diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp | 1749 |
1 files changed, 0 insertions, 1749 deletions
diff --git a/gnu/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp b/gnu/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp deleted file mode 100644 index 4c3c6c9adde..00000000000 --- a/gnu/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp +++ /dev/null @@ -1,1749 +0,0 @@ -//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -/// \file -/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow -/// analysis. -/// -/// Unlike other Sanitizer tools, this tool is not designed to detect a specific -/// class of bugs on its own. Instead, it provides a generic dynamic data flow -/// analysis framework to be used by clients to help detect application-specific -/// issues within their own code. -/// -/// The analysis is based on automatic propagation of data flow labels (also -/// known as taint labels) through a program as it performs computation. Each -/// byte of application memory is backed by two bytes of shadow memory which -/// hold the label. On Linux/x86_64, memory is laid out as follows: -/// -/// +--------------------+ 0x800000000000 (top of memory) -/// | application memory | -/// +--------------------+ 0x700000008000 (kAppAddr) -/// | | -/// | unused | -/// | | -/// +--------------------+ 0x200200000000 (kUnusedAddr) -/// | union table | -/// +--------------------+ 0x200000000000 (kUnionTableAddr) -/// | shadow memory | -/// +--------------------+ 0x000000010000 (kShadowAddr) -/// | reserved by kernel | -/// +--------------------+ 0x000000000000 -/// -/// To derive a shadow memory address from an application memory address, -/// bits 44-46 are cleared to bring the address into the range -/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to -/// account for the double byte representation of shadow labels and move the -/// address into the shadow memory range. See the function -/// DataFlowSanitizer::getShadowAddress below. -/// -/// For more information, please refer to the design document: -/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/SpecialCaseList.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <iterator> -#include <memory> -#include <set> -#include <string> -#include <utility> -#include <vector> - -using namespace llvm; - -// External symbol to be used when generating the shadow address for -// architectures with multiple VMAs. Instead of using a constant integer -// the runtime will set the external mask based on the VMA range. -static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; - -// The -dfsan-preserve-alignment flag controls whether this pass assumes that -// alignment requirements provided by the input IR are correct. For example, -// if the input IR contains a load with alignment 8, this flag will cause -// the shadow load to have alignment 16. This flag is disabled by default as -// we have unfortunately encountered too much code (including Clang itself; -// see PR14291) which performs misaligned access. -static cl::opt<bool> ClPreserveAlignment( - "dfsan-preserve-alignment", - cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, - cl::init(false)); - -// The ABI list files control how shadow parameters are passed. The pass treats -// every function labelled "uninstrumented" in the ABI list file as conforming -// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains -// additional annotations for those functions, a call to one of those functions -// will produce a warning message, as the labelling behaviour of the function is -// unknown. The other supported annotations are "functional" and "discard", -// which are described below under DataFlowSanitizer::WrapperKind. -static cl::list<std::string> ClABIListFiles( - "dfsan-abilist", - cl::desc("File listing native ABI functions and how the pass treats them"), - cl::Hidden); - -// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented -// functions (see DataFlowSanitizer::InstrumentedABI below). -static cl::opt<bool> ClArgsABI( - "dfsan-args-abi", - cl::desc("Use the argument ABI rather than the TLS ABI"), - cl::Hidden); - -// Controls whether the pass includes or ignores the labels of pointers in load -// instructions. -static cl::opt<bool> ClCombinePointerLabelsOnLoad( - "dfsan-combine-pointer-labels-on-load", - cl::desc("Combine the label of the pointer with the label of the data when " - "loading from memory."), - cl::Hidden, cl::init(true)); - -// Controls whether the pass includes or ignores the labels of pointers in -// stores instructions. -static cl::opt<bool> ClCombinePointerLabelsOnStore( - "dfsan-combine-pointer-labels-on-store", - cl::desc("Combine the label of the pointer with the label of the data when " - "storing in memory."), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClDebugNonzeroLabels( - "dfsan-debug-nonzero-labels", - cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " - "load or return with a nonzero label"), - cl::Hidden); - -static StringRef GetGlobalTypeString(const GlobalValue &G) { - // Types of GlobalVariables are always pointer types. - Type *GType = G.getValueType(); - // For now we support blacklisting struct types only. - if (StructType *SGType = dyn_cast<StructType>(GType)) { - if (!SGType->isLiteral()) - return SGType->getName(); - } - return "<unknown type>"; -} - -namespace { - -class DFSanABIList { - std::unique_ptr<SpecialCaseList> SCL; - - public: - DFSanABIList() = default; - - void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } - - /// Returns whether either this function or its source file are listed in the - /// given category. - bool isIn(const Function &F, StringRef Category) const { - return isIn(*F.getParent(), Category) || - SCL->inSection("dataflow", "fun", F.getName(), Category); - } - - /// Returns whether this global alias is listed in the given category. - /// - /// If GA aliases a function, the alias's name is matched as a function name - /// would be. Similarly, aliases of globals are matched like globals. - bool isIn(const GlobalAlias &GA, StringRef Category) const { - if (isIn(*GA.getParent(), Category)) - return true; - - if (isa<FunctionType>(GA.getValueType())) - return SCL->inSection("dataflow", "fun", GA.getName(), Category); - - return SCL->inSection("dataflow", "global", GA.getName(), Category) || - SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), - Category); - } - - /// Returns whether this module is listed in the given category. - bool isIn(const Module &M, StringRef Category) const { - return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); - } -}; - -/// TransformedFunction is used to express the result of transforming one -/// function type into another. This struct is immutable. It holds metadata -/// useful for updating calls of the old function to the new type. -struct TransformedFunction { - TransformedFunction(FunctionType* OriginalType, - FunctionType* TransformedType, - std::vector<unsigned> ArgumentIndexMapping) - : OriginalType(OriginalType), - TransformedType(TransformedType), - ArgumentIndexMapping(ArgumentIndexMapping) {} - - // Disallow copies. - TransformedFunction(const TransformedFunction&) = delete; - TransformedFunction& operator=(const TransformedFunction&) = delete; - - // Allow moves. - TransformedFunction(TransformedFunction&&) = default; - TransformedFunction& operator=(TransformedFunction&&) = default; - - /// Type of the function before the transformation. - FunctionType *OriginalType; - - /// Type of the function after the transformation. - FunctionType *TransformedType; - - /// Transforming a function may change the position of arguments. This - /// member records the mapping from each argument's old position to its new - /// position. Argument positions are zero-indexed. If the transformation - /// from F to F' made the first argument of F into the third argument of F', - /// then ArgumentIndexMapping[0] will equal 2. - std::vector<unsigned> ArgumentIndexMapping; -}; - -/// Given function attributes from a call site for the original function, -/// return function attributes appropriate for a call to the transformed -/// function. -AttributeList TransformFunctionAttributes( - const TransformedFunction& TransformedFunction, - LLVMContext& Ctx, AttributeList CallSiteAttrs) { - - // Construct a vector of AttributeSet for each function argument. - std::vector<llvm::AttributeSet> ArgumentAttributes( - TransformedFunction.TransformedType->getNumParams()); - - // Copy attributes from the parameter of the original function to the - // transformed version. 'ArgumentIndexMapping' holds the mapping from - // old argument position to new. - for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); - i < ie; ++i) { - unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; - ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); - } - - // Copy annotations on varargs arguments. - for (unsigned i = TransformedFunction.OriginalType->getNumParams(), - ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { - ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); - } - - return AttributeList::get( - Ctx, - CallSiteAttrs.getFnAttributes(), - CallSiteAttrs.getRetAttributes(), - llvm::makeArrayRef(ArgumentAttributes)); -} - -class DataFlowSanitizer : public ModulePass { - friend struct DFSanFunction; - friend class DFSanVisitor; - - enum { - ShadowWidth = 16 - }; - - /// Which ABI should be used for instrumented functions? - enum InstrumentedABI { - /// Argument and return value labels are passed through additional - /// arguments and by modifying the return type. - IA_Args, - - /// Argument and return value labels are passed through TLS variables - /// __dfsan_arg_tls and __dfsan_retval_tls. - IA_TLS - }; - - /// How should calls to uninstrumented functions be handled? - enum WrapperKind { - /// This function is present in an uninstrumented form but we don't know - /// how it should be handled. Print a warning and call the function anyway. - /// Don't label the return value. - WK_Warning, - - /// This function does not write to (user-accessible) memory, and its return - /// value is unlabelled. - WK_Discard, - - /// This function does not write to (user-accessible) memory, and the label - /// of its return value is the union of the label of its arguments. - WK_Functional, - - /// Instead of calling the function, a custom wrapper __dfsw_F is called, - /// where F is the name of the function. This function may wrap the - /// original function or provide its own implementation. This is similar to - /// the IA_Args ABI, except that IA_Args uses a struct return type to - /// pass the return value shadow in a register, while WK_Custom uses an - /// extra pointer argument to return the shadow. This allows the wrapped - /// form of the function type to be expressed in C. - WK_Custom - }; - - Module *Mod; - LLVMContext *Ctx; - IntegerType *ShadowTy; - PointerType *ShadowPtrTy; - IntegerType *IntptrTy; - ConstantInt *ZeroShadow; - ConstantInt *ShadowPtrMask; - ConstantInt *ShadowPtrMul; - Constant *ArgTLS; - Constant *RetvalTLS; - void *(*GetArgTLSPtr)(); - void *(*GetRetvalTLSPtr)(); - Constant *GetArgTLS; - Constant *GetRetvalTLS; - Constant *ExternalShadowMask; - FunctionType *DFSanUnionFnTy; - FunctionType *DFSanUnionLoadFnTy; - FunctionType *DFSanUnimplementedFnTy; - FunctionType *DFSanSetLabelFnTy; - FunctionType *DFSanNonzeroLabelFnTy; - FunctionType *DFSanVarargWrapperFnTy; - Constant *DFSanUnionFn; - Constant *DFSanCheckedUnionFn; - Constant *DFSanUnionLoadFn; - Constant *DFSanUnimplementedFn; - Constant *DFSanSetLabelFn; - Constant *DFSanNonzeroLabelFn; - Constant *DFSanVarargWrapperFn; - MDNode *ColdCallWeights; - DFSanABIList ABIList; - DenseMap<Value *, Function *> UnwrappedFnMap; - AttrBuilder ReadOnlyNoneAttrs; - bool DFSanRuntimeShadowMask = false; - - Value *getShadowAddress(Value *Addr, Instruction *Pos); - bool isInstrumented(const Function *F); - bool isInstrumented(const GlobalAlias *GA); - FunctionType *getArgsFunctionType(FunctionType *T); - FunctionType *getTrampolineFunctionType(FunctionType *T); - TransformedFunction getCustomFunctionType(FunctionType *T); - InstrumentedABI getInstrumentedABI(); - WrapperKind getWrapperKind(Function *F); - void addGlobalNamePrefix(GlobalValue *GV); - Function *buildWrapperFunction(Function *F, StringRef NewFName, - GlobalValue::LinkageTypes NewFLink, - FunctionType *NewFT); - Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); - -public: - static char ID; - - DataFlowSanitizer( - const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), - void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); - - bool doInitialization(Module &M) override; - bool runOnModule(Module &M) override; -}; - -struct DFSanFunction { - DataFlowSanitizer &DFS; - Function *F; - DominatorTree DT; - DataFlowSanitizer::InstrumentedABI IA; - bool IsNativeABI; - Value *ArgTLSPtr = nullptr; - Value *RetvalTLSPtr = nullptr; - AllocaInst *LabelReturnAlloca = nullptr; - DenseMap<Value *, Value *> ValShadowMap; - DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; - std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; - DenseSet<Instruction *> SkipInsts; - std::vector<Value *> NonZeroChecks; - bool AvoidNewBlocks; - - struct CachedCombinedShadow { - BasicBlock *Block; - Value *Shadow; - }; - DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> - CachedCombinedShadows; - DenseMap<Value *, std::set<Value *>> ShadowElements; - - DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) - : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { - DT.recalculate(*F); - // FIXME: Need to track down the register allocator issue which causes poor - // performance in pathological cases with large numbers of basic blocks. - AvoidNewBlocks = F->size() > 1000; - } - - Value *getArgTLSPtr(); - Value *getArgTLS(unsigned Index, Instruction *Pos); - Value *getRetvalTLS(); - Value *getShadow(Value *V); - void setShadow(Instruction *I, Value *Shadow); - Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); - Value *combineOperandShadows(Instruction *Inst); - Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, - Instruction *Pos); - void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, - Instruction *Pos); -}; - -class DFSanVisitor : public InstVisitor<DFSanVisitor> { -public: - DFSanFunction &DFSF; - - DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} - - const DataLayout &getDataLayout() const { - return DFSF.F->getParent()->getDataLayout(); - } - - void visitOperandShadowInst(Instruction &I); - void visitBinaryOperator(BinaryOperator &BO); - void visitCastInst(CastInst &CI); - void visitCmpInst(CmpInst &CI); - void visitGetElementPtrInst(GetElementPtrInst &GEPI); - void visitLoadInst(LoadInst &LI); - void visitStoreInst(StoreInst &SI); - void visitReturnInst(ReturnInst &RI); - void visitCallSite(CallSite CS); - void visitPHINode(PHINode &PN); - void visitExtractElementInst(ExtractElementInst &I); - void visitInsertElementInst(InsertElementInst &I); - void visitShuffleVectorInst(ShuffleVectorInst &I); - void visitExtractValueInst(ExtractValueInst &I); - void visitInsertValueInst(InsertValueInst &I); - void visitAllocaInst(AllocaInst &I); - void visitSelectInst(SelectInst &I); - void visitMemSetInst(MemSetInst &I); - void visitMemTransferInst(MemTransferInst &I); -}; - -} // end anonymous namespace - -char DataFlowSanitizer::ID; - -INITIALIZE_PASS(DataFlowSanitizer, "dfsan", - "DataFlowSanitizer: dynamic data flow analysis.", false, false) - -ModulePass * -llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, - void *(*getArgTLS)(), - void *(*getRetValTLS)()) { - return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); -} - -DataFlowSanitizer::DataFlowSanitizer( - const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), - void *(*getRetValTLS)()) - : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { - std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); - AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), - ClABIListFiles.end()); - ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles)); -} - -FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { - SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); - ArgTypes.append(T->getNumParams(), ShadowTy); - if (T->isVarArg()) - ArgTypes.push_back(ShadowPtrTy); - Type *RetType = T->getReturnType(); - if (!RetType->isVoidTy()) - RetType = StructType::get(RetType, ShadowTy); - return FunctionType::get(RetType, ArgTypes, T->isVarArg()); -} - -FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { - assert(!T->isVarArg()); - SmallVector<Type *, 4> ArgTypes; - ArgTypes.push_back(T->getPointerTo()); - ArgTypes.append(T->param_begin(), T->param_end()); - ArgTypes.append(T->getNumParams(), ShadowTy); - Type *RetType = T->getReturnType(); - if (!RetType->isVoidTy()) - ArgTypes.push_back(ShadowPtrTy); - return FunctionType::get(T->getReturnType(), ArgTypes, false); -} - -TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { - SmallVector<Type *, 4> ArgTypes; - - // Some parameters of the custom function being constructed are - // parameters of T. Record the mapping from parameters of T to - // parameters of the custom function, so that parameter attributes - // at call sites can be updated. - std::vector<unsigned> ArgumentIndexMapping; - for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { - Type* param_type = T->getParamType(i); - FunctionType *FT; - if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( - cast<PointerType>(param_type)->getElementType()))) { - ArgumentIndexMapping.push_back(ArgTypes.size()); - ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); - ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); - } else { - ArgumentIndexMapping.push_back(ArgTypes.size()); - ArgTypes.push_back(param_type); - } - } - for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) - ArgTypes.push_back(ShadowTy); - if (T->isVarArg()) - ArgTypes.push_back(ShadowPtrTy); - Type *RetType = T->getReturnType(); - if (!RetType->isVoidTy()) - ArgTypes.push_back(ShadowPtrTy); - return TransformedFunction( - T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), - ArgumentIndexMapping); -} - -bool DataFlowSanitizer::doInitialization(Module &M) { - Triple TargetTriple(M.getTargetTriple()); - bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; - bool IsMIPS64 = TargetTriple.isMIPS64(); - bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || - TargetTriple.getArch() == Triple::aarch64_be; - - const DataLayout &DL = M.getDataLayout(); - - Mod = &M; - Ctx = &M.getContext(); - ShadowTy = IntegerType::get(*Ctx, ShadowWidth); - ShadowPtrTy = PointerType::getUnqual(ShadowTy); - IntptrTy = DL.getIntPtrType(*Ctx); - ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); - ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); - if (IsX86_64) - ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); - else if (IsMIPS64) - ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); - // AArch64 supports multiple VMAs and the shadow mask is set at runtime. - else if (IsAArch64) - DFSanRuntimeShadowMask = true; - else - report_fatal_error("unsupported triple"); - - Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; - DFSanUnionFnTy = - FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); - Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; - DFSanUnionLoadFnTy = - FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); - DFSanUnimplementedFnTy = FunctionType::get( - Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); - Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; - DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), - DFSanSetLabelArgs, /*isVarArg=*/false); - DFSanNonzeroLabelFnTy = FunctionType::get( - Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); - DFSanVarargWrapperFnTy = FunctionType::get( - Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); - - if (GetArgTLSPtr) { - Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); - ArgTLS = nullptr; - GetArgTLS = ConstantExpr::getIntToPtr( - ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), - PointerType::getUnqual( - FunctionType::get(PointerType::getUnqual(ArgTLSTy), false))); - } - if (GetRetvalTLSPtr) { - RetvalTLS = nullptr; - GetRetvalTLS = ConstantExpr::getIntToPtr( - ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), - PointerType::getUnqual( - FunctionType::get(PointerType::getUnqual(ShadowTy), false))); - } - - ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); - return true; -} - -bool DataFlowSanitizer::isInstrumented(const Function *F) { - return !ABIList.isIn(*F, "uninstrumented"); -} - -bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { - return !ABIList.isIn(*GA, "uninstrumented"); -} - -DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { - return ClArgsABI ? IA_Args : IA_TLS; -} - -DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { - if (ABIList.isIn(*F, "functional")) - return WK_Functional; - if (ABIList.isIn(*F, "discard")) - return WK_Discard; - if (ABIList.isIn(*F, "custom")) - return WK_Custom; - - return WK_Warning; -} - -void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { - std::string GVName = GV->getName(), Prefix = "dfs$"; - GV->setName(Prefix + GVName); - - // Try to change the name of the function in module inline asm. We only do - // this for specific asm directives, currently only ".symver", to try to avoid - // corrupting asm which happens to contain the symbol name as a substring. - // Note that the substitution for .symver assumes that the versioned symbol - // also has an instrumented name. - std::string Asm = GV->getParent()->getModuleInlineAsm(); - std::string SearchStr = ".symver " + GVName + ","; - size_t Pos = Asm.find(SearchStr); - if (Pos != std::string::npos) { - Asm.replace(Pos, SearchStr.size(), - ".symver " + Prefix + GVName + "," + Prefix); - GV->getParent()->setModuleInlineAsm(Asm); - } -} - -Function * -DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, - GlobalValue::LinkageTypes NewFLink, - FunctionType *NewFT) { - FunctionType *FT = F->getFunctionType(); - Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), - NewFName, F->getParent()); - NewF->copyAttributesFrom(F); - NewF->removeAttributes( - AttributeList::ReturnIndex, - AttributeFuncs::typeIncompatible(NewFT->getReturnType())); - - BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); - if (F->isVarArg()) { - NewF->removeAttributes(AttributeList::FunctionIndex, - AttrBuilder().addAttribute("split-stack")); - CallInst::Create(DFSanVarargWrapperFn, - IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", - BB); - new UnreachableInst(*Ctx, BB); - } else { - std::vector<Value *> Args; - unsigned n = FT->getNumParams(); - for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) - Args.push_back(&*ai); - CallInst *CI = CallInst::Create(F, Args, "", BB); - if (FT->getReturnType()->isVoidTy()) - ReturnInst::Create(*Ctx, BB); - else - ReturnInst::Create(*Ctx, CI, BB); - } - - return NewF; -} - -Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, - StringRef FName) { - FunctionType *FTT = getTrampolineFunctionType(FT); - Constant *C = Mod->getOrInsertFunction(FName, FTT); - Function *F = dyn_cast<Function>(C); - if (F && F->isDeclaration()) { - F->setLinkage(GlobalValue::LinkOnceODRLinkage); - BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); - std::vector<Value *> Args; - Function::arg_iterator AI = F->arg_begin(); ++AI; - for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) - Args.push_back(&*AI); - CallInst *CI = CallInst::Create(&*F->arg_begin(), Args, "", BB); - ReturnInst *RI; - if (FT->getReturnType()->isVoidTy()) - RI = ReturnInst::Create(*Ctx, BB); - else - RI = ReturnInst::Create(*Ctx, CI, BB); - - DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); - Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; - for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) - DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; - DFSanVisitor(DFSF).visitCallInst(*CI); - if (!FT->getReturnType()->isVoidTy()) - new StoreInst(DFSF.getShadow(RI->getReturnValue()), - &*std::prev(F->arg_end()), RI); - } - - return C; -} - -bool DataFlowSanitizer::runOnModule(Module &M) { - if (ABIList.isIn(M, "skip")) - return false; - - if (!GetArgTLSPtr) { - Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); - ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); - if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) - G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); - } - if (!GetRetvalTLSPtr) { - RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); - if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) - G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); - } - - ExternalShadowMask = - Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); - - DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy); - if (Function *F = dyn_cast<Function>(DFSanUnionFn)) { - F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); - F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); - F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - F->addParamAttr(0, Attribute::ZExt); - F->addParamAttr(1, Attribute::ZExt); - } - DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy); - if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) { - F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); - F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); - F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - F->addParamAttr(0, Attribute::ZExt); - F->addParamAttr(1, Attribute::ZExt); - } - DFSanUnionLoadFn = - Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy); - if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) { - F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); - F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly); - F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - } - DFSanUnimplementedFn = - Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); - DFSanSetLabelFn = - Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy); - if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) { - F->addParamAttr(0, Attribute::ZExt); - } - DFSanNonzeroLabelFn = - Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); - DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", - DFSanVarargWrapperFnTy); - - std::vector<Function *> FnsToInstrument; - SmallPtrSet<Function *, 2> FnsWithNativeABI; - for (Function &i : M) { - if (!i.isIntrinsic() && - &i != DFSanUnionFn && - &i != DFSanCheckedUnionFn && - &i != DFSanUnionLoadFn && - &i != DFSanUnimplementedFn && - &i != DFSanSetLabelFn && - &i != DFSanNonzeroLabelFn && - &i != DFSanVarargWrapperFn) - FnsToInstrument.push_back(&i); - } - - // Give function aliases prefixes when necessary, and build wrappers where the - // instrumentedness is inconsistent. - for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { - GlobalAlias *GA = &*i; - ++i; - // Don't stop on weak. We assume people aren't playing games with the - // instrumentedness of overridden weak aliases. - if (auto F = dyn_cast<Function>(GA->getBaseObject())) { - bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); - if (GAInst && FInst) { - addGlobalNamePrefix(GA); - } else if (GAInst != FInst) { - // Non-instrumented alias of an instrumented function, or vice versa. - // Replace the alias with a native-ABI wrapper of the aliasee. The pass - // below will take care of instrumenting it. - Function *NewF = - buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); - GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); - NewF->takeName(GA); - GA->eraseFromParent(); - FnsToInstrument.push_back(NewF); - } - } - } - - ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) - .addAttribute(Attribute::ReadNone); - - // First, change the ABI of every function in the module. ABI-listed - // functions keep their original ABI and get a wrapper function. - for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), - e = FnsToInstrument.end(); - i != e; ++i) { - Function &F = **i; - FunctionType *FT = F.getFunctionType(); - - bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && - FT->getReturnType()->isVoidTy()); - - if (isInstrumented(&F)) { - // Instrumented functions get a 'dfs$' prefix. This allows us to more - // easily identify cases of mismatching ABIs. - if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { - FunctionType *NewFT = getArgsFunctionType(FT); - Function *NewF = Function::Create(NewFT, F.getLinkage(), - F.getAddressSpace(), "", &M); - NewF->copyAttributesFrom(&F); - NewF->removeAttributes( - AttributeList::ReturnIndex, - AttributeFuncs::typeIncompatible(NewFT->getReturnType())); - for (Function::arg_iterator FArg = F.arg_begin(), - NewFArg = NewF->arg_begin(), - FArgEnd = F.arg_end(); - FArg != FArgEnd; ++FArg, ++NewFArg) { - FArg->replaceAllUsesWith(&*NewFArg); - } - NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); - - for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); - UI != UE;) { - BlockAddress *BA = dyn_cast<BlockAddress>(*UI); - ++UI; - if (BA) { - BA->replaceAllUsesWith( - BlockAddress::get(NewF, BA->getBasicBlock())); - delete BA; - } - } - F.replaceAllUsesWith( - ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); - NewF->takeName(&F); - F.eraseFromParent(); - *i = NewF; - addGlobalNamePrefix(NewF); - } else { - addGlobalNamePrefix(&F); - } - } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { - // Build a wrapper function for F. The wrapper simply calls F, and is - // added to FnsToInstrument so that any instrumentation according to its - // WrapperKind is done in the second pass below. - FunctionType *NewFT = getInstrumentedABI() == IA_Args - ? getArgsFunctionType(FT) - : FT; - - // If the function being wrapped has local linkage, then preserve the - // function's linkage in the wrapper function. - GlobalValue::LinkageTypes wrapperLinkage = - F.hasLocalLinkage() - ? F.getLinkage() - : GlobalValue::LinkOnceODRLinkage; - - Function *NewF = buildWrapperFunction( - &F, std::string("dfsw$") + std::string(F.getName()), - wrapperLinkage, NewFT); - if (getInstrumentedABI() == IA_TLS) - NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); - - Value *WrappedFnCst = - ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); - F.replaceAllUsesWith(WrappedFnCst); - - UnwrappedFnMap[WrappedFnCst] = &F; - *i = NewF; - - if (!F.isDeclaration()) { - // This function is probably defining an interposition of an - // uninstrumented function and hence needs to keep the original ABI. - // But any functions it may call need to use the instrumented ABI, so - // we instrument it in a mode which preserves the original ABI. - FnsWithNativeABI.insert(&F); - - // This code needs to rebuild the iterators, as they may be invalidated - // by the push_back, taking care that the new range does not include - // any functions added by this code. - size_t N = i - FnsToInstrument.begin(), - Count = e - FnsToInstrument.begin(); - FnsToInstrument.push_back(&F); - i = FnsToInstrument.begin() + N; - e = FnsToInstrument.begin() + Count; - } - // Hopefully, nobody will try to indirectly call a vararg - // function... yet. - } else if (FT->isVarArg()) { - UnwrappedFnMap[&F] = &F; - *i = nullptr; - } - } - - for (Function *i : FnsToInstrument) { - if (!i || i->isDeclaration()) - continue; - - removeUnreachableBlocks(*i); - - DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); - - // DFSanVisitor may create new basic blocks, which confuses df_iterator. - // Build a copy of the list before iterating over it. - SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); - - for (BasicBlock *i : BBList) { - Instruction *Inst = &i->front(); - while (true) { - // DFSanVisitor may split the current basic block, changing the current - // instruction's next pointer and moving the next instruction to the - // tail block from which we should continue. - Instruction *Next = Inst->getNextNode(); - // DFSanVisitor may delete Inst, so keep track of whether it was a - // terminator. - bool IsTerminator = Inst->isTerminator(); - if (!DFSF.SkipInsts.count(Inst)) - DFSanVisitor(DFSF).visit(Inst); - if (IsTerminator) - break; - Inst = Next; - } - } - - // We will not necessarily be able to compute the shadow for every phi node - // until we have visited every block. Therefore, the code that handles phi - // nodes adds them to the PHIFixups list so that they can be properly - // handled here. - for (std::vector<std::pair<PHINode *, PHINode *>>::iterator - i = DFSF.PHIFixups.begin(), - e = DFSF.PHIFixups.end(); - i != e; ++i) { - for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; - ++val) { - i->second->setIncomingValue( - val, DFSF.getShadow(i->first->getIncomingValue(val))); - } - } - - // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy - // places (i.e. instructions in basic blocks we haven't even begun visiting - // yet). To make our life easier, do this work in a pass after the main - // instrumentation. - if (ClDebugNonzeroLabels) { - for (Value *V : DFSF.NonZeroChecks) { - Instruction *Pos; - if (Instruction *I = dyn_cast<Instruction>(V)) - Pos = I->getNextNode(); - else - Pos = &DFSF.F->getEntryBlock().front(); - while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) - Pos = Pos->getNextNode(); - IRBuilder<> IRB(Pos); - Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); - BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( - Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); - IRBuilder<> ThenIRB(BI); - ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); - } - } - } - - return false; -} - -Value *DFSanFunction::getArgTLSPtr() { - if (ArgTLSPtr) - return ArgTLSPtr; - if (DFS.ArgTLS) - return ArgTLSPtr = DFS.ArgTLS; - - IRBuilder<> IRB(&F->getEntryBlock().front()); - return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {}); -} - -Value *DFSanFunction::getRetvalTLS() { - if (RetvalTLSPtr) - return RetvalTLSPtr; - if (DFS.RetvalTLS) - return RetvalTLSPtr = DFS.RetvalTLS; - - IRBuilder<> IRB(&F->getEntryBlock().front()); - return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {}); -} - -Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { - IRBuilder<> IRB(Pos); - return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx); -} - -Value *DFSanFunction::getShadow(Value *V) { - if (!isa<Argument>(V) && !isa<Instruction>(V)) - return DFS.ZeroShadow; - Value *&Shadow = ValShadowMap[V]; - if (!Shadow) { - if (Argument *A = dyn_cast<Argument>(V)) { - if (IsNativeABI) - return DFS.ZeroShadow; - switch (IA) { - case DataFlowSanitizer::IA_TLS: { - Value *ArgTLSPtr = getArgTLSPtr(); - Instruction *ArgTLSPos = - DFS.ArgTLS ? &*F->getEntryBlock().begin() - : cast<Instruction>(ArgTLSPtr)->getNextNode(); - IRBuilder<> IRB(ArgTLSPos); - Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos)); - break; - } - case DataFlowSanitizer::IA_Args: { - unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; - Function::arg_iterator i = F->arg_begin(); - while (ArgIdx--) - ++i; - Shadow = &*i; - assert(Shadow->getType() == DFS.ShadowTy); - break; - } - } - NonZeroChecks.push_back(Shadow); - } else { - Shadow = DFS.ZeroShadow; - } - } - return Shadow; -} - -void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { - assert(!ValShadowMap.count(I)); - assert(Shadow->getType() == DFS.ShadowTy); - ValShadowMap[I] = Shadow; -} - -Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { - assert(Addr != RetvalTLS && "Reinstrumenting?"); - IRBuilder<> IRB(Pos); - Value *ShadowPtrMaskValue; - if (DFSanRuntimeShadowMask) - ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); - else - ShadowPtrMaskValue = ShadowPtrMask; - return IRB.CreateIntToPtr( - IRB.CreateMul( - IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), - IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), - ShadowPtrMul), - ShadowPtrTy); -} - -// Generates IR to compute the union of the two given shadows, inserting it -// before Pos. Returns the computed union Value. -Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { - if (V1 == DFS.ZeroShadow) - return V2; - if (V2 == DFS.ZeroShadow) - return V1; - if (V1 == V2) - return V1; - - auto V1Elems = ShadowElements.find(V1); - auto V2Elems = ShadowElements.find(V2); - if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { - if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), - V2Elems->second.begin(), V2Elems->second.end())) { - return V1; - } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), - V1Elems->second.begin(), V1Elems->second.end())) { - return V2; - } - } else if (V1Elems != ShadowElements.end()) { - if (V1Elems->second.count(V2)) - return V1; - } else if (V2Elems != ShadowElements.end()) { - if (V2Elems->second.count(V1)) - return V2; - } - - auto Key = std::make_pair(V1, V2); - if (V1 > V2) - std::swap(Key.first, Key.second); - CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; - if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) - return CCS.Shadow; - - IRBuilder<> IRB(Pos); - if (AvoidNewBlocks) { - CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); - Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - Call->addParamAttr(0, Attribute::ZExt); - Call->addParamAttr(1, Attribute::ZExt); - - CCS.Block = Pos->getParent(); - CCS.Shadow = Call; - } else { - BasicBlock *Head = Pos->getParent(); - Value *Ne = IRB.CreateICmpNE(V1, V2); - BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( - Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); - IRBuilder<> ThenIRB(BI); - CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); - Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - Call->addParamAttr(0, Attribute::ZExt); - Call->addParamAttr(1, Attribute::ZExt); - - BasicBlock *Tail = BI->getSuccessor(0); - PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); - Phi->addIncoming(Call, Call->getParent()); - Phi->addIncoming(V1, Head); - - CCS.Block = Tail; - CCS.Shadow = Phi; - } - - std::set<Value *> UnionElems; - if (V1Elems != ShadowElements.end()) { - UnionElems = V1Elems->second; - } else { - UnionElems.insert(V1); - } - if (V2Elems != ShadowElements.end()) { - UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); - } else { - UnionElems.insert(V2); - } - ShadowElements[CCS.Shadow] = std::move(UnionElems); - - return CCS.Shadow; -} - -// A convenience function which folds the shadows of each of the operands -// of the provided instruction Inst, inserting the IR before Inst. Returns -// the computed union Value. -Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { - if (Inst->getNumOperands() == 0) - return DFS.ZeroShadow; - - Value *Shadow = getShadow(Inst->getOperand(0)); - for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { - Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); - } - return Shadow; -} - -void DFSanVisitor::visitOperandShadowInst(Instruction &I) { - Value *CombinedShadow = DFSF.combineOperandShadows(&I); - DFSF.setShadow(&I, CombinedShadow); -} - -// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where -// Addr has alignment Align, and take the union of each of those shadows. -Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, - Instruction *Pos) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { - const auto i = AllocaShadowMap.find(AI); - if (i != AllocaShadowMap.end()) { - IRBuilder<> IRB(Pos); - return IRB.CreateLoad(i->second); - } - } - - uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; - SmallVector<Value *, 2> Objs; - GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout()); - bool AllConstants = true; - for (Value *Obj : Objs) { - if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) - continue; - if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) - continue; - - AllConstants = false; - break; - } - if (AllConstants) - return DFS.ZeroShadow; - - Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); - switch (Size) { - case 0: - return DFS.ZeroShadow; - case 1: { - LoadInst *LI = new LoadInst(ShadowAddr, "", Pos); - LI->setAlignment(ShadowAlign); - return LI; - } - case 2: { - IRBuilder<> IRB(Pos); - Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, - ConstantInt::get(DFS.IntptrTy, 1)); - return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign), - IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos); - } - } - if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { - // Fast path for the common case where each byte has identical shadow: load - // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any - // shadow is non-equal. - BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); - IRBuilder<> FallbackIRB(FallbackBB); - CallInst *FallbackCall = FallbackIRB.CreateCall( - DFS.DFSanUnionLoadFn, - {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); - FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - - // Compare each of the shadows stored in the loaded 64 bits to each other, - // by computing (WideShadow rotl ShadowWidth) == WideShadow. - IRBuilder<> IRB(Pos); - Value *WideAddr = - IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); - Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign); - Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); - Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); - Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); - Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); - Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); - - BasicBlock *Head = Pos->getParent(); - BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); - - if (DomTreeNode *OldNode = DT.getNode(Head)) { - std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); - - DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); - for (auto Child : Children) - DT.changeImmediateDominator(Child, NewNode); - } - - // In the following code LastBr will refer to the previous basic block's - // conditional branch instruction, whose true successor is fixed up to point - // to the next block during the loop below or to the tail after the final - // iteration. - BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); - ReplaceInstWithInst(Head->getTerminator(), LastBr); - DT.addNewBlock(FallbackBB, Head); - - for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; - Ofs += 64 / DFS.ShadowWidth) { - BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); - DT.addNewBlock(NextBB, LastBr->getParent()); - IRBuilder<> NextIRB(NextBB); - WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, - ConstantInt::get(DFS.IntptrTy, 1)); - Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign); - ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); - LastBr->setSuccessor(0, NextBB); - LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); - } - - LastBr->setSuccessor(0, Tail); - FallbackIRB.CreateBr(Tail); - PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); - Shadow->addIncoming(FallbackCall, FallbackBB); - Shadow->addIncoming(TruncShadow, LastBr->getParent()); - return Shadow; - } - - IRBuilder<> IRB(Pos); - CallInst *FallbackCall = IRB.CreateCall( - DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); - FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - return FallbackCall; -} - -void DFSanVisitor::visitLoadInst(LoadInst &LI) { - auto &DL = LI.getModule()->getDataLayout(); - uint64_t Size = DL.getTypeStoreSize(LI.getType()); - if (Size == 0) { - DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); - return; - } - - uint64_t Align; - if (ClPreserveAlignment) { - Align = LI.getAlignment(); - if (Align == 0) - Align = DL.getABITypeAlignment(LI.getType()); - } else { - Align = 1; - } - IRBuilder<> IRB(&LI); - Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); - if (ClCombinePointerLabelsOnLoad) { - Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); - Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); - } - if (Shadow != DFSF.DFS.ZeroShadow) - DFSF.NonZeroChecks.push_back(Shadow); - - DFSF.setShadow(&LI, Shadow); -} - -void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, - Value *Shadow, Instruction *Pos) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { - const auto i = AllocaShadowMap.find(AI); - if (i != AllocaShadowMap.end()) { - IRBuilder<> IRB(Pos); - IRB.CreateStore(Shadow, i->second); - return; - } - } - - uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; - IRBuilder<> IRB(Pos); - Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); - if (Shadow == DFS.ZeroShadow) { - IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); - Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); - Value *ExtShadowAddr = - IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); - IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); - return; - } - - const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; - uint64_t Offset = 0; - if (Size >= ShadowVecSize) { - VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); - Value *ShadowVec = UndefValue::get(ShadowVecTy); - for (unsigned i = 0; i != ShadowVecSize; ++i) { - ShadowVec = IRB.CreateInsertElement( - ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); - } - Value *ShadowVecAddr = - IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); - do { - Value *CurShadowVecAddr = - IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); - IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); - Size -= ShadowVecSize; - ++Offset; - } while (Size >= ShadowVecSize); - Offset *= ShadowVecSize; - } - while (Size > 0) { - Value *CurShadowAddr = - IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); - IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); - --Size; - ++Offset; - } -} - -void DFSanVisitor::visitStoreInst(StoreInst &SI) { - auto &DL = SI.getModule()->getDataLayout(); - uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); - if (Size == 0) - return; - - uint64_t Align; - if (ClPreserveAlignment) { - Align = SI.getAlignment(); - if (Align == 0) - Align = DL.getABITypeAlignment(SI.getValueOperand()->getType()); - } else { - Align = 1; - } - - Value* Shadow = DFSF.getShadow(SI.getValueOperand()); - if (ClCombinePointerLabelsOnStore) { - Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); - Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); - } - DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); -} - -void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { - visitOperandShadowInst(BO); -} - -void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } - -void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } - -void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { - visitOperandShadowInst(GEPI); -} - -void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { - visitOperandShadowInst(I); -} - -void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { - visitOperandShadowInst(I); -} - -void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { - visitOperandShadowInst(I); -} - -void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { - visitOperandShadowInst(I); -} - -void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { - visitOperandShadowInst(I); -} - -void DFSanVisitor::visitAllocaInst(AllocaInst &I) { - bool AllLoadsStores = true; - for (User *U : I.users()) { - if (isa<LoadInst>(U)) - continue; - - if (StoreInst *SI = dyn_cast<StoreInst>(U)) { - if (SI->getPointerOperand() == &I) - continue; - } - - AllLoadsStores = false; - break; - } - if (AllLoadsStores) { - IRBuilder<> IRB(&I); - DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); - } - DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); -} - -void DFSanVisitor::visitSelectInst(SelectInst &I) { - Value *CondShadow = DFSF.getShadow(I.getCondition()); - Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); - Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); - - if (isa<VectorType>(I.getCondition()->getType())) { - DFSF.setShadow( - &I, - DFSF.combineShadows( - CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); - } else { - Value *ShadowSel; - if (TrueShadow == FalseShadow) { - ShadowSel = TrueShadow; - } else { - ShadowSel = - SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); - } - DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); - } -} - -void DFSanVisitor::visitMemSetInst(MemSetInst &I) { - IRBuilder<> IRB(&I); - Value *ValShadow = DFSF.getShadow(I.getValue()); - IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, - {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( - *DFSF.DFS.Ctx)), - IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); -} - -void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { - IRBuilder<> IRB(&I); - Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); - Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); - Value *LenShadow = IRB.CreateMul( - I.getLength(), - ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); - Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); - DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); - SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); - auto *MTI = cast<MemTransferInst>( - IRB.CreateCall(I.getCalledValue(), - {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); - if (ClPreserveAlignment) { - MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8)); - MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8)); - } else { - MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8); - MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8); - } -} - -void DFSanVisitor::visitReturnInst(ReturnInst &RI) { - if (!DFSF.IsNativeABI && RI.getReturnValue()) { - switch (DFSF.IA) { - case DataFlowSanitizer::IA_TLS: { - Value *S = DFSF.getShadow(RI.getReturnValue()); - IRBuilder<> IRB(&RI); - IRB.CreateStore(S, DFSF.getRetvalTLS()); - break; - } - case DataFlowSanitizer::IA_Args: { - IRBuilder<> IRB(&RI); - Type *RT = DFSF.F->getFunctionType()->getReturnType(); - Value *InsVal = - IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); - Value *InsShadow = - IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); - RI.setOperand(0, InsShadow); - break; - } - } - } -} - -void DFSanVisitor::visitCallSite(CallSite CS) { - Function *F = CS.getCalledFunction(); - if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { - visitOperandShadowInst(*CS.getInstruction()); - return; - } - - // Calls to this function are synthesized in wrappers, and we shouldn't - // instrument them. - if (F == DFSF.DFS.DFSanVarargWrapperFn) - return; - - IRBuilder<> IRB(CS.getInstruction()); - - DenseMap<Value *, Function *>::iterator i = - DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); - if (i != DFSF.DFS.UnwrappedFnMap.end()) { - Function *F = i->second; - switch (DFSF.DFS.getWrapperKind(F)) { - case DataFlowSanitizer::WK_Warning: - CS.setCalledFunction(F); - IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, - IRB.CreateGlobalStringPtr(F->getName())); - DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); - return; - case DataFlowSanitizer::WK_Discard: - CS.setCalledFunction(F); - DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); - return; - case DataFlowSanitizer::WK_Functional: - CS.setCalledFunction(F); - visitOperandShadowInst(*CS.getInstruction()); - return; - case DataFlowSanitizer::WK_Custom: - // Don't try to handle invokes of custom functions, it's too complicated. - // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ - // wrapper. - if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { - FunctionType *FT = F->getFunctionType(); - TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); - std::string CustomFName = "__dfsw_"; - CustomFName += F->getName(); - Constant *CustomF = DFSF.DFS.Mod->getOrInsertFunction( - CustomFName, CustomFn.TransformedType); - if (Function *CustomFn = dyn_cast<Function>(CustomF)) { - CustomFn->copyAttributesFrom(F); - - // Custom functions returning non-void will write to the return label. - if (!FT->getReturnType()->isVoidTy()) { - CustomFn->removeAttributes(AttributeList::FunctionIndex, - DFSF.DFS.ReadOnlyNoneAttrs); - } - } - - std::vector<Value *> Args; - - CallSite::arg_iterator i = CS.arg_begin(); - for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { - Type *T = (*i)->getType(); - FunctionType *ParamFT; - if (isa<PointerType>(T) && - (ParamFT = dyn_cast<FunctionType>( - cast<PointerType>(T)->getElementType()))) { - std::string TName = "dfst"; - TName += utostr(FT->getNumParams() - n); - TName += "$"; - TName += F->getName(); - Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); - Args.push_back(T); - Args.push_back( - IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); - } else { - Args.push_back(*i); - } - } - - i = CS.arg_begin(); - const unsigned ShadowArgStart = Args.size(); - for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) - Args.push_back(DFSF.getShadow(*i)); - - if (FT->isVarArg()) { - auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, - CS.arg_size() - FT->getNumParams()); - auto *LabelVAAlloca = new AllocaInst( - LabelVATy, getDataLayout().getAllocaAddrSpace(), - "labelva", &DFSF.F->getEntryBlock().front()); - - for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { - auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); - IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); - } - - Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); - } - - if (!FT->getReturnType()->isVoidTy()) { - if (!DFSF.LabelReturnAlloca) { - DFSF.LabelReturnAlloca = - new AllocaInst(DFSF.DFS.ShadowTy, - getDataLayout().getAllocaAddrSpace(), - "labelreturn", &DFSF.F->getEntryBlock().front()); - } - Args.push_back(DFSF.LabelReturnAlloca); - } - - for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) - Args.push_back(*i); - - CallInst *CustomCI = IRB.CreateCall(CustomF, Args); - CustomCI->setCallingConv(CI->getCallingConv()); - CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, - CI->getContext(), CI->getAttributes())); - - // Update the parameter attributes of the custom call instruction to - // zero extend the shadow parameters. This is required for targets - // which consider ShadowTy an illegal type. - for (unsigned n = 0; n < FT->getNumParams(); n++) { - const unsigned ArgNo = ShadowArgStart + n; - if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy) - CustomCI->addParamAttr(ArgNo, Attribute::ZExt); - } - - if (!FT->getReturnType()->isVoidTy()) { - LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca); - DFSF.setShadow(CustomCI, LabelLoad); - } - - CI->replaceAllUsesWith(CustomCI); - CI->eraseFromParent(); - return; - } - break; - } - } - - FunctionType *FT = cast<FunctionType>( - CS.getCalledValue()->getType()->getPointerElementType()); - if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { - for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { - IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), - DFSF.getArgTLS(i, CS.getInstruction())); - } - } - - Instruction *Next = nullptr; - if (!CS.getType()->isVoidTy()) { - if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { - if (II->getNormalDest()->getSinglePredecessor()) { - Next = &II->getNormalDest()->front(); - } else { - BasicBlock *NewBB = - SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); - Next = &NewBB->front(); - } - } else { - assert(CS->getIterator() != CS->getParent()->end()); - Next = CS->getNextNode(); - } - - if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { - IRBuilder<> NextIRB(Next); - LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS()); - DFSF.SkipInsts.insert(LI); - DFSF.setShadow(CS.getInstruction(), LI); - DFSF.NonZeroChecks.push_back(LI); - } - } - - // Do all instrumentation for IA_Args down here to defer tampering with the - // CFG in a way that SplitEdge may be able to detect. - if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { - FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); - Value *Func = - IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); - std::vector<Value *> Args; - - CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); - for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) - Args.push_back(*i); - - i = CS.arg_begin(); - for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) - Args.push_back(DFSF.getShadow(*i)); - - if (FT->isVarArg()) { - unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); - ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); - AllocaInst *VarArgShadow = - new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), - "", &DFSF.F->getEntryBlock().front()); - Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); - for (unsigned n = 0; i != e; ++i, ++n) { - IRB.CreateStore( - DFSF.getShadow(*i), - IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); - Args.push_back(*i); - } - } - - CallSite NewCS; - if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { - NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(), - Args); - } else { - NewCS = IRB.CreateCall(Func, Args); - } - NewCS.setCallingConv(CS.getCallingConv()); - NewCS.setAttributes(CS.getAttributes().removeAttributes( - *DFSF.DFS.Ctx, AttributeList::ReturnIndex, - AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType()))); - - if (Next) { - ExtractValueInst *ExVal = - ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); - DFSF.SkipInsts.insert(ExVal); - ExtractValueInst *ExShadow = - ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); - DFSF.SkipInsts.insert(ExShadow); - DFSF.setShadow(ExVal, ExShadow); - DFSF.NonZeroChecks.push_back(ExShadow); - - CS.getInstruction()->replaceAllUsesWith(ExVal); - } - - CS.getInstruction()->eraseFromParent(); - } -} - -void DFSanVisitor::visitPHINode(PHINode &PN) { - PHINode *ShadowPN = - PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); - - // Give the shadow phi node valid predecessors to fool SplitEdge into working. - Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); - for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; - ++i) { - ShadowPN->addIncoming(UndefShadow, *i); - } - - DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); - DFSF.setShadow(&PN, ShadowPN); -} |
