summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp1671
1 files changed, 0 insertions, 1671 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
deleted file mode 100644
index 9bf87d02460..00000000000
--- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
+++ /dev/null
@@ -1,1671 +0,0 @@
-//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains logic for simplifying instructions based on information
-// about how they are used.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Support/KnownBits.h"
-
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-namespace {
-
-struct AMDGPUImageDMaskIntrinsic {
- unsigned Intr;
-};
-
-#define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
-#include "InstCombineTables.inc"
-
-} // end anonymous namespace
-
-/// Check to see if the specified operand of the specified instruction is a
-/// constant integer. If so, check to see if there are any bits set in the
-/// constant that are not demanded. If so, shrink the constant and return true.
-static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
- const APInt &Demanded) {
- assert(I && "No instruction?");
- assert(OpNo < I->getNumOperands() && "Operand index too large");
-
- // The operand must be a constant integer or splat integer.
- Value *Op = I->getOperand(OpNo);
- const APInt *C;
- if (!match(Op, m_APInt(C)))
- return false;
-
- // If there are no bits set that aren't demanded, nothing to do.
- if (C->isSubsetOf(Demanded))
- return false;
-
- // This instruction is producing bits that are not demanded. Shrink the RHS.
- I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
-
- return true;
-}
-
-
-
-/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
-/// the instruction has any properties that allow us to simplify its operands.
-bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
- unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
- KnownBits Known(BitWidth);
- APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
-
- Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
- 0, &Inst);
- if (!V) return false;
- if (V == &Inst) return true;
- replaceInstUsesWith(Inst, V);
- return true;
-}
-
-/// This form of SimplifyDemandedBits simplifies the specified instruction
-/// operand if possible, updating it in place. It returns true if it made any
-/// change and false otherwise.
-bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
- const APInt &DemandedMask,
- KnownBits &Known,
- unsigned Depth) {
- Use &U = I->getOperandUse(OpNo);
- Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
- Depth, I);
- if (!NewVal) return false;
- U = NewVal;
- return true;
-}
-
-
-/// This function attempts to replace V with a simpler value based on the
-/// demanded bits. When this function is called, it is known that only the bits
-/// set in DemandedMask of the result of V are ever used downstream.
-/// Consequently, depending on the mask and V, it may be possible to replace V
-/// with a constant or one of its operands. In such cases, this function does
-/// the replacement and returns true. In all other cases, it returns false after
-/// analyzing the expression and setting KnownOne and known to be one in the
-/// expression. Known.Zero contains all the bits that are known to be zero in
-/// the expression. These are provided to potentially allow the caller (which
-/// might recursively be SimplifyDemandedBits itself) to simplify the
-/// expression.
-/// Known.One and Known.Zero always follow the invariant that:
-/// Known.One & Known.Zero == 0.
-/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
-/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
-/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
-/// be the same.
-///
-/// This returns null if it did not change anything and it permits no
-/// simplification. This returns V itself if it did some simplification of V's
-/// operands based on the information about what bits are demanded. This returns
-/// some other non-null value if it found out that V is equal to another value
-/// in the context where the specified bits are demanded, but not for all users.
-Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
- KnownBits &Known, unsigned Depth,
- Instruction *CxtI) {
- assert(V != nullptr && "Null pointer of Value???");
- assert(Depth <= 6 && "Limit Search Depth");
- uint32_t BitWidth = DemandedMask.getBitWidth();
- Type *VTy = V->getType();
- assert(
- (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
- Known.getBitWidth() == BitWidth &&
- "Value *V, DemandedMask and Known must have same BitWidth");
-
- if (isa<Constant>(V)) {
- computeKnownBits(V, Known, Depth, CxtI);
- return nullptr;
- }
-
- Known.resetAll();
- if (DemandedMask.isNullValue()) // Not demanding any bits from V.
- return UndefValue::get(VTy);
-
- if (Depth == 6) // Limit search depth.
- return nullptr;
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) {
- computeKnownBits(V, Known, Depth, CxtI);
- return nullptr; // Only analyze instructions.
- }
-
- // If there are multiple uses of this value and we aren't at the root, then
- // we can't do any simplifications of the operands, because DemandedMask
- // only reflects the bits demanded by *one* of the users.
- if (Depth != 0 && !I->hasOneUse())
- return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
-
- KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
-
- // If this is the root being simplified, allow it to have multiple uses,
- // just set the DemandedMask to all bits so that we can try to simplify the
- // operands. This allows visitTruncInst (for example) to simplify the
- // operand of a trunc without duplicating all the logic below.
- if (Depth == 0 && !V->hasOneUse())
- DemandedMask.setAllBits();
-
- switch (I->getOpcode()) {
- default:
- computeKnownBits(I, Known, Depth, CxtI);
- break;
- case Instruction::And: {
- // If either the LHS or the RHS are Zero, the result is zero.
- if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
- Depth + 1))
- return I;
- assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
- assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
-
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
- // Output known-1 bits are only known if set in both the LHS & RHS.
- APInt IKnownOne = RHSKnown.One & LHSKnown.One;
-
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
- return Constant::getIntegerValue(VTy, IKnownOne);
-
- // If all of the demanded bits are known 1 on one side, return the other.
- // These bits cannot contribute to the result of the 'and'.
- if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
- return I->getOperand(1);
-
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
- return I;
-
- Known.Zero = std::move(IKnownZero);
- Known.One = std::move(IKnownOne);
- break;
- }
- case Instruction::Or: {
- // If either the LHS or the RHS are One, the result is One.
- if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
- Depth + 1))
- return I;
- assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
- assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
-
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
- // Output known-1 are known. to be set if s.et in either the LHS | RHS.
- APInt IKnownOne = RHSKnown.One | LHSKnown.One;
-
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
- return Constant::getIntegerValue(VTy, IKnownOne);
-
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'or'.
- if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
- return I->getOperand(1);
-
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask))
- return I;
-
- Known.Zero = std::move(IKnownZero);
- Known.One = std::move(IKnownOne);
- break;
- }
- case Instruction::Xor: {
- if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
- return I;
- assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
- assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
-
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
- (RHSKnown.One & LHSKnown.One);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
- (RHSKnown.One & LHSKnown.Zero);
-
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
- return Constant::getIntegerValue(VTy, IKnownOne);
-
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'xor'.
- if (DemandedMask.isSubsetOf(RHSKnown.Zero))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(LHSKnown.Zero))
- return I->getOperand(1);
-
- // If all of the demanded bits are known to be zero on one side or the
- // other, turn this into an *inclusive* or.
- // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
- if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
- Instruction *Or =
- BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
- I->getName());
- return InsertNewInstWith(Or, *I);
- }
-
- // If all of the demanded bits on one side are known, and all of the set
- // bits on that side are also known to be set on the other side, turn this
- // into an AND, as we know the bits will be cleared.
- // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
- RHSKnown.One.isSubsetOf(LHSKnown.One)) {
- Constant *AndC = Constant::getIntegerValue(VTy,
- ~RHSKnown.One & DemandedMask);
- Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
- return InsertNewInstWith(And, *I);
- }
-
- // If the RHS is a constant, see if we can simplify it.
- // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
- if (ShrinkDemandedConstant(I, 1, DemandedMask))
- return I;
-
- // If our LHS is an 'and' and if it has one use, and if any of the bits we
- // are flipping are known to be set, then the xor is just resetting those
- // bits to zero. We can just knock out bits from the 'and' and the 'xor',
- // simplifying both of them.
- if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
- if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
- isa<ConstantInt>(I->getOperand(1)) &&
- isa<ConstantInt>(LHSInst->getOperand(1)) &&
- (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
- ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
- ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
- APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
-
- Constant *AndC =
- ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
- Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
- InsertNewInstWith(NewAnd, *I);
-
- Constant *XorC =
- ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
- Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
- return InsertNewInstWith(NewXor, *I);
- }
-
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- Known.Zero = std::move(IKnownZero);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- Known.One = std::move(IKnownOne);
- break;
- }
- case Instruction::Select: {
- Value *LHS, *RHS;
- SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
- if (SPF == SPF_UMAX) {
- // UMax(A, C) == A if ...
- // The lowest non-zero bit of DemandMask is higher than the highest
- // non-zero bit of C.
- const APInt *C;
- unsigned CTZ = DemandedMask.countTrailingZeros();
- if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
- return LHS;
- } else if (SPF == SPF_UMIN) {
- // UMin(A, C) == A if ...
- // The lowest non-zero bit of DemandMask is higher than the highest
- // non-one bit of C.
- // This comes from using DeMorgans on the above umax example.
- const APInt *C;
- unsigned CTZ = DemandedMask.countTrailingZeros();
- if (match(RHS, m_APInt(C)) &&
- CTZ >= C->getBitWidth() - C->countLeadingOnes())
- return LHS;
- }
-
- // If this is a select as part of any other min/max pattern, don't simplify
- // any further in case we break the structure.
- if (SPF != SPF_UNKNOWN)
- return nullptr;
-
- if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
- return I;
- assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
- assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
-
- // If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
- ShrinkDemandedConstant(I, 2, DemandedMask))
- return I;
-
- // Only known if known in both the LHS and RHS.
- Known.One = RHSKnown.One & LHSKnown.One;
- Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
- break;
- }
- case Instruction::ZExt:
- case Instruction::Trunc: {
- unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
-
- APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
- KnownBits InputKnown(SrcBitWidth);
- if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
- return I;
- Known = InputKnown.zextOrTrunc(BitWidth);
- // Any top bits are known to be zero.
- if (BitWidth > SrcBitWidth)
- Known.Zero.setBitsFrom(SrcBitWidth);
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- }
- case Instruction::BitCast:
- if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
- return nullptr; // vector->int or fp->int?
-
- if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
- if (VectorType *SrcVTy =
- dyn_cast<VectorType>(I->getOperand(0)->getType())) {
- if (DstVTy->getNumElements() != SrcVTy->getNumElements())
- // Don't touch a bitcast between vectors of different element counts.
- return nullptr;
- } else
- // Don't touch a scalar-to-vector bitcast.
- return nullptr;
- } else if (I->getOperand(0)->getType()->isVectorTy())
- // Don't touch a vector-to-scalar bitcast.
- return nullptr;
-
- if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
- return I;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- case Instruction::SExt: {
- // Compute the bits in the result that are not present in the input.
- unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
-
- APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
-
- // If any of the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- if (DemandedMask.getActiveBits() > SrcBitWidth)
- InputDemandedBits.setBit(SrcBitWidth-1);
-
- KnownBits InputKnown(SrcBitWidth);
- if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
- return I;
-
- // If the input sign bit is known zero, or if the NewBits are not demanded
- // convert this into a zero extension.
- if (InputKnown.isNonNegative() ||
- DemandedMask.getActiveBits() <= SrcBitWidth) {
- // Convert to ZExt cast.
- CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
- return InsertNewInstWith(NewCast, *I);
- }
-
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- Known = InputKnown.sext(BitWidth);
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- }
- case Instruction::Add:
- case Instruction::Sub: {
- /// If the high-bits of an ADD/SUB are not demanded, then we do not care
- /// about the high bits of the operands.
- unsigned NLZ = DemandedMask.countLeadingZeros();
- // Right fill the mask of bits for this ADD/SUB to demand the most
- // significant bit and all those below it.
- APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
- if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
- SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
- ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
- SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
- if (NLZ > 0) {
- // Disable the nsw and nuw flags here: We can no longer guarantee that
- // we won't wrap after simplification. Removing the nsw/nuw flags is
- // legal here because the top bit is not demanded.
- BinaryOperator &BinOP = *cast<BinaryOperator>(I);
- BinOP.setHasNoSignedWrap(false);
- BinOP.setHasNoUnsignedWrap(false);
- }
- return I;
- }
-
- // If we are known to be adding/subtracting zeros to every bit below
- // the highest demanded bit, we just return the other side.
- if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
- return I->getOperand(0);
- // We can't do this with the LHS for subtraction, unless we are only
- // demanding the LSB.
- if ((I->getOpcode() == Instruction::Add ||
- DemandedFromOps.isOneValue()) &&
- DemandedFromOps.isSubsetOf(LHSKnown.Zero))
- return I->getOperand(1);
-
- // Otherwise just compute the known bits of the result.
- bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
- NSW, LHSKnown, RHSKnown);
- break;
- }
- case Instruction::Shl: {
- const APInt *SA;
- if (match(I->getOperand(1), m_APInt(SA))) {
- const APInt *ShrAmt;
- if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
- if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
- if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
- DemandedMask, Known))
- return R;
-
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
- APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
-
- // If the shift is NUW/NSW, then it does demand the high bits.
- ShlOperator *IOp = cast<ShlOperator>(I);
- if (IOp->hasNoSignedWrap())
- DemandedMaskIn.setHighBits(ShiftAmt+1);
- else if (IOp->hasNoUnsignedWrap())
- DemandedMaskIn.setHighBits(ShiftAmt);
-
- if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
- return I;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero <<= ShiftAmt;
- Known.One <<= ShiftAmt;
- // low bits known zero.
- if (ShiftAmt)
- Known.Zero.setLowBits(ShiftAmt);
- }
- break;
- }
- case Instruction::LShr: {
- const APInt *SA;
- if (match(I->getOperand(1), m_APInt(SA))) {
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
-
- // Unsigned shift right.
- APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
-
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (cast<LShrOperator>(I)->isExact())
- DemandedMaskIn.setLowBits(ShiftAmt);
-
- if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
- return I;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero.lshrInPlace(ShiftAmt);
- Known.One.lshrInPlace(ShiftAmt);
- if (ShiftAmt)
- Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
- }
- break;
- }
- case Instruction::AShr: {
- // If this is an arithmetic shift right and only the low-bit is set, we can
- // always convert this into a logical shr, even if the shift amount is
- // variable. The low bit of the shift cannot be an input sign bit unless
- // the shift amount is >= the size of the datatype, which is undefined.
- if (DemandedMask.isOneValue()) {
- // Perform the logical shift right.
- Instruction *NewVal = BinaryOperator::CreateLShr(
- I->getOperand(0), I->getOperand(1), I->getName());
- return InsertNewInstWith(NewVal, *I);
- }
-
- // If the sign bit is the only bit demanded by this ashr, then there is no
- // need to do it, the shift doesn't change the high bit.
- if (DemandedMask.isSignMask())
- return I->getOperand(0);
-
- const APInt *SA;
- if (match(I->getOperand(1), m_APInt(SA))) {
- uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
-
- // Signed shift right.
- APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
- // If any of the high bits are demanded, we should set the sign bit as
- // demanded.
- if (DemandedMask.countLeadingZeros() <= ShiftAmt)
- DemandedMaskIn.setSignBit();
-
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (cast<AShrOperator>(I)->isExact())
- DemandedMaskIn.setLowBits(ShiftAmt);
-
- if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
- return I;
-
- unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
-
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- // Compute the new bits that are at the top now plus sign bits.
- APInt HighBits(APInt::getHighBitsSet(
- BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
- Known.Zero.lshrInPlace(ShiftAmt);
- Known.One.lshrInPlace(ShiftAmt);
-
- // If the input sign bit is known to be zero, or if none of the top bits
- // are demanded, turn this into an unsigned shift right.
- assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
- if (Known.Zero[BitWidth-ShiftAmt-1] ||
- !DemandedMask.intersects(HighBits)) {
- BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
- I->getOperand(1));
- LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
- return InsertNewInstWith(LShr, *I);
- } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
- Known.One |= HighBits;
- }
- }
- break;
- }
- case Instruction::UDiv: {
- // UDiv doesn't demand low bits that are zero in the divisor.
- const APInt *SA;
- if (match(I->getOperand(1), m_APInt(SA))) {
- // If the shift is exact, then it does demand the low bits.
- if (cast<UDivOperator>(I)->isExact())
- break;
-
- // FIXME: Take the demanded mask of the result into account.
- unsigned RHSTrailingZeros = SA->countTrailingZeros();
- APInt DemandedMaskIn =
- APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
- if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
- return I;
-
- // Propagate zero bits from the input.
- Known.Zero.setHighBits(std::min(
- BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
- }
- break;
- }
- case Instruction::SRem:
- if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // X % -1 demands all the bits because we don't want to introduce
- // INT_MIN % -1 (== undef) by accident.
- if (Rem->isMinusOne())
- break;
- APInt RA = Rem->getValue().abs();
- if (RA.isPowerOf2()) {
- if (DemandedMask.ult(RA)) // srem won't affect demanded bits
- return I->getOperand(0);
-
- APInt LowBits = RA - 1;
- APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
- if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
- return I;
-
- // The low bits of LHS are unchanged by the srem.
- Known.Zero = LHSKnown.Zero & LowBits;
- Known.One = LHSKnown.One & LowBits;
-
- // If LHS is non-negative or has all low bits zero, then the upper bits
- // are all zero.
- if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
- Known.Zero |= ~LowBits;
-
- // If LHS is negative and not all low bits are zero, then the upper bits
- // are all one.
- if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
- Known.One |= ~LowBits;
-
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- }
- }
-
- // The sign bit is the LHS's sign bit, except when the result of the
- // remainder is zero.
- if (DemandedMask.isSignBitSet()) {
- computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
- // If it's known zero, our sign bit is also zero.
- if (LHSKnown.isNonNegative())
- Known.makeNonNegative();
- }
- break;
- case Instruction::URem: {
- KnownBits Known2(BitWidth);
- APInt AllOnes = APInt::getAllOnesValue(BitWidth);
- if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
- SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
- return I;
-
- unsigned Leaders = Known2.countMinLeadingZeros();
- Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
- break;
- }
- case Instruction::Call:
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::bswap: {
- // If the only bits demanded come from one byte of the bswap result,
- // just shift the input byte into position to eliminate the bswap.
- unsigned NLZ = DemandedMask.countLeadingZeros();
- unsigned NTZ = DemandedMask.countTrailingZeros();
-
- // Round NTZ down to the next byte. If we have 11 trailing zeros, then
- // we need all the bits down to bit 8. Likewise, round NLZ. If we
- // have 14 leading zeros, round to 8.
- NLZ &= ~7;
- NTZ &= ~7;
- // If we need exactly one byte, we can do this transformation.
- if (BitWidth-NLZ-NTZ == 8) {
- unsigned ResultBit = NTZ;
- unsigned InputBit = BitWidth-NTZ-8;
-
- // Replace this with either a left or right shift to get the byte into
- // the right place.
- Instruction *NewVal;
- if (InputBit > ResultBit)
- NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
- ConstantInt::get(I->getType(), InputBit-ResultBit));
- else
- NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
- ConstantInt::get(I->getType(), ResultBit-InputBit));
- NewVal->takeName(I);
- return InsertNewInstWith(NewVal, *I);
- }
-
- // TODO: Could compute known zero/one bits based on the input.
- break;
- }
- case Intrinsic::fshr:
- case Intrinsic::fshl: {
- const APInt *SA;
- if (!match(I->getOperand(2), m_APInt(SA)))
- break;
-
- // Normalize to funnel shift left. APInt shifts of BitWidth are well-
- // defined, so no need to special-case zero shifts here.
- uint64_t ShiftAmt = SA->urem(BitWidth);
- if (II->getIntrinsicID() == Intrinsic::fshr)
- ShiftAmt = BitWidth - ShiftAmt;
-
- APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
- APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
- if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
- SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
- return I;
-
- Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
- RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
- Known.One = LHSKnown.One.shl(ShiftAmt) |
- RHSKnown.One.lshr(BitWidth - ShiftAmt);
- break;
- }
- case Intrinsic::x86_mmx_pmovmskb:
- case Intrinsic::x86_sse_movmsk_ps:
- case Intrinsic::x86_sse2_movmsk_pd:
- case Intrinsic::x86_sse2_pmovmskb_128:
- case Intrinsic::x86_avx_movmsk_ps_256:
- case Intrinsic::x86_avx_movmsk_pd_256:
- case Intrinsic::x86_avx2_pmovmskb: {
- // MOVMSK copies the vector elements' sign bits to the low bits
- // and zeros the high bits.
- unsigned ArgWidth;
- if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
- ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
- } else {
- auto Arg = II->getArgOperand(0);
- auto ArgType = cast<VectorType>(Arg->getType());
- ArgWidth = ArgType->getNumElements();
- }
-
- // If we don't need any of low bits then return zero,
- // we know that DemandedMask is non-zero already.
- APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
- if (DemandedElts.isNullValue())
- return ConstantInt::getNullValue(VTy);
-
- // We know that the upper bits are set to zero.
- Known.Zero.setBitsFrom(ArgWidth);
- return nullptr;
- }
- case Intrinsic::x86_sse42_crc32_64_64:
- Known.Zero.setBitsFrom(32);
- return nullptr;
- }
- }
- computeKnownBits(V, Known, Depth, CxtI);
- break;
- }
-
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
- return Constant::getIntegerValue(VTy, Known.One);
- return nullptr;
-}
-
-/// Helper routine of SimplifyDemandedUseBits. It computes Known
-/// bits. It also tries to handle simplifications that can be done based on
-/// DemandedMask, but without modifying the Instruction.
-Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
- const APInt &DemandedMask,
- KnownBits &Known,
- unsigned Depth,
- Instruction *CxtI) {
- unsigned BitWidth = DemandedMask.getBitWidth();
- Type *ITy = I->getType();
-
- KnownBits LHSKnown(BitWidth);
- KnownBits RHSKnown(BitWidth);
-
- // Despite the fact that we can't simplify this instruction in all User's
- // context, we can at least compute the known bits, and we can
- // do simplifications that apply to *just* the one user if we know that
- // this instruction has a simpler value in that context.
- switch (I->getOpcode()) {
- case Instruction::And: {
- // If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
- computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
- CxtI);
-
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
- // Output known-1 bits are only known if set in both the LHS & RHS.
- APInt IKnownOne = RHSKnown.One & LHSKnown.One;
-
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
- return Constant::getIntegerValue(ITy, IKnownOne);
-
- // If all of the demanded bits are known 1 on one side, return the other.
- // These bits cannot contribute to the result of the 'and' in this
- // context.
- if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
- return I->getOperand(1);
-
- Known.Zero = std::move(IKnownZero);
- Known.One = std::move(IKnownOne);
- break;
- }
- case Instruction::Or: {
- // We can simplify (X|Y) -> X or Y in the user's context if we know that
- // only bits from X or Y are demanded.
-
- // If either the LHS or the RHS are One, the result is One.
- computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
- computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
- CxtI);
-
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- APInt IKnownOne = RHSKnown.One | LHSKnown.One;
-
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
- return Constant::getIntegerValue(ITy, IKnownOne);
-
- // If all of the demanded bits are known zero on one side, return the
- // other. These bits cannot contribute to the result of the 'or' in this
- // context.
- if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
- return I->getOperand(1);
-
- Known.Zero = std::move(IKnownZero);
- Known.One = std::move(IKnownOne);
- break;
- }
- case Instruction::Xor: {
- // We can simplify (X^Y) -> X or Y in the user's context if we know that
- // only bits from X or Y are demanded.
-
- computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
- computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
- CxtI);
-
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
- (RHSKnown.One & LHSKnown.One);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
- (RHSKnown.One & LHSKnown.Zero);
-
- // If the client is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
- return Constant::getIntegerValue(ITy, IKnownOne);
-
- // If all of the demanded bits are known zero on one side, return the
- // other.
- if (DemandedMask.isSubsetOf(RHSKnown.Zero))
- return I->getOperand(0);
- if (DemandedMask.isSubsetOf(LHSKnown.Zero))
- return I->getOperand(1);
-
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- Known.Zero = std::move(IKnownZero);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- Known.One = std::move(IKnownOne);
- break;
- }
- default:
- // Compute the Known bits to simplify things downstream.
- computeKnownBits(I, Known, Depth, CxtI);
-
- // If this user is only demanding bits that we know, return the known
- // constant.
- if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
- return Constant::getIntegerValue(ITy, Known.One);
-
- break;
- }
-
- return nullptr;
-}
-
-
-/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
-/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
-/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
-/// of "C2-C1".
-///
-/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
-/// ..., bn}, without considering the specific value X is holding.
-/// This transformation is legal iff one of following conditions is hold:
-/// 1) All the bit in S are 0, in this case E1 == E2.
-/// 2) We don't care those bits in S, per the input DemandedMask.
-/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
-/// rest bits.
-///
-/// Currently we only test condition 2).
-///
-/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
-/// not successful.
-Value *
-InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
- Instruction *Shl, const APInt &ShlOp1,
- const APInt &DemandedMask,
- KnownBits &Known) {
- if (!ShlOp1 || !ShrOp1)
- return nullptr; // No-op.
-
- Value *VarX = Shr->getOperand(0);
- Type *Ty = VarX->getType();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
- return nullptr; // Undef.
-
- unsigned ShlAmt = ShlOp1.getZExtValue();
- unsigned ShrAmt = ShrOp1.getZExtValue();
-
- Known.One.clearAllBits();
- Known.Zero.setLowBits(ShlAmt - 1);
- Known.Zero &= DemandedMask;
-
- APInt BitMask1(APInt::getAllOnesValue(BitWidth));
- APInt BitMask2(APInt::getAllOnesValue(BitWidth));
-
- bool isLshr = (Shr->getOpcode() == Instruction::LShr);
- BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
- (BitMask1.ashr(ShrAmt) << ShlAmt);
-
- if (ShrAmt <= ShlAmt) {
- BitMask2 <<= (ShlAmt - ShrAmt);
- } else {
- BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
- BitMask2.ashr(ShrAmt - ShlAmt);
- }
-
- // Check if condition-2 (see the comment to this function) is satified.
- if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
- if (ShrAmt == ShlAmt)
- return VarX;
-
- if (!Shr->hasOneUse())
- return nullptr;
-
- BinaryOperator *New;
- if (ShrAmt < ShlAmt) {
- Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
- New = BinaryOperator::CreateShl(VarX, Amt);
- BinaryOperator *Orig = cast<BinaryOperator>(Shl);
- New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
- New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
- } else {
- Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
- New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
- BinaryOperator::CreateAShr(VarX, Amt);
- if (cast<BinaryOperator>(Shr)->isExact())
- New->setIsExact(true);
- }
-
- return InsertNewInstWith(New, *Shl);
- }
-
- return nullptr;
-}
-
-/// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
-Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
- APInt DemandedElts,
- int DMaskIdx,
- int TFCIdx) {
- unsigned VWidth = II->getType()->getVectorNumElements();
- if (VWidth == 1)
- return nullptr;
-
- // Need to change to new instruction format
- ConstantInt *TFC = nullptr;
- bool TFELWEEnabled = false;
- if (TFCIdx > 0) {
- TFC = dyn_cast<ConstantInt>(II->getArgOperand(TFCIdx));
- TFELWEEnabled = TFC->getZExtValue() & 0x1 // TFE
- || TFC->getZExtValue() & 0x2; // LWE
- }
-
- if (TFELWEEnabled)
- return nullptr; // TFE not yet supported
-
- ConstantInt *NewDMask = nullptr;
-
- if (DMaskIdx < 0) {
- // Pretend that a prefix of elements is demanded to simplify the code
- // below.
- DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
- } else {
- ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx));
- if (!DMask)
- return nullptr; // non-constant dmask is not supported by codegen
-
- unsigned DMaskVal = DMask->getZExtValue() & 0xf;
-
- // Mask off values that are undefined because the dmask doesn't cover them
- DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
-
- unsigned NewDMaskVal = 0;
- unsigned OrigLoadIdx = 0;
- for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
- const unsigned Bit = 1 << SrcIdx;
- if (!!(DMaskVal & Bit)) {
- if (!!DemandedElts[OrigLoadIdx])
- NewDMaskVal |= Bit;
- OrigLoadIdx++;
- }
- }
-
- if (DMaskVal != NewDMaskVal)
- NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
- }
-
- // TODO: Handle 3 vectors when supported in code gen.
- unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation());
- if (!NewNumElts)
- return UndefValue::get(II->getType());
-
- if (NewNumElts >= VWidth && DemandedElts.isMask()) {
- if (NewDMask)
- II->setArgOperand(DMaskIdx, NewDMask);
- return nullptr;
- }
-
- // Determine the overload types of the original intrinsic.
- auto IID = II->getIntrinsicID();
- SmallVector<Intrinsic::IITDescriptor, 16> Table;
- getIntrinsicInfoTableEntries(IID, Table);
- ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
-
- FunctionType *FTy = II->getCalledFunction()->getFunctionType();
- SmallVector<Type *, 6> OverloadTys;
- Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
- for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
- Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
-
- // Get the new return type overload of the intrinsic.
- Module *M = II->getParent()->getParent()->getParent();
- Type *EltTy = II->getType()->getVectorElementType();
- Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
-
- OverloadTys[0] = NewTy;
- Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
-
- SmallVector<Value *, 16> Args;
- for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
- Args.push_back(II->getArgOperand(I));
-
- if (NewDMask)
- Args[DMaskIdx] = NewDMask;
-
- IRBuilderBase::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(II);
-
- CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
- NewCall->takeName(II);
- NewCall->copyMetadata(*II);
-
- if (NewNumElts == 1) {
- return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
- DemandedElts.countTrailingZeros());
- }
-
- SmallVector<uint32_t, 8> EltMask;
- unsigned NewLoadIdx = 0;
- for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
- if (!!DemandedElts[OrigLoadIdx])
- EltMask.push_back(NewLoadIdx++);
- else
- EltMask.push_back(NewNumElts);
- }
-
- Value *Shuffle =
- Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
-
- return Shuffle;
-}
-
-/// The specified value produces a vector with any number of elements.
-/// DemandedElts contains the set of elements that are actually used by the
-/// caller. This method analyzes which elements of the operand are undef and
-/// returns that information in UndefElts.
-///
-/// If the information about demanded elements can be used to simplify the
-/// operation, the operation is simplified, then the resultant value is
-/// returned. This returns null if no change was made.
-Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
- APInt &UndefElts,
- unsigned Depth) {
- unsigned VWidth = V->getType()->getVectorNumElements();
- APInt EltMask(APInt::getAllOnesValue(VWidth));
- assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
-
- if (isa<UndefValue>(V)) {
- // If the entire vector is undefined, just return this info.
- UndefElts = EltMask;
- return nullptr;
- }
-
- if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
- UndefElts = EltMask;
- return UndefValue::get(V->getType());
- }
-
- UndefElts = 0;
-
- if (auto *C = dyn_cast<Constant>(V)) {
- // Check if this is identity. If so, return 0 since we are not simplifying
- // anything.
- if (DemandedElts.isAllOnesValue())
- return nullptr;
-
- Type *EltTy = cast<VectorType>(V->getType())->getElementType();
- Constant *Undef = UndefValue::get(EltTy);
- SmallVector<Constant*, 16> Elts;
- for (unsigned i = 0; i != VWidth; ++i) {
- if (!DemandedElts[i]) { // If not demanded, set to undef.
- Elts.push_back(Undef);
- UndefElts.setBit(i);
- continue;
- }
-
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt) return nullptr;
-
- if (isa<UndefValue>(Elt)) { // Already undef.
- Elts.push_back(Undef);
- UndefElts.setBit(i);
- } else { // Otherwise, defined.
- Elts.push_back(Elt);
- }
- }
-
- // If we changed the constant, return it.
- Constant *NewCV = ConstantVector::get(Elts);
- return NewCV != C ? NewCV : nullptr;
- }
-
- // Limit search depth.
- if (Depth == 10)
- return nullptr;
-
- // If multiple users are using the root value, proceed with
- // simplification conservatively assuming that all elements
- // are needed.
- if (!V->hasOneUse()) {
- // Quit if we find multiple users of a non-root value though.
- // They'll be handled when it's their turn to be visited by
- // the main instcombine process.
- if (Depth != 0)
- // TODO: Just compute the UndefElts information recursively.
- return nullptr;
-
- // Conservatively assume that all elements are needed.
- DemandedElts = EltMask;
- }
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return nullptr; // Only analyze instructions.
-
- bool MadeChange = false;
- auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
- APInt Demanded, APInt &Undef) {
- auto *II = dyn_cast<IntrinsicInst>(Inst);
- Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
- if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
- if (II)
- II->setArgOperand(OpNum, V);
- else
- Inst->setOperand(OpNum, V);
- MadeChange = true;
- }
- };
-
- APInt UndefElts2(VWidth, 0);
- APInt UndefElts3(VWidth, 0);
- switch (I->getOpcode()) {
- default: break;
-
- case Instruction::InsertElement: {
- // If this is a variable index, we don't know which element it overwrites.
- // demand exactly the same input as we produce.
- ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
- if (!Idx) {
- // Note that we can't propagate undef elt info, because we don't know
- // which elt is getting updated.
- simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
- break;
- }
-
- // The element inserted overwrites whatever was there, so the input demanded
- // set is simpler than the output set.
- unsigned IdxNo = Idx->getZExtValue();
- APInt PreInsertDemandedElts = DemandedElts;
- if (IdxNo < VWidth)
- PreInsertDemandedElts.clearBit(IdxNo);
-
- simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
-
- // If this is inserting an element that isn't demanded, remove this
- // insertelement.
- if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
- Worklist.Add(I);
- return I->getOperand(0);
- }
-
- // The inserted element is defined.
- UndefElts.clearBit(IdxNo);
- break;
- }
- case Instruction::ShuffleVector: {
- ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
- unsigned LHSVWidth =
- Shuffle->getOperand(0)->getType()->getVectorNumElements();
- APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
- for (unsigned i = 0; i < VWidth; i++) {
- if (DemandedElts[i]) {
- unsigned MaskVal = Shuffle->getMaskValue(i);
- if (MaskVal != -1u) {
- assert(MaskVal < LHSVWidth * 2 &&
- "shufflevector mask index out of range!");
- if (MaskVal < LHSVWidth)
- LeftDemanded.setBit(MaskVal);
- else
- RightDemanded.setBit(MaskVal - LHSVWidth);
- }
- }
- }
-
- APInt LHSUndefElts(LHSVWidth, 0);
- simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
-
- APInt RHSUndefElts(LHSVWidth, 0);
- simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
-
- bool NewUndefElts = false;
- unsigned LHSIdx = -1u, LHSValIdx = -1u;
- unsigned RHSIdx = -1u, RHSValIdx = -1u;
- bool LHSUniform = true;
- bool RHSUniform = true;
- for (unsigned i = 0; i < VWidth; i++) {
- unsigned MaskVal = Shuffle->getMaskValue(i);
- if (MaskVal == -1u) {
- UndefElts.setBit(i);
- } else if (!DemandedElts[i]) {
- NewUndefElts = true;
- UndefElts.setBit(i);
- } else if (MaskVal < LHSVWidth) {
- if (LHSUndefElts[MaskVal]) {
- NewUndefElts = true;
- UndefElts.setBit(i);
- } else {
- LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
- LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
- LHSUniform = LHSUniform && (MaskVal == i);
- }
- } else {
- if (RHSUndefElts[MaskVal - LHSVWidth]) {
- NewUndefElts = true;
- UndefElts.setBit(i);
- } else {
- RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
- RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
- RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
- }
- }
- }
-
- // Try to transform shuffle with constant vector and single element from
- // this constant vector to single insertelement instruction.
- // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
- // insertelement V, C[ci], ci-n
- if (LHSVWidth == Shuffle->getType()->getNumElements()) {
- Value *Op = nullptr;
- Constant *Value = nullptr;
- unsigned Idx = -1u;
-
- // Find constant vector with the single element in shuffle (LHS or RHS).
- if (LHSIdx < LHSVWidth && RHSUniform) {
- if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
- Op = Shuffle->getOperand(1);
- Value = CV->getOperand(LHSValIdx);
- Idx = LHSIdx;
- }
- }
- if (RHSIdx < LHSVWidth && LHSUniform) {
- if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
- Op = Shuffle->getOperand(0);
- Value = CV->getOperand(RHSValIdx);
- Idx = RHSIdx;
- }
- }
- // Found constant vector with single element - convert to insertelement.
- if (Op && Value) {
- Instruction *New = InsertElementInst::Create(
- Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
- Shuffle->getName());
- InsertNewInstWith(New, *Shuffle);
- return New;
- }
- }
- if (NewUndefElts) {
- // Add additional discovered undefs.
- SmallVector<Constant*, 16> Elts;
- for (unsigned i = 0; i < VWidth; ++i) {
- if (UndefElts[i])
- Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
- else
- Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
- Shuffle->getMaskValue(i)));
- }
- I->setOperand(2, ConstantVector::get(Elts));
- MadeChange = true;
- }
- break;
- }
- case Instruction::Select: {
- // If this is a vector select, try to transform the select condition based
- // on the current demanded elements.
- SelectInst *Sel = cast<SelectInst>(I);
- if (Sel->getCondition()->getType()->isVectorTy()) {
- // TODO: We are not doing anything with UndefElts based on this call.
- // It is overwritten below based on the other select operands. If an
- // element of the select condition is known undef, then we are free to
- // choose the output value from either arm of the select. If we know that
- // one of those values is undef, then the output can be undef.
- simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
- }
-
- // Next, see if we can transform the arms of the select.
- APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
- if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
- for (unsigned i = 0; i < VWidth; i++) {
- // isNullValue() always returns false when called on a ConstantExpr.
- // Skip constant expressions to avoid propagating incorrect information.
- Constant *CElt = CV->getAggregateElement(i);
- if (isa<ConstantExpr>(CElt))
- continue;
- // TODO: If a select condition element is undef, we can demand from
- // either side. If one side is known undef, choosing that side would
- // propagate undef.
- if (CElt->isNullValue())
- DemandedLHS.clearBit(i);
- else
- DemandedRHS.clearBit(i);
- }
- }
-
- simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
- simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
-
- // Output elements are undefined if the element from each arm is undefined.
- // TODO: This can be improved. See comment in select condition handling.
- UndefElts = UndefElts2 & UndefElts3;
- break;
- }
- case Instruction::BitCast: {
- // Vector->vector casts only.
- VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
- if (!VTy) break;
- unsigned InVWidth = VTy->getNumElements();
- APInt InputDemandedElts(InVWidth, 0);
- UndefElts2 = APInt(InVWidth, 0);
- unsigned Ratio;
-
- if (VWidth == InVWidth) {
- // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
- // elements as are demanded of us.
- Ratio = 1;
- InputDemandedElts = DemandedElts;
- } else if ((VWidth % InVWidth) == 0) {
- // If the number of elements in the output is a multiple of the number of
- // elements in the input then an input element is live if any of the
- // corresponding output elements are live.
- Ratio = VWidth / InVWidth;
- for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
- if (DemandedElts[OutIdx])
- InputDemandedElts.setBit(OutIdx / Ratio);
- } else if ((InVWidth % VWidth) == 0) {
- // If the number of elements in the input is a multiple of the number of
- // elements in the output then an input element is live if the
- // corresponding output element is live.
- Ratio = InVWidth / VWidth;
- for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
- if (DemandedElts[InIdx / Ratio])
- InputDemandedElts.setBit(InIdx);
- } else {
- // Unsupported so far.
- break;
- }
-
- simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
-
- if (VWidth == InVWidth) {
- UndefElts = UndefElts2;
- } else if ((VWidth % InVWidth) == 0) {
- // If the number of elements in the output is a multiple of the number of
- // elements in the input then an output element is undef if the
- // corresponding input element is undef.
- for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
- if (UndefElts2[OutIdx / Ratio])
- UndefElts.setBit(OutIdx);
- } else if ((InVWidth % VWidth) == 0) {
- // If the number of elements in the input is a multiple of the number of
- // elements in the output then an output element is undef if all of the
- // corresponding input elements are undef.
- for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
- APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
- if (SubUndef.countPopulation() == Ratio)
- UndefElts.setBit(OutIdx);
- }
- } else {
- llvm_unreachable("Unimp");
- }
- break;
- }
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
- break;
-
- case Instruction::Call: {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
- if (!II) break;
- switch (II->getIntrinsicID()) {
- case Intrinsic::x86_xop_vfrcz_ss:
- case Intrinsic::x86_xop_vfrcz_sd:
- // The instructions for these intrinsics are speced to zero upper bits not
- // pass them through like other scalar intrinsics. So we shouldn't just
- // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
- // Instead we should return a zero vector.
- if (!DemandedElts[0]) {
- Worklist.Add(II);
- return ConstantAggregateZero::get(II->getType());
- }
-
- // Only the lower element is used.
- DemandedElts = 1;
- simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
-
- // Only the lower element is undefined. The high elements are zero.
- UndefElts = UndefElts[0];
- break;
-
- // Unary scalar-as-vector operations that work column-wise.
- case Intrinsic::x86_sse_rcp_ss:
- case Intrinsic::x86_sse_rsqrt_ss:
- simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
-
- // If lowest element of a scalar op isn't used then use Arg0.
- if (!DemandedElts[0]) {
- Worklist.Add(II);
- return II->getArgOperand(0);
- }
- // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
- // checks).
- break;
-
- // Binary scalar-as-vector operations that work column-wise. The high
- // elements come from operand 0. The low element is a function of both
- // operands.
- case Intrinsic::x86_sse_min_ss:
- case Intrinsic::x86_sse_max_ss:
- case Intrinsic::x86_sse_cmp_ss:
- case Intrinsic::x86_sse2_min_sd:
- case Intrinsic::x86_sse2_max_sd:
- case Intrinsic::x86_sse2_cmp_sd: {
- simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
-
- // If lowest element of a scalar op isn't used then use Arg0.
- if (!DemandedElts[0]) {
- Worklist.Add(II);
- return II->getArgOperand(0);
- }
-
- // Only lower element is used for operand 1.
- DemandedElts = 1;
- simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
-
- // Lower element is undefined if both lower elements are undefined.
- // Consider things like undef&0. The result is known zero, not undef.
- if (!UndefElts2[0])
- UndefElts.clearBit(0);
-
- break;
- }
-
- // Binary scalar-as-vector operations that work column-wise. The high
- // elements come from operand 0 and the low element comes from operand 1.
- case Intrinsic::x86_sse41_round_ss:
- case Intrinsic::x86_sse41_round_sd: {
- // Don't use the low element of operand 0.
- APInt DemandedElts2 = DemandedElts;
- DemandedElts2.clearBit(0);
- simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
-
- // If lowest element of a scalar op isn't used then use Arg0.
- if (!DemandedElts[0]) {
- Worklist.Add(II);
- return II->getArgOperand(0);
- }
-
- // Only lower element is used for operand 1.
- DemandedElts = 1;
- simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
-
- // Take the high undef elements from operand 0 and take the lower element
- // from operand 1.
- UndefElts.clearBit(0);
- UndefElts |= UndefElts2[0];
- break;
- }
-
- // Three input scalar-as-vector operations that work column-wise. The high
- // elements come from operand 0 and the low element is a function of all
- // three inputs.
- case Intrinsic::x86_avx512_mask_add_ss_round:
- case Intrinsic::x86_avx512_mask_div_ss_round:
- case Intrinsic::x86_avx512_mask_mul_ss_round:
- case Intrinsic::x86_avx512_mask_sub_ss_round:
- case Intrinsic::x86_avx512_mask_max_ss_round:
- case Intrinsic::x86_avx512_mask_min_ss_round:
- case Intrinsic::x86_avx512_mask_add_sd_round:
- case Intrinsic::x86_avx512_mask_div_sd_round:
- case Intrinsic::x86_avx512_mask_mul_sd_round:
- case Intrinsic::x86_avx512_mask_sub_sd_round:
- case Intrinsic::x86_avx512_mask_max_sd_round:
- case Intrinsic::x86_avx512_mask_min_sd_round:
- simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
-
- // If lowest element of a scalar op isn't used then use Arg0.
- if (!DemandedElts[0]) {
- Worklist.Add(II);
- return II->getArgOperand(0);
- }
-
- // Only lower element is used for operand 1 and 2.
- DemandedElts = 1;
- simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
- simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
-
- // Lower element is undefined if all three lower elements are undefined.
- // Consider things like undef&0. The result is known zero, not undef.
- if (!UndefElts2[0] || !UndefElts3[0])
- UndefElts.clearBit(0);
-
- break;
-
- case Intrinsic::x86_sse2_packssdw_128:
- case Intrinsic::x86_sse2_packsswb_128:
- case Intrinsic::x86_sse2_packuswb_128:
- case Intrinsic::x86_sse41_packusdw:
- case Intrinsic::x86_avx2_packssdw:
- case Intrinsic::x86_avx2_packsswb:
- case Intrinsic::x86_avx2_packusdw:
- case Intrinsic::x86_avx2_packuswb:
- case Intrinsic::x86_avx512_packssdw_512:
- case Intrinsic::x86_avx512_packsswb_512:
- case Intrinsic::x86_avx512_packusdw_512:
- case Intrinsic::x86_avx512_packuswb_512: {
- auto *Ty0 = II->getArgOperand(0)->getType();
- unsigned InnerVWidth = Ty0->getVectorNumElements();
- assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
-
- unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
- unsigned VWidthPerLane = VWidth / NumLanes;
- unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
-
- // Per lane, pack the elements of the first input and then the second.
- // e.g.
- // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
- // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
- for (int OpNum = 0; OpNum != 2; ++OpNum) {
- APInt OpDemandedElts(InnerVWidth, 0);
- for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
- unsigned LaneIdx = Lane * VWidthPerLane;
- for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
- unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
- if (DemandedElts[Idx])
- OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
- }
- }
-
- // Demand elements from the operand.
- APInt OpUndefElts(InnerVWidth, 0);
- simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
-
- // Pack the operand's UNDEF elements, one lane at a time.
- OpUndefElts = OpUndefElts.zext(VWidth);
- for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
- APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
- LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
- LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
- UndefElts |= LaneElts;
- }
- }
- break;
- }
-
- // PSHUFB
- case Intrinsic::x86_ssse3_pshuf_b_128:
- case Intrinsic::x86_avx2_pshuf_b:
- case Intrinsic::x86_avx512_pshuf_b_512:
- // PERMILVAR
- case Intrinsic::x86_avx_vpermilvar_ps:
- case Intrinsic::x86_avx_vpermilvar_ps_256:
- case Intrinsic::x86_avx512_vpermilvar_ps_512:
- case Intrinsic::x86_avx_vpermilvar_pd:
- case Intrinsic::x86_avx_vpermilvar_pd_256:
- case Intrinsic::x86_avx512_vpermilvar_pd_512:
- // PERMV
- case Intrinsic::x86_avx2_permd:
- case Intrinsic::x86_avx2_permps: {
- simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
- break;
- }
-
- // SSE4A instructions leave the upper 64-bits of the 128-bit result
- // in an undefined state.
- case Intrinsic::x86_sse4a_extrq:
- case Intrinsic::x86_sse4a_extrqi:
- case Intrinsic::x86_sse4a_insertq:
- case Intrinsic::x86_sse4a_insertqi:
- UndefElts.setHighBits(VWidth / 2);
- break;
- case Intrinsic::amdgcn_buffer_load:
- case Intrinsic::amdgcn_buffer_load_format:
- case Intrinsic::amdgcn_raw_buffer_load:
- case Intrinsic::amdgcn_raw_buffer_load_format:
- case Intrinsic::amdgcn_struct_buffer_load:
- case Intrinsic::amdgcn_struct_buffer_load_format:
- return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
- default: {
- if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
- return simplifyAMDGCNMemoryIntrinsicDemanded(
- II, DemandedElts, 0, II->getNumArgOperands() - 2);
-
- break;
- }
- } // switch on IntrinsicID
- break;
- } // case Call
- } // switch on Opcode
-
- // TODO: We bail completely on integer div/rem and shifts because they have
- // UB/poison potential, but that should be refined.
- BinaryOperator *BO;
- if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
- simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
- simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
-
- // Any change to an instruction with potential poison must clear those flags
- // because we can not guarantee those constraints now. Other analysis may
- // determine that it is safe to re-apply the flags.
- if (MadeChange)
- BO->dropPoisonGeneratingFlags();
-
- // Output elements are undefined if both are undefined. Consider things
- // like undef & 0. The result is known zero, not undef.
- UndefElts &= UndefElts2;
- }
-
- return MadeChange ? I : nullptr;
-}