diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp | 1671 |
1 files changed, 0 insertions, 1671 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp deleted file mode 100644 index 9bf87d02460..00000000000 --- a/gnu/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp +++ /dev/null @@ -1,1671 +0,0 @@ -//===- InstCombineSimplifyDemanded.cpp ------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains logic for simplifying instructions based on information -// about how they are used. -// -//===----------------------------------------------------------------------===// - -#include "InstCombineInternal.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/Support/KnownBits.h" - -using namespace llvm; -using namespace llvm::PatternMatch; - -#define DEBUG_TYPE "instcombine" - -namespace { - -struct AMDGPUImageDMaskIntrinsic { - unsigned Intr; -}; - -#define GET_AMDGPUImageDMaskIntrinsicTable_IMPL -#include "InstCombineTables.inc" - -} // end anonymous namespace - -/// Check to see if the specified operand of the specified instruction is a -/// constant integer. If so, check to see if there are any bits set in the -/// constant that are not demanded. If so, shrink the constant and return true. -static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, - const APInt &Demanded) { - assert(I && "No instruction?"); - assert(OpNo < I->getNumOperands() && "Operand index too large"); - - // The operand must be a constant integer or splat integer. - Value *Op = I->getOperand(OpNo); - const APInt *C; - if (!match(Op, m_APInt(C))) - return false; - - // If there are no bits set that aren't demanded, nothing to do. - if (C->isSubsetOf(Demanded)) - return false; - - // This instruction is producing bits that are not demanded. Shrink the RHS. - I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); - - return true; -} - - - -/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if -/// the instruction has any properties that allow us to simplify its operands. -bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { - unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); - KnownBits Known(BitWidth); - APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); - - Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, - 0, &Inst); - if (!V) return false; - if (V == &Inst) return true; - replaceInstUsesWith(Inst, V); - return true; -} - -/// This form of SimplifyDemandedBits simplifies the specified instruction -/// operand if possible, updating it in place. It returns true if it made any -/// change and false otherwise. -bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, - const APInt &DemandedMask, - KnownBits &Known, - unsigned Depth) { - Use &U = I->getOperandUse(OpNo); - Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, - Depth, I); - if (!NewVal) return false; - U = NewVal; - return true; -} - - -/// This function attempts to replace V with a simpler value based on the -/// demanded bits. When this function is called, it is known that only the bits -/// set in DemandedMask of the result of V are ever used downstream. -/// Consequently, depending on the mask and V, it may be possible to replace V -/// with a constant or one of its operands. In such cases, this function does -/// the replacement and returns true. In all other cases, it returns false after -/// analyzing the expression and setting KnownOne and known to be one in the -/// expression. Known.Zero contains all the bits that are known to be zero in -/// the expression. These are provided to potentially allow the caller (which -/// might recursively be SimplifyDemandedBits itself) to simplify the -/// expression. -/// Known.One and Known.Zero always follow the invariant that: -/// Known.One & Known.Zero == 0. -/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and -/// Known.Zero may only be accurate for those bits set in DemandedMask. Note -/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all -/// be the same. -/// -/// This returns null if it did not change anything and it permits no -/// simplification. This returns V itself if it did some simplification of V's -/// operands based on the information about what bits are demanded. This returns -/// some other non-null value if it found out that V is equal to another value -/// in the context where the specified bits are demanded, but not for all users. -Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, - KnownBits &Known, unsigned Depth, - Instruction *CxtI) { - assert(V != nullptr && "Null pointer of Value???"); - assert(Depth <= 6 && "Limit Search Depth"); - uint32_t BitWidth = DemandedMask.getBitWidth(); - Type *VTy = V->getType(); - assert( - (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && - Known.getBitWidth() == BitWidth && - "Value *V, DemandedMask and Known must have same BitWidth"); - - if (isa<Constant>(V)) { - computeKnownBits(V, Known, Depth, CxtI); - return nullptr; - } - - Known.resetAll(); - if (DemandedMask.isNullValue()) // Not demanding any bits from V. - return UndefValue::get(VTy); - - if (Depth == 6) // Limit search depth. - return nullptr; - - Instruction *I = dyn_cast<Instruction>(V); - if (!I) { - computeKnownBits(V, Known, Depth, CxtI); - return nullptr; // Only analyze instructions. - } - - // If there are multiple uses of this value and we aren't at the root, then - // we can't do any simplifications of the operands, because DemandedMask - // only reflects the bits demanded by *one* of the users. - if (Depth != 0 && !I->hasOneUse()) - return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); - - KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); - - // If this is the root being simplified, allow it to have multiple uses, - // just set the DemandedMask to all bits so that we can try to simplify the - // operands. This allows visitTruncInst (for example) to simplify the - // operand of a trunc without duplicating all the logic below. - if (Depth == 0 && !V->hasOneUse()) - DemandedMask.setAllBits(); - - switch (I->getOpcode()) { - default: - computeKnownBits(I, Known, Depth, CxtI); - break; - case Instruction::And: { - // If either the LHS or the RHS are Zero, the result is zero. - if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || - SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, - Depth + 1)) - return I; - assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); - assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); - - // Output known-0 are known to be clear if zero in either the LHS | RHS. - APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; - // Output known-1 bits are only known if set in both the LHS & RHS. - APInt IKnownOne = RHSKnown.One & LHSKnown.One; - - // If the client is only demanding bits that we know, return the known - // constant. - if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) - return Constant::getIntegerValue(VTy, IKnownOne); - - // If all of the demanded bits are known 1 on one side, return the other. - // These bits cannot contribute to the result of the 'and'. - if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) - return I->getOperand(0); - if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) - return I->getOperand(1); - - // If the RHS is a constant, see if we can simplify it. - if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) - return I; - - Known.Zero = std::move(IKnownZero); - Known.One = std::move(IKnownOne); - break; - } - case Instruction::Or: { - // If either the LHS or the RHS are One, the result is One. - if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || - SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, - Depth + 1)) - return I; - assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); - assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); - - // Output known-0 bits are only known if clear in both the LHS & RHS. - APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; - // Output known-1 are known. to be set if s.et in either the LHS | RHS. - APInt IKnownOne = RHSKnown.One | LHSKnown.One; - - // If the client is only demanding bits that we know, return the known - // constant. - if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) - return Constant::getIntegerValue(VTy, IKnownOne); - - // If all of the demanded bits are known zero on one side, return the other. - // These bits cannot contribute to the result of the 'or'. - if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) - return I->getOperand(0); - if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) - return I->getOperand(1); - - // If the RHS is a constant, see if we can simplify it. - if (ShrinkDemandedConstant(I, 1, DemandedMask)) - return I; - - Known.Zero = std::move(IKnownZero); - Known.One = std::move(IKnownOne); - break; - } - case Instruction::Xor: { - if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || - SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) - return I; - assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); - assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); - - // Output known-0 bits are known if clear or set in both the LHS & RHS. - APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | - (RHSKnown.One & LHSKnown.One); - // Output known-1 are known to be set if set in only one of the LHS, RHS. - APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | - (RHSKnown.One & LHSKnown.Zero); - - // If the client is only demanding bits that we know, return the known - // constant. - if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) - return Constant::getIntegerValue(VTy, IKnownOne); - - // If all of the demanded bits are known zero on one side, return the other. - // These bits cannot contribute to the result of the 'xor'. - if (DemandedMask.isSubsetOf(RHSKnown.Zero)) - return I->getOperand(0); - if (DemandedMask.isSubsetOf(LHSKnown.Zero)) - return I->getOperand(1); - - // If all of the demanded bits are known to be zero on one side or the - // other, turn this into an *inclusive* or. - // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 - if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { - Instruction *Or = - BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), - I->getName()); - return InsertNewInstWith(Or, *I); - } - - // If all of the demanded bits on one side are known, and all of the set - // bits on that side are also known to be set on the other side, turn this - // into an AND, as we know the bits will be cleared. - // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 - if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && - RHSKnown.One.isSubsetOf(LHSKnown.One)) { - Constant *AndC = Constant::getIntegerValue(VTy, - ~RHSKnown.One & DemandedMask); - Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); - return InsertNewInstWith(And, *I); - } - - // If the RHS is a constant, see if we can simplify it. - // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. - if (ShrinkDemandedConstant(I, 1, DemandedMask)) - return I; - - // If our LHS is an 'and' and if it has one use, and if any of the bits we - // are flipping are known to be set, then the xor is just resetting those - // bits to zero. We can just knock out bits from the 'and' and the 'xor', - // simplifying both of them. - if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) - if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && - isa<ConstantInt>(I->getOperand(1)) && - isa<ConstantInt>(LHSInst->getOperand(1)) && - (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { - ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); - ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); - APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); - - Constant *AndC = - ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); - Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); - InsertNewInstWith(NewAnd, *I); - - Constant *XorC = - ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); - Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); - return InsertNewInstWith(NewXor, *I); - } - - // Output known-0 bits are known if clear or set in both the LHS & RHS. - Known.Zero = std::move(IKnownZero); - // Output known-1 are known to be set if set in only one of the LHS, RHS. - Known.One = std::move(IKnownOne); - break; - } - case Instruction::Select: { - Value *LHS, *RHS; - SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; - if (SPF == SPF_UMAX) { - // UMax(A, C) == A if ... - // The lowest non-zero bit of DemandMask is higher than the highest - // non-zero bit of C. - const APInt *C; - unsigned CTZ = DemandedMask.countTrailingZeros(); - if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) - return LHS; - } else if (SPF == SPF_UMIN) { - // UMin(A, C) == A if ... - // The lowest non-zero bit of DemandMask is higher than the highest - // non-one bit of C. - // This comes from using DeMorgans on the above umax example. - const APInt *C; - unsigned CTZ = DemandedMask.countTrailingZeros(); - if (match(RHS, m_APInt(C)) && - CTZ >= C->getBitWidth() - C->countLeadingOnes()) - return LHS; - } - - // If this is a select as part of any other min/max pattern, don't simplify - // any further in case we break the structure. - if (SPF != SPF_UNKNOWN) - return nullptr; - - if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || - SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) - return I; - assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); - assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); - - // If the operands are constants, see if we can simplify them. - if (ShrinkDemandedConstant(I, 1, DemandedMask) || - ShrinkDemandedConstant(I, 2, DemandedMask)) - return I; - - // Only known if known in both the LHS and RHS. - Known.One = RHSKnown.One & LHSKnown.One; - Known.Zero = RHSKnown.Zero & LHSKnown.Zero; - break; - } - case Instruction::ZExt: - case Instruction::Trunc: { - unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); - - APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); - KnownBits InputKnown(SrcBitWidth); - if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) - return I; - Known = InputKnown.zextOrTrunc(BitWidth); - // Any top bits are known to be zero. - if (BitWidth > SrcBitWidth) - Known.Zero.setBitsFrom(SrcBitWidth); - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - break; - } - case Instruction::BitCast: - if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) - return nullptr; // vector->int or fp->int? - - if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { - if (VectorType *SrcVTy = - dyn_cast<VectorType>(I->getOperand(0)->getType())) { - if (DstVTy->getNumElements() != SrcVTy->getNumElements()) - // Don't touch a bitcast between vectors of different element counts. - return nullptr; - } else - // Don't touch a scalar-to-vector bitcast. - return nullptr; - } else if (I->getOperand(0)->getType()->isVectorTy()) - // Don't touch a vector-to-scalar bitcast. - return nullptr; - - if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) - return I; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - break; - case Instruction::SExt: { - // Compute the bits in the result that are not present in the input. - unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); - - APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); - - // If any of the sign extended bits are demanded, we know that the sign - // bit is demanded. - if (DemandedMask.getActiveBits() > SrcBitWidth) - InputDemandedBits.setBit(SrcBitWidth-1); - - KnownBits InputKnown(SrcBitWidth); - if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) - return I; - - // If the input sign bit is known zero, or if the NewBits are not demanded - // convert this into a zero extension. - if (InputKnown.isNonNegative() || - DemandedMask.getActiveBits() <= SrcBitWidth) { - // Convert to ZExt cast. - CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); - return InsertNewInstWith(NewCast, *I); - } - - // If the sign bit of the input is known set or clear, then we know the - // top bits of the result. - Known = InputKnown.sext(BitWidth); - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - break; - } - case Instruction::Add: - case Instruction::Sub: { - /// If the high-bits of an ADD/SUB are not demanded, then we do not care - /// about the high bits of the operands. - unsigned NLZ = DemandedMask.countLeadingZeros(); - // Right fill the mask of bits for this ADD/SUB to demand the most - // significant bit and all those below it. - APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); - if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || - SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || - ShrinkDemandedConstant(I, 1, DemandedFromOps) || - SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { - if (NLZ > 0) { - // Disable the nsw and nuw flags here: We can no longer guarantee that - // we won't wrap after simplification. Removing the nsw/nuw flags is - // legal here because the top bit is not demanded. - BinaryOperator &BinOP = *cast<BinaryOperator>(I); - BinOP.setHasNoSignedWrap(false); - BinOP.setHasNoUnsignedWrap(false); - } - return I; - } - - // If we are known to be adding/subtracting zeros to every bit below - // the highest demanded bit, we just return the other side. - if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) - return I->getOperand(0); - // We can't do this with the LHS for subtraction, unless we are only - // demanding the LSB. - if ((I->getOpcode() == Instruction::Add || - DemandedFromOps.isOneValue()) && - DemandedFromOps.isSubsetOf(LHSKnown.Zero)) - return I->getOperand(1); - - // Otherwise just compute the known bits of the result. - bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); - Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, - NSW, LHSKnown, RHSKnown); - break; - } - case Instruction::Shl: { - const APInt *SA; - if (match(I->getOperand(1), m_APInt(SA))) { - const APInt *ShrAmt; - if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) - if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) - if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, - DemandedMask, Known)) - return R; - - uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); - APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); - - // If the shift is NUW/NSW, then it does demand the high bits. - ShlOperator *IOp = cast<ShlOperator>(I); - if (IOp->hasNoSignedWrap()) - DemandedMaskIn.setHighBits(ShiftAmt+1); - else if (IOp->hasNoUnsignedWrap()) - DemandedMaskIn.setHighBits(ShiftAmt); - - if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) - return I; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - Known.Zero <<= ShiftAmt; - Known.One <<= ShiftAmt; - // low bits known zero. - if (ShiftAmt) - Known.Zero.setLowBits(ShiftAmt); - } - break; - } - case Instruction::LShr: { - const APInt *SA; - if (match(I->getOperand(1), m_APInt(SA))) { - uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); - - // Unsigned shift right. - APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); - - // If the shift is exact, then it does demand the low bits (and knows that - // they are zero). - if (cast<LShrOperator>(I)->isExact()) - DemandedMaskIn.setLowBits(ShiftAmt); - - if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) - return I; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - Known.Zero.lshrInPlace(ShiftAmt); - Known.One.lshrInPlace(ShiftAmt); - if (ShiftAmt) - Known.Zero.setHighBits(ShiftAmt); // high bits known zero. - } - break; - } - case Instruction::AShr: { - // If this is an arithmetic shift right and only the low-bit is set, we can - // always convert this into a logical shr, even if the shift amount is - // variable. The low bit of the shift cannot be an input sign bit unless - // the shift amount is >= the size of the datatype, which is undefined. - if (DemandedMask.isOneValue()) { - // Perform the logical shift right. - Instruction *NewVal = BinaryOperator::CreateLShr( - I->getOperand(0), I->getOperand(1), I->getName()); - return InsertNewInstWith(NewVal, *I); - } - - // If the sign bit is the only bit demanded by this ashr, then there is no - // need to do it, the shift doesn't change the high bit. - if (DemandedMask.isSignMask()) - return I->getOperand(0); - - const APInt *SA; - if (match(I->getOperand(1), m_APInt(SA))) { - uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); - - // Signed shift right. - APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); - // If any of the high bits are demanded, we should set the sign bit as - // demanded. - if (DemandedMask.countLeadingZeros() <= ShiftAmt) - DemandedMaskIn.setSignBit(); - - // If the shift is exact, then it does demand the low bits (and knows that - // they are zero). - if (cast<AShrOperator>(I)->isExact()) - DemandedMaskIn.setLowBits(ShiftAmt); - - if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) - return I; - - unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); - - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - // Compute the new bits that are at the top now plus sign bits. - APInt HighBits(APInt::getHighBitsSet( - BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); - Known.Zero.lshrInPlace(ShiftAmt); - Known.One.lshrInPlace(ShiftAmt); - - // If the input sign bit is known to be zero, or if none of the top bits - // are demanded, turn this into an unsigned shift right. - assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); - if (Known.Zero[BitWidth-ShiftAmt-1] || - !DemandedMask.intersects(HighBits)) { - BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), - I->getOperand(1)); - LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); - return InsertNewInstWith(LShr, *I); - } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. - Known.One |= HighBits; - } - } - break; - } - case Instruction::UDiv: { - // UDiv doesn't demand low bits that are zero in the divisor. - const APInt *SA; - if (match(I->getOperand(1), m_APInt(SA))) { - // If the shift is exact, then it does demand the low bits. - if (cast<UDivOperator>(I)->isExact()) - break; - - // FIXME: Take the demanded mask of the result into account. - unsigned RHSTrailingZeros = SA->countTrailingZeros(); - APInt DemandedMaskIn = - APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); - if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) - return I; - - // Propagate zero bits from the input. - Known.Zero.setHighBits(std::min( - BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); - } - break; - } - case Instruction::SRem: - if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { - // X % -1 demands all the bits because we don't want to introduce - // INT_MIN % -1 (== undef) by accident. - if (Rem->isMinusOne()) - break; - APInt RA = Rem->getValue().abs(); - if (RA.isPowerOf2()) { - if (DemandedMask.ult(RA)) // srem won't affect demanded bits - return I->getOperand(0); - - APInt LowBits = RA - 1; - APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); - if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) - return I; - - // The low bits of LHS are unchanged by the srem. - Known.Zero = LHSKnown.Zero & LowBits; - Known.One = LHSKnown.One & LowBits; - - // If LHS is non-negative or has all low bits zero, then the upper bits - // are all zero. - if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) - Known.Zero |= ~LowBits; - - // If LHS is negative and not all low bits are zero, then the upper bits - // are all one. - if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) - Known.One |= ~LowBits; - - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - break; - } - } - - // The sign bit is the LHS's sign bit, except when the result of the - // remainder is zero. - if (DemandedMask.isSignBitSet()) { - computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); - // If it's known zero, our sign bit is also zero. - if (LHSKnown.isNonNegative()) - Known.makeNonNegative(); - } - break; - case Instruction::URem: { - KnownBits Known2(BitWidth); - APInt AllOnes = APInt::getAllOnesValue(BitWidth); - if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || - SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) - return I; - - unsigned Leaders = Known2.countMinLeadingZeros(); - Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; - break; - } - case Instruction::Call: - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { - switch (II->getIntrinsicID()) { - default: break; - case Intrinsic::bswap: { - // If the only bits demanded come from one byte of the bswap result, - // just shift the input byte into position to eliminate the bswap. - unsigned NLZ = DemandedMask.countLeadingZeros(); - unsigned NTZ = DemandedMask.countTrailingZeros(); - - // Round NTZ down to the next byte. If we have 11 trailing zeros, then - // we need all the bits down to bit 8. Likewise, round NLZ. If we - // have 14 leading zeros, round to 8. - NLZ &= ~7; - NTZ &= ~7; - // If we need exactly one byte, we can do this transformation. - if (BitWidth-NLZ-NTZ == 8) { - unsigned ResultBit = NTZ; - unsigned InputBit = BitWidth-NTZ-8; - - // Replace this with either a left or right shift to get the byte into - // the right place. - Instruction *NewVal; - if (InputBit > ResultBit) - NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), - ConstantInt::get(I->getType(), InputBit-ResultBit)); - else - NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), - ConstantInt::get(I->getType(), ResultBit-InputBit)); - NewVal->takeName(I); - return InsertNewInstWith(NewVal, *I); - } - - // TODO: Could compute known zero/one bits based on the input. - break; - } - case Intrinsic::fshr: - case Intrinsic::fshl: { - const APInt *SA; - if (!match(I->getOperand(2), m_APInt(SA))) - break; - - // Normalize to funnel shift left. APInt shifts of BitWidth are well- - // defined, so no need to special-case zero shifts here. - uint64_t ShiftAmt = SA->urem(BitWidth); - if (II->getIntrinsicID() == Intrinsic::fshr) - ShiftAmt = BitWidth - ShiftAmt; - - APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); - APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); - if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || - SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) - return I; - - Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | - RHSKnown.Zero.lshr(BitWidth - ShiftAmt); - Known.One = LHSKnown.One.shl(ShiftAmt) | - RHSKnown.One.lshr(BitWidth - ShiftAmt); - break; - } - case Intrinsic::x86_mmx_pmovmskb: - case Intrinsic::x86_sse_movmsk_ps: - case Intrinsic::x86_sse2_movmsk_pd: - case Intrinsic::x86_sse2_pmovmskb_128: - case Intrinsic::x86_avx_movmsk_ps_256: - case Intrinsic::x86_avx_movmsk_pd_256: - case Intrinsic::x86_avx2_pmovmskb: { - // MOVMSK copies the vector elements' sign bits to the low bits - // and zeros the high bits. - unsigned ArgWidth; - if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { - ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. - } else { - auto Arg = II->getArgOperand(0); - auto ArgType = cast<VectorType>(Arg->getType()); - ArgWidth = ArgType->getNumElements(); - } - - // If we don't need any of low bits then return zero, - // we know that DemandedMask is non-zero already. - APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); - if (DemandedElts.isNullValue()) - return ConstantInt::getNullValue(VTy); - - // We know that the upper bits are set to zero. - Known.Zero.setBitsFrom(ArgWidth); - return nullptr; - } - case Intrinsic::x86_sse42_crc32_64_64: - Known.Zero.setBitsFrom(32); - return nullptr; - } - } - computeKnownBits(V, Known, Depth, CxtI); - break; - } - - // If the client is only demanding bits that we know, return the known - // constant. - if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) - return Constant::getIntegerValue(VTy, Known.One); - return nullptr; -} - -/// Helper routine of SimplifyDemandedUseBits. It computes Known -/// bits. It also tries to handle simplifications that can be done based on -/// DemandedMask, but without modifying the Instruction. -Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, - const APInt &DemandedMask, - KnownBits &Known, - unsigned Depth, - Instruction *CxtI) { - unsigned BitWidth = DemandedMask.getBitWidth(); - Type *ITy = I->getType(); - - KnownBits LHSKnown(BitWidth); - KnownBits RHSKnown(BitWidth); - - // Despite the fact that we can't simplify this instruction in all User's - // context, we can at least compute the known bits, and we can - // do simplifications that apply to *just* the one user if we know that - // this instruction has a simpler value in that context. - switch (I->getOpcode()) { - case Instruction::And: { - // If either the LHS or the RHS are Zero, the result is zero. - computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); - computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, - CxtI); - - // Output known-0 are known to be clear if zero in either the LHS | RHS. - APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; - // Output known-1 bits are only known if set in both the LHS & RHS. - APInt IKnownOne = RHSKnown.One & LHSKnown.One; - - // If the client is only demanding bits that we know, return the known - // constant. - if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) - return Constant::getIntegerValue(ITy, IKnownOne); - - // If all of the demanded bits are known 1 on one side, return the other. - // These bits cannot contribute to the result of the 'and' in this - // context. - if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) - return I->getOperand(0); - if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) - return I->getOperand(1); - - Known.Zero = std::move(IKnownZero); - Known.One = std::move(IKnownOne); - break; - } - case Instruction::Or: { - // We can simplify (X|Y) -> X or Y in the user's context if we know that - // only bits from X or Y are demanded. - - // If either the LHS or the RHS are One, the result is One. - computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); - computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, - CxtI); - - // Output known-0 bits are only known if clear in both the LHS & RHS. - APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; - // Output known-1 are known to be set if set in either the LHS | RHS. - APInt IKnownOne = RHSKnown.One | LHSKnown.One; - - // If the client is only demanding bits that we know, return the known - // constant. - if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) - return Constant::getIntegerValue(ITy, IKnownOne); - - // If all of the demanded bits are known zero on one side, return the - // other. These bits cannot contribute to the result of the 'or' in this - // context. - if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) - return I->getOperand(0); - if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) - return I->getOperand(1); - - Known.Zero = std::move(IKnownZero); - Known.One = std::move(IKnownOne); - break; - } - case Instruction::Xor: { - // We can simplify (X^Y) -> X or Y in the user's context if we know that - // only bits from X or Y are demanded. - - computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); - computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, - CxtI); - - // Output known-0 bits are known if clear or set in both the LHS & RHS. - APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | - (RHSKnown.One & LHSKnown.One); - // Output known-1 are known to be set if set in only one of the LHS, RHS. - APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | - (RHSKnown.One & LHSKnown.Zero); - - // If the client is only demanding bits that we know, return the known - // constant. - if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) - return Constant::getIntegerValue(ITy, IKnownOne); - - // If all of the demanded bits are known zero on one side, return the - // other. - if (DemandedMask.isSubsetOf(RHSKnown.Zero)) - return I->getOperand(0); - if (DemandedMask.isSubsetOf(LHSKnown.Zero)) - return I->getOperand(1); - - // Output known-0 bits are known if clear or set in both the LHS & RHS. - Known.Zero = std::move(IKnownZero); - // Output known-1 are known to be set if set in only one of the LHS, RHS. - Known.One = std::move(IKnownOne); - break; - } - default: - // Compute the Known bits to simplify things downstream. - computeKnownBits(I, Known, Depth, CxtI); - - // If this user is only demanding bits that we know, return the known - // constant. - if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) - return Constant::getIntegerValue(ITy, Known.One); - - break; - } - - return nullptr; -} - - -/// Helper routine of SimplifyDemandedUseBits. It tries to simplify -/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into -/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign -/// of "C2-C1". -/// -/// Suppose E1 and E2 are generally different in bits S={bm, bm+1, -/// ..., bn}, without considering the specific value X is holding. -/// This transformation is legal iff one of following conditions is hold: -/// 1) All the bit in S are 0, in this case E1 == E2. -/// 2) We don't care those bits in S, per the input DemandedMask. -/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the -/// rest bits. -/// -/// Currently we only test condition 2). -/// -/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was -/// not successful. -Value * -InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, - Instruction *Shl, const APInt &ShlOp1, - const APInt &DemandedMask, - KnownBits &Known) { - if (!ShlOp1 || !ShrOp1) - return nullptr; // No-op. - - Value *VarX = Shr->getOperand(0); - Type *Ty = VarX->getType(); - unsigned BitWidth = Ty->getScalarSizeInBits(); - if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) - return nullptr; // Undef. - - unsigned ShlAmt = ShlOp1.getZExtValue(); - unsigned ShrAmt = ShrOp1.getZExtValue(); - - Known.One.clearAllBits(); - Known.Zero.setLowBits(ShlAmt - 1); - Known.Zero &= DemandedMask; - - APInt BitMask1(APInt::getAllOnesValue(BitWidth)); - APInt BitMask2(APInt::getAllOnesValue(BitWidth)); - - bool isLshr = (Shr->getOpcode() == Instruction::LShr); - BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : - (BitMask1.ashr(ShrAmt) << ShlAmt); - - if (ShrAmt <= ShlAmt) { - BitMask2 <<= (ShlAmt - ShrAmt); - } else { - BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): - BitMask2.ashr(ShrAmt - ShlAmt); - } - - // Check if condition-2 (see the comment to this function) is satified. - if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { - if (ShrAmt == ShlAmt) - return VarX; - - if (!Shr->hasOneUse()) - return nullptr; - - BinaryOperator *New; - if (ShrAmt < ShlAmt) { - Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); - New = BinaryOperator::CreateShl(VarX, Amt); - BinaryOperator *Orig = cast<BinaryOperator>(Shl); - New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); - New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); - } else { - Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); - New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : - BinaryOperator::CreateAShr(VarX, Amt); - if (cast<BinaryOperator>(Shr)->isExact()) - New->setIsExact(true); - } - - return InsertNewInstWith(New, *Shl); - } - - return nullptr; -} - -/// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. -Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, - APInt DemandedElts, - int DMaskIdx, - int TFCIdx) { - unsigned VWidth = II->getType()->getVectorNumElements(); - if (VWidth == 1) - return nullptr; - - // Need to change to new instruction format - ConstantInt *TFC = nullptr; - bool TFELWEEnabled = false; - if (TFCIdx > 0) { - TFC = dyn_cast<ConstantInt>(II->getArgOperand(TFCIdx)); - TFELWEEnabled = TFC->getZExtValue() & 0x1 // TFE - || TFC->getZExtValue() & 0x2; // LWE - } - - if (TFELWEEnabled) - return nullptr; // TFE not yet supported - - ConstantInt *NewDMask = nullptr; - - if (DMaskIdx < 0) { - // Pretend that a prefix of elements is demanded to simplify the code - // below. - DemandedElts = (1 << DemandedElts.getActiveBits()) - 1; - } else { - ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx)); - if (!DMask) - return nullptr; // non-constant dmask is not supported by codegen - - unsigned DMaskVal = DMask->getZExtValue() & 0xf; - - // Mask off values that are undefined because the dmask doesn't cover them - DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; - - unsigned NewDMaskVal = 0; - unsigned OrigLoadIdx = 0; - for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { - const unsigned Bit = 1 << SrcIdx; - if (!!(DMaskVal & Bit)) { - if (!!DemandedElts[OrigLoadIdx]) - NewDMaskVal |= Bit; - OrigLoadIdx++; - } - } - - if (DMaskVal != NewDMaskVal) - NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal); - } - - // TODO: Handle 3 vectors when supported in code gen. - unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation()); - if (!NewNumElts) - return UndefValue::get(II->getType()); - - if (NewNumElts >= VWidth && DemandedElts.isMask()) { - if (NewDMask) - II->setArgOperand(DMaskIdx, NewDMask); - return nullptr; - } - - // Determine the overload types of the original intrinsic. - auto IID = II->getIntrinsicID(); - SmallVector<Intrinsic::IITDescriptor, 16> Table; - getIntrinsicInfoTableEntries(IID, Table); - ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; - - FunctionType *FTy = II->getCalledFunction()->getFunctionType(); - SmallVector<Type *, 6> OverloadTys; - Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys); - for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) - Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys); - - // Get the new return type overload of the intrinsic. - Module *M = II->getParent()->getParent()->getParent(); - Type *EltTy = II->getType()->getVectorElementType(); - Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); - - OverloadTys[0] = NewTy; - Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); - - SmallVector<Value *, 16> Args; - for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) - Args.push_back(II->getArgOperand(I)); - - if (NewDMask) - Args[DMaskIdx] = NewDMask; - - IRBuilderBase::InsertPointGuard Guard(Builder); - Builder.SetInsertPoint(II); - - CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); - NewCall->takeName(II); - NewCall->copyMetadata(*II); - - if (NewNumElts == 1) { - return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, - DemandedElts.countTrailingZeros()); - } - - SmallVector<uint32_t, 8> EltMask; - unsigned NewLoadIdx = 0; - for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { - if (!!DemandedElts[OrigLoadIdx]) - EltMask.push_back(NewLoadIdx++); - else - EltMask.push_back(NewNumElts); - } - - Value *Shuffle = - Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); - - return Shuffle; -} - -/// The specified value produces a vector with any number of elements. -/// DemandedElts contains the set of elements that are actually used by the -/// caller. This method analyzes which elements of the operand are undef and -/// returns that information in UndefElts. -/// -/// If the information about demanded elements can be used to simplify the -/// operation, the operation is simplified, then the resultant value is -/// returned. This returns null if no change was made. -Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, - APInt &UndefElts, - unsigned Depth) { - unsigned VWidth = V->getType()->getVectorNumElements(); - APInt EltMask(APInt::getAllOnesValue(VWidth)); - assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); - - if (isa<UndefValue>(V)) { - // If the entire vector is undefined, just return this info. - UndefElts = EltMask; - return nullptr; - } - - if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. - UndefElts = EltMask; - return UndefValue::get(V->getType()); - } - - UndefElts = 0; - - if (auto *C = dyn_cast<Constant>(V)) { - // Check if this is identity. If so, return 0 since we are not simplifying - // anything. - if (DemandedElts.isAllOnesValue()) - return nullptr; - - Type *EltTy = cast<VectorType>(V->getType())->getElementType(); - Constant *Undef = UndefValue::get(EltTy); - SmallVector<Constant*, 16> Elts; - for (unsigned i = 0; i != VWidth; ++i) { - if (!DemandedElts[i]) { // If not demanded, set to undef. - Elts.push_back(Undef); - UndefElts.setBit(i); - continue; - } - - Constant *Elt = C->getAggregateElement(i); - if (!Elt) return nullptr; - - if (isa<UndefValue>(Elt)) { // Already undef. - Elts.push_back(Undef); - UndefElts.setBit(i); - } else { // Otherwise, defined. - Elts.push_back(Elt); - } - } - - // If we changed the constant, return it. - Constant *NewCV = ConstantVector::get(Elts); - return NewCV != C ? NewCV : nullptr; - } - - // Limit search depth. - if (Depth == 10) - return nullptr; - - // If multiple users are using the root value, proceed with - // simplification conservatively assuming that all elements - // are needed. - if (!V->hasOneUse()) { - // Quit if we find multiple users of a non-root value though. - // They'll be handled when it's their turn to be visited by - // the main instcombine process. - if (Depth != 0) - // TODO: Just compute the UndefElts information recursively. - return nullptr; - - // Conservatively assume that all elements are needed. - DemandedElts = EltMask; - } - - Instruction *I = dyn_cast<Instruction>(V); - if (!I) return nullptr; // Only analyze instructions. - - bool MadeChange = false; - auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, - APInt Demanded, APInt &Undef) { - auto *II = dyn_cast<IntrinsicInst>(Inst); - Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); - if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { - if (II) - II->setArgOperand(OpNum, V); - else - Inst->setOperand(OpNum, V); - MadeChange = true; - } - }; - - APInt UndefElts2(VWidth, 0); - APInt UndefElts3(VWidth, 0); - switch (I->getOpcode()) { - default: break; - - case Instruction::InsertElement: { - // If this is a variable index, we don't know which element it overwrites. - // demand exactly the same input as we produce. - ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); - if (!Idx) { - // Note that we can't propagate undef elt info, because we don't know - // which elt is getting updated. - simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); - break; - } - - // The element inserted overwrites whatever was there, so the input demanded - // set is simpler than the output set. - unsigned IdxNo = Idx->getZExtValue(); - APInt PreInsertDemandedElts = DemandedElts; - if (IdxNo < VWidth) - PreInsertDemandedElts.clearBit(IdxNo); - - simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); - - // If this is inserting an element that isn't demanded, remove this - // insertelement. - if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { - Worklist.Add(I); - return I->getOperand(0); - } - - // The inserted element is defined. - UndefElts.clearBit(IdxNo); - break; - } - case Instruction::ShuffleVector: { - ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); - unsigned LHSVWidth = - Shuffle->getOperand(0)->getType()->getVectorNumElements(); - APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); - for (unsigned i = 0; i < VWidth; i++) { - if (DemandedElts[i]) { - unsigned MaskVal = Shuffle->getMaskValue(i); - if (MaskVal != -1u) { - assert(MaskVal < LHSVWidth * 2 && - "shufflevector mask index out of range!"); - if (MaskVal < LHSVWidth) - LeftDemanded.setBit(MaskVal); - else - RightDemanded.setBit(MaskVal - LHSVWidth); - } - } - } - - APInt LHSUndefElts(LHSVWidth, 0); - simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); - - APInt RHSUndefElts(LHSVWidth, 0); - simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); - - bool NewUndefElts = false; - unsigned LHSIdx = -1u, LHSValIdx = -1u; - unsigned RHSIdx = -1u, RHSValIdx = -1u; - bool LHSUniform = true; - bool RHSUniform = true; - for (unsigned i = 0; i < VWidth; i++) { - unsigned MaskVal = Shuffle->getMaskValue(i); - if (MaskVal == -1u) { - UndefElts.setBit(i); - } else if (!DemandedElts[i]) { - NewUndefElts = true; - UndefElts.setBit(i); - } else if (MaskVal < LHSVWidth) { - if (LHSUndefElts[MaskVal]) { - NewUndefElts = true; - UndefElts.setBit(i); - } else { - LHSIdx = LHSIdx == -1u ? i : LHSVWidth; - LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; - LHSUniform = LHSUniform && (MaskVal == i); - } - } else { - if (RHSUndefElts[MaskVal - LHSVWidth]) { - NewUndefElts = true; - UndefElts.setBit(i); - } else { - RHSIdx = RHSIdx == -1u ? i : LHSVWidth; - RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; - RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); - } - } - } - - // Try to transform shuffle with constant vector and single element from - // this constant vector to single insertelement instruction. - // shufflevector V, C, <v1, v2, .., ci, .., vm> -> - // insertelement V, C[ci], ci-n - if (LHSVWidth == Shuffle->getType()->getNumElements()) { - Value *Op = nullptr; - Constant *Value = nullptr; - unsigned Idx = -1u; - - // Find constant vector with the single element in shuffle (LHS or RHS). - if (LHSIdx < LHSVWidth && RHSUniform) { - if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { - Op = Shuffle->getOperand(1); - Value = CV->getOperand(LHSValIdx); - Idx = LHSIdx; - } - } - if (RHSIdx < LHSVWidth && LHSUniform) { - if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { - Op = Shuffle->getOperand(0); - Value = CV->getOperand(RHSValIdx); - Idx = RHSIdx; - } - } - // Found constant vector with single element - convert to insertelement. - if (Op && Value) { - Instruction *New = InsertElementInst::Create( - Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), - Shuffle->getName()); - InsertNewInstWith(New, *Shuffle); - return New; - } - } - if (NewUndefElts) { - // Add additional discovered undefs. - SmallVector<Constant*, 16> Elts; - for (unsigned i = 0; i < VWidth; ++i) { - if (UndefElts[i]) - Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); - else - Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), - Shuffle->getMaskValue(i))); - } - I->setOperand(2, ConstantVector::get(Elts)); - MadeChange = true; - } - break; - } - case Instruction::Select: { - // If this is a vector select, try to transform the select condition based - // on the current demanded elements. - SelectInst *Sel = cast<SelectInst>(I); - if (Sel->getCondition()->getType()->isVectorTy()) { - // TODO: We are not doing anything with UndefElts based on this call. - // It is overwritten below based on the other select operands. If an - // element of the select condition is known undef, then we are free to - // choose the output value from either arm of the select. If we know that - // one of those values is undef, then the output can be undef. - simplifyAndSetOp(I, 0, DemandedElts, UndefElts); - } - - // Next, see if we can transform the arms of the select. - APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); - if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { - for (unsigned i = 0; i < VWidth; i++) { - // isNullValue() always returns false when called on a ConstantExpr. - // Skip constant expressions to avoid propagating incorrect information. - Constant *CElt = CV->getAggregateElement(i); - if (isa<ConstantExpr>(CElt)) - continue; - // TODO: If a select condition element is undef, we can demand from - // either side. If one side is known undef, choosing that side would - // propagate undef. - if (CElt->isNullValue()) - DemandedLHS.clearBit(i); - else - DemandedRHS.clearBit(i); - } - } - - simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); - simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); - - // Output elements are undefined if the element from each arm is undefined. - // TODO: This can be improved. See comment in select condition handling. - UndefElts = UndefElts2 & UndefElts3; - break; - } - case Instruction::BitCast: { - // Vector->vector casts only. - VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); - if (!VTy) break; - unsigned InVWidth = VTy->getNumElements(); - APInt InputDemandedElts(InVWidth, 0); - UndefElts2 = APInt(InVWidth, 0); - unsigned Ratio; - - if (VWidth == InVWidth) { - // If we are converting from <4 x i32> -> <4 x f32>, we demand the same - // elements as are demanded of us. - Ratio = 1; - InputDemandedElts = DemandedElts; - } else if ((VWidth % InVWidth) == 0) { - // If the number of elements in the output is a multiple of the number of - // elements in the input then an input element is live if any of the - // corresponding output elements are live. - Ratio = VWidth / InVWidth; - for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) - if (DemandedElts[OutIdx]) - InputDemandedElts.setBit(OutIdx / Ratio); - } else if ((InVWidth % VWidth) == 0) { - // If the number of elements in the input is a multiple of the number of - // elements in the output then an input element is live if the - // corresponding output element is live. - Ratio = InVWidth / VWidth; - for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) - if (DemandedElts[InIdx / Ratio]) - InputDemandedElts.setBit(InIdx); - } else { - // Unsupported so far. - break; - } - - simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); - - if (VWidth == InVWidth) { - UndefElts = UndefElts2; - } else if ((VWidth % InVWidth) == 0) { - // If the number of elements in the output is a multiple of the number of - // elements in the input then an output element is undef if the - // corresponding input element is undef. - for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) - if (UndefElts2[OutIdx / Ratio]) - UndefElts.setBit(OutIdx); - } else if ((InVWidth % VWidth) == 0) { - // If the number of elements in the input is a multiple of the number of - // elements in the output then an output element is undef if all of the - // corresponding input elements are undef. - for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { - APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); - if (SubUndef.countPopulation() == Ratio) - UndefElts.setBit(OutIdx); - } - } else { - llvm_unreachable("Unimp"); - } - break; - } - case Instruction::FPTrunc: - case Instruction::FPExt: - simplifyAndSetOp(I, 0, DemandedElts, UndefElts); - break; - - case Instruction::Call: { - IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); - if (!II) break; - switch (II->getIntrinsicID()) { - case Intrinsic::x86_xop_vfrcz_ss: - case Intrinsic::x86_xop_vfrcz_sd: - // The instructions for these intrinsics are speced to zero upper bits not - // pass them through like other scalar intrinsics. So we shouldn't just - // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. - // Instead we should return a zero vector. - if (!DemandedElts[0]) { - Worklist.Add(II); - return ConstantAggregateZero::get(II->getType()); - } - - // Only the lower element is used. - DemandedElts = 1; - simplifyAndSetOp(II, 0, DemandedElts, UndefElts); - - // Only the lower element is undefined. The high elements are zero. - UndefElts = UndefElts[0]; - break; - - // Unary scalar-as-vector operations that work column-wise. - case Intrinsic::x86_sse_rcp_ss: - case Intrinsic::x86_sse_rsqrt_ss: - simplifyAndSetOp(II, 0, DemandedElts, UndefElts); - - // If lowest element of a scalar op isn't used then use Arg0. - if (!DemandedElts[0]) { - Worklist.Add(II); - return II->getArgOperand(0); - } - // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions - // checks). - break; - - // Binary scalar-as-vector operations that work column-wise. The high - // elements come from operand 0. The low element is a function of both - // operands. - case Intrinsic::x86_sse_min_ss: - case Intrinsic::x86_sse_max_ss: - case Intrinsic::x86_sse_cmp_ss: - case Intrinsic::x86_sse2_min_sd: - case Intrinsic::x86_sse2_max_sd: - case Intrinsic::x86_sse2_cmp_sd: { - simplifyAndSetOp(II, 0, DemandedElts, UndefElts); - - // If lowest element of a scalar op isn't used then use Arg0. - if (!DemandedElts[0]) { - Worklist.Add(II); - return II->getArgOperand(0); - } - - // Only lower element is used for operand 1. - DemandedElts = 1; - simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); - - // Lower element is undefined if both lower elements are undefined. - // Consider things like undef&0. The result is known zero, not undef. - if (!UndefElts2[0]) - UndefElts.clearBit(0); - - break; - } - - // Binary scalar-as-vector operations that work column-wise. The high - // elements come from operand 0 and the low element comes from operand 1. - case Intrinsic::x86_sse41_round_ss: - case Intrinsic::x86_sse41_round_sd: { - // Don't use the low element of operand 0. - APInt DemandedElts2 = DemandedElts; - DemandedElts2.clearBit(0); - simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); - - // If lowest element of a scalar op isn't used then use Arg0. - if (!DemandedElts[0]) { - Worklist.Add(II); - return II->getArgOperand(0); - } - - // Only lower element is used for operand 1. - DemandedElts = 1; - simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); - - // Take the high undef elements from operand 0 and take the lower element - // from operand 1. - UndefElts.clearBit(0); - UndefElts |= UndefElts2[0]; - break; - } - - // Three input scalar-as-vector operations that work column-wise. The high - // elements come from operand 0 and the low element is a function of all - // three inputs. - case Intrinsic::x86_avx512_mask_add_ss_round: - case Intrinsic::x86_avx512_mask_div_ss_round: - case Intrinsic::x86_avx512_mask_mul_ss_round: - case Intrinsic::x86_avx512_mask_sub_ss_round: - case Intrinsic::x86_avx512_mask_max_ss_round: - case Intrinsic::x86_avx512_mask_min_ss_round: - case Intrinsic::x86_avx512_mask_add_sd_round: - case Intrinsic::x86_avx512_mask_div_sd_round: - case Intrinsic::x86_avx512_mask_mul_sd_round: - case Intrinsic::x86_avx512_mask_sub_sd_round: - case Intrinsic::x86_avx512_mask_max_sd_round: - case Intrinsic::x86_avx512_mask_min_sd_round: - simplifyAndSetOp(II, 0, DemandedElts, UndefElts); - - // If lowest element of a scalar op isn't used then use Arg0. - if (!DemandedElts[0]) { - Worklist.Add(II); - return II->getArgOperand(0); - } - - // Only lower element is used for operand 1 and 2. - DemandedElts = 1; - simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); - simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); - - // Lower element is undefined if all three lower elements are undefined. - // Consider things like undef&0. The result is known zero, not undef. - if (!UndefElts2[0] || !UndefElts3[0]) - UndefElts.clearBit(0); - - break; - - case Intrinsic::x86_sse2_packssdw_128: - case Intrinsic::x86_sse2_packsswb_128: - case Intrinsic::x86_sse2_packuswb_128: - case Intrinsic::x86_sse41_packusdw: - case Intrinsic::x86_avx2_packssdw: - case Intrinsic::x86_avx2_packsswb: - case Intrinsic::x86_avx2_packusdw: - case Intrinsic::x86_avx2_packuswb: - case Intrinsic::x86_avx512_packssdw_512: - case Intrinsic::x86_avx512_packsswb_512: - case Intrinsic::x86_avx512_packusdw_512: - case Intrinsic::x86_avx512_packuswb_512: { - auto *Ty0 = II->getArgOperand(0)->getType(); - unsigned InnerVWidth = Ty0->getVectorNumElements(); - assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); - - unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; - unsigned VWidthPerLane = VWidth / NumLanes; - unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; - - // Per lane, pack the elements of the first input and then the second. - // e.g. - // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) - // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) - for (int OpNum = 0; OpNum != 2; ++OpNum) { - APInt OpDemandedElts(InnerVWidth, 0); - for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { - unsigned LaneIdx = Lane * VWidthPerLane; - for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { - unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; - if (DemandedElts[Idx]) - OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); - } - } - - // Demand elements from the operand. - APInt OpUndefElts(InnerVWidth, 0); - simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); - - // Pack the operand's UNDEF elements, one lane at a time. - OpUndefElts = OpUndefElts.zext(VWidth); - for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { - APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); - LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); - LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); - UndefElts |= LaneElts; - } - } - break; - } - - // PSHUFB - case Intrinsic::x86_ssse3_pshuf_b_128: - case Intrinsic::x86_avx2_pshuf_b: - case Intrinsic::x86_avx512_pshuf_b_512: - // PERMILVAR - case Intrinsic::x86_avx_vpermilvar_ps: - case Intrinsic::x86_avx_vpermilvar_ps_256: - case Intrinsic::x86_avx512_vpermilvar_ps_512: - case Intrinsic::x86_avx_vpermilvar_pd: - case Intrinsic::x86_avx_vpermilvar_pd_256: - case Intrinsic::x86_avx512_vpermilvar_pd_512: - // PERMV - case Intrinsic::x86_avx2_permd: - case Intrinsic::x86_avx2_permps: { - simplifyAndSetOp(II, 1, DemandedElts, UndefElts); - break; - } - - // SSE4A instructions leave the upper 64-bits of the 128-bit result - // in an undefined state. - case Intrinsic::x86_sse4a_extrq: - case Intrinsic::x86_sse4a_extrqi: - case Intrinsic::x86_sse4a_insertq: - case Intrinsic::x86_sse4a_insertqi: - UndefElts.setHighBits(VWidth / 2); - break; - case Intrinsic::amdgcn_buffer_load: - case Intrinsic::amdgcn_buffer_load_format: - case Intrinsic::amdgcn_raw_buffer_load: - case Intrinsic::amdgcn_raw_buffer_load_format: - case Intrinsic::amdgcn_struct_buffer_load: - case Intrinsic::amdgcn_struct_buffer_load_format: - return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); - default: { - if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) - return simplifyAMDGCNMemoryIntrinsicDemanded( - II, DemandedElts, 0, II->getNumArgOperands() - 2); - - break; - } - } // switch on IntrinsicID - break; - } // case Call - } // switch on Opcode - - // TODO: We bail completely on integer div/rem and shifts because they have - // UB/poison potential, but that should be refined. - BinaryOperator *BO; - if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { - simplifyAndSetOp(I, 0, DemandedElts, UndefElts); - simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); - - // Any change to an instruction with potential poison must clear those flags - // because we can not guarantee those constraints now. Other analysis may - // determine that it is safe to re-apply the flags. - if (MadeChange) - BO->dropPoisonGeneratingFlags(); - - // Output elements are undefined if both are undefined. Consider things - // like undef & 0. The result is known zero, not undef. - UndefElts &= UndefElts2; - } - - return MadeChange ? I : nullptr; -} |
