diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp | 1258 |
1 files changed, 1258 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp new file mode 100644 index 00000000000..bc4c0ebae79 --- /dev/null +++ b/gnu/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp @@ -0,0 +1,1258 @@ +//===- InstCombineVectorOps.cpp -------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements instcombine for ExtractElement, InsertElement and +// ShuffleVector. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/PatternMatch.h" +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +/// Return true if the value is cheaper to scalarize than it is to leave as a +/// vector operation. isConstant indicates whether we're extracting one known +/// element. If false we're extracting a variable index. +static bool cheapToScalarize(Value *V, bool isConstant) { + if (Constant *C = dyn_cast<Constant>(V)) { + if (isConstant) return true; + + // If all elts are the same, we can extract it and use any of the values. + if (Constant *Op0 = C->getAggregateElement(0U)) { + for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; + ++i) + if (C->getAggregateElement(i) != Op0) + return false; + return true; + } + } + Instruction *I = dyn_cast<Instruction>(V); + if (!I) return false; + + // Insert element gets simplified to the inserted element or is deleted if + // this is constant idx extract element and its a constant idx insertelt. + if (I->getOpcode() == Instruction::InsertElement && isConstant && + isa<ConstantInt>(I->getOperand(2))) + return true; + if (I->getOpcode() == Instruction::Load && I->hasOneUse()) + return true; + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) + if (BO->hasOneUse() && + (cheapToScalarize(BO->getOperand(0), isConstant) || + cheapToScalarize(BO->getOperand(1), isConstant))) + return true; + if (CmpInst *CI = dyn_cast<CmpInst>(I)) + if (CI->hasOneUse() && + (cheapToScalarize(CI->getOperand(0), isConstant) || + cheapToScalarize(CI->getOperand(1), isConstant))) + return true; + + return false; +} + +// If we have a PHI node with a vector type that has only 2 uses: feed +// itself and be an operand of extractelement at a constant location, +// try to replace the PHI of the vector type with a PHI of a scalar type. +Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { + // Verify that the PHI node has exactly 2 uses. Otherwise return NULL. + if (!PN->hasNUses(2)) + return nullptr; + + // If so, it's known at this point that one operand is PHI and the other is + // an extractelement node. Find the PHI user that is not the extractelement + // node. + auto iu = PN->user_begin(); + Instruction *PHIUser = dyn_cast<Instruction>(*iu); + if (PHIUser == cast<Instruction>(&EI)) + PHIUser = cast<Instruction>(*(++iu)); + + // Verify that this PHI user has one use, which is the PHI itself, + // and that it is a binary operation which is cheap to scalarize. + // otherwise return NULL. + if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || + !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) + return nullptr; + + // Create a scalar PHI node that will replace the vector PHI node + // just before the current PHI node. + PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( + PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); + // Scalarize each PHI operand. + for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { + Value *PHIInVal = PN->getIncomingValue(i); + BasicBlock *inBB = PN->getIncomingBlock(i); + Value *Elt = EI.getIndexOperand(); + // If the operand is the PHI induction variable: + if (PHIInVal == PHIUser) { + // Scalarize the binary operation. Its first operand is the + // scalar PHI, and the second operand is extracted from the other + // vector operand. + BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); + unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; + Value *Op = InsertNewInstWith( + ExtractElementInst::Create(B0->getOperand(opId), Elt, + B0->getOperand(opId)->getName() + ".Elt"), + *B0); + Value *newPHIUser = InsertNewInstWith( + BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0); + scalarPHI->addIncoming(newPHIUser, inBB); + } else { + // Scalarize PHI input: + Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); + // Insert the new instruction into the predecessor basic block. + Instruction *pos = dyn_cast<Instruction>(PHIInVal); + BasicBlock::iterator InsertPos; + if (pos && !isa<PHINode>(pos)) { + InsertPos = ++pos->getIterator(); + } else { + InsertPos = inBB->getFirstInsertionPt(); + } + + InsertNewInstWith(newEI, *InsertPos); + + scalarPHI->addIncoming(newEI, inBB); + } + } + return ReplaceInstUsesWith(EI, scalarPHI); +} + +Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { + if (Value *V = SimplifyExtractElementInst( + EI.getVectorOperand(), EI.getIndexOperand(), DL, TLI, DT, AC)) + return ReplaceInstUsesWith(EI, V); + + // If vector val is constant with all elements the same, replace EI with + // that element. We handle a known element # below. + if (Constant *C = dyn_cast<Constant>(EI.getOperand(0))) + if (cheapToScalarize(C, false)) + return ReplaceInstUsesWith(EI, C->getAggregateElement(0U)); + + // If extracting a specified index from the vector, see if we can recursively + // find a previously computed scalar that was inserted into the vector. + if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { + unsigned IndexVal = IdxC->getZExtValue(); + unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); + + // InstSimplify handles cases where the index is invalid. + assert(IndexVal < VectorWidth); + + // This instruction only demands the single element from the input vector. + // If the input vector has a single use, simplify it based on this use + // property. + if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { + APInt UndefElts(VectorWidth, 0); + APInt DemandedMask(VectorWidth, 0); + DemandedMask.setBit(IndexVal); + if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask, + UndefElts)) { + EI.setOperand(0, V); + return &EI; + } + } + + // If this extractelement is directly using a bitcast from a vector of + // the same number of elements, see if we can find the source element from + // it. In this case, we will end up needing to bitcast the scalars. + if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { + if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType())) + if (VT->getNumElements() == VectorWidth) + if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal)) + return new BitCastInst(Elt, EI.getType()); + } + + // If there's a vector PHI feeding a scalar use through this extractelement + // instruction, try to scalarize the PHI. + if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) { + Instruction *scalarPHI = scalarizePHI(EI, PN); + if (scalarPHI) + return scalarPHI; + } + } + + if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { + // Push extractelement into predecessor operation if legal and + // profitable to do so. + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { + if (I->hasOneUse() && + cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) { + Value *newEI0 = + Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1), + EI.getName()+".lhs"); + Value *newEI1 = + Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1), + EI.getName()+".rhs"); + return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1); + } + } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { + // Extracting the inserted element? + if (IE->getOperand(2) == EI.getOperand(1)) + return ReplaceInstUsesWith(EI, IE->getOperand(1)); + // If the inserted and extracted elements are constants, they must not + // be the same value, extract from the pre-inserted value instead. + if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) { + Worklist.AddValue(EI.getOperand(0)); + EI.setOperand(0, IE->getOperand(0)); + return &EI; + } + } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { + // If this is extracting an element from a shufflevector, figure out where + // it came from and extract from the appropriate input element instead. + if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { + int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); + Value *Src; + unsigned LHSWidth = + SVI->getOperand(0)->getType()->getVectorNumElements(); + + if (SrcIdx < 0) + return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); + if (SrcIdx < (int)LHSWidth) + Src = SVI->getOperand(0); + else { + SrcIdx -= LHSWidth; + Src = SVI->getOperand(1); + } + Type *Int32Ty = Type::getInt32Ty(EI.getContext()); + return ExtractElementInst::Create(Src, + ConstantInt::get(Int32Ty, + SrcIdx, false)); + } + } else if (CastInst *CI = dyn_cast<CastInst>(I)) { + // Canonicalize extractelement(cast) -> cast(extractelement). + // Bitcasts can change the number of vector elements, and they cost + // nothing. + if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { + Value *EE = Builder->CreateExtractElement(CI->getOperand(0), + EI.getIndexOperand()); + Worklist.AddValue(EE); + return CastInst::Create(CI->getOpcode(), EE, EI.getType()); + } + } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { + if (SI->hasOneUse()) { + // TODO: For a select on vectors, it might be useful to do this if it + // has multiple extractelement uses. For vector select, that seems to + // fight the vectorizer. + + // If we are extracting an element from a vector select or a select on + // vectors, create a select on the scalars extracted from the vector + // arguments. + Value *TrueVal = SI->getTrueValue(); + Value *FalseVal = SI->getFalseValue(); + + Value *Cond = SI->getCondition(); + if (Cond->getType()->isVectorTy()) { + Cond = Builder->CreateExtractElement(Cond, + EI.getIndexOperand(), + Cond->getName() + ".elt"); + } + + Value *V1Elem + = Builder->CreateExtractElement(TrueVal, + EI.getIndexOperand(), + TrueVal->getName() + ".elt"); + + Value *V2Elem + = Builder->CreateExtractElement(FalseVal, + EI.getIndexOperand(), + FalseVal->getName() + ".elt"); + return SelectInst::Create(Cond, + V1Elem, + V2Elem, + SI->getName() + ".elt"); + } + } + } + return nullptr; +} + +/// If V is a shuffle of values that ONLY returns elements from either LHS or +/// RHS, return the shuffle mask and true. Otherwise, return false. +static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, + SmallVectorImpl<Constant*> &Mask) { + assert(LHS->getType() == RHS->getType() && + "Invalid CollectSingleShuffleElements"); + unsigned NumElts = V->getType()->getVectorNumElements(); + + if (isa<UndefValue>(V)) { + Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); + return true; + } + + if (V == LHS) { + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); + return true; + } + + if (V == RHS) { + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), + i+NumElts)); + return true; + } + + if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { + // If this is an insert of an extract from some other vector, include it. + Value *VecOp = IEI->getOperand(0); + Value *ScalarOp = IEI->getOperand(1); + Value *IdxOp = IEI->getOperand(2); + + if (!isa<ConstantInt>(IdxOp)) + return false; + unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); + + if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. + // We can handle this if the vector we are inserting into is + // transitively ok. + if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { + // If so, update the mask to reflect the inserted undef. + Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); + return true; + } + } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ + if (isa<ConstantInt>(EI->getOperand(1))) { + unsigned ExtractedIdx = + cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); + unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); + + // This must be extracting from either LHS or RHS. + if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { + // We can handle this if the vector we are inserting into is + // transitively ok. + if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { + // If so, update the mask to reflect the inserted value. + if (EI->getOperand(0) == LHS) { + Mask[InsertedIdx % NumElts] = + ConstantInt::get(Type::getInt32Ty(V->getContext()), + ExtractedIdx); + } else { + assert(EI->getOperand(0) == RHS); + Mask[InsertedIdx % NumElts] = + ConstantInt::get(Type::getInt32Ty(V->getContext()), + ExtractedIdx + NumLHSElts); + } + return true; + } + } + } + } + } + + return false; +} + +/// If we have insertion into a vector that is wider than the vector that we +/// are extracting from, try to widen the source vector to allow a single +/// shufflevector to replace one or more insert/extract pairs. +static void replaceExtractElements(InsertElementInst *InsElt, + ExtractElementInst *ExtElt, + InstCombiner &IC) { + VectorType *InsVecType = InsElt->getType(); + VectorType *ExtVecType = ExtElt->getVectorOperandType(); + unsigned NumInsElts = InsVecType->getVectorNumElements(); + unsigned NumExtElts = ExtVecType->getVectorNumElements(); + + // The inserted-to vector must be wider than the extracted-from vector. + if (InsVecType->getElementType() != ExtVecType->getElementType() || + NumExtElts >= NumInsElts) + return; + + // Create a shuffle mask to widen the extended-from vector using undefined + // values. The mask selects all of the values of the original vector followed + // by as many undefined values as needed to create a vector of the same length + // as the inserted-to vector. + SmallVector<Constant *, 16> ExtendMask; + IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); + for (unsigned i = 0; i < NumExtElts; ++i) + ExtendMask.push_back(ConstantInt::get(IntType, i)); + for (unsigned i = NumExtElts; i < NumInsElts; ++i) + ExtendMask.push_back(UndefValue::get(IntType)); + + Value *ExtVecOp = ExtElt->getVectorOperand(); + auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); + BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) + ? ExtVecOpInst->getParent() + : ExtElt->getParent(); + + // TODO: This restriction matches the basic block check below when creating + // new extractelement instructions. If that limitation is removed, this one + // could also be removed. But for now, we just bail out to ensure that we + // will replace the extractelement instruction that is feeding our + // insertelement instruction. This allows the insertelement to then be + // replaced by a shufflevector. If the insertelement is not replaced, we can + // induce infinite looping because there's an optimization for extractelement + // that will delete our widening shuffle. This would trigger another attempt + // here to create that shuffle, and we spin forever. + if (InsertionBlock != InsElt->getParent()) + return; + + auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), + ConstantVector::get(ExtendMask)); + + // Insert the new shuffle after the vector operand of the extract is defined + // (as long as it's not a PHI) or at the start of the basic block of the + // extract, so any subsequent extracts in the same basic block can use it. + // TODO: Insert before the earliest ExtractElementInst that is replaced. + if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) + WideVec->insertAfter(ExtVecOpInst); + else + IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); + + // Replace extracts from the original narrow vector with extracts from the new + // wide vector. + for (User *U : ExtVecOp->users()) { + ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); + if (!OldExt || OldExt->getParent() != WideVec->getParent()) + continue; + auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); + NewExt->insertAfter(WideVec); + IC.ReplaceInstUsesWith(*OldExt, NewExt); + } +} + +/// We are building a shuffle to create V, which is a sequence of insertelement, +/// extractelement pairs. If PermittedRHS is set, then we must either use it or +/// not rely on the second vector source. Return a std::pair containing the +/// left and right vectors of the proposed shuffle (or 0), and set the Mask +/// parameter as required. +/// +/// Note: we intentionally don't try to fold earlier shuffles since they have +/// often been chosen carefully to be efficiently implementable on the target. +typedef std::pair<Value *, Value *> ShuffleOps; + +static ShuffleOps collectShuffleElements(Value *V, + SmallVectorImpl<Constant *> &Mask, + Value *PermittedRHS, + InstCombiner &IC) { + assert(V->getType()->isVectorTy() && "Invalid shuffle!"); + unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); + + if (isa<UndefValue>(V)) { + Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); + return std::make_pair( + PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); + } + + if (isa<ConstantAggregateZero>(V)) { + Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); + return std::make_pair(V, nullptr); + } + + if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { + // If this is an insert of an extract from some other vector, include it. + Value *VecOp = IEI->getOperand(0); + Value *ScalarOp = IEI->getOperand(1); + Value *IdxOp = IEI->getOperand(2); + + if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { + if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { + unsigned ExtractedIdx = + cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); + unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); + + // Either the extracted from or inserted into vector must be RHSVec, + // otherwise we'd end up with a shuffle of three inputs. + if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { + Value *RHS = EI->getOperand(0); + ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); + assert(LR.second == nullptr || LR.second == RHS); + + if (LR.first->getType() != RHS->getType()) { + // Although we are giving up for now, see if we can create extracts + // that match the inserts for another round of combining. + replaceExtractElements(IEI, EI, IC); + + // We tried our best, but we can't find anything compatible with RHS + // further up the chain. Return a trivial shuffle. + for (unsigned i = 0; i < NumElts; ++i) + Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); + return std::make_pair(V, nullptr); + } + + unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); + Mask[InsertedIdx % NumElts] = + ConstantInt::get(Type::getInt32Ty(V->getContext()), + NumLHSElts+ExtractedIdx); + return std::make_pair(LR.first, RHS); + } + + if (VecOp == PermittedRHS) { + // We've gone as far as we can: anything on the other side of the + // extractelement will already have been converted into a shuffle. + unsigned NumLHSElts = + EI->getOperand(0)->getType()->getVectorNumElements(); + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get( + Type::getInt32Ty(V->getContext()), + i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); + return std::make_pair(EI->getOperand(0), PermittedRHS); + } + + // If this insertelement is a chain that comes from exactly these two + // vectors, return the vector and the effective shuffle. + if (EI->getOperand(0)->getType() == PermittedRHS->getType() && + collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, + Mask)) + return std::make_pair(EI->getOperand(0), PermittedRHS); + } + } + } + + // Otherwise, we can't do anything fancy. Return an identity vector. + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); + return std::make_pair(V, nullptr); +} + +/// Try to find redundant insertvalue instructions, like the following ones: +/// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 +/// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 +/// Here the second instruction inserts values at the same indices, as the +/// first one, making the first one redundant. +/// It should be transformed to: +/// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 +Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { + bool IsRedundant = false; + ArrayRef<unsigned int> FirstIndices = I.getIndices(); + + // If there is a chain of insertvalue instructions (each of them except the + // last one has only one use and it's another insertvalue insn from this + // chain), check if any of the 'children' uses the same indices as the first + // instruction. In this case, the first one is redundant. + Value *V = &I; + unsigned Depth = 0; + while (V->hasOneUse() && Depth < 10) { + User *U = V->user_back(); + auto UserInsInst = dyn_cast<InsertValueInst>(U); + if (!UserInsInst || U->getOperand(0) != V) + break; + if (UserInsInst->getIndices() == FirstIndices) { + IsRedundant = true; + break; + } + V = UserInsInst; + Depth++; + } + + if (IsRedundant) + return ReplaceInstUsesWith(I, I.getOperand(0)); + return nullptr; +} + +Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { + Value *VecOp = IE.getOperand(0); + Value *ScalarOp = IE.getOperand(1); + Value *IdxOp = IE.getOperand(2); + + // Inserting an undef or into an undefined place, remove this. + if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) + ReplaceInstUsesWith(IE, VecOp); + + // If the inserted element was extracted from some other vector, and if the + // indexes are constant, try to turn this into a shufflevector operation. + if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { + if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { + unsigned NumInsertVectorElts = IE.getType()->getNumElements(); + unsigned NumExtractVectorElts = + EI->getOperand(0)->getType()->getVectorNumElements(); + unsigned ExtractedIdx = + cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); + unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); + + if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract. + return ReplaceInstUsesWith(IE, VecOp); + + if (InsertedIdx >= NumInsertVectorElts) // Out of range insert. + return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); + + // If we are extracting a value from a vector, then inserting it right + // back into the same place, just use the input vector. + if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) + return ReplaceInstUsesWith(IE, VecOp); + + // If this insertelement isn't used by some other insertelement, turn it + // (and any insertelements it points to), into one big shuffle. + if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) { + SmallVector<Constant*, 16> Mask; + ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); + + // The proposed shuffle may be trivial, in which case we shouldn't + // perform the combine. + if (LR.first != &IE && LR.second != &IE) { + // We now have a shuffle of LHS, RHS, Mask. + if (LR.second == nullptr) + LR.second = UndefValue::get(LR.first->getType()); + return new ShuffleVectorInst(LR.first, LR.second, + ConstantVector::get(Mask)); + } + } + } + } + + unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements(); + APInt UndefElts(VWidth, 0); + APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); + if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { + if (V != &IE) + return ReplaceInstUsesWith(IE, V); + return &IE; + } + + return nullptr; +} + +/// Return true if we can evaluate the specified expression tree if the vector +/// elements were shuffled in a different order. +static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask, + unsigned Depth = 5) { + // We can always reorder the elements of a constant. + if (isa<Constant>(V)) + return true; + + // We won't reorder vector arguments. No IPO here. + Instruction *I = dyn_cast<Instruction>(V); + if (!I) return false; + + // Two users may expect different orders of the elements. Don't try it. + if (!I->hasOneUse()) + return false; + + if (Depth == 0) return false; + + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::ICmp: + case Instruction::FCmp: + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::GetElementPtr: { + for (Value *Operand : I->operands()) { + if (!CanEvaluateShuffled(Operand, Mask, Depth-1)) + return false; + } + return true; + } + case Instruction::InsertElement: { + ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); + if (!CI) return false; + int ElementNumber = CI->getLimitedValue(); + + // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' + // can't put an element into multiple indices. + bool SeenOnce = false; + for (int i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] == ElementNumber) { + if (SeenOnce) + return false; + SeenOnce = true; + } + } + return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1); + } + } + return false; +} + +/// Rebuild a new instruction just like 'I' but with the new operands given. +/// In the event of type mismatch, the type of the operands is correct. +static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { + // We don't want to use the IRBuilder here because we want the replacement + // instructions to appear next to 'I', not the builder's insertion point. + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + BinaryOperator *BO = cast<BinaryOperator>(I); + assert(NewOps.size() == 2 && "binary operator with #ops != 2"); + BinaryOperator *New = + BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), + NewOps[0], NewOps[1], "", BO); + if (isa<OverflowingBinaryOperator>(BO)) { + New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); + New->setHasNoSignedWrap(BO->hasNoSignedWrap()); + } + if (isa<PossiblyExactOperator>(BO)) { + New->setIsExact(BO->isExact()); + } + if (isa<FPMathOperator>(BO)) + New->copyFastMathFlags(I); + return New; + } + case Instruction::ICmp: + assert(NewOps.size() == 2 && "icmp with #ops != 2"); + return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), + NewOps[0], NewOps[1]); + case Instruction::FCmp: + assert(NewOps.size() == 2 && "fcmp with #ops != 2"); + return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), + NewOps[0], NewOps[1]); + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPTrunc: + case Instruction::FPExt: { + // It's possible that the mask has a different number of elements from + // the original cast. We recompute the destination type to match the mask. + Type *DestTy = + VectorType::get(I->getType()->getScalarType(), + NewOps[0]->getType()->getVectorNumElements()); + assert(NewOps.size() == 1 && "cast with #ops != 1"); + return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, + "", I); + } + case Instruction::GetElementPtr: { + Value *Ptr = NewOps[0]; + ArrayRef<Value*> Idx = NewOps.slice(1); + GetElementPtrInst *GEP = GetElementPtrInst::Create( + cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); + GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); + return GEP; + } + } + llvm_unreachable("failed to rebuild vector instructions"); +} + +Value * +InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { + // Mask.size() does not need to be equal to the number of vector elements. + + assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); + if (isa<UndefValue>(V)) { + return UndefValue::get(VectorType::get(V->getType()->getScalarType(), + Mask.size())); + } + if (isa<ConstantAggregateZero>(V)) { + return ConstantAggregateZero::get( + VectorType::get(V->getType()->getScalarType(), + Mask.size())); + } + if (Constant *C = dyn_cast<Constant>(V)) { + SmallVector<Constant *, 16> MaskValues; + for (int i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] == -1) + MaskValues.push_back(UndefValue::get(Builder->getInt32Ty())); + else + MaskValues.push_back(Builder->getInt32(Mask[i])); + } + return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), + ConstantVector::get(MaskValues)); + } + + Instruction *I = cast<Instruction>(V); + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::ICmp: + case Instruction::FCmp: + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::Select: + case Instruction::GetElementPtr: { + SmallVector<Value*, 8> NewOps; + bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); + for (int i = 0, e = I->getNumOperands(); i != e; ++i) { + Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask); + NewOps.push_back(V); + NeedsRebuild |= (V != I->getOperand(i)); + } + if (NeedsRebuild) { + return buildNew(I, NewOps); + } + return I; + } + case Instruction::InsertElement: { + int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); + + // The insertelement was inserting at Element. Figure out which element + // that becomes after shuffling. The answer is guaranteed to be unique + // by CanEvaluateShuffled. + bool Found = false; + int Index = 0; + for (int e = Mask.size(); Index != e; ++Index) { + if (Mask[Index] == Element) { + Found = true; + break; + } + } + + // If element is not in Mask, no need to handle the operand 1 (element to + // be inserted). Just evaluate values in operand 0 according to Mask. + if (!Found) + return EvaluateInDifferentElementOrder(I->getOperand(0), Mask); + + Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask); + return InsertElementInst::Create(V, I->getOperand(1), + Builder->getInt32(Index), "", I); + } + } + llvm_unreachable("failed to reorder elements of vector instruction!"); +} + +static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, + bool &isLHSID, bool &isRHSID) { + isLHSID = isRHSID = true; + + for (unsigned i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] < 0) continue; // Ignore undef values. + // Is this an identity shuffle of the LHS value? + isLHSID &= (Mask[i] == (int)i); + + // Is this an identity shuffle of the RHS value? + isRHSID &= (Mask[i]-e == i); + } +} + +// Returns true if the shuffle is extracting a contiguous range of values from +// LHS, for example: +// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +// Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| +// Shuffles to: |EE|FF|GG|HH| +// +--+--+--+--+ +static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, + SmallVector<int, 16> &Mask) { + unsigned LHSElems = + cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); + unsigned MaskElems = Mask.size(); + unsigned BegIdx = Mask.front(); + unsigned EndIdx = Mask.back(); + if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) + return false; + for (unsigned I = 0; I != MaskElems; ++I) + if (static_cast<unsigned>(Mask[I]) != BegIdx + I) + return false; + return true; +} + +Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { + Value *LHS = SVI.getOperand(0); + Value *RHS = SVI.getOperand(1); + SmallVector<int, 16> Mask = SVI.getShuffleMask(); + Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); + + bool MadeChange = false; + + // Undefined shuffle mask -> undefined value. + if (isa<UndefValue>(SVI.getOperand(2))) + return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); + + unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements(); + + APInt UndefElts(VWidth, 0); + APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); + if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { + if (V != &SVI) + return ReplaceInstUsesWith(SVI, V); + LHS = SVI.getOperand(0); + RHS = SVI.getOperand(1); + MadeChange = true; + } + + unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); + + // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') + // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). + if (LHS == RHS || isa<UndefValue>(LHS)) { + if (isa<UndefValue>(LHS) && LHS == RHS) { + // shuffle(undef,undef,mask) -> undef. + Value *Result = (VWidth == LHSWidth) + ? LHS : UndefValue::get(SVI.getType()); + return ReplaceInstUsesWith(SVI, Result); + } + + // Remap any references to RHS to use LHS. + SmallVector<Constant*, 16> Elts; + for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { + if (Mask[i] < 0) { + Elts.push_back(UndefValue::get(Int32Ty)); + continue; + } + + if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || + (Mask[i] < (int)e && isa<UndefValue>(LHS))) { + Mask[i] = -1; // Turn into undef. + Elts.push_back(UndefValue::get(Int32Ty)); + } else { + Mask[i] = Mask[i] % e; // Force to LHS. + Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); + } + } + SVI.setOperand(0, SVI.getOperand(1)); + SVI.setOperand(1, UndefValue::get(RHS->getType())); + SVI.setOperand(2, ConstantVector::get(Elts)); + LHS = SVI.getOperand(0); + RHS = SVI.getOperand(1); + MadeChange = true; + } + + if (VWidth == LHSWidth) { + // Analyze the shuffle, are the LHS or RHS and identity shuffles? + bool isLHSID, isRHSID; + recognizeIdentityMask(Mask, isLHSID, isRHSID); + + // Eliminate identity shuffles. + if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); + if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); + } + + if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) { + Value *V = EvaluateInDifferentElementOrder(LHS, Mask); + return ReplaceInstUsesWith(SVI, V); + } + + // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to + // a non-vector type. We can instead bitcast the original vector followed by + // an extract of the desired element: + // + // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, + // <4 x i32> <i32 0, i32 1, i32 2, i32 3> + // %1 = bitcast <4 x i8> %sroa to i32 + // Becomes: + // %bc = bitcast <16 x i8> %in to <4 x i32> + // %ext = extractelement <4 x i32> %bc, i32 0 + // + // If the shuffle is extracting a contiguous range of values from the input + // vector then each use which is a bitcast of the extracted size can be + // replaced. This will work if the vector types are compatible, and the begin + // index is aligned to a value in the casted vector type. If the begin index + // isn't aligned then we can shuffle the original vector (keeping the same + // vector type) before extracting. + // + // This code will bail out if the target type is fundamentally incompatible + // with vectors of the source type. + // + // Example of <16 x i8>, target type i32: + // Index range [4,8): v-----------v Will work. + // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ + // <16 x i8>: | | | | | | | | | | | | | | | | | + // <4 x i32>: | | | | | + // +-----------+-----------+-----------+-----------+ + // Index range [6,10): ^-----------^ Needs an extra shuffle. + // Target type i40: ^--------------^ Won't work, bail. + if (isShuffleExtractingFromLHS(SVI, Mask)) { + Value *V = LHS; + unsigned MaskElems = Mask.size(); + unsigned BegIdx = Mask.front(); + VectorType *SrcTy = cast<VectorType>(V->getType()); + unsigned VecBitWidth = SrcTy->getBitWidth(); + unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); + assert(SrcElemBitWidth && "vector elements must have a bitwidth"); + unsigned SrcNumElems = SrcTy->getNumElements(); + SmallVector<BitCastInst *, 8> BCs; + DenseMap<Type *, Value *> NewBCs; + for (User *U : SVI.users()) + if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) + if (!BC->use_empty()) + // Only visit bitcasts that weren't previously handled. + BCs.push_back(BC); + for (BitCastInst *BC : BCs) { + Type *TgtTy = BC->getDestTy(); + unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); + if (!TgtElemBitWidth) + continue; + unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; + bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; + bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); + if (!VecBitWidthsEqual) + continue; + if (!VectorType::isValidElementType(TgtTy)) + continue; + VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); + if (!BegIsAligned) { + // Shuffle the input so [0,NumElements) contains the output, and + // [NumElems,SrcNumElems) is undef. + SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, + UndefValue::get(Int32Ty)); + for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) + ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); + V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()), + ConstantVector::get(ShuffleMask), + SVI.getName() + ".extract"); + BegIdx = 0; + } + unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; + assert(SrcElemsPerTgtElem); + BegIdx /= SrcElemsPerTgtElem; + bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); + auto *NewBC = + BCAlreadyExists + ? NewBCs[CastSrcTy] + : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); + if (!BCAlreadyExists) + NewBCs[CastSrcTy] = NewBC; + auto *Ext = Builder->CreateExtractElement( + NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); + // The shufflevector isn't being replaced: the bitcast that used it + // is. InstCombine will visit the newly-created instructions. + ReplaceInstUsesWith(*BC, Ext); + MadeChange = true; + } + } + + // If the LHS is a shufflevector itself, see if we can combine it with this + // one without producing an unusual shuffle. + // Cases that might be simplified: + // 1. + // x1=shuffle(v1,v2,mask1) + // x=shuffle(x1,undef,mask) + // ==> + // x=shuffle(v1,undef,newMask) + // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 + // 2. + // x1=shuffle(v1,undef,mask1) + // x=shuffle(x1,x2,mask) + // where v1.size() == mask1.size() + // ==> + // x=shuffle(v1,x2,newMask) + // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] + // 3. + // x2=shuffle(v2,undef,mask2) + // x=shuffle(x1,x2,mask) + // where v2.size() == mask2.size() + // ==> + // x=shuffle(x1,v2,newMask) + // newMask[i] = (mask[i] < x1.size()) + // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() + // 4. + // x1=shuffle(v1,undef,mask1) + // x2=shuffle(v2,undef,mask2) + // x=shuffle(x1,x2,mask) + // where v1.size() == v2.size() + // ==> + // x=shuffle(v1,v2,newMask) + // newMask[i] = (mask[i] < x1.size()) + // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() + // + // Here we are really conservative: + // we are absolutely afraid of producing a shuffle mask not in the input + // program, because the code gen may not be smart enough to turn a merged + // shuffle into two specific shuffles: it may produce worse code. As such, + // we only merge two shuffles if the result is either a splat or one of the + // input shuffle masks. In this case, merging the shuffles just removes + // one instruction, which we know is safe. This is good for things like + // turning: (splat(splat)) -> splat, or + // merge(V[0..n], V[n+1..2n]) -> V[0..2n] + ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); + ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); + if (LHSShuffle) + if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) + LHSShuffle = nullptr; + if (RHSShuffle) + if (!isa<UndefValue>(RHSShuffle->getOperand(1))) + RHSShuffle = nullptr; + if (!LHSShuffle && !RHSShuffle) + return MadeChange ? &SVI : nullptr; + + Value* LHSOp0 = nullptr; + Value* LHSOp1 = nullptr; + Value* RHSOp0 = nullptr; + unsigned LHSOp0Width = 0; + unsigned RHSOp0Width = 0; + if (LHSShuffle) { + LHSOp0 = LHSShuffle->getOperand(0); + LHSOp1 = LHSShuffle->getOperand(1); + LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); + } + if (RHSShuffle) { + RHSOp0 = RHSShuffle->getOperand(0); + RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); + } + Value* newLHS = LHS; + Value* newRHS = RHS; + if (LHSShuffle) { + // case 1 + if (isa<UndefValue>(RHS)) { + newLHS = LHSOp0; + newRHS = LHSOp1; + } + // case 2 or 4 + else if (LHSOp0Width == LHSWidth) { + newLHS = LHSOp0; + } + } + // case 3 or 4 + if (RHSShuffle && RHSOp0Width == LHSWidth) { + newRHS = RHSOp0; + } + // case 4 + if (LHSOp0 == RHSOp0) { + newLHS = LHSOp0; + newRHS = nullptr; + } + + if (newLHS == LHS && newRHS == RHS) + return MadeChange ? &SVI : nullptr; + + SmallVector<int, 16> LHSMask; + SmallVector<int, 16> RHSMask; + if (newLHS != LHS) + LHSMask = LHSShuffle->getShuffleMask(); + if (RHSShuffle && newRHS != RHS) + RHSMask = RHSShuffle->getShuffleMask(); + + unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; + SmallVector<int, 16> newMask; + bool isSplat = true; + int SplatElt = -1; + // Create a new mask for the new ShuffleVectorInst so that the new + // ShuffleVectorInst is equivalent to the original one. + for (unsigned i = 0; i < VWidth; ++i) { + int eltMask; + if (Mask[i] < 0) { + // This element is an undef value. + eltMask = -1; + } else if (Mask[i] < (int)LHSWidth) { + // This element is from left hand side vector operand. + // + // If LHS is going to be replaced (case 1, 2, or 4), calculate the + // new mask value for the element. + if (newLHS != LHS) { + eltMask = LHSMask[Mask[i]]; + // If the value selected is an undef value, explicitly specify it + // with a -1 mask value. + if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) + eltMask = -1; + } else + eltMask = Mask[i]; + } else { + // This element is from right hand side vector operand + // + // If the value selected is an undef value, explicitly specify it + // with a -1 mask value. (case 1) + if (isa<UndefValue>(RHS)) + eltMask = -1; + // If RHS is going to be replaced (case 3 or 4), calculate the + // new mask value for the element. + else if (newRHS != RHS) { + eltMask = RHSMask[Mask[i]-LHSWidth]; + // If the value selected is an undef value, explicitly specify it + // with a -1 mask value. + if (eltMask >= (int)RHSOp0Width) { + assert(isa<UndefValue>(RHSShuffle->getOperand(1)) + && "should have been check above"); + eltMask = -1; + } + } else + eltMask = Mask[i]-LHSWidth; + + // If LHS's width is changed, shift the mask value accordingly. + // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any + // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. + // If newRHS == newLHS, we want to remap any references from newRHS to + // newLHS so that we can properly identify splats that may occur due to + // obfuscation across the two vectors. + if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) + eltMask += newLHSWidth; + } + + // Check if this could still be a splat. + if (eltMask >= 0) { + if (SplatElt >= 0 && SplatElt != eltMask) + isSplat = false; + SplatElt = eltMask; + } + + newMask.push_back(eltMask); + } + + // If the result mask is equal to one of the original shuffle masks, + // or is a splat, do the replacement. + if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { + SmallVector<Constant*, 16> Elts; + for (unsigned i = 0, e = newMask.size(); i != e; ++i) { + if (newMask[i] < 0) { + Elts.push_back(UndefValue::get(Int32Ty)); + } else { + Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); + } + } + if (!newRHS) + newRHS = UndefValue::get(newLHS->getType()); + return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); + } + + // If the result mask is an identity, replace uses of this instruction with + // corresponding argument. + bool isLHSID, isRHSID; + recognizeIdentityMask(newMask, isLHSID, isRHSID); + if (isLHSID && VWidth == LHSOp0Width) return ReplaceInstUsesWith(SVI, newLHS); + if (isRHSID && VWidth == RHSOp0Width) return ReplaceInstUsesWith(SVI, newRHS); + + return MadeChange ? &SVI : nullptr; +} |
