summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp3538
1 files changed, 0 insertions, 3538 deletions
diff --git a/gnu/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/gnu/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
deleted file mode 100644
index fef051aa1b7..00000000000
--- a/gnu/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ /dev/null
@@ -1,3538 +0,0 @@
-//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// InstructionCombining - Combine instructions to form fewer, simple
-// instructions. This pass does not modify the CFG. This pass is where
-// algebraic simplification happens.
-//
-// This pass combines things like:
-// %Y = add i32 %X, 1
-// %Z = add i32 %Y, 1
-// into:
-// %Z = add i32 %X, 2
-//
-// This is a simple worklist driven algorithm.
-//
-// This pass guarantees that the following canonicalizations are performed on
-// the program:
-// 1. If a binary operator has a constant operand, it is moved to the RHS
-// 2. Bitwise operators with constant operands are always grouped so that
-// shifts are performed first, then or's, then and's, then xor's.
-// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
-// 4. All cmp instructions on boolean values are replaced with logical ops
-// 5. add X, X is represented as (X*2) => (X << 1)
-// 6. Multiplies with a power-of-two constant argument are transformed into
-// shifts.
-// ... etc.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm-c/Initialization.h"
-#include "llvm-c/Transforms/InstCombine.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/TinyPtrVector.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/BasicAliasAnalysis.h"
-#include "llvm/Analysis/CFG.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/EHPersonalities.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/TargetFolder.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DIBuilder.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GetElementPtrTypeIterator.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LegacyPassManager.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CBindingWrapping.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/DebugCounter.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/InstCombine/InstCombine.h"
-#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <memory>
-#include <string>
-#include <utility>
-
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-STATISTIC(NumCombined , "Number of insts combined");
-STATISTIC(NumConstProp, "Number of constant folds");
-STATISTIC(NumDeadInst , "Number of dead inst eliminated");
-STATISTIC(NumSunkInst , "Number of instructions sunk");
-STATISTIC(NumExpand, "Number of expansions");
-STATISTIC(NumFactor , "Number of factorizations");
-STATISTIC(NumReassoc , "Number of reassociations");
-DEBUG_COUNTER(VisitCounter, "instcombine-visit",
- "Controls which instructions are visited");
-
-static cl::opt<bool>
-EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
- cl::init(true));
-
-static cl::opt<bool>
-EnableExpensiveCombines("expensive-combines",
- cl::desc("Enable expensive instruction combines"));
-
-static cl::opt<unsigned>
-MaxArraySize("instcombine-maxarray-size", cl::init(1024),
- cl::desc("Maximum array size considered when doing a combine"));
-
-// FIXME: Remove this flag when it is no longer necessary to convert
-// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
-// increases variable availability at the cost of accuracy. Variables that
-// cannot be promoted by mem2reg or SROA will be described as living in memory
-// for their entire lifetime. However, passes like DSE and instcombine can
-// delete stores to the alloca, leading to misleading and inaccurate debug
-// information. This flag can be removed when those passes are fixed.
-static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
- cl::Hidden, cl::init(true));
-
-Value *InstCombiner::EmitGEPOffset(User *GEP) {
- return llvm::EmitGEPOffset(&Builder, DL, GEP);
-}
-
-/// Return true if it is desirable to convert an integer computation from a
-/// given bit width to a new bit width.
-/// We don't want to convert from a legal to an illegal type or from a smaller
-/// to a larger illegal type. A width of '1' is always treated as a legal type
-/// because i1 is a fundamental type in IR, and there are many specialized
-/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
-/// legal to convert to, in order to open up more combining opportunities.
-/// NOTE: this treats i8, i16 and i32 specially, due to them being so common
-/// from frontend languages.
-bool InstCombiner::shouldChangeType(unsigned FromWidth,
- unsigned ToWidth) const {
- bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
- bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
-
- // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
- // shrink types, to prevent infinite loops.
- if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
- return true;
-
- // If this is a legal integer from type, and the result would be an illegal
- // type, don't do the transformation.
- if (FromLegal && !ToLegal)
- return false;
-
- // Otherwise, if both are illegal, do not increase the size of the result. We
- // do allow things like i160 -> i64, but not i64 -> i160.
- if (!FromLegal && !ToLegal && ToWidth > FromWidth)
- return false;
-
- return true;
-}
-
-/// Return true if it is desirable to convert a computation from 'From' to 'To'.
-/// We don't want to convert from a legal to an illegal type or from a smaller
-/// to a larger illegal type. i1 is always treated as a legal type because it is
-/// a fundamental type in IR, and there are many specialized optimizations for
-/// i1 types.
-bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
- // TODO: This could be extended to allow vectors. Datalayout changes might be
- // needed to properly support that.
- if (!From->isIntegerTy() || !To->isIntegerTy())
- return false;
-
- unsigned FromWidth = From->getPrimitiveSizeInBits();
- unsigned ToWidth = To->getPrimitiveSizeInBits();
- return shouldChangeType(FromWidth, ToWidth);
-}
-
-// Return true, if No Signed Wrap should be maintained for I.
-// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
-// where both B and C should be ConstantInts, results in a constant that does
-// not overflow. This function only handles the Add and Sub opcodes. For
-// all other opcodes, the function conservatively returns false.
-static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
- OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
- if (!OBO || !OBO->hasNoSignedWrap())
- return false;
-
- // We reason about Add and Sub Only.
- Instruction::BinaryOps Opcode = I.getOpcode();
- if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
- return false;
-
- const APInt *BVal, *CVal;
- if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
- return false;
-
- bool Overflow = false;
- if (Opcode == Instruction::Add)
- (void)BVal->sadd_ov(*CVal, Overflow);
- else
- (void)BVal->ssub_ov(*CVal, Overflow);
-
- return !Overflow;
-}
-
-/// Conservatively clears subclassOptionalData after a reassociation or
-/// commutation. We preserve fast-math flags when applicable as they can be
-/// preserved.
-static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
- FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
- if (!FPMO) {
- I.clearSubclassOptionalData();
- return;
- }
-
- FastMathFlags FMF = I.getFastMathFlags();
- I.clearSubclassOptionalData();
- I.setFastMathFlags(FMF);
-}
-
-/// Combine constant operands of associative operations either before or after a
-/// cast to eliminate one of the associative operations:
-/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
-/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
-static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
- auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
- if (!Cast || !Cast->hasOneUse())
- return false;
-
- // TODO: Enhance logic for other casts and remove this check.
- auto CastOpcode = Cast->getOpcode();
- if (CastOpcode != Instruction::ZExt)
- return false;
-
- // TODO: Enhance logic for other BinOps and remove this check.
- if (!BinOp1->isBitwiseLogicOp())
- return false;
-
- auto AssocOpcode = BinOp1->getOpcode();
- auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
- if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
- return false;
-
- Constant *C1, *C2;
- if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
- !match(BinOp2->getOperand(1), m_Constant(C2)))
- return false;
-
- // TODO: This assumes a zext cast.
- // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
- // to the destination type might lose bits.
-
- // Fold the constants together in the destination type:
- // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
- Type *DestTy = C1->getType();
- Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
- Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
- Cast->setOperand(0, BinOp2->getOperand(0));
- BinOp1->setOperand(1, FoldedC);
- return true;
-}
-
-/// This performs a few simplifications for operators that are associative or
-/// commutative:
-///
-/// Commutative operators:
-///
-/// 1. Order operands such that they are listed from right (least complex) to
-/// left (most complex). This puts constants before unary operators before
-/// binary operators.
-///
-/// Associative operators:
-///
-/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
-/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
-///
-/// Associative and commutative operators:
-///
-/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
-/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
-/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
-/// if C1 and C2 are constants.
-bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
- Instruction::BinaryOps Opcode = I.getOpcode();
- bool Changed = false;
-
- do {
- // Order operands such that they are listed from right (least complex) to
- // left (most complex). This puts constants before unary operators before
- // binary operators.
- if (I.isCommutative() && getComplexity(I.getOperand(0)) <
- getComplexity(I.getOperand(1)))
- Changed = !I.swapOperands();
-
- BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
- BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
-
- if (I.isAssociative()) {
- // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = I.getOperand(1);
-
- // Does "B op C" simplify?
- if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
- // It simplifies to V. Form "A op V".
- I.setOperand(0, A);
- I.setOperand(1, V);
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- if (MaintainNoSignedWrap(I, B, C) &&
- (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
- // Note: this is only valid because SimplifyBinOp doesn't look at
- // the operands to Op0.
- I.clearSubclassOptionalData();
- I.setHasNoSignedWrap(true);
- } else {
- ClearSubclassDataAfterReassociation(I);
- }
-
- Changed = true;
- ++NumReassoc;
- continue;
- }
- }
-
- // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = I.getOperand(0);
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
-
- // Does "A op B" simplify?
- if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
- // It simplifies to V. Form "V op C".
- I.setOperand(0, V);
- I.setOperand(1, C);
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- ClearSubclassDataAfterReassociation(I);
- Changed = true;
- ++NumReassoc;
- continue;
- }
- }
- }
-
- if (I.isAssociative() && I.isCommutative()) {
- if (simplifyAssocCastAssoc(&I)) {
- Changed = true;
- ++NumReassoc;
- continue;
- }
-
- // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = I.getOperand(1);
-
- // Does "C op A" simplify?
- if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
- // It simplifies to V. Form "V op B".
- I.setOperand(0, V);
- I.setOperand(1, B);
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- ClearSubclassDataAfterReassociation(I);
- Changed = true;
- ++NumReassoc;
- continue;
- }
- }
-
- // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = I.getOperand(0);
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
-
- // Does "C op A" simplify?
- if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
- // It simplifies to V. Form "B op V".
- I.setOperand(0, B);
- I.setOperand(1, V);
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- ClearSubclassDataAfterReassociation(I);
- Changed = true;
- ++NumReassoc;
- continue;
- }
- }
-
- // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
- // if C1 and C2 are constants.
- Value *A, *B;
- Constant *C1, *C2;
- if (Op0 && Op1 &&
- Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
- match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
- match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
- BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B);
- if (isa<FPMathOperator>(NewBO)) {
- FastMathFlags Flags = I.getFastMathFlags();
- Flags &= Op0->getFastMathFlags();
- Flags &= Op1->getFastMathFlags();
- NewBO->setFastMathFlags(Flags);
- }
- InsertNewInstWith(NewBO, I);
- NewBO->takeName(Op1);
- I.setOperand(0, NewBO);
- I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- ClearSubclassDataAfterReassociation(I);
-
- Changed = true;
- continue;
- }
- }
-
- // No further simplifications.
- return Changed;
- } while (true);
-}
-
-/// Return whether "X LOp (Y ROp Z)" is always equal to
-/// "(X LOp Y) ROp (X LOp Z)".
-static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
- Instruction::BinaryOps ROp) {
- // X & (Y | Z) <--> (X & Y) | (X & Z)
- // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
- if (LOp == Instruction::And)
- return ROp == Instruction::Or || ROp == Instruction::Xor;
-
- // X | (Y & Z) <--> (X | Y) & (X | Z)
- if (LOp == Instruction::Or)
- return ROp == Instruction::And;
-
- // X * (Y + Z) <--> (X * Y) + (X * Z)
- // X * (Y - Z) <--> (X * Y) - (X * Z)
- if (LOp == Instruction::Mul)
- return ROp == Instruction::Add || ROp == Instruction::Sub;
-
- return false;
-}
-
-/// Return whether "(X LOp Y) ROp Z" is always equal to
-/// "(X ROp Z) LOp (Y ROp Z)".
-static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
- Instruction::BinaryOps ROp) {
- if (Instruction::isCommutative(ROp))
- return leftDistributesOverRight(ROp, LOp);
-
- // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
- return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
-
- // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
- // but this requires knowing that the addition does not overflow and other
- // such subtleties.
-}
-
-/// This function returns identity value for given opcode, which can be used to
-/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
-static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
- if (isa<Constant>(V))
- return nullptr;
-
- return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
-}
-
-/// This function predicates factorization using distributive laws. By default,
-/// it just returns the 'Op' inputs. But for special-cases like
-/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
-/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
-/// allow more factorization opportunities.
-static Instruction::BinaryOps
-getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
- Value *&LHS, Value *&RHS) {
- assert(Op && "Expected a binary operator");
- LHS = Op->getOperand(0);
- RHS = Op->getOperand(1);
- if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
- Constant *C;
- if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
- // X << C --> X * (1 << C)
- RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
- return Instruction::Mul;
- }
- // TODO: We can add other conversions e.g. shr => div etc.
- }
- return Op->getOpcode();
-}
-
-/// This tries to simplify binary operations by factorizing out common terms
-/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
-Value *InstCombiner::tryFactorization(BinaryOperator &I,
- Instruction::BinaryOps InnerOpcode,
- Value *A, Value *B, Value *C, Value *D) {
- assert(A && B && C && D && "All values must be provided");
-
- Value *V = nullptr;
- Value *SimplifiedInst = nullptr;
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
-
- // Does "X op' Y" always equal "Y op' X"?
- bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
-
- // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
- if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
- // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
- // commutative case, "(A op' B) op (C op' A)"?
- if (A == C || (InnerCommutative && A == D)) {
- if (A != C)
- std::swap(C, D);
- // Consider forming "A op' (B op D)".
- // If "B op D" simplifies then it can be formed with no cost.
- V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
- // If "B op D" doesn't simplify then only go on if both of the existing
- // operations "A op' B" and "C op' D" will be zapped as no longer used.
- if (!V && LHS->hasOneUse() && RHS->hasOneUse())
- V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
- if (V) {
- SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
- }
- }
-
- // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
- if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
- // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
- // commutative case, "(A op' B) op (B op' D)"?
- if (B == D || (InnerCommutative && B == C)) {
- if (B != D)
- std::swap(C, D);
- // Consider forming "(A op C) op' B".
- // If "A op C" simplifies then it can be formed with no cost.
- V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
-
- // If "A op C" doesn't simplify then only go on if both of the existing
- // operations "A op' B" and "C op' D" will be zapped as no longer used.
- if (!V && LHS->hasOneUse() && RHS->hasOneUse())
- V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
- if (V) {
- SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
- }
- }
-
- if (SimplifiedInst) {
- ++NumFactor;
- SimplifiedInst->takeName(&I);
-
- // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
- // TODO: Check for NUW.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
- if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
- bool HasNSW = false;
- if (isa<OverflowingBinaryOperator>(&I))
- HasNSW = I.hasNoSignedWrap();
-
- if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
- HasNSW &= LOBO->hasNoSignedWrap();
-
- if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
- HasNSW &= ROBO->hasNoSignedWrap();
-
- // We can propagate 'nsw' if we know that
- // %Y = mul nsw i16 %X, C
- // %Z = add nsw i16 %Y, %X
- // =>
- // %Z = mul nsw i16 %X, C+1
- //
- // iff C+1 isn't INT_MIN
- const APInt *CInt;
- if (TopLevelOpcode == Instruction::Add &&
- InnerOpcode == Instruction::Mul)
- if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
- BO->setHasNoSignedWrap(HasNSW);
- }
- }
- }
- return SimplifiedInst;
-}
-
-/// This tries to simplify binary operations which some other binary operation
-/// distributes over either by factorizing out common terms
-/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
-/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
-/// Returns the simplified value, or null if it didn't simplify.
-Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
- BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
- Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
-
- {
- // Factorization.
- Value *A, *B, *C, *D;
- Instruction::BinaryOps LHSOpcode, RHSOpcode;
- if (Op0)
- LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
- if (Op1)
- RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
-
- // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
- // a common term.
- if (Op0 && Op1 && LHSOpcode == RHSOpcode)
- if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
- return V;
-
- // The instruction has the form "(A op' B) op (C)". Try to factorize common
- // term.
- if (Op0)
- if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
- if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
- return V;
-
- // The instruction has the form "(B) op (C op' D)". Try to factorize common
- // term.
- if (Op1)
- if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
- if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
- return V;
- }
-
- // Expansion.
- if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
- // The instruction has the form "(A op' B) op C". See if expanding it out
- // to "(A op C) op' (B op C)" results in simplifications.
- Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
- Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
-
- Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
- Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
-
- // Do "A op C" and "B op C" both simplify?
- if (L && R) {
- // They do! Return "L op' R".
- ++NumExpand;
- C = Builder.CreateBinOp(InnerOpcode, L, R);
- C->takeName(&I);
- return C;
- }
-
- // Does "A op C" simplify to the identity value for the inner opcode?
- if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
- // They do! Return "B op C".
- ++NumExpand;
- C = Builder.CreateBinOp(TopLevelOpcode, B, C);
- C->takeName(&I);
- return C;
- }
-
- // Does "B op C" simplify to the identity value for the inner opcode?
- if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
- // They do! Return "A op C".
- ++NumExpand;
- C = Builder.CreateBinOp(TopLevelOpcode, A, C);
- C->takeName(&I);
- return C;
- }
- }
-
- if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
- // The instruction has the form "A op (B op' C)". See if expanding it out
- // to "(A op B) op' (A op C)" results in simplifications.
- Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
- Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
-
- Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
- Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
-
- // Do "A op B" and "A op C" both simplify?
- if (L && R) {
- // They do! Return "L op' R".
- ++NumExpand;
- A = Builder.CreateBinOp(InnerOpcode, L, R);
- A->takeName(&I);
- return A;
- }
-
- // Does "A op B" simplify to the identity value for the inner opcode?
- if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
- // They do! Return "A op C".
- ++NumExpand;
- A = Builder.CreateBinOp(TopLevelOpcode, A, C);
- A->takeName(&I);
- return A;
- }
-
- // Does "A op C" simplify to the identity value for the inner opcode?
- if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
- // They do! Return "A op B".
- ++NumExpand;
- A = Builder.CreateBinOp(TopLevelOpcode, A, B);
- A->takeName(&I);
- return A;
- }
- }
-
- return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
-}
-
-Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
- Value *LHS, Value *RHS) {
- Instruction::BinaryOps Opcode = I.getOpcode();
- // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
- // c, e)))
- Value *A, *B, *C, *D, *E;
- Value *SI = nullptr;
- if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) &&
- match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) {
- bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse();
- BuilderTy::FastMathFlagGuard Guard(Builder);
- if (isa<FPMathOperator>(&I))
- Builder.setFastMathFlags(I.getFastMathFlags());
-
- Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I));
- Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I));
- if (V1 && V2)
- SI = Builder.CreateSelect(A, V2, V1);
- else if (V2 && SelectsHaveOneUse)
- SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E));
- else if (V1 && SelectsHaveOneUse)
- SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1);
-
- if (SI)
- SI->takeName(&I);
- }
-
- return SI;
-}
-
-/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
-/// constant zero (which is the 'negate' form).
-Value *InstCombiner::dyn_castNegVal(Value *V) const {
- Value *NegV;
- if (match(V, m_Neg(m_Value(NegV))))
- return NegV;
-
- // Constants can be considered to be negated values if they can be folded.
- if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return ConstantExpr::getNeg(C);
-
- if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
- if (C->getType()->getElementType()->isIntegerTy())
- return ConstantExpr::getNeg(C);
-
- if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
- for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
- Constant *Elt = CV->getAggregateElement(i);
- if (!Elt)
- return nullptr;
-
- if (isa<UndefValue>(Elt))
- continue;
-
- if (!isa<ConstantInt>(Elt))
- return nullptr;
- }
- return ConstantExpr::getNeg(CV);
- }
-
- return nullptr;
-}
-
-static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
- InstCombiner::BuilderTy &Builder) {
- if (auto *Cast = dyn_cast<CastInst>(&I))
- return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
-
- assert(I.isBinaryOp() && "Unexpected opcode for select folding");
-
- // Figure out if the constant is the left or the right argument.
- bool ConstIsRHS = isa<Constant>(I.getOperand(1));
- Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
-
- if (auto *SOC = dyn_cast<Constant>(SO)) {
- if (ConstIsRHS)
- return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
- return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
- }
-
- Value *Op0 = SO, *Op1 = ConstOperand;
- if (!ConstIsRHS)
- std::swap(Op0, Op1);
-
- auto *BO = cast<BinaryOperator>(&I);
- Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
- SO->getName() + ".op");
- auto *FPInst = dyn_cast<Instruction>(RI);
- if (FPInst && isa<FPMathOperator>(FPInst))
- FPInst->copyFastMathFlags(BO);
- return RI;
-}
-
-Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
- // Don't modify shared select instructions.
- if (!SI->hasOneUse())
- return nullptr;
-
- Value *TV = SI->getTrueValue();
- Value *FV = SI->getFalseValue();
- if (!(isa<Constant>(TV) || isa<Constant>(FV)))
- return nullptr;
-
- // Bool selects with constant operands can be folded to logical ops.
- if (SI->getType()->isIntOrIntVectorTy(1))
- return nullptr;
-
- // If it's a bitcast involving vectors, make sure it has the same number of
- // elements on both sides.
- if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
- VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
- VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
-
- // Verify that either both or neither are vectors.
- if ((SrcTy == nullptr) != (DestTy == nullptr))
- return nullptr;
-
- // If vectors, verify that they have the same number of elements.
- if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
- return nullptr;
- }
-
- // Test if a CmpInst instruction is used exclusively by a select as
- // part of a minimum or maximum operation. If so, refrain from doing
- // any other folding. This helps out other analyses which understand
- // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
- // and CodeGen. And in this case, at least one of the comparison
- // operands has at least one user besides the compare (the select),
- // which would often largely negate the benefit of folding anyway.
- if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
- if (CI->hasOneUse()) {
- Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
- if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
- (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
- return nullptr;
- }
- }
-
- Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
- Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
- return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
-}
-
-static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
- InstCombiner::BuilderTy &Builder) {
- bool ConstIsRHS = isa<Constant>(I->getOperand(1));
- Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
-
- if (auto *InC = dyn_cast<Constant>(InV)) {
- if (ConstIsRHS)
- return ConstantExpr::get(I->getOpcode(), InC, C);
- return ConstantExpr::get(I->getOpcode(), C, InC);
- }
-
- Value *Op0 = InV, *Op1 = C;
- if (!ConstIsRHS)
- std::swap(Op0, Op1);
-
- Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
- auto *FPInst = dyn_cast<Instruction>(RI);
- if (FPInst && isa<FPMathOperator>(FPInst))
- FPInst->copyFastMathFlags(I);
- return RI;
-}
-
-Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
- unsigned NumPHIValues = PN->getNumIncomingValues();
- if (NumPHIValues == 0)
- return nullptr;
-
- // We normally only transform phis with a single use. However, if a PHI has
- // multiple uses and they are all the same operation, we can fold *all* of the
- // uses into the PHI.
- if (!PN->hasOneUse()) {
- // Walk the use list for the instruction, comparing them to I.
- for (User *U : PN->users()) {
- Instruction *UI = cast<Instruction>(U);
- if (UI != &I && !I.isIdenticalTo(UI))
- return nullptr;
- }
- // Otherwise, we can replace *all* users with the new PHI we form.
- }
-
- // Check to see if all of the operands of the PHI are simple constants
- // (constantint/constantfp/undef). If there is one non-constant value,
- // remember the BB it is in. If there is more than one or if *it* is a PHI,
- // bail out. We don't do arbitrary constant expressions here because moving
- // their computation can be expensive without a cost model.
- BasicBlock *NonConstBB = nullptr;
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InVal = PN->getIncomingValue(i);
- if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
- continue;
-
- if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
- if (NonConstBB) return nullptr; // More than one non-const value.
-
- NonConstBB = PN->getIncomingBlock(i);
-
- // If the InVal is an invoke at the end of the pred block, then we can't
- // insert a computation after it without breaking the edge.
- if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
- if (II->getParent() == NonConstBB)
- return nullptr;
-
- // If the incoming non-constant value is in I's block, we will remove one
- // instruction, but insert another equivalent one, leading to infinite
- // instcombine.
- if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
- return nullptr;
- }
-
- // If there is exactly one non-constant value, we can insert a copy of the
- // operation in that block. However, if this is a critical edge, we would be
- // inserting the computation on some other paths (e.g. inside a loop). Only
- // do this if the pred block is unconditionally branching into the phi block.
- if (NonConstBB != nullptr) {
- BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
- if (!BI || !BI->isUnconditional()) return nullptr;
- }
-
- // Okay, we can do the transformation: create the new PHI node.
- PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
- InsertNewInstBefore(NewPN, *PN);
- NewPN->takeName(PN);
-
- // If we are going to have to insert a new computation, do so right before the
- // predecessor's terminator.
- if (NonConstBB)
- Builder.SetInsertPoint(NonConstBB->getTerminator());
-
- // Next, add all of the operands to the PHI.
- if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
- // We only currently try to fold the condition of a select when it is a phi,
- // not the true/false values.
- Value *TrueV = SI->getTrueValue();
- Value *FalseV = SI->getFalseValue();
- BasicBlock *PhiTransBB = PN->getParent();
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- BasicBlock *ThisBB = PN->getIncomingBlock(i);
- Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
- Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
- Value *InV = nullptr;
- // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
- // even if currently isNullValue gives false.
- Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
- // For vector constants, we cannot use isNullValue to fold into
- // FalseVInPred versus TrueVInPred. When we have individual nonzero
- // elements in the vector, we will incorrectly fold InC to
- // `TrueVInPred`.
- if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
- InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
- else {
- // Generate the select in the same block as PN's current incoming block.
- // Note: ThisBB need not be the NonConstBB because vector constants
- // which are constants by definition are handled here.
- // FIXME: This can lead to an increase in IR generation because we might
- // generate selects for vector constant phi operand, that could not be
- // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
- // non-vector phis, this transformation was always profitable because
- // the select would be generated exactly once in the NonConstBB.
- Builder.SetInsertPoint(ThisBB->getTerminator());
- InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
- FalseVInPred, "phitmp");
- }
- NewPN->addIncoming(InV, ThisBB);
- }
- } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
- Constant *C = cast<Constant>(I.getOperand(1));
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InV = nullptr;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
- InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
- else if (isa<ICmpInst>(CI))
- InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
- C, "phitmp");
- else
- InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
- C, "phitmp");
- NewPN->addIncoming(InV, PN->getIncomingBlock(i));
- }
- } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
- Builder);
- NewPN->addIncoming(InV, PN->getIncomingBlock(i));
- }
- } else {
- CastInst *CI = cast<CastInst>(&I);
- Type *RetTy = CI->getType();
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InV;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
- InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
- else
- InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
- I.getType(), "phitmp");
- NewPN->addIncoming(InV, PN->getIncomingBlock(i));
- }
- }
-
- for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
- if (User == &I) continue;
- replaceInstUsesWith(*User, NewPN);
- eraseInstFromFunction(*User);
- }
- return replaceInstUsesWith(I, NewPN);
-}
-
-Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
- if (!isa<Constant>(I.getOperand(1)))
- return nullptr;
-
- if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
- if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
- return NewSel;
- } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
- if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
- return NewPhi;
- }
- return nullptr;
-}
-
-/// Given a pointer type and a constant offset, determine whether or not there
-/// is a sequence of GEP indices into the pointed type that will land us at the
-/// specified offset. If so, fill them into NewIndices and return the resultant
-/// element type, otherwise return null.
-Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
- SmallVectorImpl<Value *> &NewIndices) {
- Type *Ty = PtrTy->getElementType();
- if (!Ty->isSized())
- return nullptr;
-
- // Start with the index over the outer type. Note that the type size
- // might be zero (even if the offset isn't zero) if the indexed type
- // is something like [0 x {int, int}]
- Type *IndexTy = DL.getIndexType(PtrTy);
- int64_t FirstIdx = 0;
- if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
- FirstIdx = Offset/TySize;
- Offset -= FirstIdx*TySize;
-
- // Handle hosts where % returns negative instead of values [0..TySize).
- if (Offset < 0) {
- --FirstIdx;
- Offset += TySize;
- assert(Offset >= 0);
- }
- assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
- }
-
- NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
-
- // Index into the types. If we fail, set OrigBase to null.
- while (Offset) {
- // Indexing into tail padding between struct/array elements.
- if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
- return nullptr;
-
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = DL.getStructLayout(STy);
- assert(Offset < (int64_t)SL->getSizeInBytes() &&
- "Offset must stay within the indexed type");
-
- unsigned Elt = SL->getElementContainingOffset(Offset);
- NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
- Elt));
-
- Offset -= SL->getElementOffset(Elt);
- Ty = STy->getElementType(Elt);
- } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
- uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
- assert(EltSize && "Cannot index into a zero-sized array");
- NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
- Offset %= EltSize;
- Ty = AT->getElementType();
- } else {
- // Otherwise, we can't index into the middle of this atomic type, bail.
- return nullptr;
- }
- }
-
- return Ty;
-}
-
-static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
- // If this GEP has only 0 indices, it is the same pointer as
- // Src. If Src is not a trivial GEP too, don't combine
- // the indices.
- if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
- !Src.hasOneUse())
- return false;
- return true;
-}
-
-/// Return a value X such that Val = X * Scale, or null if none.
-/// If the multiplication is known not to overflow, then NoSignedWrap is set.
-Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
- assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
- assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
- Scale.getBitWidth() && "Scale not compatible with value!");
-
- // If Val is zero or Scale is one then Val = Val * Scale.
- if (match(Val, m_Zero()) || Scale == 1) {
- NoSignedWrap = true;
- return Val;
- }
-
- // If Scale is zero then it does not divide Val.
- if (Scale.isMinValue())
- return nullptr;
-
- // Look through chains of multiplications, searching for a constant that is
- // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
- // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
- // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
- // down from Val:
- //
- // Val = M1 * X || Analysis starts here and works down
- // M1 = M2 * Y || Doesn't descend into terms with more
- // M2 = Z * 4 \/ than one use
- //
- // Then to modify a term at the bottom:
- //
- // Val = M1 * X
- // M1 = Z * Y || Replaced M2 with Z
- //
- // Then to work back up correcting nsw flags.
-
- // Op - the term we are currently analyzing. Starts at Val then drills down.
- // Replaced with its descaled value before exiting from the drill down loop.
- Value *Op = Val;
-
- // Parent - initially null, but after drilling down notes where Op came from.
- // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
- // 0'th operand of Val.
- std::pair<Instruction *, unsigned> Parent;
-
- // Set if the transform requires a descaling at deeper levels that doesn't
- // overflow.
- bool RequireNoSignedWrap = false;
-
- // Log base 2 of the scale. Negative if not a power of 2.
- int32_t logScale = Scale.exactLogBase2();
-
- for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
- // If Op is a constant divisible by Scale then descale to the quotient.
- APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
- APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
- if (!Remainder.isMinValue())
- // Not divisible by Scale.
- return nullptr;
- // Replace with the quotient in the parent.
- Op = ConstantInt::get(CI->getType(), Quotient);
- NoSignedWrap = true;
- break;
- }
-
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
- if (BO->getOpcode() == Instruction::Mul) {
- // Multiplication.
- NoSignedWrap = BO->hasNoSignedWrap();
- if (RequireNoSignedWrap && !NoSignedWrap)
- return nullptr;
-
- // There are three cases for multiplication: multiplication by exactly
- // the scale, multiplication by a constant different to the scale, and
- // multiplication by something else.
- Value *LHS = BO->getOperand(0);
- Value *RHS = BO->getOperand(1);
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // Multiplication by a constant.
- if (CI->getValue() == Scale) {
- // Multiplication by exactly the scale, replace the multiplication
- // by its left-hand side in the parent.
- Op = LHS;
- break;
- }
-
- // Otherwise drill down into the constant.
- if (!Op->hasOneUse())
- return nullptr;
-
- Parent = std::make_pair(BO, 1);
- continue;
- }
-
- // Multiplication by something else. Drill down into the left-hand side
- // since that's where the reassociate pass puts the good stuff.
- if (!Op->hasOneUse())
- return nullptr;
-
- Parent = std::make_pair(BO, 0);
- continue;
- }
-
- if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(BO->getOperand(1))) {
- // Multiplication by a power of 2.
- NoSignedWrap = BO->hasNoSignedWrap();
- if (RequireNoSignedWrap && !NoSignedWrap)
- return nullptr;
-
- Value *LHS = BO->getOperand(0);
- int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
- getLimitedValue(Scale.getBitWidth());
- // Op = LHS << Amt.
-
- if (Amt == logScale) {
- // Multiplication by exactly the scale, replace the multiplication
- // by its left-hand side in the parent.
- Op = LHS;
- break;
- }
- if (Amt < logScale || !Op->hasOneUse())
- return nullptr;
-
- // Multiplication by more than the scale. Reduce the multiplying amount
- // by the scale in the parent.
- Parent = std::make_pair(BO, 1);
- Op = ConstantInt::get(BO->getType(), Amt - logScale);
- break;
- }
- }
-
- if (!Op->hasOneUse())
- return nullptr;
-
- if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
- if (Cast->getOpcode() == Instruction::SExt) {
- // Op is sign-extended from a smaller type, descale in the smaller type.
- unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
- APInt SmallScale = Scale.trunc(SmallSize);
- // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
- // descale Op as (sext Y) * Scale. In order to have
- // sext (Y * SmallScale) = (sext Y) * Scale
- // some conditions need to hold however: SmallScale must sign-extend to
- // Scale and the multiplication Y * SmallScale should not overflow.
- if (SmallScale.sext(Scale.getBitWidth()) != Scale)
- // SmallScale does not sign-extend to Scale.
- return nullptr;
- assert(SmallScale.exactLogBase2() == logScale);
- // Require that Y * SmallScale must not overflow.
- RequireNoSignedWrap = true;
-
- // Drill down through the cast.
- Parent = std::make_pair(Cast, 0);
- Scale = SmallScale;
- continue;
- }
-
- if (Cast->getOpcode() == Instruction::Trunc) {
- // Op is truncated from a larger type, descale in the larger type.
- // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
- // trunc (Y * sext Scale) = (trunc Y) * Scale
- // always holds. However (trunc Y) * Scale may overflow even if
- // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
- // from this point up in the expression (see later).
- if (RequireNoSignedWrap)
- return nullptr;
-
- // Drill down through the cast.
- unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
- Parent = std::make_pair(Cast, 0);
- Scale = Scale.sext(LargeSize);
- if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
- logScale = -1;
- assert(Scale.exactLogBase2() == logScale);
- continue;
- }
- }
-
- // Unsupported expression, bail out.
- return nullptr;
- }
-
- // If Op is zero then Val = Op * Scale.
- if (match(Op, m_Zero())) {
- NoSignedWrap = true;
- return Op;
- }
-
- // We know that we can successfully descale, so from here on we can safely
- // modify the IR. Op holds the descaled version of the deepest term in the
- // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
- // not to overflow.
-
- if (!Parent.first)
- // The expression only had one term.
- return Op;
-
- // Rewrite the parent using the descaled version of its operand.
- assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
- assert(Op != Parent.first->getOperand(Parent.second) &&
- "Descaling was a no-op?");
- Parent.first->setOperand(Parent.second, Op);
- Worklist.Add(Parent.first);
-
- // Now work back up the expression correcting nsw flags. The logic is based
- // on the following observation: if X * Y is known not to overflow as a signed
- // multiplication, and Y is replaced by a value Z with smaller absolute value,
- // then X * Z will not overflow as a signed multiplication either. As we work
- // our way up, having NoSignedWrap 'true' means that the descaled value at the
- // current level has strictly smaller absolute value than the original.
- Instruction *Ancestor = Parent.first;
- do {
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
- // If the multiplication wasn't nsw then we can't say anything about the
- // value of the descaled multiplication, and we have to clear nsw flags
- // from this point on up.
- bool OpNoSignedWrap = BO->hasNoSignedWrap();
- NoSignedWrap &= OpNoSignedWrap;
- if (NoSignedWrap != OpNoSignedWrap) {
- BO->setHasNoSignedWrap(NoSignedWrap);
- Worklist.Add(Ancestor);
- }
- } else if (Ancestor->getOpcode() == Instruction::Trunc) {
- // The fact that the descaled input to the trunc has smaller absolute
- // value than the original input doesn't tell us anything useful about
- // the absolute values of the truncations.
- NoSignedWrap = false;
- }
- assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
- "Failed to keep proper track of nsw flags while drilling down?");
-
- if (Ancestor == Val)
- // Got to the top, all done!
- return Val;
-
- // Move up one level in the expression.
- assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
- Ancestor = Ancestor->user_back();
- } while (true);
-}
-
-Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
- if (!Inst.getType()->isVectorTy()) return nullptr;
-
- BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
- unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
- Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
- assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
- assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);
-
- // If both operands of the binop are vector concatenations, then perform the
- // narrow binop on each pair of the source operands followed by concatenation
- // of the results.
- Value *L0, *L1, *R0, *R1;
- Constant *Mask;
- if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
- match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
- LHS->hasOneUse() && RHS->hasOneUse() &&
- cast<ShuffleVectorInst>(LHS)->isConcat() &&
- cast<ShuffleVectorInst>(RHS)->isConcat()) {
- // This transform does not have the speculative execution constraint as
- // below because the shuffle is a concatenation. The new binops are
- // operating on exactly the same elements as the existing binop.
- // TODO: We could ease the mask requirement to allow different undef lanes,
- // but that requires an analysis of the binop-with-undef output value.
- Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
- if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
- BO->copyIRFlags(&Inst);
- Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
- if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
- BO->copyIRFlags(&Inst);
- return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
- }
-
- // It may not be safe to reorder shuffles and things like div, urem, etc.
- // because we may trap when executing those ops on unknown vector elements.
- // See PR20059.
- if (!isSafeToSpeculativelyExecute(&Inst))
- return nullptr;
-
- auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
- Value *XY = Builder.CreateBinOp(Opcode, X, Y);
- if (auto *BO = dyn_cast<BinaryOperator>(XY))
- BO->copyIRFlags(&Inst);
- return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
- };
-
- // If both arguments of the binary operation are shuffles that use the same
- // mask and shuffle within a single vector, move the shuffle after the binop.
- Value *V1, *V2;
- if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
- match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
- V1->getType() == V2->getType() &&
- (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
- // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
- return createBinOpShuffle(V1, V2, Mask);
- }
-
- // If one argument is a shuffle within one vector and the other is a constant,
- // try moving the shuffle after the binary operation. This canonicalization
- // intends to move shuffles closer to other shuffles and binops closer to
- // other binops, so they can be folded. It may also enable demanded elements
- // transforms.
- Constant *C;
- if (match(&Inst, m_c_BinOp(
- m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
- m_Constant(C))) &&
- V1->getType()->getVectorNumElements() <= NumElts) {
- assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
- "Shuffle should not change scalar type");
-
- // Find constant NewC that has property:
- // shuffle(NewC, ShMask) = C
- // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
- // reorder is not possible. A 1-to-1 mapping is not required. Example:
- // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
- bool ConstOp1 = isa<Constant>(RHS);
- SmallVector<int, 16> ShMask;
- ShuffleVectorInst::getShuffleMask(Mask, ShMask);
- unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
- UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
- SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
- bool MayChange = true;
- for (unsigned I = 0; I < NumElts; ++I) {
- Constant *CElt = C->getAggregateElement(I);
- if (ShMask[I] >= 0) {
- assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
- Constant *NewCElt = NewVecC[ShMask[I]];
- // Bail out if:
- // 1. The constant vector contains a constant expression.
- // 2. The shuffle needs an element of the constant vector that can't
- // be mapped to a new constant vector.
- // 3. This is a widening shuffle that copies elements of V1 into the
- // extended elements (extending with undef is allowed).
- if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
- I >= SrcVecNumElts) {
- MayChange = false;
- break;
- }
- NewVecC[ShMask[I]] = CElt;
- }
- // If this is a widening shuffle, we must be able to extend with undef
- // elements. If the original binop does not produce an undef in the high
- // lanes, then this transform is not safe.
- // TODO: We could shuffle those non-undef constant values into the
- // result by using a constant vector (rather than an undef vector)
- // as operand 1 of the new binop, but that might be too aggressive
- // for target-independent shuffle creation.
- if (I >= SrcVecNumElts) {
- Constant *MaybeUndef =
- ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
- : ConstantExpr::get(Opcode, CElt, UndefScalar);
- if (!isa<UndefValue>(MaybeUndef)) {
- MayChange = false;
- break;
- }
- }
- }
- if (MayChange) {
- Constant *NewC = ConstantVector::get(NewVecC);
- // It may not be safe to execute a binop on a vector with undef elements
- // because the entire instruction can be folded to undef or create poison
- // that did not exist in the original code.
- if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
- NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
-
- // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
- // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
- Value *NewLHS = ConstOp1 ? V1 : NewC;
- Value *NewRHS = ConstOp1 ? NewC : V1;
- return createBinOpShuffle(NewLHS, NewRHS, Mask);
- }
- }
-
- return nullptr;
-}
-
-/// Try to narrow the width of a binop if at least 1 operand is an extend of
-/// of a value. This requires a potentially expensive known bits check to make
-/// sure the narrow op does not overflow.
-Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
- // We need at least one extended operand.
- Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
-
- // If this is a sub, we swap the operands since we always want an extension
- // on the RHS. The LHS can be an extension or a constant.
- if (BO.getOpcode() == Instruction::Sub)
- std::swap(Op0, Op1);
-
- Value *X;
- bool IsSext = match(Op0, m_SExt(m_Value(X)));
- if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
- return nullptr;
-
- // If both operands are the same extension from the same source type and we
- // can eliminate at least one (hasOneUse), this might work.
- CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
- Value *Y;
- if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
- cast<Operator>(Op1)->getOpcode() == CastOpc &&
- (Op0->hasOneUse() || Op1->hasOneUse()))) {
- // If that did not match, see if we have a suitable constant operand.
- // Truncating and extending must produce the same constant.
- Constant *WideC;
- if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
- return nullptr;
- Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
- if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
- return nullptr;
- Y = NarrowC;
- }
-
- // Swap back now that we found our operands.
- if (BO.getOpcode() == Instruction::Sub)
- std::swap(X, Y);
-
- // Both operands have narrow versions. Last step: the math must not overflow
- // in the narrow width.
- if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
- return nullptr;
-
- // bo (ext X), (ext Y) --> ext (bo X, Y)
- // bo (ext X), C --> ext (bo X, C')
- Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
- if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
- if (IsSext)
- NewBinOp->setHasNoSignedWrap();
- else
- NewBinOp->setHasNoUnsignedWrap();
- }
- return CastInst::Create(CastOpc, NarrowBO, BO.getType());
-}
-
-Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
- SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
- Type *GEPType = GEP.getType();
- Type *GEPEltType = GEP.getSourceElementType();
- if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
- return replaceInstUsesWith(GEP, V);
-
- Value *PtrOp = GEP.getOperand(0);
-
- // Eliminate unneeded casts for indices, and replace indices which displace
- // by multiples of a zero size type with zero.
- bool MadeChange = false;
-
- // Index width may not be the same width as pointer width.
- // Data layout chooses the right type based on supported integer types.
- Type *NewScalarIndexTy =
- DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
-
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
- ++I, ++GTI) {
- // Skip indices into struct types.
- if (GTI.isStruct())
- continue;
-
- Type *IndexTy = (*I)->getType();
- Type *NewIndexType =
- IndexTy->isVectorTy()
- ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
- : NewScalarIndexTy;
-
- // If the element type has zero size then any index over it is equivalent
- // to an index of zero, so replace it with zero if it is not zero already.
- Type *EltTy = GTI.getIndexedType();
- if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
- if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
- *I = Constant::getNullValue(NewIndexType);
- MadeChange = true;
- }
-
- if (IndexTy != NewIndexType) {
- // If we are using a wider index than needed for this platform, shrink
- // it to what we need. If narrower, sign-extend it to what we need.
- // This explicit cast can make subsequent optimizations more obvious.
- *I = Builder.CreateIntCast(*I, NewIndexType, true);
- MadeChange = true;
- }
- }
- if (MadeChange)
- return &GEP;
-
- // Check to see if the inputs to the PHI node are getelementptr instructions.
- if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
- auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
- if (!Op1)
- return nullptr;
-
- // Don't fold a GEP into itself through a PHI node. This can only happen
- // through the back-edge of a loop. Folding a GEP into itself means that
- // the value of the previous iteration needs to be stored in the meantime,
- // thus requiring an additional register variable to be live, but not
- // actually achieving anything (the GEP still needs to be executed once per
- // loop iteration).
- if (Op1 == &GEP)
- return nullptr;
-
- int DI = -1;
-
- for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
- auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
- if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
- return nullptr;
-
- // As for Op1 above, don't try to fold a GEP into itself.
- if (Op2 == &GEP)
- return nullptr;
-
- // Keep track of the type as we walk the GEP.
- Type *CurTy = nullptr;
-
- for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
- if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
- return nullptr;
-
- if (Op1->getOperand(J) != Op2->getOperand(J)) {
- if (DI == -1) {
- // We have not seen any differences yet in the GEPs feeding the
- // PHI yet, so we record this one if it is allowed to be a
- // variable.
-
- // The first two arguments can vary for any GEP, the rest have to be
- // static for struct slots
- if (J > 1 && CurTy->isStructTy())
- return nullptr;
-
- DI = J;
- } else {
- // The GEP is different by more than one input. While this could be
- // extended to support GEPs that vary by more than one variable it
- // doesn't make sense since it greatly increases the complexity and
- // would result in an R+R+R addressing mode which no backend
- // directly supports and would need to be broken into several
- // simpler instructions anyway.
- return nullptr;
- }
- }
-
- // Sink down a layer of the type for the next iteration.
- if (J > 0) {
- if (J == 1) {
- CurTy = Op1->getSourceElementType();
- } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
- CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
- } else {
- CurTy = nullptr;
- }
- }
- }
- }
-
- // If not all GEPs are identical we'll have to create a new PHI node.
- // Check that the old PHI node has only one use so that it will get
- // removed.
- if (DI != -1 && !PN->hasOneUse())
- return nullptr;
-
- auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
- if (DI == -1) {
- // All the GEPs feeding the PHI are identical. Clone one down into our
- // BB so that it can be merged with the current GEP.
- GEP.getParent()->getInstList().insert(
- GEP.getParent()->getFirstInsertionPt(), NewGEP);
- } else {
- // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
- // into the current block so it can be merged, and create a new PHI to
- // set that index.
- PHINode *NewPN;
- {
- IRBuilderBase::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(PN);
- NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
- PN->getNumOperands());
- }
-
- for (auto &I : PN->operands())
- NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
- PN->getIncomingBlock(I));
-
- NewGEP->setOperand(DI, NewPN);
- GEP.getParent()->getInstList().insert(
- GEP.getParent()->getFirstInsertionPt(), NewGEP);
- NewGEP->setOperand(DI, NewPN);
- }
-
- GEP.setOperand(0, NewGEP);
- PtrOp = NewGEP;
- }
-
- // Combine Indices - If the source pointer to this getelementptr instruction
- // is a getelementptr instruction, combine the indices of the two
- // getelementptr instructions into a single instruction.
- if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
- if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
- return nullptr;
-
- // Try to reassociate loop invariant GEP chains to enable LICM.
- if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
- Src->hasOneUse()) {
- if (Loop *L = LI->getLoopFor(GEP.getParent())) {
- Value *GO1 = GEP.getOperand(1);
- Value *SO1 = Src->getOperand(1);
- // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
- // invariant: this breaks the dependence between GEPs and allows LICM
- // to hoist the invariant part out of the loop.
- if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
- // We have to be careful here.
- // We have something like:
- // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
- // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
- // If we just swap idx & idx2 then we could inadvertantly
- // change %src from a vector to a scalar, or vice versa.
- // Cases:
- // 1) %base a scalar & idx a scalar & idx2 a vector
- // => Swapping idx & idx2 turns %src into a vector type.
- // 2) %base a scalar & idx a vector & idx2 a scalar
- // => Swapping idx & idx2 turns %src in a scalar type
- // 3) %base, %idx, and %idx2 are scalars
- // => %src & %gep are scalars
- // => swapping idx & idx2 is safe
- // 4) %base a vector
- // => %src is a vector
- // => swapping idx & idx2 is safe.
- auto *SO0 = Src->getOperand(0);
- auto *SO0Ty = SO0->getType();
- if (!isa<VectorType>(GEPType) || // case 3
- isa<VectorType>(SO0Ty)) { // case 4
- Src->setOperand(1, GO1);
- GEP.setOperand(1, SO1);
- return &GEP;
- } else {
- // Case 1 or 2
- // -- have to recreate %src & %gep
- // put NewSrc at same location as %src
- Builder.SetInsertPoint(cast<Instruction>(PtrOp));
- auto *NewSrc = cast<GetElementPtrInst>(
- Builder.CreateGEP(SO0, GO1, Src->getName()));
- NewSrc->setIsInBounds(Src->isInBounds());
- auto *NewGEP = GetElementPtrInst::Create(nullptr, NewSrc, {SO1});
- NewGEP->setIsInBounds(GEP.isInBounds());
- return NewGEP;
- }
- }
- }
- }
-
- // Note that if our source is a gep chain itself then we wait for that
- // chain to be resolved before we perform this transformation. This
- // avoids us creating a TON of code in some cases.
- if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
- if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
- return nullptr; // Wait until our source is folded to completion.
-
- SmallVector<Value*, 8> Indices;
-
- // Find out whether the last index in the source GEP is a sequential idx.
- bool EndsWithSequential = false;
- for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
- I != E; ++I)
- EndsWithSequential = I.isSequential();
-
- // Can we combine the two pointer arithmetics offsets?
- if (EndsWithSequential) {
- // Replace: gep (gep %P, long B), long A, ...
- // With: T = long A+B; gep %P, T, ...
- Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
- Value *GO1 = GEP.getOperand(1);
-
- // If they aren't the same type, then the input hasn't been processed
- // by the loop above yet (which canonicalizes sequential index types to
- // intptr_t). Just avoid transforming this until the input has been
- // normalized.
- if (SO1->getType() != GO1->getType())
- return nullptr;
-
- Value *Sum =
- SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
- // Only do the combine when we are sure the cost after the
- // merge is never more than that before the merge.
- if (Sum == nullptr)
- return nullptr;
-
- // Update the GEP in place if possible.
- if (Src->getNumOperands() == 2) {
- GEP.setOperand(0, Src->getOperand(0));
- GEP.setOperand(1, Sum);
- return &GEP;
- }
- Indices.append(Src->op_begin()+1, Src->op_end()-1);
- Indices.push_back(Sum);
- Indices.append(GEP.op_begin()+2, GEP.op_end());
- } else if (isa<Constant>(*GEP.idx_begin()) &&
- cast<Constant>(*GEP.idx_begin())->isNullValue() &&
- Src->getNumOperands() != 1) {
- // Otherwise we can do the fold if the first index of the GEP is a zero
- Indices.append(Src->op_begin()+1, Src->op_end());
- Indices.append(GEP.idx_begin()+1, GEP.idx_end());
- }
-
- if (!Indices.empty())
- return GEP.isInBounds() && Src->isInBounds()
- ? GetElementPtrInst::CreateInBounds(
- Src->getSourceElementType(), Src->getOperand(0), Indices,
- GEP.getName())
- : GetElementPtrInst::Create(Src->getSourceElementType(),
- Src->getOperand(0), Indices,
- GEP.getName());
- }
-
- if (GEP.getNumIndices() == 1) {
- unsigned AS = GEP.getPointerAddressSpace();
- if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
- DL.getIndexSizeInBits(AS)) {
- uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
-
- bool Matched = false;
- uint64_t C;
- Value *V = nullptr;
- if (TyAllocSize == 1) {
- V = GEP.getOperand(1);
- Matched = true;
- } else if (match(GEP.getOperand(1),
- m_AShr(m_Value(V), m_ConstantInt(C)))) {
- if (TyAllocSize == 1ULL << C)
- Matched = true;
- } else if (match(GEP.getOperand(1),
- m_SDiv(m_Value(V), m_ConstantInt(C)))) {
- if (TyAllocSize == C)
- Matched = true;
- }
-
- if (Matched) {
- // Canonicalize (gep i8* X, -(ptrtoint Y))
- // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
- // The GEP pattern is emitted by the SCEV expander for certain kinds of
- // pointer arithmetic.
- if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
- Operator *Index = cast<Operator>(V);
- Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
- Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
- return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
- }
- // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
- // to (bitcast Y)
- Value *Y;
- if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
- m_PtrToInt(m_Specific(GEP.getOperand(0))))))
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
- }
- }
- }
-
- // We do not handle pointer-vector geps here.
- if (GEPType->isVectorTy())
- return nullptr;
-
- // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
- Value *StrippedPtr = PtrOp->stripPointerCasts();
- PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
-
- if (StrippedPtr != PtrOp) {
- bool HasZeroPointerIndex = false;
- if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
- HasZeroPointerIndex = C->isZero();
-
- // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
- // into : GEP [10 x i8]* X, i32 0, ...
- //
- // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
- // into : GEP i8* X, ...
- //
- // This occurs when the program declares an array extern like "int X[];"
- if (HasZeroPointerIndex) {
- if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
- // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
- if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
- // -> GEP i8* X, ...
- SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
- GetElementPtrInst *Res = GetElementPtrInst::Create(
- StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
- Res->setIsInBounds(GEP.isInBounds());
- if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
- return Res;
- // Insert Res, and create an addrspacecast.
- // e.g.,
- // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
- // ->
- // %0 = GEP i8 addrspace(1)* X, ...
- // addrspacecast i8 addrspace(1)* %0 to i8*
- return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
- }
-
- if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())) {
- // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
- if (CATy->getElementType() == XATy->getElementType()) {
- // -> GEP [10 x i8]* X, i32 0, ...
- // At this point, we know that the cast source type is a pointer
- // to an array of the same type as the destination pointer
- // array. Because the array type is never stepped over (there
- // is a leading zero) we can fold the cast into this GEP.
- if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
- GEP.setOperand(0, StrippedPtr);
- GEP.setSourceElementType(XATy);
- return &GEP;
- }
- // Cannot replace the base pointer directly because StrippedPtr's
- // address space is different. Instead, create a new GEP followed by
- // an addrspacecast.
- // e.g.,
- // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
- // i32 0, ...
- // ->
- // %0 = GEP [10 x i8] addrspace(1)* X, ...
- // addrspacecast i8 addrspace(1)* %0 to i8*
- SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
- Value *NewGEP = GEP.isInBounds()
- ? Builder.CreateInBoundsGEP(
- nullptr, StrippedPtr, Idx, GEP.getName())
- : Builder.CreateGEP(nullptr, StrippedPtr, Idx,
- GEP.getName());
- return new AddrSpaceCastInst(NewGEP, GEPType);
- }
- }
- }
- } else if (GEP.getNumOperands() == 2) {
- // Transform things like:
- // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
- // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
- Type *SrcEltTy = StrippedPtrTy->getElementType();
- if (SrcEltTy->isArrayTy() &&
- DL.getTypeAllocSize(SrcEltTy->getArrayElementType()) ==
- DL.getTypeAllocSize(GEPEltType)) {
- Type *IdxType = DL.getIndexType(GEPType);
- Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
- Value *NewGEP =
- GEP.isInBounds()
- ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
- GEP.getName())
- : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
-
- // V and GEP are both pointer types --> BitCast
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
- }
-
- // Transform things like:
- // %V = mul i64 %N, 4
- // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
- // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
- if (GEPEltType->isSized() && SrcEltTy->isSized()) {
- // Check that changing the type amounts to dividing the index by a scale
- // factor.
- uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
- uint64_t SrcSize = DL.getTypeAllocSize(SrcEltTy);
- if (ResSize && SrcSize % ResSize == 0) {
- Value *Idx = GEP.getOperand(1);
- unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
- uint64_t Scale = SrcSize / ResSize;
-
- // Earlier transforms ensure that the index has the right type
- // according to Data Layout, which considerably simplifies the
- // logic by eliminating implicit casts.
- assert(Idx->getType() == DL.getIndexType(GEPType) &&
- "Index type does not match the Data Layout preferences");
-
- bool NSW;
- if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
- // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
- // If the multiplication NewIdx * Scale may overflow then the new
- // GEP may not be "inbounds".
- Value *NewGEP =
- GEP.isInBounds() && NSW
- ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
- GEP.getName())
- : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx,
- GEP.getName());
-
- // The NewGEP must be pointer typed, so must the old one -> BitCast
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
- GEPType);
- }
- }
- }
-
- // Similarly, transform things like:
- // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
- // (where tmp = 8*tmp2) into:
- // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
- if (GEPEltType->isSized() && SrcEltTy->isSized() &&
- SrcEltTy->isArrayTy()) {
- // Check that changing to the array element type amounts to dividing the
- // index by a scale factor.
- uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
- uint64_t ArrayEltSize =
- DL.getTypeAllocSize(SrcEltTy->getArrayElementType());
- if (ResSize && ArrayEltSize % ResSize == 0) {
- Value *Idx = GEP.getOperand(1);
- unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
- uint64_t Scale = ArrayEltSize / ResSize;
-
- // Earlier transforms ensure that the index has the right type
- // according to the Data Layout, which considerably simplifies
- // the logic by eliminating implicit casts.
- assert(Idx->getType() == DL.getIndexType(GEPType) &&
- "Index type does not match the Data Layout preferences");
-
- bool NSW;
- if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
- // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
- // If the multiplication NewIdx * Scale may overflow then the new
- // GEP may not be "inbounds".
- Type *IndTy = DL.getIndexType(GEPType);
- Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
-
- Value *NewGEP = GEP.isInBounds() && NSW
- ? Builder.CreateInBoundsGEP(
- SrcEltTy, StrippedPtr, Off, GEP.getName())
- : Builder.CreateGEP(SrcEltTy, StrippedPtr, Off,
- GEP.getName());
- // The NewGEP must be pointer typed, so must the old one -> BitCast
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
- GEPType);
- }
- }
- }
- }
- }
-
- // addrspacecast between types is canonicalized as a bitcast, then an
- // addrspacecast. To take advantage of the below bitcast + struct GEP, look
- // through the addrspacecast.
- Value *ASCStrippedPtrOp = PtrOp;
- if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
- // X = bitcast A addrspace(1)* to B addrspace(1)*
- // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
- // Z = gep Y, <...constant indices...>
- // Into an addrspacecasted GEP of the struct.
- if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
- ASCStrippedPtrOp = BC;
- }
-
- if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
- Value *SrcOp = BCI->getOperand(0);
- PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
- Type *SrcEltType = SrcType->getElementType();
-
- // GEP directly using the source operand if this GEP is accessing an element
- // of a bitcasted pointer to vector or array of the same dimensions:
- // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
- // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
- auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
- return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
- ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
- };
- if (GEP.getNumOperands() == 3 &&
- ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
- areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
- (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
- areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {
-
- // Create a new GEP here, as using `setOperand()` followed by
- // `setSourceElementType()` won't actually update the type of the
- // existing GEP Value. Causing issues if this Value is accessed when
- // constructing an AddrSpaceCastInst
- Value *NGEP =
- GEP.isInBounds()
- ? Builder.CreateInBoundsGEP(nullptr, SrcOp, {Ops[1], Ops[2]})
- : Builder.CreateGEP(nullptr, SrcOp, {Ops[1], Ops[2]});
- NGEP->takeName(&GEP);
-
- // Preserve GEP address space to satisfy users
- if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
- return new AddrSpaceCastInst(NGEP, GEPType);
-
- return replaceInstUsesWith(GEP, NGEP);
- }
-
- // See if we can simplify:
- // X = bitcast A* to B*
- // Y = gep X, <...constant indices...>
- // into a gep of the original struct. This is important for SROA and alias
- // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
- unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
- APInt Offset(OffsetBits, 0);
- if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
- // If this GEP instruction doesn't move the pointer, just replace the GEP
- // with a bitcast of the real input to the dest type.
- if (!Offset) {
- // If the bitcast is of an allocation, and the allocation will be
- // converted to match the type of the cast, don't touch this.
- if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
- // See if the bitcast simplifies, if so, don't nuke this GEP yet.
- if (Instruction *I = visitBitCast(*BCI)) {
- if (I != BCI) {
- I->takeName(BCI);
- BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
- replaceInstUsesWith(*BCI, I);
- }
- return &GEP;
- }
- }
-
- if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
- return new AddrSpaceCastInst(SrcOp, GEPType);
- return new BitCastInst(SrcOp, GEPType);
- }
-
- // Otherwise, if the offset is non-zero, we need to find out if there is a
- // field at Offset in 'A's type. If so, we can pull the cast through the
- // GEP.
- SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
- Value *NGEP =
- GEP.isInBounds()
- ? Builder.CreateInBoundsGEP(nullptr, SrcOp, NewIndices)
- : Builder.CreateGEP(nullptr, SrcOp, NewIndices);
-
- if (NGEP->getType() == GEPType)
- return replaceInstUsesWith(GEP, NGEP);
- NGEP->takeName(&GEP);
-
- if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
- return new AddrSpaceCastInst(NGEP, GEPType);
- return new BitCastInst(NGEP, GEPType);
- }
- }
- }
-
- if (!GEP.isInBounds()) {
- unsigned IdxWidth =
- DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
- APInt BasePtrOffset(IdxWidth, 0);
- Value *UnderlyingPtrOp =
- PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
- BasePtrOffset);
- if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
- if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
- BasePtrOffset.isNonNegative()) {
- APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
- if (BasePtrOffset.ule(AllocSize)) {
- return GetElementPtrInst::CreateInBounds(
- PtrOp, makeArrayRef(Ops).slice(1), GEP.getName());
- }
- }
- }
- }
-
- return nullptr;
-}
-
-static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
- Instruction *AI) {
- if (isa<ConstantPointerNull>(V))
- return true;
- if (auto *LI = dyn_cast<LoadInst>(V))
- return isa<GlobalVariable>(LI->getPointerOperand());
- // Two distinct allocations will never be equal.
- // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
- // through bitcasts of V can cause
- // the result statement below to be true, even when AI and V (ex:
- // i8* ->i32* ->i8* of AI) are the same allocations.
- return isAllocLikeFn(V, TLI) && V != AI;
-}
-
-static bool isAllocSiteRemovable(Instruction *AI,
- SmallVectorImpl<WeakTrackingVH> &Users,
- const TargetLibraryInfo *TLI) {
- SmallVector<Instruction*, 4> Worklist;
- Worklist.push_back(AI);
-
- do {
- Instruction *PI = Worklist.pop_back_val();
- for (User *U : PI->users()) {
- Instruction *I = cast<Instruction>(U);
- switch (I->getOpcode()) {
- default:
- // Give up the moment we see something we can't handle.
- return false;
-
- case Instruction::AddrSpaceCast:
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- Users.emplace_back(I);
- Worklist.push_back(I);
- continue;
-
- case Instruction::ICmp: {
- ICmpInst *ICI = cast<ICmpInst>(I);
- // We can fold eq/ne comparisons with null to false/true, respectively.
- // We also fold comparisons in some conditions provided the alloc has
- // not escaped (see isNeverEqualToUnescapedAlloc).
- if (!ICI->isEquality())
- return false;
- unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
- if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
- return false;
- Users.emplace_back(I);
- continue;
- }
-
- case Instruction::Call:
- // Ignore no-op and store intrinsics.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default:
- return false;
-
- case Intrinsic::memmove:
- case Intrinsic::memcpy:
- case Intrinsic::memset: {
- MemIntrinsic *MI = cast<MemIntrinsic>(II);
- if (MI->isVolatile() || MI->getRawDest() != PI)
- return false;
- LLVM_FALLTHROUGH;
- }
- case Intrinsic::invariant_start:
- case Intrinsic::invariant_end:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::objectsize:
- Users.emplace_back(I);
- continue;
- }
- }
-
- if (isFreeCall(I, TLI)) {
- Users.emplace_back(I);
- continue;
- }
- return false;
-
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(I);
- if (SI->isVolatile() || SI->getPointerOperand() != PI)
- return false;
- Users.emplace_back(I);
- continue;
- }
- }
- llvm_unreachable("missing a return?");
- }
- } while (!Worklist.empty());
- return true;
-}
-
-Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
- // If we have a malloc call which is only used in any amount of comparisons to
- // null and free calls, delete the calls and replace the comparisons with true
- // or false as appropriate.
-
- // This is based on the principle that we can substitute our own allocation
- // function (which will never return null) rather than knowledge of the
- // specific function being called. In some sense this can change the permitted
- // outputs of a program (when we convert a malloc to an alloca, the fact that
- // the allocation is now on the stack is potentially visible, for example),
- // but we believe in a permissible manner.
- SmallVector<WeakTrackingVH, 64> Users;
-
- // If we are removing an alloca with a dbg.declare, insert dbg.value calls
- // before each store.
- TinyPtrVector<DbgVariableIntrinsic *> DIIs;
- std::unique_ptr<DIBuilder> DIB;
- if (isa<AllocaInst>(MI)) {
- DIIs = FindDbgAddrUses(&MI);
- DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
- }
-
- if (isAllocSiteRemovable(&MI, Users, &TLI)) {
- for (unsigned i = 0, e = Users.size(); i != e; ++i) {
- // Lowering all @llvm.objectsize calls first because they may
- // use a bitcast/GEP of the alloca we are removing.
- if (!Users[i])
- continue;
-
- Instruction *I = cast<Instruction>(&*Users[i]);
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- if (II->getIntrinsicID() == Intrinsic::objectsize) {
- ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI,
- /*MustSucceed=*/true);
- replaceInstUsesWith(*I, Result);
- eraseInstFromFunction(*I);
- Users[i] = nullptr; // Skip examining in the next loop.
- }
- }
- }
- for (unsigned i = 0, e = Users.size(); i != e; ++i) {
- if (!Users[i])
- continue;
-
- Instruction *I = cast<Instruction>(&*Users[i]);
-
- if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
- replaceInstUsesWith(*C,
- ConstantInt::get(Type::getInt1Ty(C->getContext()),
- C->isFalseWhenEqual()));
- } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<AddrSpaceCastInst>(I)) {
- replaceInstUsesWith(*I, UndefValue::get(I->getType()));
- } else if (auto *SI = dyn_cast<StoreInst>(I)) {
- for (auto *DII : DIIs)
- ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
- }
- eraseInstFromFunction(*I);
- }
-
- if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
- // Replace invoke with a NOP intrinsic to maintain the original CFG
- Module *M = II->getModule();
- Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
- InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
- None, "", II->getParent());
- }
-
- for (auto *DII : DIIs)
- eraseInstFromFunction(*DII);
-
- return eraseInstFromFunction(MI);
- }
- return nullptr;
-}
-
-/// Move the call to free before a NULL test.
-///
-/// Check if this free is accessed after its argument has been test
-/// against NULL (property 0).
-/// If yes, it is legal to move this call in its predecessor block.
-///
-/// The move is performed only if the block containing the call to free
-/// will be removed, i.e.:
-/// 1. it has only one predecessor P, and P has two successors
-/// 2. it contains the call, noops, and an unconditional branch
-/// 3. its successor is the same as its predecessor's successor
-///
-/// The profitability is out-of concern here and this function should
-/// be called only if the caller knows this transformation would be
-/// profitable (e.g., for code size).
-static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
- const DataLayout &DL) {
- Value *Op = FI.getArgOperand(0);
- BasicBlock *FreeInstrBB = FI.getParent();
- BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
-
- // Validate part of constraint #1: Only one predecessor
- // FIXME: We can extend the number of predecessor, but in that case, we
- // would duplicate the call to free in each predecessor and it may
- // not be profitable even for code size.
- if (!PredBB)
- return nullptr;
-
- // Validate constraint #2: Does this block contains only the call to
- // free, noops, and an unconditional branch?
- BasicBlock *SuccBB;
- Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
- if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
- return nullptr;
-
- // If there are only 2 instructions in the block, at this point,
- // this is the call to free and unconditional.
- // If there are more than 2 instructions, check that they are noops
- // i.e., they won't hurt the performance of the generated code.
- if (FreeInstrBB->size() != 2) {
- for (const Instruction &Inst : *FreeInstrBB) {
- if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
- continue;
- auto *Cast = dyn_cast<CastInst>(&Inst);
- if (!Cast || !Cast->isNoopCast(DL))
- return nullptr;
- }
- }
- // Validate the rest of constraint #1 by matching on the pred branch.
- Instruction *TI = PredBB->getTerminator();
- BasicBlock *TrueBB, *FalseBB;
- ICmpInst::Predicate Pred;
- if (!match(TI, m_Br(m_ICmp(Pred,
- m_CombineOr(m_Specific(Op),
- m_Specific(Op->stripPointerCasts())),
- m_Zero()),
- TrueBB, FalseBB)))
- return nullptr;
- if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
- return nullptr;
-
- // Validate constraint #3: Ensure the null case just falls through.
- if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
- return nullptr;
- assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
- "Broken CFG: missing edge from predecessor to successor");
-
- // At this point, we know that everything in FreeInstrBB can be moved
- // before TI.
- for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
- It != End;) {
- Instruction &Instr = *It++;
- if (&Instr == FreeInstrBBTerminator)
- break;
- Instr.moveBefore(TI);
- }
- assert(FreeInstrBB->size() == 1 &&
- "Only the branch instruction should remain");
- return &FI;
-}
-
-Instruction *InstCombiner::visitFree(CallInst &FI) {
- Value *Op = FI.getArgOperand(0);
-
- // free undef -> unreachable.
- if (isa<UndefValue>(Op)) {
- // Insert a new store to null because we cannot modify the CFG here.
- Builder.CreateStore(ConstantInt::getTrue(FI.getContext()),
- UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
- return eraseInstFromFunction(FI);
- }
-
- // If we have 'free null' delete the instruction. This can happen in stl code
- // when lots of inlining happens.
- if (isa<ConstantPointerNull>(Op))
- return eraseInstFromFunction(FI);
-
- // If we optimize for code size, try to move the call to free before the null
- // test so that simplify cfg can remove the empty block and dead code
- // elimination the branch. I.e., helps to turn something like:
- // if (foo) free(foo);
- // into
- // free(foo);
- if (MinimizeSize)
- if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
- return I;
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
- if (RI.getNumOperands() == 0) // ret void
- return nullptr;
-
- Value *ResultOp = RI.getOperand(0);
- Type *VTy = ResultOp->getType();
- if (!VTy->isIntegerTy())
- return nullptr;
-
- // There might be assume intrinsics dominating this return that completely
- // determine the value. If so, constant fold it.
- KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
- if (Known.isConstant())
- RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
- // Change br (not X), label True, label False to: br X, label False, True
- Value *X = nullptr;
- BasicBlock *TrueDest;
- BasicBlock *FalseDest;
- if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
- !isa<Constant>(X)) {
- // Swap Destinations and condition...
- BI.setCondition(X);
- BI.swapSuccessors();
- return &BI;
- }
-
- // If the condition is irrelevant, remove the use so that other
- // transforms on the condition become more effective.
- if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
- BI.getSuccessor(0) == BI.getSuccessor(1)) {
- BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
- return &BI;
- }
-
- // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
- CmpInst::Predicate Pred;
- if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest,
- FalseDest)) &&
- !isCanonicalPredicate(Pred)) {
- // Swap destinations and condition.
- CmpInst *Cond = cast<CmpInst>(BI.getCondition());
- Cond->setPredicate(CmpInst::getInversePredicate(Pred));
- BI.swapSuccessors();
- Worklist.Add(Cond);
- return &BI;
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
- Value *Cond = SI.getCondition();
- Value *Op0;
- ConstantInt *AddRHS;
- if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
- // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
- for (auto Case : SI.cases()) {
- Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
- assert(isa<ConstantInt>(NewCase) &&
- "Result of expression should be constant");
- Case.setValue(cast<ConstantInt>(NewCase));
- }
- SI.setCondition(Op0);
- return &SI;
- }
-
- KnownBits Known = computeKnownBits(Cond, 0, &SI);
- unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
- unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
-
- // Compute the number of leading bits we can ignore.
- // TODO: A better way to determine this would use ComputeNumSignBits().
- for (auto &C : SI.cases()) {
- LeadingKnownZeros = std::min(
- LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
- LeadingKnownOnes = std::min(
- LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
- }
-
- unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
-
- // Shrink the condition operand if the new type is smaller than the old type.
- // But do not shrink to a non-standard type, because backend can't generate
- // good code for that yet.
- // TODO: We can make it aggressive again after fixing PR39569.
- if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
- shouldChangeType(Known.getBitWidth(), NewWidth)) {
- IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
- Builder.SetInsertPoint(&SI);
- Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
- SI.setCondition(NewCond);
-
- for (auto Case : SI.cases()) {
- APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
- Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
- }
- return &SI;
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
- Value *Agg = EV.getAggregateOperand();
-
- if (!EV.hasIndices())
- return replaceInstUsesWith(EV, Agg);
-
- if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
- SQ.getWithInstruction(&EV)))
- return replaceInstUsesWith(EV, V);
-
- if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
- // We're extracting from an insertvalue instruction, compare the indices
- const unsigned *exti, *exte, *insi, *inse;
- for (exti = EV.idx_begin(), insi = IV->idx_begin(),
- exte = EV.idx_end(), inse = IV->idx_end();
- exti != exte && insi != inse;
- ++exti, ++insi) {
- if (*insi != *exti)
- // The insert and extract both reference distinctly different elements.
- // This means the extract is not influenced by the insert, and we can
- // replace the aggregate operand of the extract with the aggregate
- // operand of the insert. i.e., replace
- // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
- // %E = extractvalue { i32, { i32 } } %I, 0
- // with
- // %E = extractvalue { i32, { i32 } } %A, 0
- return ExtractValueInst::Create(IV->getAggregateOperand(),
- EV.getIndices());
- }
- if (exti == exte && insi == inse)
- // Both iterators are at the end: Index lists are identical. Replace
- // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
- // %C = extractvalue { i32, { i32 } } %B, 1, 0
- // with "i32 42"
- return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
- if (exti == exte) {
- // The extract list is a prefix of the insert list. i.e. replace
- // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
- // %E = extractvalue { i32, { i32 } } %I, 1
- // with
- // %X = extractvalue { i32, { i32 } } %A, 1
- // %E = insertvalue { i32 } %X, i32 42, 0
- // by switching the order of the insert and extract (though the
- // insertvalue should be left in, since it may have other uses).
- Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
- EV.getIndices());
- return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
- makeArrayRef(insi, inse));
- }
- if (insi == inse)
- // The insert list is a prefix of the extract list
- // We can simply remove the common indices from the extract and make it
- // operate on the inserted value instead of the insertvalue result.
- // i.e., replace
- // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
- // %E = extractvalue { i32, { i32 } } %I, 1, 0
- // with
- // %E extractvalue { i32 } { i32 42 }, 0
- return ExtractValueInst::Create(IV->getInsertedValueOperand(),
- makeArrayRef(exti, exte));
- }
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
- // We're extracting from an intrinsic, see if we're the only user, which
- // allows us to simplify multiple result intrinsics to simpler things that
- // just get one value.
- if (II->hasOneUse()) {
- // Check if we're grabbing the overflow bit or the result of a 'with
- // overflow' intrinsic. If it's the latter we can remove the intrinsic
- // and replace it with a traditional binary instruction.
- switch (II->getIntrinsicID()) {
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- if (*EV.idx_begin() == 0) { // Normal result.
- Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- replaceInstUsesWith(*II, UndefValue::get(II->getType()));
- eraseInstFromFunction(*II);
- return BinaryOperator::CreateAdd(LHS, RHS);
- }
-
- // If the normal result of the add is dead, and the RHS is a constant,
- // we can transform this into a range comparison.
- // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
- if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
- return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
- ConstantExpr::getNot(CI));
- break;
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- if (*EV.idx_begin() == 0) { // Normal result.
- Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- replaceInstUsesWith(*II, UndefValue::get(II->getType()));
- eraseInstFromFunction(*II);
- return BinaryOperator::CreateSub(LHS, RHS);
- }
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- if (*EV.idx_begin() == 0) { // Normal result.
- Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- replaceInstUsesWith(*II, UndefValue::get(II->getType()));
- eraseInstFromFunction(*II);
- return BinaryOperator::CreateMul(LHS, RHS);
- }
- break;
- default:
- break;
- }
- }
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Agg))
- // If the (non-volatile) load only has one use, we can rewrite this to a
- // load from a GEP. This reduces the size of the load. If a load is used
- // only by extractvalue instructions then this either must have been
- // optimized before, or it is a struct with padding, in which case we
- // don't want to do the transformation as it loses padding knowledge.
- if (L->isSimple() && L->hasOneUse()) {
- // extractvalue has integer indices, getelementptr has Value*s. Convert.
- SmallVector<Value*, 4> Indices;
- // Prefix an i32 0 since we need the first element.
- Indices.push_back(Builder.getInt32(0));
- for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
- I != E; ++I)
- Indices.push_back(Builder.getInt32(*I));
-
- // We need to insert these at the location of the old load, not at that of
- // the extractvalue.
- Builder.SetInsertPoint(L);
- Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
- L->getPointerOperand(), Indices);
- Instruction *NL = Builder.CreateLoad(GEP);
- // Whatever aliasing information we had for the orignal load must also
- // hold for the smaller load, so propagate the annotations.
- AAMDNodes Nodes;
- L->getAAMetadata(Nodes);
- NL->setAAMetadata(Nodes);
- // Returning the load directly will cause the main loop to insert it in
- // the wrong spot, so use replaceInstUsesWith().
- return replaceInstUsesWith(EV, NL);
- }
- // We could simplify extracts from other values. Note that nested extracts may
- // already be simplified implicitly by the above: extract (extract (insert) )
- // will be translated into extract ( insert ( extract ) ) first and then just
- // the value inserted, if appropriate. Similarly for extracts from single-use
- // loads: extract (extract (load)) will be translated to extract (load (gep))
- // and if again single-use then via load (gep (gep)) to load (gep).
- // However, double extracts from e.g. function arguments or return values
- // aren't handled yet.
- return nullptr;
-}
-
-/// Return 'true' if the given typeinfo will match anything.
-static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
- switch (Personality) {
- case EHPersonality::GNU_C:
- case EHPersonality::GNU_C_SjLj:
- case EHPersonality::Rust:
- // The GCC C EH and Rust personality only exists to support cleanups, so
- // it's not clear what the semantics of catch clauses are.
- return false;
- case EHPersonality::Unknown:
- return false;
- case EHPersonality::GNU_Ada:
- // While __gnat_all_others_value will match any Ada exception, it doesn't
- // match foreign exceptions (or didn't, before gcc-4.7).
- return false;
- case EHPersonality::GNU_CXX:
- case EHPersonality::GNU_CXX_SjLj:
- case EHPersonality::GNU_ObjC:
- case EHPersonality::MSVC_X86SEH:
- case EHPersonality::MSVC_Win64SEH:
- case EHPersonality::MSVC_CXX:
- case EHPersonality::CoreCLR:
- case EHPersonality::Wasm_CXX:
- return TypeInfo->isNullValue();
- }
- llvm_unreachable("invalid enum");
-}
-
-static bool shorter_filter(const Value *LHS, const Value *RHS) {
- return
- cast<ArrayType>(LHS->getType())->getNumElements()
- <
- cast<ArrayType>(RHS->getType())->getNumElements();
-}
-
-Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
- // The logic here should be correct for any real-world personality function.
- // However if that turns out not to be true, the offending logic can always
- // be conditioned on the personality function, like the catch-all logic is.
- EHPersonality Personality =
- classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
-
- // Simplify the list of clauses, eg by removing repeated catch clauses
- // (these are often created by inlining).
- bool MakeNewInstruction = false; // If true, recreate using the following:
- SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
- bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
-
- SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
- for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
- bool isLastClause = i + 1 == e;
- if (LI.isCatch(i)) {
- // A catch clause.
- Constant *CatchClause = LI.getClause(i);
- Constant *TypeInfo = CatchClause->stripPointerCasts();
-
- // If we already saw this clause, there is no point in having a second
- // copy of it.
- if (AlreadyCaught.insert(TypeInfo).second) {
- // This catch clause was not already seen.
- NewClauses.push_back(CatchClause);
- } else {
- // Repeated catch clause - drop the redundant copy.
- MakeNewInstruction = true;
- }
-
- // If this is a catch-all then there is no point in keeping any following
- // clauses or marking the landingpad as having a cleanup.
- if (isCatchAll(Personality, TypeInfo)) {
- if (!isLastClause)
- MakeNewInstruction = true;
- CleanupFlag = false;
- break;
- }
- } else {
- // A filter clause. If any of the filter elements were already caught
- // then they can be dropped from the filter. It is tempting to try to
- // exploit the filter further by saying that any typeinfo that does not
- // occur in the filter can't be caught later (and thus can be dropped).
- // However this would be wrong, since typeinfos can match without being
- // equal (for example if one represents a C++ class, and the other some
- // class derived from it).
- assert(LI.isFilter(i) && "Unsupported landingpad clause!");
- Constant *FilterClause = LI.getClause(i);
- ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
- unsigned NumTypeInfos = FilterType->getNumElements();
-
- // An empty filter catches everything, so there is no point in keeping any
- // following clauses or marking the landingpad as having a cleanup. By
- // dealing with this case here the following code is made a bit simpler.
- if (!NumTypeInfos) {
- NewClauses.push_back(FilterClause);
- if (!isLastClause)
- MakeNewInstruction = true;
- CleanupFlag = false;
- break;
- }
-
- bool MakeNewFilter = false; // If true, make a new filter.
- SmallVector<Constant *, 16> NewFilterElts; // New elements.
- if (isa<ConstantAggregateZero>(FilterClause)) {
- // Not an empty filter - it contains at least one null typeinfo.
- assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
- Constant *TypeInfo =
- Constant::getNullValue(FilterType->getElementType());
- // If this typeinfo is a catch-all then the filter can never match.
- if (isCatchAll(Personality, TypeInfo)) {
- // Throw the filter away.
- MakeNewInstruction = true;
- continue;
- }
-
- // There is no point in having multiple copies of this typeinfo, so
- // discard all but the first copy if there is more than one.
- NewFilterElts.push_back(TypeInfo);
- if (NumTypeInfos > 1)
- MakeNewFilter = true;
- } else {
- ConstantArray *Filter = cast<ConstantArray>(FilterClause);
- SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
- NewFilterElts.reserve(NumTypeInfos);
-
- // Remove any filter elements that were already caught or that already
- // occurred in the filter. While there, see if any of the elements are
- // catch-alls. If so, the filter can be discarded.
- bool SawCatchAll = false;
- for (unsigned j = 0; j != NumTypeInfos; ++j) {
- Constant *Elt = Filter->getOperand(j);
- Constant *TypeInfo = Elt->stripPointerCasts();
- if (isCatchAll(Personality, TypeInfo)) {
- // This element is a catch-all. Bail out, noting this fact.
- SawCatchAll = true;
- break;
- }
-
- // Even if we've seen a type in a catch clause, we don't want to
- // remove it from the filter. An unexpected type handler may be
- // set up for a call site which throws an exception of the same
- // type caught. In order for the exception thrown by the unexpected
- // handler to propagate correctly, the filter must be correctly
- // described for the call site.
- //
- // Example:
- //
- // void unexpected() { throw 1;}
- // void foo() throw (int) {
- // std::set_unexpected(unexpected);
- // try {
- // throw 2.0;
- // } catch (int i) {}
- // }
-
- // There is no point in having multiple copies of the same typeinfo in
- // a filter, so only add it if we didn't already.
- if (SeenInFilter.insert(TypeInfo).second)
- NewFilterElts.push_back(cast<Constant>(Elt));
- }
- // A filter containing a catch-all cannot match anything by definition.
- if (SawCatchAll) {
- // Throw the filter away.
- MakeNewInstruction = true;
- continue;
- }
-
- // If we dropped something from the filter, make a new one.
- if (NewFilterElts.size() < NumTypeInfos)
- MakeNewFilter = true;
- }
- if (MakeNewFilter) {
- FilterType = ArrayType::get(FilterType->getElementType(),
- NewFilterElts.size());
- FilterClause = ConstantArray::get(FilterType, NewFilterElts);
- MakeNewInstruction = true;
- }
-
- NewClauses.push_back(FilterClause);
-
- // If the new filter is empty then it will catch everything so there is
- // no point in keeping any following clauses or marking the landingpad
- // as having a cleanup. The case of the original filter being empty was
- // already handled above.
- if (MakeNewFilter && !NewFilterElts.size()) {
- assert(MakeNewInstruction && "New filter but not a new instruction!");
- CleanupFlag = false;
- break;
- }
- }
- }
-
- // If several filters occur in a row then reorder them so that the shortest
- // filters come first (those with the smallest number of elements). This is
- // advantageous because shorter filters are more likely to match, speeding up
- // unwinding, but mostly because it increases the effectiveness of the other
- // filter optimizations below.
- for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
- unsigned j;
- // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
- for (j = i; j != e; ++j)
- if (!isa<ArrayType>(NewClauses[j]->getType()))
- break;
-
- // Check whether the filters are already sorted by length. We need to know
- // if sorting them is actually going to do anything so that we only make a
- // new landingpad instruction if it does.
- for (unsigned k = i; k + 1 < j; ++k)
- if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
- // Not sorted, so sort the filters now. Doing an unstable sort would be
- // correct too but reordering filters pointlessly might confuse users.
- std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
- shorter_filter);
- MakeNewInstruction = true;
- break;
- }
-
- // Look for the next batch of filters.
- i = j + 1;
- }
-
- // If typeinfos matched if and only if equal, then the elements of a filter L
- // that occurs later than a filter F could be replaced by the intersection of
- // the elements of F and L. In reality two typeinfos can match without being
- // equal (for example if one represents a C++ class, and the other some class
- // derived from it) so it would be wrong to perform this transform in general.
- // However the transform is correct and useful if F is a subset of L. In that
- // case L can be replaced by F, and thus removed altogether since repeating a
- // filter is pointless. So here we look at all pairs of filters F and L where
- // L follows F in the list of clauses, and remove L if every element of F is
- // an element of L. This can occur when inlining C++ functions with exception
- // specifications.
- for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
- // Examine each filter in turn.
- Value *Filter = NewClauses[i];
- ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
- if (!FTy)
- // Not a filter - skip it.
- continue;
- unsigned FElts = FTy->getNumElements();
- // Examine each filter following this one. Doing this backwards means that
- // we don't have to worry about filters disappearing under us when removed.
- for (unsigned j = NewClauses.size() - 1; j != i; --j) {
- Value *LFilter = NewClauses[j];
- ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
- if (!LTy)
- // Not a filter - skip it.
- continue;
- // If Filter is a subset of LFilter, i.e. every element of Filter is also
- // an element of LFilter, then discard LFilter.
- SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
- // If Filter is empty then it is a subset of LFilter.
- if (!FElts) {
- // Discard LFilter.
- NewClauses.erase(J);
- MakeNewInstruction = true;
- // Move on to the next filter.
- continue;
- }
- unsigned LElts = LTy->getNumElements();
- // If Filter is longer than LFilter then it cannot be a subset of it.
- if (FElts > LElts)
- // Move on to the next filter.
- continue;
- // At this point we know that LFilter has at least one element.
- if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
- // Filter is a subset of LFilter iff Filter contains only zeros (as we
- // already know that Filter is not longer than LFilter).
- if (isa<ConstantAggregateZero>(Filter)) {
- assert(FElts <= LElts && "Should have handled this case earlier!");
- // Discard LFilter.
- NewClauses.erase(J);
- MakeNewInstruction = true;
- }
- // Move on to the next filter.
- continue;
- }
- ConstantArray *LArray = cast<ConstantArray>(LFilter);
- if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
- // Since Filter is non-empty and contains only zeros, it is a subset of
- // LFilter iff LFilter contains a zero.
- assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
- for (unsigned l = 0; l != LElts; ++l)
- if (LArray->getOperand(l)->isNullValue()) {
- // LFilter contains a zero - discard it.
- NewClauses.erase(J);
- MakeNewInstruction = true;
- break;
- }
- // Move on to the next filter.
- continue;
- }
- // At this point we know that both filters are ConstantArrays. Loop over
- // operands to see whether every element of Filter is also an element of
- // LFilter. Since filters tend to be short this is probably faster than
- // using a method that scales nicely.
- ConstantArray *FArray = cast<ConstantArray>(Filter);
- bool AllFound = true;
- for (unsigned f = 0; f != FElts; ++f) {
- Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
- AllFound = false;
- for (unsigned l = 0; l != LElts; ++l) {
- Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
- if (LTypeInfo == FTypeInfo) {
- AllFound = true;
- break;
- }
- }
- if (!AllFound)
- break;
- }
- if (AllFound) {
- // Discard LFilter.
- NewClauses.erase(J);
- MakeNewInstruction = true;
- }
- // Move on to the next filter.
- }
- }
-
- // If we changed any of the clauses, replace the old landingpad instruction
- // with a new one.
- if (MakeNewInstruction) {
- LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
- NewClauses.size());
- for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
- NLI->addClause(NewClauses[i]);
- // A landing pad with no clauses must have the cleanup flag set. It is
- // theoretically possible, though highly unlikely, that we eliminated all
- // clauses. If so, force the cleanup flag to true.
- if (NewClauses.empty())
- CleanupFlag = true;
- NLI->setCleanup(CleanupFlag);
- return NLI;
- }
-
- // Even if none of the clauses changed, we may nonetheless have understood
- // that the cleanup flag is pointless. Clear it if so.
- if (LI.isCleanup() != CleanupFlag) {
- assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
- LI.setCleanup(CleanupFlag);
- return &LI;
- }
-
- return nullptr;
-}
-
-/// Try to move the specified instruction from its current block into the
-/// beginning of DestBlock, which can only happen if it's safe to move the
-/// instruction past all of the instructions between it and the end of its
-/// block.
-static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
- assert(I->hasOneUse() && "Invariants didn't hold!");
- BasicBlock *SrcBlock = I->getParent();
-
- // Cannot move control-flow-involving, volatile loads, vaarg, etc.
- if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
- I->isTerminator())
- return false;
-
- // Do not sink static or dynamic alloca instructions. Static allocas must
- // remain in the entry block, and dynamic allocas must not be sunk in between
- // a stacksave / stackrestore pair, which would incorrectly shorten its
- // lifetime.
- if (isa<AllocaInst>(I))
- return false;
-
- // Do not sink into catchswitch blocks.
- if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
- return false;
-
- // Do not sink convergent call instructions.
- if (auto *CI = dyn_cast<CallInst>(I)) {
- if (CI->isConvergent())
- return false;
- }
- // We can only sink load instructions if there is nothing between the load and
- // the end of block that could change the value.
- if (I->mayReadFromMemory()) {
- for (BasicBlock::iterator Scan = I->getIterator(),
- E = I->getParent()->end();
- Scan != E; ++Scan)
- if (Scan->mayWriteToMemory())
- return false;
- }
- BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
- I->moveBefore(&*InsertPos);
- ++NumSunkInst;
-
- // Also sink all related debug uses from the source basic block. Otherwise we
- // get debug use before the def.
- SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
- findDbgUsers(DbgUsers, I);
- for (auto *DII : DbgUsers) {
- if (DII->getParent() == SrcBlock) {
- DII->moveBefore(&*InsertPos);
- LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
- }
- }
- return true;
-}
-
-bool InstCombiner::run() {
- while (!Worklist.isEmpty()) {
- Instruction *I = Worklist.RemoveOne();
- if (I == nullptr) continue; // skip null values.
-
- // Check to see if we can DCE the instruction.
- if (isInstructionTriviallyDead(I, &TLI)) {
- LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
- eraseInstFromFunction(*I);
- ++NumDeadInst;
- MadeIRChange = true;
- continue;
- }
-
- if (!DebugCounter::shouldExecute(VisitCounter))
- continue;
-
- // Instruction isn't dead, see if we can constant propagate it.
- if (!I->use_empty() &&
- (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
- if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
- LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
- << '\n');
-
- // Add operands to the worklist.
- replaceInstUsesWith(*I, C);
- ++NumConstProp;
- if (isInstructionTriviallyDead(I, &TLI))
- eraseInstFromFunction(*I);
- MadeIRChange = true;
- continue;
- }
- }
-
- // In general, it is possible for computeKnownBits to determine all bits in
- // a value even when the operands are not all constants.
- Type *Ty = I->getType();
- if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
- KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
- if (Known.isConstant()) {
- Constant *C = ConstantInt::get(Ty, Known.getConstant());
- LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
- << " from: " << *I << '\n');
-
- // Add operands to the worklist.
- replaceInstUsesWith(*I, C);
- ++NumConstProp;
- if (isInstructionTriviallyDead(I, &TLI))
- eraseInstFromFunction(*I);
- MadeIRChange = true;
- continue;
- }
- }
-
- // See if we can trivially sink this instruction to a successor basic block.
- if (EnableCodeSinking && I->hasOneUse()) {
- BasicBlock *BB = I->getParent();
- Instruction *UserInst = cast<Instruction>(*I->user_begin());
- BasicBlock *UserParent;
-
- // Get the block the use occurs in.
- if (PHINode *PN = dyn_cast<PHINode>(UserInst))
- UserParent = PN->getIncomingBlock(*I->use_begin());
- else
- UserParent = UserInst->getParent();
-
- if (UserParent != BB) {
- bool UserIsSuccessor = false;
- // See if the user is one of our successors.
- for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
- if (*SI == UserParent) {
- UserIsSuccessor = true;
- break;
- }
-
- // If the user is one of our immediate successors, and if that successor
- // only has us as a predecessors (we'd have to split the critical edge
- // otherwise), we can keep going.
- if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
- // Okay, the CFG is simple enough, try to sink this instruction.
- if (TryToSinkInstruction(I, UserParent)) {
- LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
- MadeIRChange = true;
- // We'll add uses of the sunk instruction below, but since sinking
- // can expose opportunities for it's *operands* add them to the
- // worklist
- for (Use &U : I->operands())
- if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
- Worklist.Add(OpI);
- }
- }
- }
- }
-
- // Now that we have an instruction, try combining it to simplify it.
- Builder.SetInsertPoint(I);
- Builder.SetCurrentDebugLocation(I->getDebugLoc());
-
-#ifndef NDEBUG
- std::string OrigI;
-#endif
- LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
- LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
-
- if (Instruction *Result = visit(*I)) {
- ++NumCombined;
- // Should we replace the old instruction with a new one?
- if (Result != I) {
- LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
- << " New = " << *Result << '\n');
-
- if (I->getDebugLoc())
- Result->setDebugLoc(I->getDebugLoc());
- // Everything uses the new instruction now.
- I->replaceAllUsesWith(Result);
-
- // Move the name to the new instruction first.
- Result->takeName(I);
-
- // Push the new instruction and any users onto the worklist.
- Worklist.AddUsersToWorkList(*Result);
- Worklist.Add(Result);
-
- // Insert the new instruction into the basic block...
- BasicBlock *InstParent = I->getParent();
- BasicBlock::iterator InsertPos = I->getIterator();
-
- // If we replace a PHI with something that isn't a PHI, fix up the
- // insertion point.
- if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
- InsertPos = InstParent->getFirstInsertionPt();
-
- InstParent->getInstList().insert(InsertPos, Result);
-
- eraseInstFromFunction(*I);
- } else {
- LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
- << " New = " << *I << '\n');
-
- // If the instruction was modified, it's possible that it is now dead.
- // if so, remove it.
- if (isInstructionTriviallyDead(I, &TLI)) {
- eraseInstFromFunction(*I);
- } else {
- Worklist.AddUsersToWorkList(*I);
- Worklist.Add(I);
- }
- }
- MadeIRChange = true;
- }
- }
-
- Worklist.Zap();
- return MadeIRChange;
-}
-
-/// Walk the function in depth-first order, adding all reachable code to the
-/// worklist.
-///
-/// This has a couple of tricks to make the code faster and more powerful. In
-/// particular, we constant fold and DCE instructions as we go, to avoid adding
-/// them to the worklist (this significantly speeds up instcombine on code where
-/// many instructions are dead or constant). Additionally, if we find a branch
-/// whose condition is a known constant, we only visit the reachable successors.
-static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
- SmallPtrSetImpl<BasicBlock *> &Visited,
- InstCombineWorklist &ICWorklist,
- const TargetLibraryInfo *TLI) {
- bool MadeIRChange = false;
- SmallVector<BasicBlock*, 256> Worklist;
- Worklist.push_back(BB);
-
- SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
- DenseMap<Constant *, Constant *> FoldedConstants;
-
- do {
- BB = Worklist.pop_back_val();
-
- // We have now visited this block! If we've already been here, ignore it.
- if (!Visited.insert(BB).second)
- continue;
-
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
- Instruction *Inst = &*BBI++;
-
- // DCE instruction if trivially dead.
- if (isInstructionTriviallyDead(Inst, TLI)) {
- ++NumDeadInst;
- LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
- salvageDebugInfo(*Inst);
- Inst->eraseFromParent();
- MadeIRChange = true;
- continue;
- }
-
- // ConstantProp instruction if trivially constant.
- if (!Inst->use_empty() &&
- (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
- if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
- LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
- << '\n');
- Inst->replaceAllUsesWith(C);
- ++NumConstProp;
- if (isInstructionTriviallyDead(Inst, TLI))
- Inst->eraseFromParent();
- MadeIRChange = true;
- continue;
- }
-
- // See if we can constant fold its operands.
- for (Use &U : Inst->operands()) {
- if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
- continue;
-
- auto *C = cast<Constant>(U);
- Constant *&FoldRes = FoldedConstants[C];
- if (!FoldRes)
- FoldRes = ConstantFoldConstant(C, DL, TLI);
- if (!FoldRes)
- FoldRes = C;
-
- if (FoldRes != C) {
- LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
- << "\n Old = " << *C
- << "\n New = " << *FoldRes << '\n');
- U = FoldRes;
- MadeIRChange = true;
- }
- }
-
- // Skip processing debug intrinsics in InstCombine. Processing these call instructions
- // consumes non-trivial amount of time and provides no value for the optimization.
- if (!isa<DbgInfoIntrinsic>(Inst))
- InstrsForInstCombineWorklist.push_back(Inst);
- }
-
- // Recursively visit successors. If this is a branch or switch on a
- // constant, only visit the reachable successor.
- Instruction *TI = BB->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
- bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
- BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
- Worklist.push_back(ReachableBB);
- continue;
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
- Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
- continue;
- }
- }
-
- for (BasicBlock *SuccBB : successors(TI))
- Worklist.push_back(SuccBB);
- } while (!Worklist.empty());
-
- // Once we've found all of the instructions to add to instcombine's worklist,
- // add them in reverse order. This way instcombine will visit from the top
- // of the function down. This jives well with the way that it adds all uses
- // of instructions to the worklist after doing a transformation, thus avoiding
- // some N^2 behavior in pathological cases.
- ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
-
- return MadeIRChange;
-}
-
-/// Populate the IC worklist from a function, and prune any dead basic
-/// blocks discovered in the process.
-///
-/// This also does basic constant propagation and other forward fixing to make
-/// the combiner itself run much faster.
-static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
- TargetLibraryInfo *TLI,
- InstCombineWorklist &ICWorklist) {
- bool MadeIRChange = false;
-
- // Do a depth-first traversal of the function, populate the worklist with
- // the reachable instructions. Ignore blocks that are not reachable. Keep
- // track of which blocks we visit.
- SmallPtrSet<BasicBlock *, 32> Visited;
- MadeIRChange |=
- AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
-
- // Do a quick scan over the function. If we find any blocks that are
- // unreachable, remove any instructions inside of them. This prevents
- // the instcombine code from having to deal with some bad special cases.
- for (BasicBlock &BB : F) {
- if (Visited.count(&BB))
- continue;
-
- unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
- MadeIRChange |= NumDeadInstInBB > 0;
- NumDeadInst += NumDeadInstInBB;
- }
-
- return MadeIRChange;
-}
-
-static bool combineInstructionsOverFunction(
- Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
- AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
- OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true,
- LoopInfo *LI = nullptr) {
- auto &DL = F.getParent()->getDataLayout();
- ExpensiveCombines |= EnableExpensiveCombines;
-
- /// Builder - This is an IRBuilder that automatically inserts new
- /// instructions into the worklist when they are created.
- IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
- F.getContext(), TargetFolder(DL),
- IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
- Worklist.Add(I);
- if (match(I, m_Intrinsic<Intrinsic::assume>()))
- AC.registerAssumption(cast<CallInst>(I));
- }));
-
- // Lower dbg.declare intrinsics otherwise their value may be clobbered
- // by instcombiner.
- bool MadeIRChange = false;
- if (ShouldLowerDbgDeclare)
- MadeIRChange = LowerDbgDeclare(F);
-
- // Iterate while there is work to do.
- int Iteration = 0;
- while (true) {
- ++Iteration;
- LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
- << F.getName() << "\n");
-
- MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
-
- InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA,
- AC, TLI, DT, ORE, DL, LI);
- IC.MaxArraySizeForCombine = MaxArraySize;
-
- if (!IC.run())
- break;
- }
-
- return MadeIRChange || Iteration > 1;
-}
-
-PreservedAnalyses InstCombinePass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
-
- auto *LI = AM.getCachedResult<LoopAnalysis>(F);
-
- auto *AA = &AM.getResult<AAManager>(F);
- if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
- ExpensiveCombines, LI))
- // No changes, all analyses are preserved.
- return PreservedAnalyses::all();
-
- // Mark all the analyses that instcombine updates as preserved.
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<AAManager>();
- PA.preserve<BasicAA>();
- PA.preserve<GlobalsAA>();
- return PA;
-}
-
-void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<BasicAAWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
-}
-
-bool InstructionCombiningPass::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
-
- // Required analyses.
- auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
-
- // Optional analyses.
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
- auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
-
- return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
- ExpensiveCombines, LI);
-}
-
-char InstructionCombiningPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
- "Combine redundant instructions", false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
-INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
- "Combine redundant instructions", false, false)
-
-// Initialization Routines
-void llvm::initializeInstCombine(PassRegistry &Registry) {
- initializeInstructionCombiningPassPass(Registry);
-}
-
-void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
- initializeInstructionCombiningPassPass(*unwrap(R));
-}
-
-FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
- return new InstructionCombiningPass(ExpensiveCombines);
-}
-
-void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
- unwrap(PM)->add(createInstructionCombiningPass());
-}