diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp | 903 |
1 files changed, 0 insertions, 903 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp deleted file mode 100644 index c562d45a9e2..00000000000 --- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp +++ /dev/null @@ -1,903 +0,0 @@ -//===- InstCombineShifts.cpp ----------------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the visitShl, visitLShr, and visitAShr functions. -// -//===----------------------------------------------------------------------===// - -#include "InstCombineInternal.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/PatternMatch.h" -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "instcombine" - -Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - assert(Op0->getType() == Op1->getType()); - - // See if we can fold away this shift. - if (SimplifyDemandedInstructionBits(I)) - return &I; - - // Try to fold constant and into select arguments. - if (isa<Constant>(Op0)) - if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) - if (Instruction *R = FoldOpIntoSelect(I, SI)) - return R; - - if (Constant *CUI = dyn_cast<Constant>(Op1)) - if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) - return Res; - - // (C1 shift (A add C2)) -> (C1 shift C2) shift A) - // iff A and C2 are both positive. - Value *A; - Constant *C; - if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C)))) - if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) && - isKnownNonNegative(C, DL, 0, &AC, &I, &DT)) - return BinaryOperator::Create( - I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A); - - // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2. - // Because shifts by negative values (which could occur if A were negative) - // are undefined. - const APInt *B; - if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) { - // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't - // demand the sign bit (and many others) here?? - Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1), - Op1->getName()); - I.setOperand(1, Rem); - return &I; - } - - return nullptr; -} - -/// Return true if we can simplify two logical (either left or right) shifts -/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. -static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, - Instruction *InnerShift, InstCombiner &IC, - Instruction *CxtI) { - assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); - - // We need constant scalar or constant splat shifts. - const APInt *InnerShiftConst; - if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) - return false; - - // Two logical shifts in the same direction: - // shl (shl X, C1), C2 --> shl X, C1 + C2 - // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 - bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; - if (IsInnerShl == IsOuterShl) - return true; - - // Equal shift amounts in opposite directions become bitwise 'and': - // lshr (shl X, C), C --> and X, C' - // shl (lshr X, C), C --> and X, C' - if (*InnerShiftConst == OuterShAmt) - return true; - - // If the 2nd shift is bigger than the 1st, we can fold: - // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 - // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 - // but it isn't profitable unless we know the and'd out bits are already zero. - // Also, check that the inner shift is valid (less than the type width) or - // we'll crash trying to produce the bit mask for the 'and'. - unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); - if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { - unsigned InnerShAmt = InnerShiftConst->getZExtValue(); - unsigned MaskShift = - IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; - APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; - if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) - return true; - } - - return false; -} - -/// See if we can compute the specified value, but shifted logically to the left -/// or right by some number of bits. This should return true if the expression -/// can be computed for the same cost as the current expression tree. This is -/// used to eliminate extraneous shifting from things like: -/// %C = shl i128 %A, 64 -/// %D = shl i128 %B, 96 -/// %E = or i128 %C, %D -/// %F = lshr i128 %E, 64 -/// where the client will ask if E can be computed shifted right by 64-bits. If -/// this succeeds, getShiftedValue() will be called to produce the value. -static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, - InstCombiner &IC, Instruction *CxtI) { - // We can always evaluate constants shifted. - if (isa<Constant>(V)) - return true; - - Instruction *I = dyn_cast<Instruction>(V); - if (!I) return false; - - // If this is the opposite shift, we can directly reuse the input of the shift - // if the needed bits are already zero in the input. This allows us to reuse - // the value which means that we don't care if the shift has multiple uses. - // TODO: Handle opposite shift by exact value. - ConstantInt *CI = nullptr; - if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) || - (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) { - if (CI->getValue() == NumBits) { - // TODO: Check that the input bits are already zero with MaskedValueIsZero -#if 0 - // If this is a truncate of a logical shr, we can truncate it to a smaller - // lshr iff we know that the bits we would otherwise be shifting in are - // already zeros. - uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); - uint32_t BitWidth = Ty->getScalarSizeInBits(); - if (MaskedValueIsZero(I->getOperand(0), - APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && - CI->getLimitedValue(BitWidth) < BitWidth) { - return CanEvaluateTruncated(I->getOperand(0), Ty); - } -#endif - - } - } - - // We can't mutate something that has multiple uses: doing so would - // require duplicating the instruction in general, which isn't profitable. - if (!I->hasOneUse()) return false; - - switch (I->getOpcode()) { - default: return false; - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. - return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && - canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); - - case Instruction::Shl: - case Instruction::LShr: - return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); - - case Instruction::Select: { - SelectInst *SI = cast<SelectInst>(I); - Value *TrueVal = SI->getTrueValue(); - Value *FalseVal = SI->getFalseValue(); - return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && - canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); - } - case Instruction::PHI: { - // We can change a phi if we can change all operands. Note that we never - // get into trouble with cyclic PHIs here because we only consider - // instructions with a single use. - PHINode *PN = cast<PHINode>(I); - for (Value *IncValue : PN->incoming_values()) - if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) - return false; - return true; - } - } -} - -/// Fold OuterShift (InnerShift X, C1), C2. -/// See canEvaluateShiftedShift() for the constraints on these instructions. -static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, - bool IsOuterShl, - InstCombiner::BuilderTy &Builder) { - bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; - Type *ShType = InnerShift->getType(); - unsigned TypeWidth = ShType->getScalarSizeInBits(); - - // We only accept shifts-by-a-constant in canEvaluateShifted(). - const APInt *C1; - match(InnerShift->getOperand(1), m_APInt(C1)); - unsigned InnerShAmt = C1->getZExtValue(); - - // Change the shift amount and clear the appropriate IR flags. - auto NewInnerShift = [&](unsigned ShAmt) { - InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); - if (IsInnerShl) { - InnerShift->setHasNoUnsignedWrap(false); - InnerShift->setHasNoSignedWrap(false); - } else { - InnerShift->setIsExact(false); - } - return InnerShift; - }; - - // Two logical shifts in the same direction: - // shl (shl X, C1), C2 --> shl X, C1 + C2 - // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 - if (IsInnerShl == IsOuterShl) { - // If this is an oversized composite shift, then unsigned shifts get 0. - if (InnerShAmt + OuterShAmt >= TypeWidth) - return Constant::getNullValue(ShType); - - return NewInnerShift(InnerShAmt + OuterShAmt); - } - - // Equal shift amounts in opposite directions become bitwise 'and': - // lshr (shl X, C), C --> and X, C' - // shl (lshr X, C), C --> and X, C' - if (InnerShAmt == OuterShAmt) { - APInt Mask = IsInnerShl - ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) - : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); - Value *And = Builder.CreateAnd(InnerShift->getOperand(0), - ConstantInt::get(ShType, Mask)); - if (auto *AndI = dyn_cast<Instruction>(And)) { - AndI->moveBefore(InnerShift); - AndI->takeName(InnerShift); - } - return And; - } - - assert(InnerShAmt > OuterShAmt && - "Unexpected opposite direction logical shift pair"); - - // In general, we would need an 'and' for this transform, but - // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. - // lshr (shl X, C1), C2 --> shl X, C1 - C2 - // shl (lshr X, C1), C2 --> lshr X, C1 - C2 - return NewInnerShift(InnerShAmt - OuterShAmt); -} - -/// When canEvaluateShifted() returns true for an expression, this function -/// inserts the new computation that produces the shifted value. -static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, - InstCombiner &IC, const DataLayout &DL) { - // We can always evaluate constants shifted. - if (Constant *C = dyn_cast<Constant>(V)) { - if (isLeftShift) - V = IC.Builder.CreateShl(C, NumBits); - else - V = IC.Builder.CreateLShr(C, NumBits); - // If we got a constantexpr back, try to simplify it with TD info. - if (auto *C = dyn_cast<Constant>(V)) - if (auto *FoldedC = - ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo())) - V = FoldedC; - return V; - } - - Instruction *I = cast<Instruction>(V); - IC.Worklist.Add(I); - - switch (I->getOpcode()) { - default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. - I->setOperand( - 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); - I->setOperand( - 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); - return I; - - case Instruction::Shl: - case Instruction::LShr: - return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, - IC.Builder); - - case Instruction::Select: - I->setOperand( - 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); - I->setOperand( - 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); - return I; - case Instruction::PHI: { - // We can change a phi if we can change all operands. Note that we never - // get into trouble with cyclic PHIs here because we only consider - // instructions with a single use. - PHINode *PN = cast<PHINode>(I); - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) - PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, - isLeftShift, IC, DL)); - return PN; - } - } -} - -// If this is a bitwise operator or add with a constant RHS we might be able -// to pull it through a shift. -static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, - BinaryOperator *BO, - const APInt &C) { - bool IsValid = true; // Valid only for And, Or Xor, - bool HighBitSet = false; // Transform ifhigh bit of constant set? - - switch (BO->getOpcode()) { - default: IsValid = false; break; // Do not perform transform! - case Instruction::Add: - IsValid = Shift.getOpcode() == Instruction::Shl; - break; - case Instruction::Or: - case Instruction::Xor: - HighBitSet = false; - break; - case Instruction::And: - HighBitSet = true; - break; - } - - // If this is a signed shift right, and the high bit is modified - // by the logical operation, do not perform the transformation. - // The HighBitSet boolean indicates the value of the high bit of - // the constant which would cause it to be modified for this - // operation. - // - if (IsValid && Shift.getOpcode() == Instruction::AShr) - IsValid = C.isNegative() == HighBitSet; - - return IsValid; -} - -Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1, - BinaryOperator &I) { - bool isLeftShift = I.getOpcode() == Instruction::Shl; - - const APInt *Op1C; - if (!match(Op1, m_APInt(Op1C))) - return nullptr; - - // See if we can propagate this shift into the input, this covers the trivial - // cast of lshr(shl(x,c1),c2) as well as other more complex cases. - if (I.getOpcode() != Instruction::AShr && - canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) { - LLVM_DEBUG( - dbgs() << "ICE: GetShiftedValue propagating shift through expression" - " to eliminate shift:\n IN: " - << *Op0 << "\n SH: " << I << "\n"); - - return replaceInstUsesWith( - I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL)); - } - - // See if we can simplify any instructions used by the instruction whose sole - // purpose is to compute bits we don't care about. - unsigned TypeBits = Op0->getType()->getScalarSizeInBits(); - - assert(!Op1C->uge(TypeBits) && - "Shift over the type width should have been removed already"); - - if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) - return FoldedShift; - - // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) - if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { - Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); - // If 'shift2' is an ashr, we would have to get the sign bit into a funny - // place. Don't try to do this transformation in this case. Also, we - // require that the input operand is a shift-by-constant so that we have - // confidence that the shifts will get folded together. We could do this - // xform in more cases, but it is unlikely to be profitable. - if (TrOp && I.isLogicalShift() && TrOp->isShift() && - isa<ConstantInt>(TrOp->getOperand(1))) { - // Okay, we'll do this xform. Make the shift of shift. - Constant *ShAmt = - ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType()); - // (shift2 (shift1 & 0x00FF), c2) - Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName()); - - // For logical shifts, the truncation has the effect of making the high - // part of the register be zeros. Emulate this by inserting an AND to - // clear the top bits as needed. This 'and' will usually be zapped by - // other xforms later if dead. - unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); - unsigned DstSize = TI->getType()->getScalarSizeInBits(); - APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); - - // The mask we constructed says what the trunc would do if occurring - // between the shifts. We want to know the effect *after* the second - // shift. We know that it is a logical shift by a constant, so adjust the - // mask as appropriate. - if (I.getOpcode() == Instruction::Shl) - MaskV <<= Op1C->getZExtValue(); - else { - assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); - MaskV.lshrInPlace(Op1C->getZExtValue()); - } - - // shift1 & 0x00FF - Value *And = Builder.CreateAnd(NSh, - ConstantInt::get(I.getContext(), MaskV), - TI->getName()); - - // Return the value truncated to the interesting size. - return new TruncInst(And, I.getType()); - } - } - - if (Op0->hasOneUse()) { - if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { - // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) - Value *V1, *V2; - ConstantInt *CC; - switch (Op0BO->getOpcode()) { - default: break; - case Instruction::Add: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - // These operators commute. - // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) - if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && - match(Op0BO->getOperand(1), m_Shr(m_Value(V1), - m_Specific(Op1)))) { - Value *YS = // (Y << C) - Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); - // (X + (Y << C)) - Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1, - Op0BO->getOperand(1)->getName()); - unsigned Op1Val = Op1C->getLimitedValue(TypeBits); - - APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); - Constant *Mask = ConstantInt::get(I.getContext(), Bits); - if (VectorType *VT = dyn_cast<VectorType>(X->getType())) - Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); - return BinaryOperator::CreateAnd(X, Mask); - } - - // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) - Value *Op0BOOp1 = Op0BO->getOperand(1); - if (isLeftShift && Op0BOOp1->hasOneUse() && - match(Op0BOOp1, - m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))), - m_ConstantInt(CC)))) { - Value *YS = // (Y << C) - Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); - // X & (CC << C) - Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), - V1->getName()+".mask"); - return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); - } - LLVM_FALLTHROUGH; - } - - case Instruction::Sub: { - // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) - if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && - match(Op0BO->getOperand(0), m_Shr(m_Value(V1), - m_Specific(Op1)))) { - Value *YS = // (Y << C) - Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); - // (X + (Y << C)) - Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS, - Op0BO->getOperand(0)->getName()); - unsigned Op1Val = Op1C->getLimitedValue(TypeBits); - - APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); - Constant *Mask = ConstantInt::get(I.getContext(), Bits); - if (VectorType *VT = dyn_cast<VectorType>(X->getType())) - Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); - return BinaryOperator::CreateAnd(X, Mask); - } - - // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) - if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && - match(Op0BO->getOperand(0), - m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))), - m_ConstantInt(CC))) && V2 == Op1) { - Value *YS = // (Y << C) - Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); - // X & (CC << C) - Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), - V1->getName()+".mask"); - - return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); - } - - break; - } - } - - - // If the operand is a bitwise operator with a constant RHS, and the - // shift is the only use, we can pull it out of the shift. - const APInt *Op0C; - if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { - if (canShiftBinOpWithConstantRHS(I, Op0BO, *Op0C)) { - Constant *NewRHS = ConstantExpr::get(I.getOpcode(), - cast<Constant>(Op0BO->getOperand(1)), Op1); - - Value *NewShift = - Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); - NewShift->takeName(Op0BO); - - return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, - NewRHS); - } - } - - // If the operand is a subtract with a constant LHS, and the shift - // is the only use, we can pull it out of the shift. - // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2)) - if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub && - match(Op0BO->getOperand(0), m_APInt(Op0C))) { - Constant *NewRHS = ConstantExpr::get(I.getOpcode(), - cast<Constant>(Op0BO->getOperand(0)), Op1); - - Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1); - NewShift->takeName(Op0BO); - - return BinaryOperator::CreateSub(NewRHS, NewShift); - } - } - - // If we have a select that conditionally executes some binary operator, - // see if we can pull it the select and operator through the shift. - // - // For example, turning: - // shl (select C, (add X, C1), X), C2 - // Into: - // Y = shl X, C2 - // select C, (add Y, C1 << C2), Y - Value *Cond; - BinaryOperator *TBO; - Value *FalseVal; - if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), - m_Value(FalseVal)))) { - const APInt *C; - if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && - match(TBO->getOperand(1), m_APInt(C)) && - canShiftBinOpWithConstantRHS(I, TBO, *C)) { - Constant *NewRHS = ConstantExpr::get(I.getOpcode(), - cast<Constant>(TBO->getOperand(1)), Op1); - - Value *NewShift = - Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1); - Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, - NewRHS); - return SelectInst::Create(Cond, NewOp, NewShift); - } - } - - BinaryOperator *FBO; - Value *TrueVal; - if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), - m_OneUse(m_BinOp(FBO))))) { - const APInt *C; - if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && - match(FBO->getOperand(1), m_APInt(C)) && - canShiftBinOpWithConstantRHS(I, FBO, *C)) { - Constant *NewRHS = ConstantExpr::get(I.getOpcode(), - cast<Constant>(FBO->getOperand(1)), Op1); - - Value *NewShift = - Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1); - Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, - NewRHS); - return SelectInst::Create(Cond, NewShift, NewOp); - } - } - } - - return nullptr; -} - -Instruction *InstCombiner::visitShl(BinaryOperator &I) { - if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1), - I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), - SQ.getWithInstruction(&I))) - return replaceInstUsesWith(I, V); - - if (Instruction *X = foldVectorBinop(I)) - return X; - - if (Instruction *V = commonShiftTransforms(I)) - return V; - - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - Type *Ty = I.getType(); - const APInt *ShAmtAPInt; - if (match(Op1, m_APInt(ShAmtAPInt))) { - unsigned ShAmt = ShAmtAPInt->getZExtValue(); - unsigned BitWidth = Ty->getScalarSizeInBits(); - - // shl (zext X), ShAmt --> zext (shl X, ShAmt) - // This is only valid if X would have zeros shifted out. - Value *X; - if (match(Op0, m_ZExt(m_Value(X)))) { - unsigned SrcWidth = X->getType()->getScalarSizeInBits(); - if (ShAmt < SrcWidth && - MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I)) - return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty); - } - - // (X >> C) << C --> X & (-1 << C) - if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { - APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)); - return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); - } - - // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine) - // needs a few fixes for the rotate pattern recognition first. - const APInt *ShOp1; - if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) { - unsigned ShrAmt = ShOp1->getZExtValue(); - if (ShrAmt < ShAmt) { - // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1) - Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt); - auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); - NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); - NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); - return NewShl; - } - if (ShrAmt > ShAmt) { - // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2) - Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt); - auto *NewShr = BinaryOperator::Create( - cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); - NewShr->setIsExact(true); - return NewShr; - } - } - - if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) { - unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); - // Oversized shifts are simplified to zero in InstSimplify. - if (AmtSum < BitWidth) - // (X << C1) << C2 --> X << (C1 + C2) - return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); - } - - // If the shifted-out value is known-zero, then this is a NUW shift. - if (!I.hasNoUnsignedWrap() && - MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) { - I.setHasNoUnsignedWrap(); - return &I; - } - - // If the shifted-out value is all signbits, then this is a NSW shift. - if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) { - I.setHasNoSignedWrap(); - return &I; - } - } - - // Transform (x >> y) << y to x & (-1 << y) - // Valid for any type of right-shift. - Value *X; - if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { - Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); - Value *Mask = Builder.CreateShl(AllOnes, Op1); - return BinaryOperator::CreateAnd(Mask, X); - } - - Constant *C1; - if (match(Op1, m_Constant(C1))) { - Constant *C2; - Value *X; - // (C2 << X) << C1 --> (C2 << C1) << X - if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X))))) - return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X); - - // (X * C2) << C1 --> X * (C2 << C1) - if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) - return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); - } - - return nullptr; -} - -Instruction *InstCombiner::visitLShr(BinaryOperator &I) { - if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), - SQ.getWithInstruction(&I))) - return replaceInstUsesWith(I, V); - - if (Instruction *X = foldVectorBinop(I)) - return X; - - if (Instruction *R = commonShiftTransforms(I)) - return R; - - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - Type *Ty = I.getType(); - const APInt *ShAmtAPInt; - if (match(Op1, m_APInt(ShAmtAPInt))) { - unsigned ShAmt = ShAmtAPInt->getZExtValue(); - unsigned BitWidth = Ty->getScalarSizeInBits(); - auto *II = dyn_cast<IntrinsicInst>(Op0); - if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt && - (II->getIntrinsicID() == Intrinsic::ctlz || - II->getIntrinsicID() == Intrinsic::cttz || - II->getIntrinsicID() == Intrinsic::ctpop)) { - // ctlz.i32(x)>>5 --> zext(x == 0) - // cttz.i32(x)>>5 --> zext(x == 0) - // ctpop.i32(x)>>5 --> zext(x == -1) - bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; - Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); - Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); - return new ZExtInst(Cmp, Ty); - } - - Value *X; - const APInt *ShOp1; - if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) { - if (ShOp1->ult(ShAmt)) { - unsigned ShlAmt = ShOp1->getZExtValue(); - Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); - if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { - // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1) - auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); - NewLShr->setIsExact(I.isExact()); - return NewLShr; - } - // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2) - Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); - APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); - return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); - } - if (ShOp1->ugt(ShAmt)) { - unsigned ShlAmt = ShOp1->getZExtValue(); - Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); - if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { - // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2) - auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); - NewShl->setHasNoUnsignedWrap(true); - return NewShl; - } - // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2) - Value *NewShl = Builder.CreateShl(X, ShiftDiff); - APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); - return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); - } - assert(*ShOp1 == ShAmt); - // (X << C) >>u C --> X & (-1 >>u C) - APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); - return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); - } - - if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && - (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { - assert(ShAmt < X->getType()->getScalarSizeInBits() && - "Big shift not simplified to zero?"); - // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN - Value *NewLShr = Builder.CreateLShr(X, ShAmt); - return new ZExtInst(NewLShr, Ty); - } - - if (match(Op0, m_SExt(m_Value(X))) && - (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { - // Are we moving the sign bit to the low bit and widening with high zeros? - unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); - if (ShAmt == BitWidth - 1) { - // lshr (sext i1 X to iN), N-1 --> zext X to iN - if (SrcTyBitWidth == 1) - return new ZExtInst(X, Ty); - - // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN - if (Op0->hasOneUse()) { - Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); - return new ZExtInst(NewLShr, Ty); - } - } - - // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN - if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) { - // The new shift amount can't be more than the narrow source type. - unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1); - Value *AShr = Builder.CreateAShr(X, NewShAmt); - return new ZExtInst(AShr, Ty); - } - } - - if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) { - unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); - // Oversized shifts are simplified to zero in InstSimplify. - if (AmtSum < BitWidth) - // (X >>u C1) >>u C2 --> X >>u (C1 + C2) - return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); - } - - // If the shifted-out value is known-zero, then this is an exact shift. - if (!I.isExact() && - MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { - I.setIsExact(); - return &I; - } - } - - // Transform (x << y) >> y to x & (-1 >> y) - Value *X; - if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { - Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); - Value *Mask = Builder.CreateLShr(AllOnes, Op1); - return BinaryOperator::CreateAnd(Mask, X); - } - - return nullptr; -} - -Instruction *InstCombiner::visitAShr(BinaryOperator &I) { - if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), - SQ.getWithInstruction(&I))) - return replaceInstUsesWith(I, V); - - if (Instruction *X = foldVectorBinop(I)) - return X; - - if (Instruction *R = commonShiftTransforms(I)) - return R; - - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - Type *Ty = I.getType(); - unsigned BitWidth = Ty->getScalarSizeInBits(); - const APInt *ShAmtAPInt; - if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { - unsigned ShAmt = ShAmtAPInt->getZExtValue(); - - // If the shift amount equals the difference in width of the destination - // and source scalar types: - // ashr (shl (zext X), C), C --> sext X - Value *X; - if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && - ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) - return new SExtInst(X, Ty); - - // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, - // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. - const APInt *ShOp1; - if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && - ShOp1->ult(BitWidth)) { - unsigned ShlAmt = ShOp1->getZExtValue(); - if (ShlAmt < ShAmt) { - // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) - Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); - auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); - NewAShr->setIsExact(I.isExact()); - return NewAShr; - } - if (ShlAmt > ShAmt) { - // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) - Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); - auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); - NewShl->setHasNoSignedWrap(true); - return NewShl; - } - } - - if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && - ShOp1->ult(BitWidth)) { - unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); - // Oversized arithmetic shifts replicate the sign bit. - AmtSum = std::min(AmtSum, BitWidth - 1); - // (X >>s C1) >>s C2 --> X >>s (C1 + C2) - return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); - } - - if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && - (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { - // ashr (sext X), C --> sext (ashr X, C') - Type *SrcTy = X->getType(); - ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); - Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); - return new SExtInst(NewSh, Ty); - } - - // If the shifted-out value is known-zero, then this is an exact shift. - if (!I.isExact() && - MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { - I.setIsExact(); - return &I; - } - } - - // See if we can turn a signed shr into an unsigned shr. - if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) - return BinaryOperator::CreateLShr(Op0, Op1); - - return nullptr; -} |
