> X urem Y, iff X and Y don't have sign bit set
- return BinaryOperator::CreateURem(Op0, Op1, I.getName());
- }
-
- // If it's a constant vector, flip any negative values positive.
- if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
- Constant *C = cast<Constant>(Op1);
- unsigned VWidth = C->getType()->getVectorNumElements();
-
- bool hasNegative = false;
- bool hasMissing = false;
- for (unsigned i = 0; i != VWidth; ++i) {
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt) {
- hasMissing = true;
- break;
- }
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
- if (RHS->isNegative())
- hasNegative = true;
- }
-
- if (hasNegative && !hasMissing) {
- SmallVector<Constant *, 16> Elts(VWidth);
- for (unsigned i = 0; i != VWidth; ++i) {
- Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
- if (RHS->isNegative())
- Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
- }
- }
-
- Constant *NewRHSV = ConstantVector::get(Elts);
- if (NewRHSV != C) { // Don't loop on -MININT
- Worklist.AddValue(I.getOperand(1));
- I.setOperand(1, NewRHSV);
- return &I;
- }
- }
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
- if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- return nullptr;
-}