diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp | 419 |
1 files changed, 419 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp new file mode 100644 index 00000000000..686bd407110 --- /dev/null +++ b/gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp @@ -0,0 +1,419 @@ +//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Correlated Value Propagation pass. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LazyValueInfo.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/Local.h" +using namespace llvm; + +#define DEBUG_TYPE "correlated-value-propagation" + +STATISTIC(NumPhis, "Number of phis propagated"); +STATISTIC(NumSelects, "Number of selects propagated"); +STATISTIC(NumMemAccess, "Number of memory access targets propagated"); +STATISTIC(NumCmps, "Number of comparisons propagated"); +STATISTIC(NumReturns, "Number of return values propagated"); +STATISTIC(NumDeadCases, "Number of switch cases removed"); + +namespace { + class CorrelatedValuePropagation : public FunctionPass { + LazyValueInfo *LVI; + + bool processSelect(SelectInst *SI); + bool processPHI(PHINode *P); + bool processMemAccess(Instruction *I); + bool processCmp(CmpInst *C); + bool processSwitch(SwitchInst *SI); + bool processCallSite(CallSite CS); + + /// Return a constant value for V usable at At and everything it + /// dominates. If no such Constant can be found, return nullptr. + Constant *getConstantAt(Value *V, Instruction *At); + + public: + static char ID; + CorrelatedValuePropagation(): FunctionPass(ID) { + initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<LazyValueInfo>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + } + }; +} + +char CorrelatedValuePropagation::ID = 0; +INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation", + "Value Propagation", false, false) +INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) +INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation", + "Value Propagation", false, false) + +// Public interface to the Value Propagation pass +Pass *llvm::createCorrelatedValuePropagationPass() { + return new CorrelatedValuePropagation(); +} + +bool CorrelatedValuePropagation::processSelect(SelectInst *S) { + if (S->getType()->isVectorTy()) return false; + if (isa<Constant>(S->getOperand(0))) return false; + + Constant *C = LVI->getConstant(S->getOperand(0), S->getParent(), S); + if (!C) return false; + + ConstantInt *CI = dyn_cast<ConstantInt>(C); + if (!CI) return false; + + Value *ReplaceWith = S->getOperand(1); + Value *Other = S->getOperand(2); + if (!CI->isOne()) std::swap(ReplaceWith, Other); + if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType()); + + S->replaceAllUsesWith(ReplaceWith); + S->eraseFromParent(); + + ++NumSelects; + + return true; +} + +bool CorrelatedValuePropagation::processPHI(PHINode *P) { + bool Changed = false; + + BasicBlock *BB = P->getParent(); + for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { + Value *Incoming = P->getIncomingValue(i); + if (isa<Constant>(Incoming)) continue; + + Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P); + + // Look if the incoming value is a select with a scalar condition for which + // LVI can tells us the value. In that case replace the incoming value with + // the appropriate value of the select. This often allows us to remove the + // select later. + if (!V) { + SelectInst *SI = dyn_cast<SelectInst>(Incoming); + if (!SI) continue; + + Value *Condition = SI->getCondition(); + if (!Condition->getType()->isVectorTy()) { + if (Constant *C = LVI->getConstantOnEdge( + Condition, P->getIncomingBlock(i), BB, P)) { + if (C->isOneValue()) { + V = SI->getTrueValue(); + } else if (C->isZeroValue()) { + V = SI->getFalseValue(); + } + // Once LVI learns to handle vector types, we could also add support + // for vector type constants that are not all zeroes or all ones. + } + } + + // Look if the select has a constant but LVI tells us that the incoming + // value can never be that constant. In that case replace the incoming + // value with the other value of the select. This often allows us to + // remove the select later. + if (!V) { + Constant *C = dyn_cast<Constant>(SI->getFalseValue()); + if (!C) continue; + + if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, + P->getIncomingBlock(i), BB, P) != + LazyValueInfo::False) + continue; + V = SI->getTrueValue(); + } + + DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n'); + } + + P->setIncomingValue(i, V); + Changed = true; + } + + // FIXME: Provide TLI, DT, AT to SimplifyInstruction. + const DataLayout &DL = BB->getModule()->getDataLayout(); + if (Value *V = SimplifyInstruction(P, DL)) { + P->replaceAllUsesWith(V); + P->eraseFromParent(); + Changed = true; + } + + if (Changed) + ++NumPhis; + + return Changed; +} + +bool CorrelatedValuePropagation::processMemAccess(Instruction *I) { + Value *Pointer = nullptr; + if (LoadInst *L = dyn_cast<LoadInst>(I)) + Pointer = L->getPointerOperand(); + else + Pointer = cast<StoreInst>(I)->getPointerOperand(); + + if (isa<Constant>(Pointer)) return false; + + Constant *C = LVI->getConstant(Pointer, I->getParent(), I); + if (!C) return false; + + ++NumMemAccess; + I->replaceUsesOfWith(Pointer, C); + return true; +} + +/// processCmp - See if LazyValueInfo's ability to exploit edge conditions, +/// or range information is sufficient to prove this comparison. Even for +/// local conditions, this can sometimes prove conditions instcombine can't by +/// exploiting range information. +bool CorrelatedValuePropagation::processCmp(CmpInst *C) { + Value *Op0 = C->getOperand(0); + Constant *Op1 = dyn_cast<Constant>(C->getOperand(1)); + if (!Op1) return false; + + // As a policy choice, we choose not to waste compile time on anything where + // the comparison is testing local values. While LVI can sometimes reason + // about such cases, it's not its primary purpose. We do make sure to do + // the block local query for uses from terminator instructions, but that's + // handled in the code for each terminator. + auto *I = dyn_cast<Instruction>(Op0); + if (I && I->getParent() == C->getParent()) + return false; + + LazyValueInfo::Tristate Result = + LVI->getPredicateAt(C->getPredicate(), Op0, Op1, C); + if (Result == LazyValueInfo::Unknown) return false; + + ++NumCmps; + if (Result == LazyValueInfo::True) + C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext())); + else + C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext())); + C->eraseFromParent(); + + return true; +} + +/// processSwitch - Simplify a switch instruction by removing cases which can +/// never fire. If the uselessness of a case could be determined locally then +/// constant propagation would already have figured it out. Instead, walk the +/// predecessors and statically evaluate cases based on information available +/// on that edge. Cases that cannot fire no matter what the incoming edge can +/// safely be removed. If a case fires on every incoming edge then the entire +/// switch can be removed and replaced with a branch to the case destination. +bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) { + Value *Cond = SI->getCondition(); + BasicBlock *BB = SI->getParent(); + + // If the condition was defined in same block as the switch then LazyValueInfo + // currently won't say anything useful about it, though in theory it could. + if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB) + return false; + + // If the switch is unreachable then trying to improve it is a waste of time. + pred_iterator PB = pred_begin(BB), PE = pred_end(BB); + if (PB == PE) return false; + + // Analyse each switch case in turn. This is done in reverse order so that + // removing a case doesn't cause trouble for the iteration. + bool Changed = false; + for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE; + ) { + ConstantInt *Case = CI.getCaseValue(); + + // Check to see if the switch condition is equal to/not equal to the case + // value on every incoming edge, equal/not equal being the same each time. + LazyValueInfo::Tristate State = LazyValueInfo::Unknown; + for (pred_iterator PI = PB; PI != PE; ++PI) { + // Is the switch condition equal to the case value? + LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ, + Cond, Case, *PI, + BB, SI); + // Give up on this case if nothing is known. + if (Value == LazyValueInfo::Unknown) { + State = LazyValueInfo::Unknown; + break; + } + + // If this was the first edge to be visited, record that all other edges + // need to give the same result. + if (PI == PB) { + State = Value; + continue; + } + + // If this case is known to fire for some edges and known not to fire for + // others then there is nothing we can do - give up. + if (Value != State) { + State = LazyValueInfo::Unknown; + break; + } + } + + if (State == LazyValueInfo::False) { + // This case never fires - remove it. + CI.getCaseSuccessor()->removePredecessor(BB); + SI->removeCase(CI); // Does not invalidate the iterator. + + // The condition can be modified by removePredecessor's PHI simplification + // logic. + Cond = SI->getCondition(); + + ++NumDeadCases; + Changed = true; + } else if (State == LazyValueInfo::True) { + // This case always fires. Arrange for the switch to be turned into an + // unconditional branch by replacing the switch condition with the case + // value. + SI->setCondition(Case); + NumDeadCases += SI->getNumCases(); + Changed = true; + break; + } + } + + if (Changed) + // If the switch has been simplified to the point where it can be replaced + // by a branch then do so now. + ConstantFoldTerminator(BB); + + return Changed; +} + +/// processCallSite - Infer nonnull attributes for the arguments at the +/// specified callsite. +bool CorrelatedValuePropagation::processCallSite(CallSite CS) { + SmallVector<unsigned, 4> Indices; + unsigned ArgNo = 0; + + for (Value *V : CS.args()) { + PointerType *Type = dyn_cast<PointerType>(V->getType()); + + if (Type && !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) && + LVI->getPredicateAt(ICmpInst::ICMP_EQ, V, + ConstantPointerNull::get(Type), + CS.getInstruction()) == LazyValueInfo::False) + Indices.push_back(ArgNo + 1); + ArgNo++; + } + + assert(ArgNo == CS.arg_size() && "sanity check"); + + if (Indices.empty()) + return false; + + AttributeSet AS = CS.getAttributes(); + LLVMContext &Ctx = CS.getInstruction()->getContext(); + AS = AS.addAttribute(Ctx, Indices, Attribute::get(Ctx, Attribute::NonNull)); + CS.setAttributes(AS); + + return true; +} + +Constant *CorrelatedValuePropagation::getConstantAt(Value *V, Instruction *At) { + if (Constant *C = LVI->getConstant(V, At->getParent(), At)) + return C; + + // TODO: The following really should be sunk inside LVI's core algorithm, or + // at least the outer shims around such. + auto *C = dyn_cast<CmpInst>(V); + if (!C) return nullptr; + + Value *Op0 = C->getOperand(0); + Constant *Op1 = dyn_cast<Constant>(C->getOperand(1)); + if (!Op1) return nullptr; + + LazyValueInfo::Tristate Result = + LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At); + if (Result == LazyValueInfo::Unknown) + return nullptr; + + return (Result == LazyValueInfo::True) ? + ConstantInt::getTrue(C->getContext()) : + ConstantInt::getFalse(C->getContext()); +} + +bool CorrelatedValuePropagation::runOnFunction(Function &F) { + if (skipOptnoneFunction(F)) + return false; + + LVI = &getAnalysis<LazyValueInfo>(); + + bool FnChanged = false; + + for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { + bool BBChanged = false; + for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ) { + Instruction *II = &*BI++; + switch (II->getOpcode()) { + case Instruction::Select: + BBChanged |= processSelect(cast<SelectInst>(II)); + break; + case Instruction::PHI: + BBChanged |= processPHI(cast<PHINode>(II)); + break; + case Instruction::ICmp: + case Instruction::FCmp: + BBChanged |= processCmp(cast<CmpInst>(II)); + break; + case Instruction::Load: + case Instruction::Store: + BBChanged |= processMemAccess(II); + break; + case Instruction::Call: + case Instruction::Invoke: + BBChanged |= processCallSite(CallSite(II)); + break; + } + } + + Instruction *Term = FI->getTerminator(); + switch (Term->getOpcode()) { + case Instruction::Switch: + BBChanged |= processSwitch(cast<SwitchInst>(Term)); + break; + case Instruction::Ret: { + auto *RI = cast<ReturnInst>(Term); + // Try to determine the return value if we can. This is mainly here to + // simplify the writing of unit tests, but also helps to enable IPO by + // constant folding the return values of callees. + auto *RetVal = RI->getReturnValue(); + if (!RetVal) break; // handle "ret void" + if (isa<Constant>(RetVal)) break; // nothing to do + if (auto *C = getConstantAt(RetVal, RI)) { + ++NumReturns; + RI->replaceUsesOfWith(RetVal, C); + BBChanged = true; + } + } + }; + + FnChanged |= BBChanged; + } + + return FnChanged; +} |
