summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp903
1 files changed, 0 insertions, 903 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
deleted file mode 100644
index c562d45a9e2..00000000000
--- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ /dev/null
@@ -1,903 +0,0 @@
-//===- InstCombineShifts.cpp ----------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the visitShl, visitLShr, and visitAShr functions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/PatternMatch.h"
-using namespace llvm;
-using namespace PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- assert(Op0->getType() == Op1->getType());
-
- // See if we can fold away this shift.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
-
- // Try to fold constant and into select arguments.
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
-
- if (Constant *CUI = dyn_cast<Constant>(Op1))
- if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
- return Res;
-
- // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
- // iff A and C2 are both positive.
- Value *A;
- Constant *C;
- if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
- if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
- isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
- return BinaryOperator::Create(
- I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
-
- // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
- // Because shifts by negative values (which could occur if A were negative)
- // are undefined.
- const APInt *B;
- if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
- // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
- // demand the sign bit (and many others) here??
- Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
- Op1->getName());
- I.setOperand(1, Rem);
- return &I;
- }
-
- return nullptr;
-}
-
-/// Return true if we can simplify two logical (either left or right) shifts
-/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
-static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
- Instruction *InnerShift, InstCombiner &IC,
- Instruction *CxtI) {
- assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
-
- // We need constant scalar or constant splat shifts.
- const APInt *InnerShiftConst;
- if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
- return false;
-
- // Two logical shifts in the same direction:
- // shl (shl X, C1), C2 --> shl X, C1 + C2
- // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
- bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
- if (IsInnerShl == IsOuterShl)
- return true;
-
- // Equal shift amounts in opposite directions become bitwise 'and':
- // lshr (shl X, C), C --> and X, C'
- // shl (lshr X, C), C --> and X, C'
- if (*InnerShiftConst == OuterShAmt)
- return true;
-
- // If the 2nd shift is bigger than the 1st, we can fold:
- // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
- // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
- // but it isn't profitable unless we know the and'd out bits are already zero.
- // Also, check that the inner shift is valid (less than the type width) or
- // we'll crash trying to produce the bit mask for the 'and'.
- unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
- if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
- unsigned InnerShAmt = InnerShiftConst->getZExtValue();
- unsigned MaskShift =
- IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
- APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
- if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
- return true;
- }
-
- return false;
-}
-
-/// See if we can compute the specified value, but shifted logically to the left
-/// or right by some number of bits. This should return true if the expression
-/// can be computed for the same cost as the current expression tree. This is
-/// used to eliminate extraneous shifting from things like:
-/// %C = shl i128 %A, 64
-/// %D = shl i128 %B, 96
-/// %E = or i128 %C, %D
-/// %F = lshr i128 %E, 64
-/// where the client will ask if E can be computed shifted right by 64-bits. If
-/// this succeeds, getShiftedValue() will be called to produce the value.
-static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
- InstCombiner &IC, Instruction *CxtI) {
- // We can always evaluate constants shifted.
- if (isa<Constant>(V))
- return true;
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
-
- // If this is the opposite shift, we can directly reuse the input of the shift
- // if the needed bits are already zero in the input. This allows us to reuse
- // the value which means that we don't care if the shift has multiple uses.
- // TODO: Handle opposite shift by exact value.
- ConstantInt *CI = nullptr;
- if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
- (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
- if (CI->getValue() == NumBits) {
- // TODO: Check that the input bits are already zero with MaskedValueIsZero
-#if 0
- // If this is a truncate of a logical shr, we can truncate it to a smaller
- // lshr iff we know that the bits we would otherwise be shifting in are
- // already zeros.
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (MaskedValueIsZero(I->getOperand(0),
- APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
- CI->getLimitedValue(BitWidth) < BitWidth) {
- return CanEvaluateTruncated(I->getOperand(0), Ty);
- }
-#endif
-
- }
- }
-
- // We can't mutate something that has multiple uses: doing so would
- // require duplicating the instruction in general, which isn't profitable.
- if (!I->hasOneUse()) return false;
-
- switch (I->getOpcode()) {
- default: return false;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
- canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
-
- case Instruction::Shl:
- case Instruction::LShr:
- return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
-
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
- canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
- }
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
- return false;
- return true;
- }
- }
-}
-
-/// Fold OuterShift (InnerShift X, C1), C2.
-/// See canEvaluateShiftedShift() for the constraints on these instructions.
-static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
- bool IsOuterShl,
- InstCombiner::BuilderTy &Builder) {
- bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
- Type *ShType = InnerShift->getType();
- unsigned TypeWidth = ShType->getScalarSizeInBits();
-
- // We only accept shifts-by-a-constant in canEvaluateShifted().
- const APInt *C1;
- match(InnerShift->getOperand(1), m_APInt(C1));
- unsigned InnerShAmt = C1->getZExtValue();
-
- // Change the shift amount and clear the appropriate IR flags.
- auto NewInnerShift = [&](unsigned ShAmt) {
- InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
- if (IsInnerShl) {
- InnerShift->setHasNoUnsignedWrap(false);
- InnerShift->setHasNoSignedWrap(false);
- } else {
- InnerShift->setIsExact(false);
- }
- return InnerShift;
- };
-
- // Two logical shifts in the same direction:
- // shl (shl X, C1), C2 --> shl X, C1 + C2
- // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
- if (IsInnerShl == IsOuterShl) {
- // If this is an oversized composite shift, then unsigned shifts get 0.
- if (InnerShAmt + OuterShAmt >= TypeWidth)
- return Constant::getNullValue(ShType);
-
- return NewInnerShift(InnerShAmt + OuterShAmt);
- }
-
- // Equal shift amounts in opposite directions become bitwise 'and':
- // lshr (shl X, C), C --> and X, C'
- // shl (lshr X, C), C --> and X, C'
- if (InnerShAmt == OuterShAmt) {
- APInt Mask = IsInnerShl
- ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
- : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
- Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
- ConstantInt::get(ShType, Mask));
- if (auto *AndI = dyn_cast<Instruction>(And)) {
- AndI->moveBefore(InnerShift);
- AndI->takeName(InnerShift);
- }
- return And;
- }
-
- assert(InnerShAmt > OuterShAmt &&
- "Unexpected opposite direction logical shift pair");
-
- // In general, we would need an 'and' for this transform, but
- // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
- // lshr (shl X, C1), C2 --> shl X, C1 - C2
- // shl (lshr X, C1), C2 --> lshr X, C1 - C2
- return NewInnerShift(InnerShAmt - OuterShAmt);
-}
-
-/// When canEvaluateShifted() returns true for an expression, this function
-/// inserts the new computation that produces the shifted value.
-static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
- InstCombiner &IC, const DataLayout &DL) {
- // We can always evaluate constants shifted.
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (isLeftShift)
- V = IC.Builder.CreateShl(C, NumBits);
- else
- V = IC.Builder.CreateLShr(C, NumBits);
- // If we got a constantexpr back, try to simplify it with TD info.
- if (auto *C = dyn_cast<Constant>(V))
- if (auto *FoldedC =
- ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
- V = FoldedC;
- return V;
- }
-
- Instruction *I = cast<Instruction>(V);
- IC.Worklist.Add(I);
-
- switch (I->getOpcode()) {
- default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- I->setOperand(
- 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
- I->setOperand(
- 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
- return I;
-
- case Instruction::Shl:
- case Instruction::LShr:
- return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
- IC.Builder);
-
- case Instruction::Select:
- I->setOperand(
- 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
- I->setOperand(
- 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
- return I;
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
- isLeftShift, IC, DL));
- return PN;
- }
- }
-}
-
-// If this is a bitwise operator or add with a constant RHS we might be able
-// to pull it through a shift.
-static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
- BinaryOperator *BO,
- const APInt &C) {
- bool IsValid = true; // Valid only for And, Or Xor,
- bool HighBitSet = false; // Transform ifhigh bit of constant set?
-
- switch (BO->getOpcode()) {
- default: IsValid = false; break; // Do not perform transform!
- case Instruction::Add:
- IsValid = Shift.getOpcode() == Instruction::Shl;
- break;
- case Instruction::Or:
- case Instruction::Xor:
- HighBitSet = false;
- break;
- case Instruction::And:
- HighBitSet = true;
- break;
- }
-
- // If this is a signed shift right, and the high bit is modified
- // by the logical operation, do not perform the transformation.
- // The HighBitSet boolean indicates the value of the high bit of
- // the constant which would cause it to be modified for this
- // operation.
- //
- if (IsValid && Shift.getOpcode() == Instruction::AShr)
- IsValid = C.isNegative() == HighBitSet;
-
- return IsValid;
-}
-
-Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
- BinaryOperator &I) {
- bool isLeftShift = I.getOpcode() == Instruction::Shl;
-
- const APInt *Op1C;
- if (!match(Op1, m_APInt(Op1C)))
- return nullptr;
-
- // See if we can propagate this shift into the input, this covers the trivial
- // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
- if (I.getOpcode() != Instruction::AShr &&
- canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
- LLVM_DEBUG(
- dbgs() << "ICE: GetShiftedValue propagating shift through expression"
- " to eliminate shift:\n IN: "
- << *Op0 << "\n SH: " << I << "\n");
-
- return replaceInstUsesWith(
- I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
- }
-
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
-
- assert(!Op1C->uge(TypeBits) &&
- "Shift over the type width should have been removed already");
-
- if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
- return FoldedShift;
-
- // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
- if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
- Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
- // If 'shift2' is an ashr, we would have to get the sign bit into a funny
- // place. Don't try to do this transformation in this case. Also, we
- // require that the input operand is a shift-by-constant so that we have
- // confidence that the shifts will get folded together. We could do this
- // xform in more cases, but it is unlikely to be profitable.
- if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
- isa<ConstantInt>(TrOp->getOperand(1))) {
- // Okay, we'll do this xform. Make the shift of shift.
- Constant *ShAmt =
- ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
- // (shift2 (shift1 & 0x00FF), c2)
- Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
-
- // For logical shifts, the truncation has the effect of making the high
- // part of the register be zeros. Emulate this by inserting an AND to
- // clear the top bits as needed. This 'and' will usually be zapped by
- // other xforms later if dead.
- unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
- unsigned DstSize = TI->getType()->getScalarSizeInBits();
- APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
-
- // The mask we constructed says what the trunc would do if occurring
- // between the shifts. We want to know the effect *after* the second
- // shift. We know that it is a logical shift by a constant, so adjust the
- // mask as appropriate.
- if (I.getOpcode() == Instruction::Shl)
- MaskV <<= Op1C->getZExtValue();
- else {
- assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
- MaskV.lshrInPlace(Op1C->getZExtValue());
- }
-
- // shift1 & 0x00FF
- Value *And = Builder.CreateAnd(NSh,
- ConstantInt::get(I.getContext(), MaskV),
- TI->getName());
-
- // Return the value truncated to the interesting size.
- return new TruncInst(And, I.getType());
- }
- }
-
- if (Op0->hasOneUse()) {
- if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
- // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
- Value *V1, *V2;
- ConstantInt *CC;
- switch (Op0BO->getOpcode()) {
- default: break;
- case Instruction::Add:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // These operators commute.
- // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
- if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
- match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
- m_Specific(Op1)))) {
- Value *YS = // (Y << C)
- Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
- // (X + (Y << C))
- Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
- Op0BO->getOperand(1)->getName());
- unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
-
- APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
- Constant *Mask = ConstantInt::get(I.getContext(), Bits);
- if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
- Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
- return BinaryOperator::CreateAnd(X, Mask);
- }
-
- // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
- Value *Op0BOOp1 = Op0BO->getOperand(1);
- if (isLeftShift && Op0BOOp1->hasOneUse() &&
- match(Op0BOOp1,
- m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
- m_ConstantInt(CC)))) {
- Value *YS = // (Y << C)
- Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
- // X & (CC << C)
- Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
- V1->getName()+".mask");
- return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
- }
- LLVM_FALLTHROUGH;
- }
-
- case Instruction::Sub: {
- // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
- if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
- m_Specific(Op1)))) {
- Value *YS = // (Y << C)
- Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
- // (X + (Y << C))
- Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
- Op0BO->getOperand(0)->getName());
- unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
-
- APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
- Constant *Mask = ConstantInt::get(I.getContext(), Bits);
- if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
- Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
- return BinaryOperator::CreateAnd(X, Mask);
- }
-
- // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
- if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0),
- m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
- m_ConstantInt(CC))) && V2 == Op1) {
- Value *YS = // (Y << C)
- Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
- // X & (CC << C)
- Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
- V1->getName()+".mask");
-
- return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
- }
-
- break;
- }
- }
-
-
- // If the operand is a bitwise operator with a constant RHS, and the
- // shift is the only use, we can pull it out of the shift.
- const APInt *Op0C;
- if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
- if (canShiftBinOpWithConstantRHS(I, Op0BO, *Op0C)) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(Op0BO->getOperand(1)), Op1);
-
- Value *NewShift =
- Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
- NewShift->takeName(Op0BO);
-
- return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
- NewRHS);
- }
- }
-
- // If the operand is a subtract with a constant LHS, and the shift
- // is the only use, we can pull it out of the shift.
- // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
- if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
- match(Op0BO->getOperand(0), m_APInt(Op0C))) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(Op0BO->getOperand(0)), Op1);
-
- Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
- NewShift->takeName(Op0BO);
-
- return BinaryOperator::CreateSub(NewRHS, NewShift);
- }
- }
-
- // If we have a select that conditionally executes some binary operator,
- // see if we can pull it the select and operator through the shift.
- //
- // For example, turning:
- // shl (select C, (add X, C1), X), C2
- // Into:
- // Y = shl X, C2
- // select C, (add Y, C1 << C2), Y
- Value *Cond;
- BinaryOperator *TBO;
- Value *FalseVal;
- if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
- m_Value(FalseVal)))) {
- const APInt *C;
- if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
- match(TBO->getOperand(1), m_APInt(C)) &&
- canShiftBinOpWithConstantRHS(I, TBO, *C)) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(TBO->getOperand(1)), Op1);
-
- Value *NewShift =
- Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
- Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
- NewRHS);
- return SelectInst::Create(Cond, NewOp, NewShift);
- }
- }
-
- BinaryOperator *FBO;
- Value *TrueVal;
- if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
- m_OneUse(m_BinOp(FBO))))) {
- const APInt *C;
- if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
- match(FBO->getOperand(1), m_APInt(C)) &&
- canShiftBinOpWithConstantRHS(I, FBO, *C)) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(FBO->getOperand(1)), Op1);
-
- Value *NewShift =
- Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
- Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
- NewRHS);
- return SelectInst::Create(Cond, NewShift, NewOp);
- }
- }
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitShl(BinaryOperator &I) {
- if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
- I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- if (Instruction *V = commonShiftTransforms(I))
- return V;
-
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- const APInt *ShAmtAPInt;
- if (match(Op1, m_APInt(ShAmtAPInt))) {
- unsigned ShAmt = ShAmtAPInt->getZExtValue();
- unsigned BitWidth = Ty->getScalarSizeInBits();
-
- // shl (zext X), ShAmt --> zext (shl X, ShAmt)
- // This is only valid if X would have zeros shifted out.
- Value *X;
- if (match(Op0, m_ZExt(m_Value(X)))) {
- unsigned SrcWidth = X->getType()->getScalarSizeInBits();
- if (ShAmt < SrcWidth &&
- MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
- return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
- }
-
- // (X >> C) << C --> X & (-1 << C)
- if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
- APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
- }
-
- // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
- // needs a few fixes for the rotate pattern recognition first.
- const APInt *ShOp1;
- if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
- unsigned ShrAmt = ShOp1->getZExtValue();
- if (ShrAmt < ShAmt) {
- // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
- auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
- NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
- return NewShl;
- }
- if (ShrAmt > ShAmt) {
- // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
- auto *NewShr = BinaryOperator::Create(
- cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
- NewShr->setIsExact(true);
- return NewShr;
- }
- }
-
- if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
- unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
- // Oversized shifts are simplified to zero in InstSimplify.
- if (AmtSum < BitWidth)
- // (X << C1) << C2 --> X << (C1 + C2)
- return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
- }
-
- // If the shifted-out value is known-zero, then this is a NUW shift.
- if (!I.hasNoUnsignedWrap() &&
- MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
- I.setHasNoUnsignedWrap();
- return &I;
- }
-
- // If the shifted-out value is all signbits, then this is a NSW shift.
- if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
- I.setHasNoSignedWrap();
- return &I;
- }
- }
-
- // Transform (x >> y) << y to x & (-1 << y)
- // Valid for any type of right-shift.
- Value *X;
- if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
- Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
- Value *Mask = Builder.CreateShl(AllOnes, Op1);
- return BinaryOperator::CreateAnd(Mask, X);
- }
-
- Constant *C1;
- if (match(Op1, m_Constant(C1))) {
- Constant *C2;
- Value *X;
- // (C2 << X) << C1 --> (C2 << C1) << X
- if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
- return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
-
- // (X * C2) << C1 --> X * (C2 << C1)
- if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
- return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
- if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- if (Instruction *R = commonShiftTransforms(I))
- return R;
-
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- const APInt *ShAmtAPInt;
- if (match(Op1, m_APInt(ShAmtAPInt))) {
- unsigned ShAmt = ShAmtAPInt->getZExtValue();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- auto *II = dyn_cast<IntrinsicInst>(Op0);
- if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
- (II->getIntrinsicID() == Intrinsic::ctlz ||
- II->getIntrinsicID() == Intrinsic::cttz ||
- II->getIntrinsicID() == Intrinsic::ctpop)) {
- // ctlz.i32(x)>>5 --> zext(x == 0)
- // cttz.i32(x)>>5 --> zext(x == 0)
- // ctpop.i32(x)>>5 --> zext(x == -1)
- bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
- Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
- Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
- return new ZExtInst(Cmp, Ty);
- }
-
- Value *X;
- const APInt *ShOp1;
- if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
- if (ShOp1->ult(ShAmt)) {
- unsigned ShlAmt = ShOp1->getZExtValue();
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
- if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
- // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
- auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
- NewLShr->setIsExact(I.isExact());
- return NewLShr;
- }
- // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2)
- Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
- APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
- }
- if (ShOp1->ugt(ShAmt)) {
- unsigned ShlAmt = ShOp1->getZExtValue();
- Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
- if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
- // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
- auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
- NewShl->setHasNoUnsignedWrap(true);
- return NewShl;
- }
- // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2)
- Value *NewShl = Builder.CreateShl(X, ShiftDiff);
- APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
- }
- assert(*ShOp1 == ShAmt);
- // (X << C) >>u C --> X & (-1 >>u C)
- APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
- }
-
- if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
- (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
- assert(ShAmt < X->getType()->getScalarSizeInBits() &&
- "Big shift not simplified to zero?");
- // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
- Value *NewLShr = Builder.CreateLShr(X, ShAmt);
- return new ZExtInst(NewLShr, Ty);
- }
-
- if (match(Op0, m_SExt(m_Value(X))) &&
- (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
- // Are we moving the sign bit to the low bit and widening with high zeros?
- unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
- if (ShAmt == BitWidth - 1) {
- // lshr (sext i1 X to iN), N-1 --> zext X to iN
- if (SrcTyBitWidth == 1)
- return new ZExtInst(X, Ty);
-
- // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
- if (Op0->hasOneUse()) {
- Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
- return new ZExtInst(NewLShr, Ty);
- }
- }
-
- // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
- if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
- // The new shift amount can't be more than the narrow source type.
- unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
- Value *AShr = Builder.CreateAShr(X, NewShAmt);
- return new ZExtInst(AShr, Ty);
- }
- }
-
- if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
- unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
- // Oversized shifts are simplified to zero in InstSimplify.
- if (AmtSum < BitWidth)
- // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
- return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
- }
-
- // If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
- MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
- I.setIsExact();
- return &I;
- }
- }
-
- // Transform (x << y) >> y to x & (-1 >> y)
- Value *X;
- if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
- Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
- Value *Mask = Builder.CreateLShr(AllOnes, Op1);
- return BinaryOperator::CreateAnd(Mask, X);
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
- if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- if (Instruction *R = commonShiftTransforms(I))
- return R;
-
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- const APInt *ShAmtAPInt;
- if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
- unsigned ShAmt = ShAmtAPInt->getZExtValue();
-
- // If the shift amount equals the difference in width of the destination
- // and source scalar types:
- // ashr (shl (zext X), C), C --> sext X
- Value *X;
- if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
- ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
- return new SExtInst(X, Ty);
-
- // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
- // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
- const APInt *ShOp1;
- if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
- ShOp1->ult(BitWidth)) {
- unsigned ShlAmt = ShOp1->getZExtValue();
- if (ShlAmt < ShAmt) {
- // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
- auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
- NewAShr->setIsExact(I.isExact());
- return NewAShr;
- }
- if (ShlAmt > ShAmt) {
- // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
- auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
- NewShl->setHasNoSignedWrap(true);
- return NewShl;
- }
- }
-
- if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
- ShOp1->ult(BitWidth)) {
- unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
- // Oversized arithmetic shifts replicate the sign bit.
- AmtSum = std::min(AmtSum, BitWidth - 1);
- // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
- return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
- }
-
- if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
- (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
- // ashr (sext X), C --> sext (ashr X, C')
- Type *SrcTy = X->getType();
- ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
- Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
- return new SExtInst(NewSh, Ty);
- }
-
- // If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
- MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
- I.setIsExact();
- return &I;
- }
- }
-
- // See if we can turn a signed shr into an unsigned shr.
- if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
- return BinaryOperator::CreateLShr(Op0, Op1);
-
- return nullptr;
-}