diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp | 3260 |
1 files changed, 0 insertions, 3260 deletions
diff --git a/gnu/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/gnu/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp deleted file mode 100644 index f1558c75cb9..00000000000 --- a/gnu/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp +++ /dev/null @@ -1,3260 +0,0 @@ -//===- AddressSanitizer.cpp - memory error detector -----------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file is a part of AddressSanitizer, an address sanity checker. -// Details of the algorithm: -// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/BinaryFormat/MachO.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Comdat.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DIBuilder.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/Value.h" -#include "llvm/MC/MCSectionMachO.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/ScopedPrinter.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/ASanStackFrameLayout.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" -#include "llvm/Transforms/Utils/PromoteMemToReg.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <iomanip> -#include <limits> -#include <memory> -#include <sstream> -#include <string> -#include <tuple> - -using namespace llvm; - -#define DEBUG_TYPE "asan" - -static const uint64_t kDefaultShadowScale = 3; -static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; -static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; -static const uint64_t kDynamicShadowSentinel = - std::numeric_limits<uint64_t>::max(); -static const uint64_t kIOSShadowOffset32 = 1ULL << 30; -static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; -static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; -static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. -static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; -static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; -static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; -static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; -static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; -static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; -static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; -static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; -static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; -static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; -static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; -static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; -static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; -static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; - -static const uint64_t kMyriadShadowScale = 5; -static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; -static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; -static const uint64_t kMyriadTagShift = 29; -static const uint64_t kMyriadDDRTag = 4; -static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; - -// The shadow memory space is dynamically allocated. -static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; - -static const size_t kMinStackMallocSize = 1 << 6; // 64B -static const size_t kMaxStackMallocSize = 1 << 16; // 64K -static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; -static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; - -static const char *const kAsanModuleCtorName = "asan.module_ctor"; -static const char *const kAsanModuleDtorName = "asan.module_dtor"; -static const uint64_t kAsanCtorAndDtorPriority = 1; -static const char *const kAsanReportErrorTemplate = "__asan_report_"; -static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; -static const char *const kAsanUnregisterGlobalsName = - "__asan_unregister_globals"; -static const char *const kAsanRegisterImageGlobalsName = - "__asan_register_image_globals"; -static const char *const kAsanUnregisterImageGlobalsName = - "__asan_unregister_image_globals"; -static const char *const kAsanRegisterElfGlobalsName = - "__asan_register_elf_globals"; -static const char *const kAsanUnregisterElfGlobalsName = - "__asan_unregister_elf_globals"; -static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; -static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; -static const char *const kAsanInitName = "__asan_init"; -static const char *const kAsanVersionCheckNamePrefix = - "__asan_version_mismatch_check_v"; -static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; -static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; -static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; -static const int kMaxAsanStackMallocSizeClass = 10; -static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; -static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; -static const char *const kAsanGenPrefix = "___asan_gen_"; -static const char *const kODRGenPrefix = "__odr_asan_gen_"; -static const char *const kSanCovGenPrefix = "__sancov_gen_"; -static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; -static const char *const kAsanPoisonStackMemoryName = - "__asan_poison_stack_memory"; -static const char *const kAsanUnpoisonStackMemoryName = - "__asan_unpoison_stack_memory"; - -// ASan version script has __asan_* wildcard. Triple underscore prevents a -// linker (gold) warning about attempting to export a local symbol. -static const char *const kAsanGlobalsRegisteredFlagName = - "___asan_globals_registered"; - -static const char *const kAsanOptionDetectUseAfterReturn = - "__asan_option_detect_stack_use_after_return"; - -static const char *const kAsanShadowMemoryDynamicAddress = - "__asan_shadow_memory_dynamic_address"; - -static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; -static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; - -// Accesses sizes are powers of two: 1, 2, 4, 8, 16. -static const size_t kNumberOfAccessSizes = 5; - -static const unsigned kAllocaRzSize = 32; - -// Command-line flags. - -static cl::opt<bool> ClEnableKasan( - "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClRecover( - "asan-recover", - cl::desc("Enable recovery mode (continue-after-error)."), - cl::Hidden, cl::init(false)); - -// This flag may need to be replaced with -f[no-]asan-reads. -static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", - cl::desc("instrument read instructions"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClInstrumentWrites( - "asan-instrument-writes", cl::desc("instrument write instructions"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClInstrumentAtomics( - "asan-instrument-atomics", - cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, - cl::init(true)); - -static cl::opt<bool> ClAlwaysSlowPath( - "asan-always-slow-path", - cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, - cl::init(false)); - -static cl::opt<bool> ClForceDynamicShadow( - "asan-force-dynamic-shadow", - cl::desc("Load shadow address into a local variable for each function"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> - ClWithIfunc("asan-with-ifunc", - cl::desc("Access dynamic shadow through an ifunc global on " - "platforms that support this"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClWithIfuncSuppressRemat( - "asan-with-ifunc-suppress-remat", - cl::desc("Suppress rematerialization of dynamic shadow address by passing " - "it through inline asm in prologue."), - cl::Hidden, cl::init(true)); - -// This flag limits the number of instructions to be instrumented -// in any given BB. Normally, this should be set to unlimited (INT_MAX), -// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary -// set it to 10000. -static cl::opt<int> ClMaxInsnsToInstrumentPerBB( - "asan-max-ins-per-bb", cl::init(10000), - cl::desc("maximal number of instructions to instrument in any given BB"), - cl::Hidden); - -// This flag may need to be replaced with -f[no]asan-stack. -static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), - cl::Hidden, cl::init(true)); -static cl::opt<uint32_t> ClMaxInlinePoisoningSize( - "asan-max-inline-poisoning-size", - cl::desc( - "Inline shadow poisoning for blocks up to the given size in bytes."), - cl::Hidden, cl::init(64)); - -static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", - cl::desc("Check stack-use-after-return"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", - cl::desc("Create redzones for byval " - "arguments (extra copy " - "required)"), cl::Hidden, - cl::init(true)); - -static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", - cl::desc("Check stack-use-after-scope"), - cl::Hidden, cl::init(false)); - -// This flag may need to be replaced with -f[no]asan-globals. -static cl::opt<bool> ClGlobals("asan-globals", - cl::desc("Handle global objects"), cl::Hidden, - cl::init(true)); - -static cl::opt<bool> ClInitializers("asan-initialization-order", - cl::desc("Handle C++ initializer order"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClInvalidPointerPairs( - "asan-detect-invalid-pointer-pair", - cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, - cl::init(false)); - -static cl::opt<unsigned> ClRealignStack( - "asan-realign-stack", - cl::desc("Realign stack to the value of this flag (power of two)"), - cl::Hidden, cl::init(32)); - -static cl::opt<int> ClInstrumentationWithCallsThreshold( - "asan-instrumentation-with-call-threshold", - cl::desc( - "If the function being instrumented contains more than " - "this number of memory accesses, use callbacks instead of " - "inline checks (-1 means never use callbacks)."), - cl::Hidden, cl::init(7000)); - -static cl::opt<std::string> ClMemoryAccessCallbackPrefix( - "asan-memory-access-callback-prefix", - cl::desc("Prefix for memory access callbacks"), cl::Hidden, - cl::init("__asan_")); - -static cl::opt<bool> - ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", - cl::desc("instrument dynamic allocas"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClSkipPromotableAllocas( - "asan-skip-promotable-allocas", - cl::desc("Do not instrument promotable allocas"), cl::Hidden, - cl::init(true)); - -// These flags allow to change the shadow mapping. -// The shadow mapping looks like -// Shadow = (Mem >> scale) + offset - -static cl::opt<int> ClMappingScale("asan-mapping-scale", - cl::desc("scale of asan shadow mapping"), - cl::Hidden, cl::init(0)); - -static cl::opt<unsigned long long> ClMappingOffset( - "asan-mapping-offset", - cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, - cl::init(0)); - -// Optimization flags. Not user visible, used mostly for testing -// and benchmarking the tool. - -static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClOptSameTemp( - "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClOptGlobals("asan-opt-globals", - cl::desc("Don't instrument scalar globals"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClOptStack( - "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClDynamicAllocaStack( - "asan-stack-dynamic-alloca", - cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, - cl::init(true)); - -static cl::opt<uint32_t> ClForceExperiment( - "asan-force-experiment", - cl::desc("Force optimization experiment (for testing)"), cl::Hidden, - cl::init(0)); - -static cl::opt<bool> - ClUsePrivateAlias("asan-use-private-alias", - cl::desc("Use private aliases for global variables"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> - ClUseOdrIndicator("asan-use-odr-indicator", - cl::desc("Use odr indicators to improve ODR reporting"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> - ClUseGlobalsGC("asan-globals-live-support", - cl::desc("Use linker features to support dead " - "code stripping of globals"), - cl::Hidden, cl::init(true)); - -// This is on by default even though there is a bug in gold: -// https://sourceware.org/bugzilla/show_bug.cgi?id=19002 -static cl::opt<bool> - ClWithComdat("asan-with-comdat", - cl::desc("Place ASan constructors in comdat sections"), - cl::Hidden, cl::init(true)); - -// Debug flags. - -static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, - cl::init(0)); - -static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), - cl::Hidden, cl::init(0)); - -static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, - cl::desc("Debug func")); - -static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), - cl::Hidden, cl::init(-1)); - -static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), - cl::Hidden, cl::init(-1)); - -STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); -STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); -STATISTIC(NumOptimizedAccessesToGlobalVar, - "Number of optimized accesses to global vars"); -STATISTIC(NumOptimizedAccessesToStackVar, - "Number of optimized accesses to stack vars"); - -namespace { - -/// Frontend-provided metadata for source location. -struct LocationMetadata { - StringRef Filename; - int LineNo = 0; - int ColumnNo = 0; - - LocationMetadata() = default; - - bool empty() const { return Filename.empty(); } - - void parse(MDNode *MDN) { - assert(MDN->getNumOperands() == 3); - MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); - Filename = DIFilename->getString(); - LineNo = - mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); - ColumnNo = - mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); - } -}; - -/// Frontend-provided metadata for global variables. -class GlobalsMetadata { -public: - struct Entry { - LocationMetadata SourceLoc; - StringRef Name; - bool IsDynInit = false; - bool IsBlacklisted = false; - - Entry() = default; - }; - - GlobalsMetadata() = default; - - void reset() { - inited_ = false; - Entries.clear(); - } - - void init(Module &M) { - assert(!inited_); - inited_ = true; - NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); - if (!Globals) return; - for (auto MDN : Globals->operands()) { - // Metadata node contains the global and the fields of "Entry". - assert(MDN->getNumOperands() == 5); - auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); - // The optimizer may optimize away a global entirely. - if (!V) continue; - auto *StrippedV = V->stripPointerCasts(); - auto *GV = dyn_cast<GlobalVariable>(StrippedV); - if (!GV) continue; - // We can already have an entry for GV if it was merged with another - // global. - Entry &E = Entries[GV]; - if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) - E.SourceLoc.parse(Loc); - if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) - E.Name = Name->getString(); - ConstantInt *IsDynInit = - mdconst::extract<ConstantInt>(MDN->getOperand(3)); - E.IsDynInit |= IsDynInit->isOne(); - ConstantInt *IsBlacklisted = - mdconst::extract<ConstantInt>(MDN->getOperand(4)); - E.IsBlacklisted |= IsBlacklisted->isOne(); - } - } - - /// Returns metadata entry for a given global. - Entry get(GlobalVariable *G) const { - auto Pos = Entries.find(G); - return (Pos != Entries.end()) ? Pos->second : Entry(); - } - -private: - bool inited_ = false; - DenseMap<GlobalVariable *, Entry> Entries; -}; - -/// This struct defines the shadow mapping using the rule: -/// shadow = (mem >> Scale) ADD-or-OR Offset. -/// If InGlobal is true, then -/// extern char __asan_shadow[]; -/// shadow = (mem >> Scale) + &__asan_shadow -struct ShadowMapping { - int Scale; - uint64_t Offset; - bool OrShadowOffset; - bool InGlobal; -}; - -} // end anonymous namespace - -static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, - bool IsKasan) { - bool IsAndroid = TargetTriple.isAndroid(); - bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); - bool IsFreeBSD = TargetTriple.isOSFreeBSD(); - bool IsNetBSD = TargetTriple.isOSNetBSD(); - bool IsPS4CPU = TargetTriple.isPS4CPU(); - bool IsLinux = TargetTriple.isOSLinux(); - bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || - TargetTriple.getArch() == Triple::ppc64le; - bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; - bool IsX86 = TargetTriple.getArch() == Triple::x86; - bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; - bool IsMIPS32 = TargetTriple.isMIPS32(); - bool IsMIPS64 = TargetTriple.isMIPS64(); - bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); - bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; - bool IsWindows = TargetTriple.isOSWindows(); - bool IsFuchsia = TargetTriple.isOSFuchsia(); - bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; - - ShadowMapping Mapping; - - Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; - if (ClMappingScale.getNumOccurrences() > 0) { - Mapping.Scale = ClMappingScale; - } - - if (LongSize == 32) { - if (IsAndroid) - Mapping.Offset = kDynamicShadowSentinel; - else if (IsMIPS32) - Mapping.Offset = kMIPS32_ShadowOffset32; - else if (IsFreeBSD) - Mapping.Offset = kFreeBSD_ShadowOffset32; - else if (IsNetBSD) - Mapping.Offset = kNetBSD_ShadowOffset32; - else if (IsIOS) - // If we're targeting iOS and x86, the binary is built for iOS simulator. - Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; - else if (IsWindows) - Mapping.Offset = kWindowsShadowOffset32; - else if (IsMyriad) { - uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - - (kMyriadMemorySize32 >> Mapping.Scale)); - Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); - } - else - Mapping.Offset = kDefaultShadowOffset32; - } else { // LongSize == 64 - // Fuchsia is always PIE, which means that the beginning of the address - // space is always available. - if (IsFuchsia) - Mapping.Offset = 0; - else if (IsPPC64) - Mapping.Offset = kPPC64_ShadowOffset64; - else if (IsSystemZ) - Mapping.Offset = kSystemZ_ShadowOffset64; - else if (IsFreeBSD && !IsMIPS64) - Mapping.Offset = kFreeBSD_ShadowOffset64; - else if (IsNetBSD) { - if (IsKasan) - Mapping.Offset = kNetBSDKasan_ShadowOffset64; - else - Mapping.Offset = kNetBSD_ShadowOffset64; - } else if (IsPS4CPU) - Mapping.Offset = kPS4CPU_ShadowOffset64; - else if (IsLinux && IsX86_64) { - if (IsKasan) - Mapping.Offset = kLinuxKasan_ShadowOffset64; - else - Mapping.Offset = (kSmallX86_64ShadowOffsetBase & - (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); - } else if (IsWindows && IsX86_64) { - Mapping.Offset = kWindowsShadowOffset64; - } else if (IsMIPS64) - Mapping.Offset = kMIPS64_ShadowOffset64; - else if (IsIOS) - // If we're targeting iOS and x86, the binary is built for iOS simulator. - // We are using dynamic shadow offset on the 64-bit devices. - Mapping.Offset = - IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel; - else if (IsAArch64) - Mapping.Offset = kAArch64_ShadowOffset64; - else - Mapping.Offset = kDefaultShadowOffset64; - } - - if (ClForceDynamicShadow) { - Mapping.Offset = kDynamicShadowSentinel; - } - - if (ClMappingOffset.getNumOccurrences() > 0) { - Mapping.Offset = ClMappingOffset; - } - - // OR-ing shadow offset if more efficient (at least on x86) if the offset - // is a power of two, but on ppc64 we have to use add since the shadow - // offset is not necessary 1/8-th of the address space. On SystemZ, - // we could OR the constant in a single instruction, but it's more - // efficient to load it once and use indexed addressing. - Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && - !(Mapping.Offset & (Mapping.Offset - 1)) && - Mapping.Offset != kDynamicShadowSentinel; - bool IsAndroidWithIfuncSupport = - IsAndroid && !TargetTriple.isAndroidVersionLT(21); - Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; - - return Mapping; -} - -static size_t RedzoneSizeForScale(int MappingScale) { - // Redzone used for stack and globals is at least 32 bytes. - // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. - return std::max(32U, 1U << MappingScale); -} - -namespace { - -/// AddressSanitizer: instrument the code in module to find memory bugs. -struct AddressSanitizer : public FunctionPass { - // Pass identification, replacement for typeid - static char ID; - - explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false, - bool UseAfterScope = false) - : FunctionPass(ID), UseAfterScope(UseAfterScope || ClUseAfterScope) { - this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; - this->CompileKernel = ClEnableKasan.getNumOccurrences() > 0 ? - ClEnableKasan : CompileKernel; - initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); - } - - StringRef getPassName() const override { - return "AddressSanitizerFunctionPass"; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - } - - uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { - uint64_t ArraySize = 1; - if (AI.isArrayAllocation()) { - const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); - assert(CI && "non-constant array size"); - ArraySize = CI->getZExtValue(); - } - Type *Ty = AI.getAllocatedType(); - uint64_t SizeInBytes = - AI.getModule()->getDataLayout().getTypeAllocSize(Ty); - return SizeInBytes * ArraySize; - } - - /// Check if we want (and can) handle this alloca. - bool isInterestingAlloca(const AllocaInst &AI); - - /// If it is an interesting memory access, return the PointerOperand - /// and set IsWrite/Alignment. Otherwise return nullptr. - /// MaybeMask is an output parameter for the mask Value, if we're looking at a - /// masked load/store. - Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, - uint64_t *TypeSize, unsigned *Alignment, - Value **MaybeMask = nullptr); - - void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, - bool UseCalls, const DataLayout &DL); - void instrumentPointerComparisonOrSubtraction(Instruction *I); - void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, - Value *Addr, uint32_t TypeSize, bool IsWrite, - Value *SizeArgument, bool UseCalls, uint32_t Exp); - void instrumentUnusualSizeOrAlignment(Instruction *I, - Instruction *InsertBefore, Value *Addr, - uint32_t TypeSize, bool IsWrite, - Value *SizeArgument, bool UseCalls, - uint32_t Exp); - Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, - Value *ShadowValue, uint32_t TypeSize); - Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, - bool IsWrite, size_t AccessSizeIndex, - Value *SizeArgument, uint32_t Exp); - void instrumentMemIntrinsic(MemIntrinsic *MI); - Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); - bool runOnFunction(Function &F) override; - bool maybeInsertAsanInitAtFunctionEntry(Function &F); - void maybeInsertDynamicShadowAtFunctionEntry(Function &F); - void markEscapedLocalAllocas(Function &F); - bool doInitialization(Module &M) override; - bool doFinalization(Module &M) override; - - DominatorTree &getDominatorTree() const { return *DT; } - -private: - friend struct FunctionStackPoisoner; - - void initializeCallbacks(Module &M); - - bool LooksLikeCodeInBug11395(Instruction *I); - bool GlobalIsLinkerInitialized(GlobalVariable *G); - bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, - uint64_t TypeSize) const; - - /// Helper to cleanup per-function state. - struct FunctionStateRAII { - AddressSanitizer *Pass; - - FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { - assert(Pass->ProcessedAllocas.empty() && - "last pass forgot to clear cache"); - assert(!Pass->LocalDynamicShadow); - } - - ~FunctionStateRAII() { - Pass->LocalDynamicShadow = nullptr; - Pass->ProcessedAllocas.clear(); - } - }; - - LLVMContext *C; - Triple TargetTriple; - int LongSize; - bool CompileKernel; - bool Recover; - bool UseAfterScope; - Type *IntptrTy; - ShadowMapping Mapping; - DominatorTree *DT; - Function *AsanHandleNoReturnFunc; - Function *AsanPtrCmpFunction, *AsanPtrSubFunction; - Constant *AsanShadowGlobal; - - // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). - Function *AsanErrorCallback[2][2][kNumberOfAccessSizes]; - Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; - - // These arrays is indexed by AccessIsWrite and Experiment. - Function *AsanErrorCallbackSized[2][2]; - Function *AsanMemoryAccessCallbackSized[2][2]; - - Function *AsanMemmove, *AsanMemcpy, *AsanMemset; - InlineAsm *EmptyAsm; - Value *LocalDynamicShadow = nullptr; - GlobalsMetadata GlobalsMD; - DenseMap<const AllocaInst *, bool> ProcessedAllocas; -}; - -class AddressSanitizerModule : public ModulePass { -public: - // Pass identification, replacement for typeid - static char ID; - - explicit AddressSanitizerModule(bool CompileKernel = false, - bool Recover = false, - bool UseGlobalsGC = true, - bool UseOdrIndicator = false) - : ModulePass(ID), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), - // Enable aliases as they should have no downside with ODR indicators. - UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), - UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), - // Not a typo: ClWithComdat is almost completely pointless without - // ClUseGlobalsGC (because then it only works on modules without - // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; - // and both suffer from gold PR19002 for which UseGlobalsGC constructor - // argument is designed as workaround. Therefore, disable both - // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to - // do globals-gc. - UseCtorComdat(UseGlobalsGC && ClWithComdat) { - this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; - this->CompileKernel = - ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; - } - - bool runOnModule(Module &M) override; - StringRef getPassName() const override { return "AddressSanitizerModule"; } - -private: - void initializeCallbacks(Module &M); - - bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); - void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, - ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers); - void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, - ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers, - const std::string &UniqueModuleId); - void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, - ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers); - void - InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, - ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers); - - GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, - StringRef OriginalName); - void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, - StringRef InternalSuffix); - IRBuilder<> CreateAsanModuleDtor(Module &M); - - bool ShouldInstrumentGlobal(GlobalVariable *G); - bool ShouldUseMachOGlobalsSection() const; - StringRef getGlobalMetadataSection() const; - void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); - void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); - size_t MinRedzoneSizeForGlobal() const { - return RedzoneSizeForScale(Mapping.Scale); - } - int GetAsanVersion(const Module &M) const; - - GlobalsMetadata GlobalsMD; - bool CompileKernel; - bool Recover; - bool UseGlobalsGC; - bool UsePrivateAlias; - bool UseOdrIndicator; - bool UseCtorComdat; - Type *IntptrTy; - LLVMContext *C; - Triple TargetTriple; - ShadowMapping Mapping; - Function *AsanPoisonGlobals; - Function *AsanUnpoisonGlobals; - Function *AsanRegisterGlobals; - Function *AsanUnregisterGlobals; - Function *AsanRegisterImageGlobals; - Function *AsanUnregisterImageGlobals; - Function *AsanRegisterElfGlobals; - Function *AsanUnregisterElfGlobals; - - Function *AsanCtorFunction = nullptr; - Function *AsanDtorFunction = nullptr; -}; - -// Stack poisoning does not play well with exception handling. -// When an exception is thrown, we essentially bypass the code -// that unpoisones the stack. This is why the run-time library has -// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire -// stack in the interceptor. This however does not work inside the -// actual function which catches the exception. Most likely because the -// compiler hoists the load of the shadow value somewhere too high. -// This causes asan to report a non-existing bug on 453.povray. -// It sounds like an LLVM bug. -struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { - Function &F; - AddressSanitizer &ASan; - DIBuilder DIB; - LLVMContext *C; - Type *IntptrTy; - Type *IntptrPtrTy; - ShadowMapping Mapping; - - SmallVector<AllocaInst *, 16> AllocaVec; - SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; - SmallVector<Instruction *, 8> RetVec; - unsigned StackAlignment; - - Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], - *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; - Function *AsanSetShadowFunc[0x100] = {}; - Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; - Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc; - - // Stores a place and arguments of poisoning/unpoisoning call for alloca. - struct AllocaPoisonCall { - IntrinsicInst *InsBefore; - AllocaInst *AI; - uint64_t Size; - bool DoPoison; - }; - SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; - SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; - - SmallVector<AllocaInst *, 1> DynamicAllocaVec; - SmallVector<IntrinsicInst *, 1> StackRestoreVec; - AllocaInst *DynamicAllocaLayout = nullptr; - IntrinsicInst *LocalEscapeCall = nullptr; - - // Maps Value to an AllocaInst from which the Value is originated. - using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; - AllocaForValueMapTy AllocaForValue; - - bool HasNonEmptyInlineAsm = false; - bool HasReturnsTwiceCall = false; - std::unique_ptr<CallInst> EmptyInlineAsm; - - FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) - : F(F), - ASan(ASan), - DIB(*F.getParent(), /*AllowUnresolved*/ false), - C(ASan.C), - IntptrTy(ASan.IntptrTy), - IntptrPtrTy(PointerType::get(IntptrTy, 0)), - Mapping(ASan.Mapping), - StackAlignment(1 << Mapping.Scale), - EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} - - bool runOnFunction() { - if (!ClStack) return false; - - if (ClRedzoneByvalArgs) - copyArgsPassedByValToAllocas(); - - // Collect alloca, ret, lifetime instructions etc. - for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); - - if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; - - initializeCallbacks(*F.getParent()); - - processDynamicAllocas(); - processStaticAllocas(); - - if (ClDebugStack) { - LLVM_DEBUG(dbgs() << F); - } - return true; - } - - // Arguments marked with the "byval" attribute are implicitly copied without - // using an alloca instruction. To produce redzones for those arguments, we - // copy them a second time into memory allocated with an alloca instruction. - void copyArgsPassedByValToAllocas(); - - // Finds all Alloca instructions and puts - // poisoned red zones around all of them. - // Then unpoison everything back before the function returns. - void processStaticAllocas(); - void processDynamicAllocas(); - - void createDynamicAllocasInitStorage(); - - // ----------------------- Visitors. - /// Collect all Ret instructions. - void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } - - /// Collect all Resume instructions. - void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } - - /// Collect all CatchReturnInst instructions. - void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } - - void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, - Value *SavedStack) { - IRBuilder<> IRB(InstBefore); - Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); - // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we - // need to adjust extracted SP to compute the address of the most recent - // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for - // this purpose. - if (!isa<ReturnInst>(InstBefore)) { - Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( - InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, - {IntptrTy}); - - Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); - - DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), - DynamicAreaOffset); - } - - IRB.CreateCall(AsanAllocasUnpoisonFunc, - {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr}); - } - - // Unpoison dynamic allocas redzones. - void unpoisonDynamicAllocas() { - for (auto &Ret : RetVec) - unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); - - for (auto &StackRestoreInst : StackRestoreVec) - unpoisonDynamicAllocasBeforeInst(StackRestoreInst, - StackRestoreInst->getOperand(0)); - } - - // Deploy and poison redzones around dynamic alloca call. To do this, we - // should replace this call with another one with changed parameters and - // replace all its uses with new address, so - // addr = alloca type, old_size, align - // is replaced by - // new_size = (old_size + additional_size) * sizeof(type) - // tmp = alloca i8, new_size, max(align, 32) - // addr = tmp + 32 (first 32 bytes are for the left redzone). - // Additional_size is added to make new memory allocation contain not only - // requested memory, but also left, partial and right redzones. - void handleDynamicAllocaCall(AllocaInst *AI); - - /// Collect Alloca instructions we want (and can) handle. - void visitAllocaInst(AllocaInst &AI) { - if (!ASan.isInterestingAlloca(AI)) { - if (AI.isStaticAlloca()) { - // Skip over allocas that are present *before* the first instrumented - // alloca, we don't want to move those around. - if (AllocaVec.empty()) - return; - - StaticAllocasToMoveUp.push_back(&AI); - } - return; - } - - StackAlignment = std::max(StackAlignment, AI.getAlignment()); - if (!AI.isStaticAlloca()) - DynamicAllocaVec.push_back(&AI); - else - AllocaVec.push_back(&AI); - } - - /// Collect lifetime intrinsic calls to check for use-after-scope - /// errors. - void visitIntrinsicInst(IntrinsicInst &II) { - Intrinsic::ID ID = II.getIntrinsicID(); - if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); - if (ID == Intrinsic::localescape) LocalEscapeCall = &II; - if (!ASan.UseAfterScope) - return; - if (!II.isLifetimeStartOrEnd()) - return; - // Found lifetime intrinsic, add ASan instrumentation if necessary. - ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); - // If size argument is undefined, don't do anything. - if (Size->isMinusOne()) return; - // Check that size doesn't saturate uint64_t and can - // be stored in IntptrTy. - const uint64_t SizeValue = Size->getValue().getLimitedValue(); - if (SizeValue == ~0ULL || - !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) - return; - // Find alloca instruction that corresponds to llvm.lifetime argument. - AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); - if (!AI || !ASan.isInterestingAlloca(*AI)) - return; - bool DoPoison = (ID == Intrinsic::lifetime_end); - AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; - if (AI->isStaticAlloca()) - StaticAllocaPoisonCallVec.push_back(APC); - else if (ClInstrumentDynamicAllocas) - DynamicAllocaPoisonCallVec.push_back(APC); - } - - void visitCallSite(CallSite CS) { - Instruction *I = CS.getInstruction(); - if (CallInst *CI = dyn_cast<CallInst>(I)) { - HasNonEmptyInlineAsm |= CI->isInlineAsm() && - !CI->isIdenticalTo(EmptyInlineAsm.get()) && - I != ASan.LocalDynamicShadow; - HasReturnsTwiceCall |= CI->canReturnTwice(); - } - } - - // ---------------------- Helpers. - void initializeCallbacks(Module &M); - - bool doesDominateAllExits(const Instruction *I) const { - for (auto Ret : RetVec) { - if (!ASan.getDominatorTree().dominates(I, Ret)) return false; - } - return true; - } - - /// Finds alloca where the value comes from. - AllocaInst *findAllocaForValue(Value *V); - - // Copies bytes from ShadowBytes into shadow memory for indexes where - // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that - // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. - void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, - IRBuilder<> &IRB, Value *ShadowBase); - void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, - size_t Begin, size_t End, IRBuilder<> &IRB, - Value *ShadowBase); - void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, - ArrayRef<uint8_t> ShadowBytes, size_t Begin, - size_t End, IRBuilder<> &IRB, Value *ShadowBase); - - void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); - - Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, - bool Dynamic); - PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, - Instruction *ThenTerm, Value *ValueIfFalse); -}; - -} // end anonymous namespace - -char AddressSanitizer::ID = 0; - -INITIALIZE_PASS_BEGIN( - AddressSanitizer, "asan", - "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, - false) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END( - AddressSanitizer, "asan", - "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, - false) - -FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, - bool Recover, - bool UseAfterScope) { - assert(!CompileKernel || Recover); - return new AddressSanitizer(CompileKernel, Recover, UseAfterScope); -} - -char AddressSanitizerModule::ID = 0; - -INITIALIZE_PASS( - AddressSanitizerModule, "asan-module", - "AddressSanitizer: detects use-after-free and out-of-bounds bugs." - "ModulePass", - false, false) - -ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel, - bool Recover, - bool UseGlobalsGC, - bool UseOdrIndicator) { - assert(!CompileKernel || Recover); - return new AddressSanitizerModule(CompileKernel, Recover, UseGlobalsGC, - UseOdrIndicator); -} - -static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { - size_t Res = countTrailingZeros(TypeSize / 8); - assert(Res < kNumberOfAccessSizes); - return Res; -} - -/// Create a global describing a source location. -static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, - LocationMetadata MD) { - Constant *LocData[] = { - createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), - ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), - ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), - }; - auto LocStruct = ConstantStruct::getAnon(LocData); - auto GV = new GlobalVariable(M, LocStruct->getType(), true, - GlobalValue::PrivateLinkage, LocStruct, - kAsanGenPrefix); - GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - return GV; -} - -/// Check if \p G has been created by a trusted compiler pass. -static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { - // Do not instrument @llvm.global_ctors, @llvm.used, etc. - if (G->getName().startswith("llvm.")) - return true; - - // Do not instrument asan globals. - if (G->getName().startswith(kAsanGenPrefix) || - G->getName().startswith(kSanCovGenPrefix) || - G->getName().startswith(kODRGenPrefix)) - return true; - - // Do not instrument gcov counter arrays. - if (G->getName() == "__llvm_gcov_ctr") - return true; - - return false; -} - -Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { - // Shadow >> scale - Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); - if (Mapping.Offset == 0) return Shadow; - // (Shadow >> scale) | offset - Value *ShadowBase; - if (LocalDynamicShadow) - ShadowBase = LocalDynamicShadow; - else - ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); - if (Mapping.OrShadowOffset) - return IRB.CreateOr(Shadow, ShadowBase); - else - return IRB.CreateAdd(Shadow, ShadowBase); -} - -// Instrument memset/memmove/memcpy -void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { - IRBuilder<> IRB(MI); - if (isa<MemTransferInst>(MI)) { - IRB.CreateCall( - isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, - {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), - IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), - IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); - } else if (isa<MemSetInst>(MI)) { - IRB.CreateCall( - AsanMemset, - {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), - IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), - IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); - } - MI->eraseFromParent(); -} - -/// Check if we want (and can) handle this alloca. -bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { - auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); - - if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) - return PreviouslySeenAllocaInfo->getSecond(); - - bool IsInteresting = - (AI.getAllocatedType()->isSized() && - // alloca() may be called with 0 size, ignore it. - ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && - // We are only interested in allocas not promotable to registers. - // Promotable allocas are common under -O0. - (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && - // inalloca allocas are not treated as static, and we don't want - // dynamic alloca instrumentation for them as well. - !AI.isUsedWithInAlloca() && - // swifterror allocas are register promoted by ISel - !AI.isSwiftError()); - - ProcessedAllocas[&AI] = IsInteresting; - return IsInteresting; -} - -Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, - bool *IsWrite, - uint64_t *TypeSize, - unsigned *Alignment, - Value **MaybeMask) { - // Skip memory accesses inserted by another instrumentation. - if (I->getMetadata("nosanitize")) return nullptr; - - // Do not instrument the load fetching the dynamic shadow address. - if (LocalDynamicShadow == I) - return nullptr; - - Value *PtrOperand = nullptr; - const DataLayout &DL = I->getModule()->getDataLayout(); - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - if (!ClInstrumentReads) return nullptr; - *IsWrite = false; - *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); - *Alignment = LI->getAlignment(); - PtrOperand = LI->getPointerOperand(); - } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - if (!ClInstrumentWrites) return nullptr; - *IsWrite = true; - *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); - *Alignment = SI->getAlignment(); - PtrOperand = SI->getPointerOperand(); - } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { - if (!ClInstrumentAtomics) return nullptr; - *IsWrite = true; - *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); - *Alignment = 0; - PtrOperand = RMW->getPointerOperand(); - } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { - if (!ClInstrumentAtomics) return nullptr; - *IsWrite = true; - *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); - *Alignment = 0; - PtrOperand = XCHG->getPointerOperand(); - } else if (auto CI = dyn_cast<CallInst>(I)) { - auto *F = dyn_cast<Function>(CI->getCalledValue()); - if (F && (F->getName().startswith("llvm.masked.load.") || - F->getName().startswith("llvm.masked.store."))) { - unsigned OpOffset = 0; - if (F->getName().startswith("llvm.masked.store.")) { - if (!ClInstrumentWrites) - return nullptr; - // Masked store has an initial operand for the value. - OpOffset = 1; - *IsWrite = true; - } else { - if (!ClInstrumentReads) - return nullptr; - *IsWrite = false; - } - - auto BasePtr = CI->getOperand(0 + OpOffset); - auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); - *TypeSize = DL.getTypeStoreSizeInBits(Ty); - if (auto AlignmentConstant = - dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) - *Alignment = (unsigned)AlignmentConstant->getZExtValue(); - else - *Alignment = 1; // No alignment guarantees. We probably got Undef - if (MaybeMask) - *MaybeMask = CI->getOperand(2 + OpOffset); - PtrOperand = BasePtr; - } - } - - if (PtrOperand) { - // Do not instrument acesses from different address spaces; we cannot deal - // with them. - Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); - if (PtrTy->getPointerAddressSpace() != 0) - return nullptr; - - // Ignore swifterror addresses. - // swifterror memory addresses are mem2reg promoted by instruction - // selection. As such they cannot have regular uses like an instrumentation - // function and it makes no sense to track them as memory. - if (PtrOperand->isSwiftError()) - return nullptr; - } - - // Treat memory accesses to promotable allocas as non-interesting since they - // will not cause memory violations. This greatly speeds up the instrumented - // executable at -O0. - if (ClSkipPromotableAllocas) - if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) - return isInterestingAlloca(*AI) ? AI : nullptr; - - return PtrOperand; -} - -static bool isPointerOperand(Value *V) { - return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); -} - -// This is a rough heuristic; it may cause both false positives and -// false negatives. The proper implementation requires cooperation with -// the frontend. -static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { - if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { - if (!Cmp->isRelational()) return false; - } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { - if (BO->getOpcode() != Instruction::Sub) return false; - } else { - return false; - } - return isPointerOperand(I->getOperand(0)) && - isPointerOperand(I->getOperand(1)); -} - -bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { - // If a global variable does not have dynamic initialization we don't - // have to instrument it. However, if a global does not have initializer - // at all, we assume it has dynamic initializer (in other TU). - return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; -} - -void AddressSanitizer::instrumentPointerComparisonOrSubtraction( - Instruction *I) { - IRBuilder<> IRB(I); - Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; - Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; - for (Value *&i : Param) { - if (i->getType()->isPointerTy()) - i = IRB.CreatePointerCast(i, IntptrTy); - } - IRB.CreateCall(F, Param); -} - -static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, - Instruction *InsertBefore, Value *Addr, - unsigned Alignment, unsigned Granularity, - uint32_t TypeSize, bool IsWrite, - Value *SizeArgument, bool UseCalls, - uint32_t Exp) { - // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check - // if the data is properly aligned. - if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || - TypeSize == 128) && - (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) - return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, - nullptr, UseCalls, Exp); - Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, - IsWrite, nullptr, UseCalls, Exp); -} - -static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, - const DataLayout &DL, Type *IntptrTy, - Value *Mask, Instruction *I, - Value *Addr, unsigned Alignment, - unsigned Granularity, uint32_t TypeSize, - bool IsWrite, Value *SizeArgument, - bool UseCalls, uint32_t Exp) { - auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); - uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); - unsigned Num = VTy->getVectorNumElements(); - auto Zero = ConstantInt::get(IntptrTy, 0); - for (unsigned Idx = 0; Idx < Num; ++Idx) { - Value *InstrumentedAddress = nullptr; - Instruction *InsertBefore = I; - if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { - // dyn_cast as we might get UndefValue - if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { - if (Masked->isZero()) - // Mask is constant false, so no instrumentation needed. - continue; - // If we have a true or undef value, fall through to doInstrumentAddress - // with InsertBefore == I - } - } else { - IRBuilder<> IRB(I); - Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); - Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); - InsertBefore = ThenTerm; - } - - IRBuilder<> IRB(InsertBefore); - InstrumentedAddress = - IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); - doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, - Granularity, ElemTypeSize, IsWrite, SizeArgument, - UseCalls, Exp); - } -} - -void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, - Instruction *I, bool UseCalls, - const DataLayout &DL) { - bool IsWrite = false; - unsigned Alignment = 0; - uint64_t TypeSize = 0; - Value *MaybeMask = nullptr; - Value *Addr = - isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); - assert(Addr); - - // Optimization experiments. - // The experiments can be used to evaluate potential optimizations that remove - // instrumentation (assess false negatives). Instead of completely removing - // some instrumentation, you set Exp to a non-zero value (mask of optimization - // experiments that want to remove instrumentation of this instruction). - // If Exp is non-zero, this pass will emit special calls into runtime - // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls - // make runtime terminate the program in a special way (with a different - // exit status). Then you run the new compiler on a buggy corpus, collect - // the special terminations (ideally, you don't see them at all -- no false - // negatives) and make the decision on the optimization. - uint32_t Exp = ClForceExperiment; - - if (ClOpt && ClOptGlobals) { - // If initialization order checking is disabled, a simple access to a - // dynamically initialized global is always valid. - GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); - if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && - isSafeAccess(ObjSizeVis, Addr, TypeSize)) { - NumOptimizedAccessesToGlobalVar++; - return; - } - } - - if (ClOpt && ClOptStack) { - // A direct inbounds access to a stack variable is always valid. - if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && - isSafeAccess(ObjSizeVis, Addr, TypeSize)) { - NumOptimizedAccessesToStackVar++; - return; - } - } - - if (IsWrite) - NumInstrumentedWrites++; - else - NumInstrumentedReads++; - - unsigned Granularity = 1 << Mapping.Scale; - if (MaybeMask) { - instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, - Alignment, Granularity, TypeSize, IsWrite, - nullptr, UseCalls, Exp); - } else { - doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, - IsWrite, nullptr, UseCalls, Exp); - } -} - -Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, - Value *Addr, bool IsWrite, - size_t AccessSizeIndex, - Value *SizeArgument, - uint32_t Exp) { - IRBuilder<> IRB(InsertBefore); - Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); - CallInst *Call = nullptr; - if (SizeArgument) { - if (Exp == 0) - Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], - {Addr, SizeArgument}); - else - Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], - {Addr, SizeArgument, ExpVal}); - } else { - if (Exp == 0) - Call = - IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); - else - Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], - {Addr, ExpVal}); - } - - // We don't do Call->setDoesNotReturn() because the BB already has - // UnreachableInst at the end. - // This EmptyAsm is required to avoid callback merge. - IRB.CreateCall(EmptyAsm, {}); - return Call; -} - -Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, - Value *ShadowValue, - uint32_t TypeSize) { - size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; - // Addr & (Granularity - 1) - Value *LastAccessedByte = - IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); - // (Addr & (Granularity - 1)) + size - 1 - if (TypeSize / 8 > 1) - LastAccessedByte = IRB.CreateAdd( - LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); - // (uint8_t) ((Addr & (Granularity-1)) + size - 1) - LastAccessedByte = - IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); - // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue - return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); -} - -void AddressSanitizer::instrumentAddress(Instruction *OrigIns, - Instruction *InsertBefore, Value *Addr, - uint32_t TypeSize, bool IsWrite, - Value *SizeArgument, bool UseCalls, - uint32_t Exp) { - bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; - - IRBuilder<> IRB(InsertBefore); - Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); - size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); - - if (UseCalls) { - if (Exp == 0) - IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], - AddrLong); - else - IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], - {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); - return; - } - - if (IsMyriad) { - // Strip the cache bit and do range check. - // AddrLong &= ~kMyriadCacheBitMask32 - AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); - // Tag = AddrLong >> kMyriadTagShift - Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); - // Tag == kMyriadDDRTag - Value *TagCheck = - IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); - - Instruction *TagCheckTerm = - SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, - MDBuilder(*C).createBranchWeights(1, 100000)); - assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); - IRB.SetInsertPoint(TagCheckTerm); - InsertBefore = TagCheckTerm; - } - - Type *ShadowTy = - IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); - Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); - Value *ShadowPtr = memToShadow(AddrLong, IRB); - Value *CmpVal = Constant::getNullValue(ShadowTy); - Value *ShadowValue = - IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); - - Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); - size_t Granularity = 1ULL << Mapping.Scale; - Instruction *CrashTerm = nullptr; - - if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { - // We use branch weights for the slow path check, to indicate that the slow - // path is rarely taken. This seems to be the case for SPEC benchmarks. - Instruction *CheckTerm = SplitBlockAndInsertIfThen( - Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); - assert(cast<BranchInst>(CheckTerm)->isUnconditional()); - BasicBlock *NextBB = CheckTerm->getSuccessor(0); - IRB.SetInsertPoint(CheckTerm); - Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); - if (Recover) { - CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); - } else { - BasicBlock *CrashBlock = - BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); - CrashTerm = new UnreachableInst(*C, CrashBlock); - BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); - ReplaceInstWithInst(CheckTerm, NewTerm); - } - } else { - CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); - } - - Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, - AccessSizeIndex, SizeArgument, Exp); - Crash->setDebugLoc(OrigIns->getDebugLoc()); -} - -// Instrument unusual size or unusual alignment. -// We can not do it with a single check, so we do 1-byte check for the first -// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able -// to report the actual access size. -void AddressSanitizer::instrumentUnusualSizeOrAlignment( - Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, - bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { - IRBuilder<> IRB(InsertBefore); - Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); - Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); - if (UseCalls) { - if (Exp == 0) - IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], - {AddrLong, Size}); - else - IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], - {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); - } else { - Value *LastByte = IRB.CreateIntToPtr( - IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), - Addr->getType()); - instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); - instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); - } -} - -void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, - GlobalValue *ModuleName) { - // Set up the arguments to our poison/unpoison functions. - IRBuilder<> IRB(&GlobalInit.front(), - GlobalInit.front().getFirstInsertionPt()); - - // Add a call to poison all external globals before the given function starts. - Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); - IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); - - // Add calls to unpoison all globals before each return instruction. - for (auto &BB : GlobalInit.getBasicBlockList()) - if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) - CallInst::Create(AsanUnpoisonGlobals, "", RI); -} - -void AddressSanitizerModule::createInitializerPoisonCalls( - Module &M, GlobalValue *ModuleName) { - GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); - if (!GV) - return; - - ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); - if (!CA) - return; - - for (Use &OP : CA->operands()) { - if (isa<ConstantAggregateZero>(OP)) continue; - ConstantStruct *CS = cast<ConstantStruct>(OP); - - // Must have a function or null ptr. - if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { - if (F->getName() == kAsanModuleCtorName) continue; - ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); - // Don't instrument CTORs that will run before asan.module_ctor. - if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; - poisonOneInitializer(*F, ModuleName); - } - } -} - -bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { - Type *Ty = G->getValueType(); - LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); - - if (GlobalsMD.get(G).IsBlacklisted) return false; - if (!Ty->isSized()) return false; - if (!G->hasInitializer()) return false; - if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. - // Two problems with thread-locals: - // - The address of the main thread's copy can't be computed at link-time. - // - Need to poison all copies, not just the main thread's one. - if (G->isThreadLocal()) return false; - // For now, just ignore this Global if the alignment is large. - if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; - - // For non-COFF targets, only instrument globals known to be defined by this - // TU. - // FIXME: We can instrument comdat globals on ELF if we are using the - // GC-friendly metadata scheme. - if (!TargetTriple.isOSBinFormatCOFF()) { - if (!G->hasExactDefinition() || G->hasComdat()) - return false; - } else { - // On COFF, don't instrument non-ODR linkages. - if (G->isInterposable()) - return false; - } - - // If a comdat is present, it must have a selection kind that implies ODR - // semantics: no duplicates, any, or exact match. - if (Comdat *C = G->getComdat()) { - switch (C->getSelectionKind()) { - case Comdat::Any: - case Comdat::ExactMatch: - case Comdat::NoDuplicates: - break; - case Comdat::Largest: - case Comdat::SameSize: - return false; - } - } - - if (G->hasSection()) { - StringRef Section = G->getSection(); - - // Globals from llvm.metadata aren't emitted, do not instrument them. - if (Section == "llvm.metadata") return false; - // Do not instrument globals from special LLVM sections. - if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; - - // Do not instrument function pointers to initialization and termination - // routines: dynamic linker will not properly handle redzones. - if (Section.startswith(".preinit_array") || - Section.startswith(".init_array") || - Section.startswith(".fini_array")) { - return false; - } - - // On COFF, if the section name contains '$', it is highly likely that the - // user is using section sorting to create an array of globals similar to - // the way initialization callbacks are registered in .init_array and - // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones - // to such globals is counterproductive, because the intent is that they - // will form an array, and out-of-bounds accesses are expected. - // See https://github.com/google/sanitizers/issues/305 - // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx - if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { - LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " - << *G << "\n"); - return false; - } - - if (TargetTriple.isOSBinFormatMachO()) { - StringRef ParsedSegment, ParsedSection; - unsigned TAA = 0, StubSize = 0; - bool TAAParsed; - std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( - Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); - assert(ErrorCode.empty() && "Invalid section specifier."); - - // Ignore the globals from the __OBJC section. The ObjC runtime assumes - // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to - // them. - if (ParsedSegment == "__OBJC" || - (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { - LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); - return false; - } - // See https://github.com/google/sanitizers/issues/32 - // Constant CFString instances are compiled in the following way: - // -- the string buffer is emitted into - // __TEXT,__cstring,cstring_literals - // -- the constant NSConstantString structure referencing that buffer - // is placed into __DATA,__cfstring - // Therefore there's no point in placing redzones into __DATA,__cfstring. - // Moreover, it causes the linker to crash on OS X 10.7 - if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { - LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); - return false; - } - // The linker merges the contents of cstring_literals and removes the - // trailing zeroes. - if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { - LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); - return false; - } - } - } - - return true; -} - -// On Mach-O platforms, we emit global metadata in a separate section of the -// binary in order to allow the linker to properly dead strip. This is only -// supported on recent versions of ld64. -bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const { - if (!TargetTriple.isOSBinFormatMachO()) - return false; - - if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) - return true; - if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) - return true; - if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) - return true; - - return false; -} - -StringRef AddressSanitizerModule::getGlobalMetadataSection() const { - switch (TargetTriple.getObjectFormat()) { - case Triple::COFF: return ".ASAN$GL"; - case Triple::ELF: return "asan_globals"; - case Triple::MachO: return "__DATA,__asan_globals,regular"; - default: break; - } - llvm_unreachable("unsupported object format"); -} - -void AddressSanitizerModule::initializeCallbacks(Module &M) { - IRBuilder<> IRB(*C); - - // Declare our poisoning and unpoisoning functions. - AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy)); - AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); - AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanUnpoisonGlobalsName, IRB.getVoidTy())); - AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); - - // Declare functions that register/unregister globals. - AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy)); - AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); - AsanUnregisterGlobals = checkSanitizerInterfaceFunction( - M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(), - IntptrTy, IntptrTy)); - AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); - - // Declare the functions that find globals in a shared object and then invoke - // the (un)register function on them. - AsanRegisterImageGlobals = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy)); - AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage); - - AsanUnregisterImageGlobals = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy)); - AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage); - - AsanRegisterElfGlobals = checkSanitizerInterfaceFunction( - M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), - IntptrTy, IntptrTy, IntptrTy)); - AsanRegisterElfGlobals->setLinkage(Function::ExternalLinkage); - - AsanUnregisterElfGlobals = checkSanitizerInterfaceFunction( - M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), - IntptrTy, IntptrTy, IntptrTy)); - AsanUnregisterElfGlobals->setLinkage(Function::ExternalLinkage); -} - -// Put the metadata and the instrumented global in the same group. This ensures -// that the metadata is discarded if the instrumented global is discarded. -void AddressSanitizerModule::SetComdatForGlobalMetadata( - GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { - Module &M = *G->getParent(); - Comdat *C = G->getComdat(); - if (!C) { - if (!G->hasName()) { - // If G is unnamed, it must be internal. Give it an artificial name - // so we can put it in a comdat. - assert(G->hasLocalLinkage()); - G->setName(Twine(kAsanGenPrefix) + "_anon_global"); - } - - if (!InternalSuffix.empty() && G->hasLocalLinkage()) { - std::string Name = G->getName(); - Name += InternalSuffix; - C = M.getOrInsertComdat(Name); - } else { - C = M.getOrInsertComdat(G->getName()); - } - - // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private - // linkage to internal linkage so that a symbol table entry is emitted. This - // is necessary in order to create the comdat group. - if (TargetTriple.isOSBinFormatCOFF()) { - C->setSelectionKind(Comdat::NoDuplicates); - if (G->hasPrivateLinkage()) - G->setLinkage(GlobalValue::InternalLinkage); - } - G->setComdat(C); - } - - assert(G->hasComdat()); - Metadata->setComdat(G->getComdat()); -} - -// Create a separate metadata global and put it in the appropriate ASan -// global registration section. -GlobalVariable * -AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer, - StringRef OriginalName) { - auto Linkage = TargetTriple.isOSBinFormatMachO() - ? GlobalVariable::InternalLinkage - : GlobalVariable::PrivateLinkage; - GlobalVariable *Metadata = new GlobalVariable( - M, Initializer->getType(), false, Linkage, Initializer, - Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); - Metadata->setSection(getGlobalMetadataSection()); - return Metadata; -} - -IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) { - AsanDtorFunction = - Function::Create(FunctionType::get(Type::getVoidTy(*C), false), - GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); - BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); - - return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); -} - -void AddressSanitizerModule::InstrumentGlobalsCOFF( - IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers) { - assert(ExtendedGlobals.size() == MetadataInitializers.size()); - auto &DL = M.getDataLayout(); - - for (size_t i = 0; i < ExtendedGlobals.size(); i++) { - Constant *Initializer = MetadataInitializers[i]; - GlobalVariable *G = ExtendedGlobals[i]; - GlobalVariable *Metadata = - CreateMetadataGlobal(M, Initializer, G->getName()); - - // The MSVC linker always inserts padding when linking incrementally. We - // cope with that by aligning each struct to its size, which must be a power - // of two. - unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); - assert(isPowerOf2_32(SizeOfGlobalStruct) && - "global metadata will not be padded appropriately"); - Metadata->setAlignment(SizeOfGlobalStruct); - - SetComdatForGlobalMetadata(G, Metadata, ""); - } -} - -void AddressSanitizerModule::InstrumentGlobalsELF( - IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers, - const std::string &UniqueModuleId) { - assert(ExtendedGlobals.size() == MetadataInitializers.size()); - - SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); - for (size_t i = 0; i < ExtendedGlobals.size(); i++) { - GlobalVariable *G = ExtendedGlobals[i]; - GlobalVariable *Metadata = - CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); - MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); - Metadata->setMetadata(LLVMContext::MD_associated, MD); - MetadataGlobals[i] = Metadata; - - SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); - } - - // Update llvm.compiler.used, adding the new metadata globals. This is - // needed so that during LTO these variables stay alive. - if (!MetadataGlobals.empty()) - appendToCompilerUsed(M, MetadataGlobals); - - // RegisteredFlag serves two purposes. First, we can pass it to dladdr() - // to look up the loaded image that contains it. Second, we can store in it - // whether registration has already occurred, to prevent duplicate - // registration. - // - // Common linkage ensures that there is only one global per shared library. - GlobalVariable *RegisteredFlag = new GlobalVariable( - M, IntptrTy, false, GlobalVariable::CommonLinkage, - ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); - RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); - - // Create start and stop symbols. - GlobalVariable *StartELFMetadata = new GlobalVariable( - M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, - "__start_" + getGlobalMetadataSection()); - StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); - GlobalVariable *StopELFMetadata = new GlobalVariable( - M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, - "__stop_" + getGlobalMetadataSection()); - StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); - - // Create a call to register the globals with the runtime. - IRB.CreateCall(AsanRegisterElfGlobals, - {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), - IRB.CreatePointerCast(StartELFMetadata, IntptrTy), - IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); - - // We also need to unregister globals at the end, e.g., when a shared library - // gets closed. - IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); - IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, - {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), - IRB.CreatePointerCast(StartELFMetadata, IntptrTy), - IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); -} - -void AddressSanitizerModule::InstrumentGlobalsMachO( - IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers) { - assert(ExtendedGlobals.size() == MetadataInitializers.size()); - - // On recent Mach-O platforms, use a structure which binds the liveness of - // the global variable to the metadata struct. Keep the list of "Liveness" GV - // created to be added to llvm.compiler.used - StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); - SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); - - for (size_t i = 0; i < ExtendedGlobals.size(); i++) { - Constant *Initializer = MetadataInitializers[i]; - GlobalVariable *G = ExtendedGlobals[i]; - GlobalVariable *Metadata = - CreateMetadataGlobal(M, Initializer, G->getName()); - - // On recent Mach-O platforms, we emit the global metadata in a way that - // allows the linker to properly strip dead globals. - auto LivenessBinder = - ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), - ConstantExpr::getPointerCast(Metadata, IntptrTy)); - GlobalVariable *Liveness = new GlobalVariable( - M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, - Twine("__asan_binder_") + G->getName()); - Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); - LivenessGlobals[i] = Liveness; - } - - // Update llvm.compiler.used, adding the new liveness globals. This is - // needed so that during LTO these variables stay alive. The alternative - // would be to have the linker handling the LTO symbols, but libLTO - // current API does not expose access to the section for each symbol. - if (!LivenessGlobals.empty()) - appendToCompilerUsed(M, LivenessGlobals); - - // RegisteredFlag serves two purposes. First, we can pass it to dladdr() - // to look up the loaded image that contains it. Second, we can store in it - // whether registration has already occurred, to prevent duplicate - // registration. - // - // common linkage ensures that there is only one global per shared library. - GlobalVariable *RegisteredFlag = new GlobalVariable( - M, IntptrTy, false, GlobalVariable::CommonLinkage, - ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); - RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); - - IRB.CreateCall(AsanRegisterImageGlobals, - {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); - - // We also need to unregister globals at the end, e.g., when a shared library - // gets closed. - IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); - IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, - {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); -} - -void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray( - IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers) { - assert(ExtendedGlobals.size() == MetadataInitializers.size()); - unsigned N = ExtendedGlobals.size(); - assert(N > 0); - - // On platforms that don't have a custom metadata section, we emit an array - // of global metadata structures. - ArrayType *ArrayOfGlobalStructTy = - ArrayType::get(MetadataInitializers[0]->getType(), N); - auto AllGlobals = new GlobalVariable( - M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, - ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); - if (Mapping.Scale > 3) - AllGlobals->setAlignment(1ULL << Mapping.Scale); - - IRB.CreateCall(AsanRegisterGlobals, - {IRB.CreatePointerCast(AllGlobals, IntptrTy), - ConstantInt::get(IntptrTy, N)}); - - // We also need to unregister globals at the end, e.g., when a shared library - // gets closed. - IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); - IRB_Dtor.CreateCall(AsanUnregisterGlobals, - {IRB.CreatePointerCast(AllGlobals, IntptrTy), - ConstantInt::get(IntptrTy, N)}); -} - -// This function replaces all global variables with new variables that have -// trailing redzones. It also creates a function that poisons -// redzones and inserts this function into llvm.global_ctors. -// Sets *CtorComdat to true if the global registration code emitted into the -// asan constructor is comdat-compatible. -bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat) { - *CtorComdat = false; - GlobalsMD.init(M); - - SmallVector<GlobalVariable *, 16> GlobalsToChange; - - for (auto &G : M.globals()) { - if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); - } - - size_t n = GlobalsToChange.size(); - if (n == 0) { - *CtorComdat = true; - return false; - } - - auto &DL = M.getDataLayout(); - - // A global is described by a structure - // size_t beg; - // size_t size; - // size_t size_with_redzone; - // const char *name; - // const char *module_name; - // size_t has_dynamic_init; - // void *source_location; - // size_t odr_indicator; - // We initialize an array of such structures and pass it to a run-time call. - StructType *GlobalStructTy = - StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, - IntptrTy, IntptrTy, IntptrTy); - SmallVector<GlobalVariable *, 16> NewGlobals(n); - SmallVector<Constant *, 16> Initializers(n); - - bool HasDynamicallyInitializedGlobals = false; - - // We shouldn't merge same module names, as this string serves as unique - // module ID in runtime. - GlobalVariable *ModuleName = createPrivateGlobalForString( - M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); - - for (size_t i = 0; i < n; i++) { - static const uint64_t kMaxGlobalRedzone = 1 << 18; - GlobalVariable *G = GlobalsToChange[i]; - - auto MD = GlobalsMD.get(G); - StringRef NameForGlobal = G->getName(); - // Create string holding the global name (use global name from metadata - // if it's available, otherwise just write the name of global variable). - GlobalVariable *Name = createPrivateGlobalForString( - M, MD.Name.empty() ? NameForGlobal : MD.Name, - /*AllowMerging*/ true, kAsanGenPrefix); - - Type *Ty = G->getValueType(); - uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); - uint64_t MinRZ = MinRedzoneSizeForGlobal(); - // MinRZ <= RZ <= kMaxGlobalRedzone - // and trying to make RZ to be ~ 1/4 of SizeInBytes. - uint64_t RZ = std::max( - MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); - uint64_t RightRedzoneSize = RZ; - // Round up to MinRZ - if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); - assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); - Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); - - StructType *NewTy = StructType::get(Ty, RightRedZoneTy); - Constant *NewInitializer = ConstantStruct::get( - NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); - - // Create a new global variable with enough space for a redzone. - GlobalValue::LinkageTypes Linkage = G->getLinkage(); - if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) - Linkage = GlobalValue::InternalLinkage; - GlobalVariable *NewGlobal = - new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, - "", G, G->getThreadLocalMode()); - NewGlobal->copyAttributesFrom(G); - NewGlobal->setComdat(G->getComdat()); - NewGlobal->setAlignment(MinRZ); - // Don't fold globals with redzones. ODR violation detector and redzone - // poisoning implicitly creates a dependence on the global's address, so it - // is no longer valid for it to be marked unnamed_addr. - NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); - - // Move null-terminated C strings to "__asan_cstring" section on Darwin. - if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && - G->isConstant()) { - auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); - if (Seq && Seq->isCString()) - NewGlobal->setSection("__TEXT,__asan_cstring,regular"); - } - - // Transfer the debug info. The payload starts at offset zero so we can - // copy the debug info over as is. - SmallVector<DIGlobalVariableExpression *, 1> GVs; - G->getDebugInfo(GVs); - for (auto *GV : GVs) - NewGlobal->addDebugInfo(GV); - - Value *Indices2[2]; - Indices2[0] = IRB.getInt32(0); - Indices2[1] = IRB.getInt32(0); - - G->replaceAllUsesWith( - ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); - NewGlobal->takeName(G); - G->eraseFromParent(); - NewGlobals[i] = NewGlobal; - - Constant *SourceLoc; - if (!MD.SourceLoc.empty()) { - auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); - SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); - } else { - SourceLoc = ConstantInt::get(IntptrTy, 0); - } - - Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); - GlobalValue *InstrumentedGlobal = NewGlobal; - - bool CanUsePrivateAliases = - TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || - TargetTriple.isOSBinFormatWasm(); - if (CanUsePrivateAliases && UsePrivateAlias) { - // Create local alias for NewGlobal to avoid crash on ODR between - // instrumented and non-instrumented libraries. - InstrumentedGlobal = - GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); - } - - // ODR should not happen for local linkage. - if (NewGlobal->hasLocalLinkage()) { - ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), - IRB.getInt8PtrTy()); - } else if (UseOdrIndicator) { - // With local aliases, we need to provide another externally visible - // symbol __odr_asan_XXX to detect ODR violation. - auto *ODRIndicatorSym = - new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, - Constant::getNullValue(IRB.getInt8Ty()), - kODRGenPrefix + NameForGlobal, nullptr, - NewGlobal->getThreadLocalMode()); - - // Set meaningful attributes for indicator symbol. - ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); - ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); - ODRIndicatorSym->setAlignment(1); - ODRIndicator = ODRIndicatorSym; - } - - Constant *Initializer = ConstantStruct::get( - GlobalStructTy, - ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), - ConstantInt::get(IntptrTy, SizeInBytes), - ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), - ConstantExpr::getPointerCast(Name, IntptrTy), - ConstantExpr::getPointerCast(ModuleName, IntptrTy), - ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, - ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); - - if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; - - LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); - - Initializers[i] = Initializer; - } - - // Add instrumented globals to llvm.compiler.used list to avoid LTO from - // ConstantMerge'ing them. - SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; - for (size_t i = 0; i < n; i++) { - GlobalVariable *G = NewGlobals[i]; - if (G->getName().empty()) continue; - GlobalsToAddToUsedList.push_back(G); - } - appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); - - std::string ELFUniqueModuleId = - (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) - : ""; - - if (!ELFUniqueModuleId.empty()) { - InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); - *CtorComdat = true; - } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { - InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); - } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { - InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); - } else { - InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); - } - - // Create calls for poisoning before initializers run and unpoisoning after. - if (HasDynamicallyInitializedGlobals) - createInitializerPoisonCalls(M, ModuleName); - - LLVM_DEBUG(dbgs() << M); - return true; -} - -int AddressSanitizerModule::GetAsanVersion(const Module &M) const { - int LongSize = M.getDataLayout().getPointerSizeInBits(); - bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); - int Version = 8; - // 32-bit Android is one version ahead because of the switch to dynamic - // shadow. - Version += (LongSize == 32 && isAndroid); - return Version; -} - -bool AddressSanitizerModule::runOnModule(Module &M) { - C = &(M.getContext()); - int LongSize = M.getDataLayout().getPointerSizeInBits(); - IntptrTy = Type::getIntNTy(*C, LongSize); - TargetTriple = Triple(M.getTargetTriple()); - Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); - initializeCallbacks(M); - - if (CompileKernel) - return false; - - // Create a module constructor. A destructor is created lazily because not all - // platforms, and not all modules need it. - std::string VersionCheckName = - kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M)); - std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( - M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, - /*InitArgs=*/{}, VersionCheckName); - - bool CtorComdat = true; - bool Changed = false; - // TODO(glider): temporarily disabled globals instrumentation for KASan. - if (ClGlobals) { - IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); - Changed |= InstrumentGlobals(IRB, M, &CtorComdat); - } - - // Put the constructor and destructor in comdat if both - // (1) global instrumentation is not TU-specific - // (2) target is ELF. - if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { - AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); - appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority, - AsanCtorFunction); - if (AsanDtorFunction) { - AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); - appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority, - AsanDtorFunction); - } - } else { - appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); - if (AsanDtorFunction) - appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); - } - - return Changed; -} - -void AddressSanitizer::initializeCallbacks(Module &M) { - IRBuilder<> IRB(*C); - // Create __asan_report* callbacks. - // IsWrite, TypeSize and Exp are encoded in the function name. - for (int Exp = 0; Exp < 2; Exp++) { - for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { - const std::string TypeStr = AccessIsWrite ? "store" : "load"; - const std::string ExpStr = Exp ? "exp_" : ""; - const std::string EndingStr = Recover ? "_noabort" : ""; - - SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; - SmallVector<Type *, 2> Args1{1, IntptrTy}; - if (Exp) { - Type *ExpType = Type::getInt32Ty(*C); - Args2.push_back(ExpType); - Args1.push_back(ExpType); - } - AsanErrorCallbackSized[AccessIsWrite][Exp] = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, - FunctionType::get(IRB.getVoidTy(), Args2, false))); - - AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, - FunctionType::get(IRB.getVoidTy(), Args2, false))); - - for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; - AccessSizeIndex++) { - const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); - AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, - FunctionType::get(IRB.getVoidTy(), Args1, false))); - - AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, - FunctionType::get(IRB.getVoidTy(), Args1, false))); - } - } - } - - const std::string MemIntrinCallbackPrefix = - CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; - AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction( - MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy)); - AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction( - MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy)); - AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction( - MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy)); - - AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction( - M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy())); - - AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy)); - AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy)); - // We insert an empty inline asm after __asan_report* to avoid callback merge. - EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), - StringRef(""), StringRef(""), - /*hasSideEffects=*/true); - if (Mapping.InGlobal) - AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", - ArrayType::get(IRB.getInt8Ty(), 0)); -} - -// virtual -bool AddressSanitizer::doInitialization(Module &M) { - // Initialize the private fields. No one has accessed them before. - GlobalsMD.init(M); - - C = &(M.getContext()); - LongSize = M.getDataLayout().getPointerSizeInBits(); - IntptrTy = Type::getIntNTy(*C, LongSize); - TargetTriple = Triple(M.getTargetTriple()); - - Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); - return true; -} - -bool AddressSanitizer::doFinalization(Module &M) { - GlobalsMD.reset(); - return false; -} - -bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { - // For each NSObject descendant having a +load method, this method is invoked - // by the ObjC runtime before any of the static constructors is called. - // Therefore we need to instrument such methods with a call to __asan_init - // at the beginning in order to initialize our runtime before any access to - // the shadow memory. - // We cannot just ignore these methods, because they may call other - // instrumented functions. - if (F.getName().find(" load]") != std::string::npos) { - Function *AsanInitFunction = - declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); - IRBuilder<> IRB(&F.front(), F.front().begin()); - IRB.CreateCall(AsanInitFunction, {}); - return true; - } - return false; -} - -void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { - // Generate code only when dynamic addressing is needed. - if (Mapping.Offset != kDynamicShadowSentinel) - return; - - IRBuilder<> IRB(&F.front().front()); - if (Mapping.InGlobal) { - if (ClWithIfuncSuppressRemat) { - // An empty inline asm with input reg == output reg. - // An opaque pointer-to-int cast, basically. - InlineAsm *Asm = InlineAsm::get( - FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), - StringRef(""), StringRef("=r,0"), - /*hasSideEffects=*/false); - LocalDynamicShadow = - IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); - } else { - LocalDynamicShadow = - IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); - } - } else { - Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( - kAsanShadowMemoryDynamicAddress, IntptrTy); - LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress); - } -} - -void AddressSanitizer::markEscapedLocalAllocas(Function &F) { - // Find the one possible call to llvm.localescape and pre-mark allocas passed - // to it as uninteresting. This assumes we haven't started processing allocas - // yet. This check is done up front because iterating the use list in - // isInterestingAlloca would be algorithmically slower. - assert(ProcessedAllocas.empty() && "must process localescape before allocas"); - - // Try to get the declaration of llvm.localescape. If it's not in the module, - // we can exit early. - if (!F.getParent()->getFunction("llvm.localescape")) return; - - // Look for a call to llvm.localescape call in the entry block. It can't be in - // any other block. - for (Instruction &I : F.getEntryBlock()) { - IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); - if (II && II->getIntrinsicID() == Intrinsic::localescape) { - // We found a call. Mark all the allocas passed in as uninteresting. - for (Value *Arg : II->arg_operands()) { - AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); - assert(AI && AI->isStaticAlloca() && - "non-static alloca arg to localescape"); - ProcessedAllocas[AI] = false; - } - break; - } - } -} - -bool AddressSanitizer::runOnFunction(Function &F) { - if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; - if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; - if (F.getName().startswith("__asan_")) return false; - - bool FunctionModified = false; - - // If needed, insert __asan_init before checking for SanitizeAddress attr. - // This function needs to be called even if the function body is not - // instrumented. - if (maybeInsertAsanInitAtFunctionEntry(F)) - FunctionModified = true; - - // Leave if the function doesn't need instrumentation. - if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; - - LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); - - initializeCallbacks(*F.getParent()); - DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - - FunctionStateRAII CleanupObj(this); - - maybeInsertDynamicShadowAtFunctionEntry(F); - - // We can't instrument allocas used with llvm.localescape. Only static allocas - // can be passed to that intrinsic. - markEscapedLocalAllocas(F); - - // We want to instrument every address only once per basic block (unless there - // are calls between uses). - SmallPtrSet<Value *, 16> TempsToInstrument; - SmallVector<Instruction *, 16> ToInstrument; - SmallVector<Instruction *, 8> NoReturnCalls; - SmallVector<BasicBlock *, 16> AllBlocks; - SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; - int NumAllocas = 0; - bool IsWrite; - unsigned Alignment; - uint64_t TypeSize; - const TargetLibraryInfo *TLI = - &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - - // Fill the set of memory operations to instrument. - for (auto &BB : F) { - AllBlocks.push_back(&BB); - TempsToInstrument.clear(); - int NumInsnsPerBB = 0; - for (auto &Inst : BB) { - if (LooksLikeCodeInBug11395(&Inst)) return false; - Value *MaybeMask = nullptr; - if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, - &Alignment, &MaybeMask)) { - if (ClOpt && ClOptSameTemp) { - // If we have a mask, skip instrumentation if we've already - // instrumented the full object. But don't add to TempsToInstrument - // because we might get another load/store with a different mask. - if (MaybeMask) { - if (TempsToInstrument.count(Addr)) - continue; // We've seen this (whole) temp in the current BB. - } else { - if (!TempsToInstrument.insert(Addr).second) - continue; // We've seen this temp in the current BB. - } - } - } else if (ClInvalidPointerPairs && - isInterestingPointerComparisonOrSubtraction(&Inst)) { - PointerComparisonsOrSubtracts.push_back(&Inst); - continue; - } else if (isa<MemIntrinsic>(Inst)) { - // ok, take it. - } else { - if (isa<AllocaInst>(Inst)) NumAllocas++; - CallSite CS(&Inst); - if (CS) { - // A call inside BB. - TempsToInstrument.clear(); - if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); - } - if (CallInst *CI = dyn_cast<CallInst>(&Inst)) - maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); - continue; - } - ToInstrument.push_back(&Inst); - NumInsnsPerBB++; - if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; - } - } - - bool UseCalls = - (ClInstrumentationWithCallsThreshold >= 0 && - ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); - const DataLayout &DL = F.getParent()->getDataLayout(); - ObjectSizeOpts ObjSizeOpts; - ObjSizeOpts.RoundToAlign = true; - ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); - - // Instrument. - int NumInstrumented = 0; - for (auto Inst : ToInstrument) { - if (ClDebugMin < 0 || ClDebugMax < 0 || - (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { - if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) - instrumentMop(ObjSizeVis, Inst, UseCalls, - F.getParent()->getDataLayout()); - else - instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); - } - NumInstrumented++; - } - - FunctionStackPoisoner FSP(F, *this); - bool ChangedStack = FSP.runOnFunction(); - - // We must unpoison the stack before every NoReturn call (throw, _exit, etc). - // See e.g. https://github.com/google/sanitizers/issues/37 - for (auto CI : NoReturnCalls) { - IRBuilder<> IRB(CI); - IRB.CreateCall(AsanHandleNoReturnFunc, {}); - } - - for (auto Inst : PointerComparisonsOrSubtracts) { - instrumentPointerComparisonOrSubtraction(Inst); - NumInstrumented++; - } - - if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) - FunctionModified = true; - - LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " - << F << "\n"); - - return FunctionModified; -} - -// Workaround for bug 11395: we don't want to instrument stack in functions -// with large assembly blobs (32-bit only), otherwise reg alloc may crash. -// FIXME: remove once the bug 11395 is fixed. -bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { - if (LongSize != 32) return false; - CallInst *CI = dyn_cast<CallInst>(I); - if (!CI || !CI->isInlineAsm()) return false; - if (CI->getNumArgOperands() <= 5) return false; - // We have inline assembly with quite a few arguments. - return true; -} - -void FunctionStackPoisoner::initializeCallbacks(Module &M) { - IRBuilder<> IRB(*C); - for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { - std::string Suffix = itostr(i); - AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction( - M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, - IntptrTy)); - AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction( - M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, - IRB.getVoidTy(), IntptrTy, IntptrTy)); - } - if (ASan.UseAfterScope) { - AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction( - M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), - IntptrTy, IntptrTy)); - AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction( - M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), - IntptrTy, IntptrTy)); - } - - for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { - std::ostringstream Name; - Name << kAsanSetShadowPrefix; - Name << std::setw(2) << std::setfill('0') << std::hex << Val; - AsanSetShadowFunc[Val] = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy)); - } - - AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy)); - AsanAllocasUnpoisonFunc = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy)); -} - -void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, - ArrayRef<uint8_t> ShadowBytes, - size_t Begin, size_t End, - IRBuilder<> &IRB, - Value *ShadowBase) { - if (Begin >= End) - return; - - const size_t LargestStoreSizeInBytes = - std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); - - const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); - - // Poison given range in shadow using larges store size with out leading and - // trailing zeros in ShadowMask. Zeros never change, so they need neither - // poisoning nor up-poisoning. Still we don't mind if some of them get into a - // middle of a store. - for (size_t i = Begin; i < End;) { - if (!ShadowMask[i]) { - assert(!ShadowBytes[i]); - ++i; - continue; - } - - size_t StoreSizeInBytes = LargestStoreSizeInBytes; - // Fit store size into the range. - while (StoreSizeInBytes > End - i) - StoreSizeInBytes /= 2; - - // Minimize store size by trimming trailing zeros. - for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { - while (j <= StoreSizeInBytes / 2) - StoreSizeInBytes /= 2; - } - - uint64_t Val = 0; - for (size_t j = 0; j < StoreSizeInBytes; j++) { - if (IsLittleEndian) - Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); - else - Val = (Val << 8) | ShadowBytes[i + j]; - } - - Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); - Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); - IRB.CreateAlignedStore( - Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); - - i += StoreSizeInBytes; - } -} - -void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, - ArrayRef<uint8_t> ShadowBytes, - IRBuilder<> &IRB, Value *ShadowBase) { - copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); -} - -void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, - ArrayRef<uint8_t> ShadowBytes, - size_t Begin, size_t End, - IRBuilder<> &IRB, Value *ShadowBase) { - assert(ShadowMask.size() == ShadowBytes.size()); - size_t Done = Begin; - for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { - if (!ShadowMask[i]) { - assert(!ShadowBytes[i]); - continue; - } - uint8_t Val = ShadowBytes[i]; - if (!AsanSetShadowFunc[Val]) - continue; - - // Skip same values. - for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { - } - - if (j - i >= ClMaxInlinePoisoningSize) { - copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); - IRB.CreateCall(AsanSetShadowFunc[Val], - {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), - ConstantInt::get(IntptrTy, j - i)}); - Done = j; - } - } - - copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); -} - -// Fake stack allocator (asan_fake_stack.h) has 11 size classes -// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass -static int StackMallocSizeClass(uint64_t LocalStackSize) { - assert(LocalStackSize <= kMaxStackMallocSize); - uint64_t MaxSize = kMinStackMallocSize; - for (int i = 0;; i++, MaxSize *= 2) - if (LocalStackSize <= MaxSize) return i; - llvm_unreachable("impossible LocalStackSize"); -} - -void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { - Instruction *CopyInsertPoint = &F.front().front(); - if (CopyInsertPoint == ASan.LocalDynamicShadow) { - // Insert after the dynamic shadow location is determined - CopyInsertPoint = CopyInsertPoint->getNextNode(); - assert(CopyInsertPoint); - } - IRBuilder<> IRB(CopyInsertPoint); - const DataLayout &DL = F.getParent()->getDataLayout(); - for (Argument &Arg : F.args()) { - if (Arg.hasByValAttr()) { - Type *Ty = Arg.getType()->getPointerElementType(); - unsigned Align = Arg.getParamAlignment(); - if (Align == 0) Align = DL.getABITypeAlignment(Ty); - - AllocaInst *AI = IRB.CreateAlloca( - Ty, nullptr, - (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + - ".byval"); - AI->setAlignment(Align); - Arg.replaceAllUsesWith(AI); - - uint64_t AllocSize = DL.getTypeAllocSize(Ty); - IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize); - } - } -} - -PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, - Value *ValueIfTrue, - Instruction *ThenTerm, - Value *ValueIfFalse) { - PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); - BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); - PHI->addIncoming(ValueIfFalse, CondBlock); - BasicBlock *ThenBlock = ThenTerm->getParent(); - PHI->addIncoming(ValueIfTrue, ThenBlock); - return PHI; -} - -Value *FunctionStackPoisoner::createAllocaForLayout( - IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { - AllocaInst *Alloca; - if (Dynamic) { - Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), - ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), - "MyAlloca"); - } else { - Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), - nullptr, "MyAlloca"); - assert(Alloca->isStaticAlloca()); - } - assert((ClRealignStack & (ClRealignStack - 1)) == 0); - size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); - Alloca->setAlignment(FrameAlignment); - return IRB.CreatePointerCast(Alloca, IntptrTy); -} - -void FunctionStackPoisoner::createDynamicAllocasInitStorage() { - BasicBlock &FirstBB = *F.begin(); - IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); - DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); - IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); - DynamicAllocaLayout->setAlignment(32); -} - -void FunctionStackPoisoner::processDynamicAllocas() { - if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { - assert(DynamicAllocaPoisonCallVec.empty()); - return; - } - - // Insert poison calls for lifetime intrinsics for dynamic allocas. - for (const auto &APC : DynamicAllocaPoisonCallVec) { - assert(APC.InsBefore); - assert(APC.AI); - assert(ASan.isInterestingAlloca(*APC.AI)); - assert(!APC.AI->isStaticAlloca()); - - IRBuilder<> IRB(APC.InsBefore); - poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); - // Dynamic allocas will be unpoisoned unconditionally below in - // unpoisonDynamicAllocas. - // Flag that we need unpoison static allocas. - } - - // Handle dynamic allocas. - createDynamicAllocasInitStorage(); - for (auto &AI : DynamicAllocaVec) - handleDynamicAllocaCall(AI); - unpoisonDynamicAllocas(); -} - -void FunctionStackPoisoner::processStaticAllocas() { - if (AllocaVec.empty()) { - assert(StaticAllocaPoisonCallVec.empty()); - return; - } - - int StackMallocIdx = -1; - DebugLoc EntryDebugLocation; - if (auto SP = F.getSubprogram()) - EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); - - Instruction *InsBefore = AllocaVec[0]; - IRBuilder<> IRB(InsBefore); - IRB.SetCurrentDebugLocation(EntryDebugLocation); - - // Make sure non-instrumented allocas stay in the entry block. Otherwise, - // debug info is broken, because only entry-block allocas are treated as - // regular stack slots. - auto InsBeforeB = InsBefore->getParent(); - assert(InsBeforeB == &F.getEntryBlock()); - for (auto *AI : StaticAllocasToMoveUp) - if (AI->getParent() == InsBeforeB) - AI->moveBefore(InsBefore); - - // If we have a call to llvm.localescape, keep it in the entry block. - if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); - - SmallVector<ASanStackVariableDescription, 16> SVD; - SVD.reserve(AllocaVec.size()); - for (AllocaInst *AI : AllocaVec) { - ASanStackVariableDescription D = {AI->getName().data(), - ASan.getAllocaSizeInBytes(*AI), - 0, - AI->getAlignment(), - AI, - 0, - 0}; - SVD.push_back(D); - } - - // Minimal header size (left redzone) is 4 pointers, - // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. - size_t Granularity = 1ULL << Mapping.Scale; - size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); - const ASanStackFrameLayout &L = - ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); - - // Build AllocaToSVDMap for ASanStackVariableDescription lookup. - DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; - for (auto &Desc : SVD) - AllocaToSVDMap[Desc.AI] = &Desc; - - // Update SVD with information from lifetime intrinsics. - for (const auto &APC : StaticAllocaPoisonCallVec) { - assert(APC.InsBefore); - assert(APC.AI); - assert(ASan.isInterestingAlloca(*APC.AI)); - assert(APC.AI->isStaticAlloca()); - - ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; - Desc.LifetimeSize = Desc.Size; - if (const DILocation *FnLoc = EntryDebugLocation.get()) { - if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { - if (LifetimeLoc->getFile() == FnLoc->getFile()) - if (unsigned Line = LifetimeLoc->getLine()) - Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); - } - } - } - - auto DescriptionString = ComputeASanStackFrameDescription(SVD); - LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); - uint64_t LocalStackSize = L.FrameSize; - bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && - LocalStackSize <= kMaxStackMallocSize; - bool DoDynamicAlloca = ClDynamicAllocaStack; - // Don't do dynamic alloca or stack malloc if: - // 1) There is inline asm: too often it makes assumptions on which registers - // are available. - // 2) There is a returns_twice call (typically setjmp), which is - // optimization-hostile, and doesn't play well with introduced indirect - // register-relative calculation of local variable addresses. - DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; - DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; - - Value *StaticAlloca = - DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); - - Value *FakeStack; - Value *LocalStackBase; - Value *LocalStackBaseAlloca; - bool Deref; - - if (DoStackMalloc) { - LocalStackBaseAlloca = - IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); - // void *FakeStack = __asan_option_detect_stack_use_after_return - // ? __asan_stack_malloc_N(LocalStackSize) - // : nullptr; - // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); - Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( - kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); - Value *UseAfterReturnIsEnabled = - IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn), - Constant::getNullValue(IRB.getInt32Ty())); - Instruction *Term = - SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); - IRBuilder<> IRBIf(Term); - IRBIf.SetCurrentDebugLocation(EntryDebugLocation); - StackMallocIdx = StackMallocSizeClass(LocalStackSize); - assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); - Value *FakeStackValue = - IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], - ConstantInt::get(IntptrTy, LocalStackSize)); - IRB.SetInsertPoint(InsBefore); - IRB.SetCurrentDebugLocation(EntryDebugLocation); - FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, - ConstantInt::get(IntptrTy, 0)); - - Value *NoFakeStack = - IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); - Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); - IRBIf.SetInsertPoint(Term); - IRBIf.SetCurrentDebugLocation(EntryDebugLocation); - Value *AllocaValue = - DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; - - IRB.SetInsertPoint(InsBefore); - IRB.SetCurrentDebugLocation(EntryDebugLocation); - LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); - IRB.SetCurrentDebugLocation(EntryDebugLocation); - IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); - Deref = true; - } else { - // void *FakeStack = nullptr; - // void *LocalStackBase = alloca(LocalStackSize); - FakeStack = ConstantInt::get(IntptrTy, 0); - LocalStackBase = - DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; - LocalStackBaseAlloca = LocalStackBase; - Deref = false; - } - - // Replace Alloca instructions with base+offset. - for (const auto &Desc : SVD) { - AllocaInst *AI = Desc.AI; - replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, Deref, - Desc.Offset, DIExpression::NoDeref); - Value *NewAllocaPtr = IRB.CreateIntToPtr( - IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), - AI->getType()); - AI->replaceAllUsesWith(NewAllocaPtr); - } - - // The left-most redzone has enough space for at least 4 pointers. - // Write the Magic value to redzone[0]. - Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); - IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), - BasePlus0); - // Write the frame description constant to redzone[1]. - Value *BasePlus1 = IRB.CreateIntToPtr( - IRB.CreateAdd(LocalStackBase, - ConstantInt::get(IntptrTy, ASan.LongSize / 8)), - IntptrPtrTy); - GlobalVariable *StackDescriptionGlobal = - createPrivateGlobalForString(*F.getParent(), DescriptionString, - /*AllowMerging*/ true, kAsanGenPrefix); - Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); - IRB.CreateStore(Description, BasePlus1); - // Write the PC to redzone[2]. - Value *BasePlus2 = IRB.CreateIntToPtr( - IRB.CreateAdd(LocalStackBase, - ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), - IntptrPtrTy); - IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); - - const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); - - // Poison the stack red zones at the entry. - Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); - // As mask we must use most poisoned case: red zones and after scope. - // As bytes we can use either the same or just red zones only. - copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); - - if (!StaticAllocaPoisonCallVec.empty()) { - const auto &ShadowInScope = GetShadowBytes(SVD, L); - - // Poison static allocas near lifetime intrinsics. - for (const auto &APC : StaticAllocaPoisonCallVec) { - const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; - assert(Desc.Offset % L.Granularity == 0); - size_t Begin = Desc.Offset / L.Granularity; - size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; - - IRBuilder<> IRB(APC.InsBefore); - copyToShadow(ShadowAfterScope, - APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, - IRB, ShadowBase); - } - } - - SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); - SmallVector<uint8_t, 64> ShadowAfterReturn; - - // (Un)poison the stack before all ret instructions. - for (auto Ret : RetVec) { - IRBuilder<> IRBRet(Ret); - // Mark the current frame as retired. - IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), - BasePlus0); - if (DoStackMalloc) { - assert(StackMallocIdx >= 0); - // if FakeStack != 0 // LocalStackBase == FakeStack - // // In use-after-return mode, poison the whole stack frame. - // if StackMallocIdx <= 4 - // // For small sizes inline the whole thing: - // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); - // **SavedFlagPtr(FakeStack) = 0 - // else - // __asan_stack_free_N(FakeStack, LocalStackSize) - // else - // <This is not a fake stack; unpoison the redzones> - Value *Cmp = - IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); - Instruction *ThenTerm, *ElseTerm; - SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); - - IRBuilder<> IRBPoison(ThenTerm); - if (StackMallocIdx <= 4) { - int ClassSize = kMinStackMallocSize << StackMallocIdx; - ShadowAfterReturn.resize(ClassSize / L.Granularity, - kAsanStackUseAfterReturnMagic); - copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, - ShadowBase); - Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( - FakeStack, - ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); - Value *SavedFlagPtr = IRBPoison.CreateLoad( - IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); - IRBPoison.CreateStore( - Constant::getNullValue(IRBPoison.getInt8Ty()), - IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); - } else { - // For larger frames call __asan_stack_free_*. - IRBPoison.CreateCall( - AsanStackFreeFunc[StackMallocIdx], - {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); - } - - IRBuilder<> IRBElse(ElseTerm); - copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); - } else { - copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); - } - } - - // We are done. Remove the old unused alloca instructions. - for (auto AI : AllocaVec) AI->eraseFromParent(); -} - -void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, - IRBuilder<> &IRB, bool DoPoison) { - // For now just insert the call to ASan runtime. - Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); - Value *SizeArg = ConstantInt::get(IntptrTy, Size); - IRB.CreateCall( - DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, - {AddrArg, SizeArg}); -} - -// Handling llvm.lifetime intrinsics for a given %alloca: -// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. -// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect -// invalid accesses) and unpoison it for llvm.lifetime.start (the memory -// could be poisoned by previous llvm.lifetime.end instruction, as the -// variable may go in and out of scope several times, e.g. in loops). -// (3) if we poisoned at least one %alloca in a function, -// unpoison the whole stack frame at function exit. - -AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) - // We're interested only in allocas we can handle. - return ASan.isInterestingAlloca(*AI) ? AI : nullptr; - // See if we've already calculated (or started to calculate) alloca for a - // given value. - AllocaForValueMapTy::iterator I = AllocaForValue.find(V); - if (I != AllocaForValue.end()) return I->second; - // Store 0 while we're calculating alloca for value V to avoid - // infinite recursion if the value references itself. - AllocaForValue[V] = nullptr; - AllocaInst *Res = nullptr; - if (CastInst *CI = dyn_cast<CastInst>(V)) - Res = findAllocaForValue(CI->getOperand(0)); - else if (PHINode *PN = dyn_cast<PHINode>(V)) { - for (Value *IncValue : PN->incoming_values()) { - // Allow self-referencing phi-nodes. - if (IncValue == PN) continue; - AllocaInst *IncValueAI = findAllocaForValue(IncValue); - // AI for incoming values should exist and should all be equal. - if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) - return nullptr; - Res = IncValueAI; - } - } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { - Res = findAllocaForValue(EP->getPointerOperand()); - } else { - LLVM_DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V - << "\n"); - } - if (Res) AllocaForValue[V] = Res; - return Res; -} - -void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { - IRBuilder<> IRB(AI); - - const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); - const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; - - Value *Zero = Constant::getNullValue(IntptrTy); - Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); - Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); - - // Since we need to extend alloca with additional memory to locate - // redzones, and OldSize is number of allocated blocks with - // ElementSize size, get allocated memory size in bytes by - // OldSize * ElementSize. - const unsigned ElementSize = - F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); - Value *OldSize = - IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), - ConstantInt::get(IntptrTy, ElementSize)); - - // PartialSize = OldSize % 32 - Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); - - // Misalign = kAllocaRzSize - PartialSize; - Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); - - // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; - Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); - Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); - - // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize - // Align is added to locate left redzone, PartialPadding for possible - // partial redzone and kAllocaRzSize for right redzone respectively. - Value *AdditionalChunkSize = IRB.CreateAdd( - ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); - - Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); - - // Insert new alloca with new NewSize and Align params. - AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); - NewAlloca->setAlignment(Align); - - // NewAddress = Address + Align - Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), - ConstantInt::get(IntptrTy, Align)); - - // Insert __asan_alloca_poison call for new created alloca. - IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); - - // Store the last alloca's address to DynamicAllocaLayout. We'll need this - // for unpoisoning stuff. - IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); - - Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); - - // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. - AI->replaceAllUsesWith(NewAddressPtr); - - // We are done. Erase old alloca from parent. - AI->eraseFromParent(); -} - -// isSafeAccess returns true if Addr is always inbounds with respect to its -// base object. For example, it is a field access or an array access with -// constant inbounds index. -bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, - Value *Addr, uint64_t TypeSize) const { - SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); - if (!ObjSizeVis.bothKnown(SizeOffset)) return false; - uint64_t Size = SizeOffset.first.getZExtValue(); - int64_t Offset = SizeOffset.second.getSExtValue(); - // Three checks are required to ensure safety: - // . Offset >= 0 (since the offset is given from the base ptr) - // . Size >= Offset (unsigned) - // . Size - Offset >= NeededSize (unsigned) - return Offset >= 0 && Size >= uint64_t(Offset) && - Size - uint64_t(Offset) >= TypeSize / 8; -} |
