diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp | 783 |
1 files changed, 0 insertions, 783 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp deleted file mode 100644 index d0105701c73..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp +++ /dev/null @@ -1,783 +0,0 @@ -//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the Correlated Value Propagation pass. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/LazyValueInfo.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/ConstantRange.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/DomTreeUpdater.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/Local.h" -#include <cassert> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "correlated-value-propagation" - -STATISTIC(NumPhis, "Number of phis propagated"); -STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value"); -STATISTIC(NumSelects, "Number of selects propagated"); -STATISTIC(NumMemAccess, "Number of memory access targets propagated"); -STATISTIC(NumCmps, "Number of comparisons propagated"); -STATISTIC(NumReturns, "Number of return values propagated"); -STATISTIC(NumDeadCases, "Number of switch cases removed"); -STATISTIC(NumSDivs, "Number of sdiv converted to udiv"); -STATISTIC(NumUDivs, "Number of udivs whose width was decreased"); -STATISTIC(NumAShrs, "Number of ashr converted to lshr"); -STATISTIC(NumSRems, "Number of srem converted to urem"); -STATISTIC(NumOverflows, "Number of overflow checks removed"); - -static cl::opt<bool> DontProcessAdds("cvp-dont-process-adds", cl::init(true)); - -namespace { - - class CorrelatedValuePropagation : public FunctionPass { - public: - static char ID; - - CorrelatedValuePropagation(): FunctionPass(ID) { - initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override; - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<LazyValueInfoWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - } - }; - -} // end anonymous namespace - -char CorrelatedValuePropagation::ID = 0; - -INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation", - "Value Propagation", false, false) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) -INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation", - "Value Propagation", false, false) - -// Public interface to the Value Propagation pass -Pass *llvm::createCorrelatedValuePropagationPass() { - return new CorrelatedValuePropagation(); -} - -static bool processSelect(SelectInst *S, LazyValueInfo *LVI) { - if (S->getType()->isVectorTy()) return false; - if (isa<Constant>(S->getOperand(0))) return false; - - Constant *C = LVI->getConstant(S->getCondition(), S->getParent(), S); - if (!C) return false; - - ConstantInt *CI = dyn_cast<ConstantInt>(C); - if (!CI) return false; - - Value *ReplaceWith = S->getTrueValue(); - Value *Other = S->getFalseValue(); - if (!CI->isOne()) std::swap(ReplaceWith, Other); - if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType()); - - S->replaceAllUsesWith(ReplaceWith); - S->eraseFromParent(); - - ++NumSelects; - - return true; -} - -/// Try to simplify a phi with constant incoming values that match the edge -/// values of a non-constant value on all other edges: -/// bb0: -/// %isnull = icmp eq i8* %x, null -/// br i1 %isnull, label %bb2, label %bb1 -/// bb1: -/// br label %bb2 -/// bb2: -/// %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ] -/// --> -/// %r = %x -static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI, - DominatorTree *DT) { - // Collect incoming constants and initialize possible common value. - SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants; - Value *CommonValue = nullptr; - for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { - Value *Incoming = P->getIncomingValue(i); - if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) { - IncomingConstants.push_back(std::make_pair(IncomingConstant, i)); - } else if (!CommonValue) { - // The potential common value is initialized to the first non-constant. - CommonValue = Incoming; - } else if (Incoming != CommonValue) { - // There can be only one non-constant common value. - return false; - } - } - - if (!CommonValue || IncomingConstants.empty()) - return false; - - // The common value must be valid in all incoming blocks. - BasicBlock *ToBB = P->getParent(); - if (auto *CommonInst = dyn_cast<Instruction>(CommonValue)) - if (!DT->dominates(CommonInst, ToBB)) - return false; - - // We have a phi with exactly 1 variable incoming value and 1 or more constant - // incoming values. See if all constant incoming values can be mapped back to - // the same incoming variable value. - for (auto &IncomingConstant : IncomingConstants) { - Constant *C = IncomingConstant.first; - BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second); - if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P)) - return false; - } - - // All constant incoming values map to the same variable along the incoming - // edges of the phi. The phi is unnecessary. - P->replaceAllUsesWith(CommonValue); - P->eraseFromParent(); - ++NumPhiCommon; - return true; -} - -static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT, - const SimplifyQuery &SQ) { - bool Changed = false; - - BasicBlock *BB = P->getParent(); - for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { - Value *Incoming = P->getIncomingValue(i); - if (isa<Constant>(Incoming)) continue; - - Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P); - - // Look if the incoming value is a select with a scalar condition for which - // LVI can tells us the value. In that case replace the incoming value with - // the appropriate value of the select. This often allows us to remove the - // select later. - if (!V) { - SelectInst *SI = dyn_cast<SelectInst>(Incoming); - if (!SI) continue; - - Value *Condition = SI->getCondition(); - if (!Condition->getType()->isVectorTy()) { - if (Constant *C = LVI->getConstantOnEdge( - Condition, P->getIncomingBlock(i), BB, P)) { - if (C->isOneValue()) { - V = SI->getTrueValue(); - } else if (C->isZeroValue()) { - V = SI->getFalseValue(); - } - // Once LVI learns to handle vector types, we could also add support - // for vector type constants that are not all zeroes or all ones. - } - } - - // Look if the select has a constant but LVI tells us that the incoming - // value can never be that constant. In that case replace the incoming - // value with the other value of the select. This often allows us to - // remove the select later. - if (!V) { - Constant *C = dyn_cast<Constant>(SI->getFalseValue()); - if (!C) continue; - - if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, - P->getIncomingBlock(i), BB, P) != - LazyValueInfo::False) - continue; - V = SI->getTrueValue(); - } - - LLVM_DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n'); - } - - P->setIncomingValue(i, V); - Changed = true; - } - - if (Value *V = SimplifyInstruction(P, SQ)) { - P->replaceAllUsesWith(V); - P->eraseFromParent(); - Changed = true; - } - - if (!Changed) - Changed = simplifyCommonValuePhi(P, LVI, DT); - - if (Changed) - ++NumPhis; - - return Changed; -} - -static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) { - Value *Pointer = nullptr; - if (LoadInst *L = dyn_cast<LoadInst>(I)) - Pointer = L->getPointerOperand(); - else - Pointer = cast<StoreInst>(I)->getPointerOperand(); - - if (isa<Constant>(Pointer)) return false; - - Constant *C = LVI->getConstant(Pointer, I->getParent(), I); - if (!C) return false; - - ++NumMemAccess; - I->replaceUsesOfWith(Pointer, C); - return true; -} - -/// See if LazyValueInfo's ability to exploit edge conditions or range -/// information is sufficient to prove this comparison. Even for local -/// conditions, this can sometimes prove conditions instcombine can't by -/// exploiting range information. -static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) { - Value *Op0 = Cmp->getOperand(0); - auto *C = dyn_cast<Constant>(Cmp->getOperand(1)); - if (!C) - return false; - - // As a policy choice, we choose not to waste compile time on anything where - // the comparison is testing local values. While LVI can sometimes reason - // about such cases, it's not its primary purpose. We do make sure to do - // the block local query for uses from terminator instructions, but that's - // handled in the code for each terminator. - auto *I = dyn_cast<Instruction>(Op0); - if (I && I->getParent() == Cmp->getParent()) - return false; - - LazyValueInfo::Tristate Result = - LVI->getPredicateAt(Cmp->getPredicate(), Op0, C, Cmp); - if (Result == LazyValueInfo::Unknown) - return false; - - ++NumCmps; - Constant *TorF = ConstantInt::get(Type::getInt1Ty(Cmp->getContext()), Result); - Cmp->replaceAllUsesWith(TorF); - Cmp->eraseFromParent(); - return true; -} - -/// Simplify a switch instruction by removing cases which can never fire. If the -/// uselessness of a case could be determined locally then constant propagation -/// would already have figured it out. Instead, walk the predecessors and -/// statically evaluate cases based on information available on that edge. Cases -/// that cannot fire no matter what the incoming edge can safely be removed. If -/// a case fires on every incoming edge then the entire switch can be removed -/// and replaced with a branch to the case destination. -static bool processSwitch(SwitchInst *SI, LazyValueInfo *LVI, - DominatorTree *DT) { - DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); - Value *Cond = SI->getCondition(); - BasicBlock *BB = SI->getParent(); - - // If the condition was defined in same block as the switch then LazyValueInfo - // currently won't say anything useful about it, though in theory it could. - if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB) - return false; - - // If the switch is unreachable then trying to improve it is a waste of time. - pred_iterator PB = pred_begin(BB), PE = pred_end(BB); - if (PB == PE) return false; - - // Analyse each switch case in turn. - bool Changed = false; - DenseMap<BasicBlock*, int> SuccessorsCount; - for (auto *Succ : successors(BB)) - SuccessorsCount[Succ]++; - - for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) { - ConstantInt *Case = CI->getCaseValue(); - - // Check to see if the switch condition is equal to/not equal to the case - // value on every incoming edge, equal/not equal being the same each time. - LazyValueInfo::Tristate State = LazyValueInfo::Unknown; - for (pred_iterator PI = PB; PI != PE; ++PI) { - // Is the switch condition equal to the case value? - LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ, - Cond, Case, *PI, - BB, SI); - // Give up on this case if nothing is known. - if (Value == LazyValueInfo::Unknown) { - State = LazyValueInfo::Unknown; - break; - } - - // If this was the first edge to be visited, record that all other edges - // need to give the same result. - if (PI == PB) { - State = Value; - continue; - } - - // If this case is known to fire for some edges and known not to fire for - // others then there is nothing we can do - give up. - if (Value != State) { - State = LazyValueInfo::Unknown; - break; - } - } - - if (State == LazyValueInfo::False) { - // This case never fires - remove it. - BasicBlock *Succ = CI->getCaseSuccessor(); - Succ->removePredecessor(BB); - CI = SI->removeCase(CI); - CE = SI->case_end(); - - // The condition can be modified by removePredecessor's PHI simplification - // logic. - Cond = SI->getCondition(); - - ++NumDeadCases; - Changed = true; - if (--SuccessorsCount[Succ] == 0) - DTU.deleteEdge(BB, Succ); - continue; - } - if (State == LazyValueInfo::True) { - // This case always fires. Arrange for the switch to be turned into an - // unconditional branch by replacing the switch condition with the case - // value. - SI->setCondition(Case); - NumDeadCases += SI->getNumCases(); - Changed = true; - break; - } - - // Increment the case iterator since we didn't delete it. - ++CI; - } - - if (Changed) - // If the switch has been simplified to the point where it can be replaced - // by a branch then do so now. - ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false, - /*TLI = */ nullptr, &DTU); - return Changed; -} - -// See if we can prove that the given overflow intrinsic will not overflow. -static bool willNotOverflow(IntrinsicInst *II, LazyValueInfo *LVI) { - using OBO = OverflowingBinaryOperator; - auto NoWrap = [&] (Instruction::BinaryOps BinOp, unsigned NoWrapKind) { - Value *RHS = II->getOperand(1); - ConstantRange RRange = LVI->getConstantRange(RHS, II->getParent(), II); - ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion( - BinOp, RRange, NoWrapKind); - // As an optimization, do not compute LRange if we do not need it. - if (NWRegion.isEmptySet()) - return false; - Value *LHS = II->getOperand(0); - ConstantRange LRange = LVI->getConstantRange(LHS, II->getParent(), II); - return NWRegion.contains(LRange); - }; - switch (II->getIntrinsicID()) { - default: - break; - case Intrinsic::uadd_with_overflow: - return NoWrap(Instruction::Add, OBO::NoUnsignedWrap); - case Intrinsic::sadd_with_overflow: - return NoWrap(Instruction::Add, OBO::NoSignedWrap); - case Intrinsic::usub_with_overflow: - return NoWrap(Instruction::Sub, OBO::NoUnsignedWrap); - case Intrinsic::ssub_with_overflow: - return NoWrap(Instruction::Sub, OBO::NoSignedWrap); - } - return false; -} - -static void processOverflowIntrinsic(IntrinsicInst *II) { - IRBuilder<> B(II); - Value *NewOp = nullptr; - switch (II->getIntrinsicID()) { - default: - llvm_unreachable("Unexpected instruction."); - case Intrinsic::uadd_with_overflow: - case Intrinsic::sadd_with_overflow: - NewOp = B.CreateAdd(II->getOperand(0), II->getOperand(1), II->getName()); - break; - case Intrinsic::usub_with_overflow: - case Intrinsic::ssub_with_overflow: - NewOp = B.CreateSub(II->getOperand(0), II->getOperand(1), II->getName()); - break; - } - ++NumOverflows; - Value *NewI = B.CreateInsertValue(UndefValue::get(II->getType()), NewOp, 0); - NewI = B.CreateInsertValue(NewI, ConstantInt::getFalse(II->getContext()), 1); - II->replaceAllUsesWith(NewI); - II->eraseFromParent(); -} - -/// Infer nonnull attributes for the arguments at the specified callsite. -static bool processCallSite(CallSite CS, LazyValueInfo *LVI) { - SmallVector<unsigned, 4> ArgNos; - unsigned ArgNo = 0; - - if (auto *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { - if (willNotOverflow(II, LVI)) { - processOverflowIntrinsic(II); - return true; - } - } - - for (Value *V : CS.args()) { - PointerType *Type = dyn_cast<PointerType>(V->getType()); - // Try to mark pointer typed parameters as non-null. We skip the - // relatively expensive analysis for constants which are obviously either - // null or non-null to start with. - if (Type && !CS.paramHasAttr(ArgNo, Attribute::NonNull) && - !isa<Constant>(V) && - LVI->getPredicateAt(ICmpInst::ICMP_EQ, V, - ConstantPointerNull::get(Type), - CS.getInstruction()) == LazyValueInfo::False) - ArgNos.push_back(ArgNo); - ArgNo++; - } - - assert(ArgNo == CS.arg_size() && "sanity check"); - - if (ArgNos.empty()) - return false; - - AttributeList AS = CS.getAttributes(); - LLVMContext &Ctx = CS.getInstruction()->getContext(); - AS = AS.addParamAttribute(Ctx, ArgNos, - Attribute::get(Ctx, Attribute::NonNull)); - CS.setAttributes(AS); - - return true; -} - -static bool hasPositiveOperands(BinaryOperator *SDI, LazyValueInfo *LVI) { - Constant *Zero = ConstantInt::get(SDI->getType(), 0); - for (Value *O : SDI->operands()) { - auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI); - if (Result != LazyValueInfo::True) - return false; - } - return true; -} - -/// Try to shrink a udiv/urem's width down to the smallest power of two that's -/// sufficient to contain its operands. -static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) { - assert(Instr->getOpcode() == Instruction::UDiv || - Instr->getOpcode() == Instruction::URem); - if (Instr->getType()->isVectorTy()) - return false; - - // Find the smallest power of two bitwidth that's sufficient to hold Instr's - // operands. - auto OrigWidth = Instr->getType()->getIntegerBitWidth(); - ConstantRange OperandRange(OrigWidth, /*isFullset=*/false); - for (Value *Operand : Instr->operands()) { - OperandRange = OperandRange.unionWith( - LVI->getConstantRange(Operand, Instr->getParent())); - } - // Don't shrink below 8 bits wide. - unsigned NewWidth = std::max<unsigned>( - PowerOf2Ceil(OperandRange.getUnsignedMax().getActiveBits()), 8); - // NewWidth might be greater than OrigWidth if OrigWidth is not a power of - // two. - if (NewWidth >= OrigWidth) - return false; - - ++NumUDivs; - IRBuilder<> B{Instr}; - auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth); - auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy, - Instr->getName() + ".lhs.trunc"); - auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy, - Instr->getName() + ".rhs.trunc"); - auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName()); - auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext"); - if (auto *BinOp = dyn_cast<BinaryOperator>(BO)) - if (BinOp->getOpcode() == Instruction::UDiv) - BinOp->setIsExact(Instr->isExact()); - - Instr->replaceAllUsesWith(Zext); - Instr->eraseFromParent(); - return true; -} - -static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) { - if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI)) - return false; - - ++NumSRems; - auto *BO = BinaryOperator::CreateURem(SDI->getOperand(0), SDI->getOperand(1), - SDI->getName(), SDI); - BO->setDebugLoc(SDI->getDebugLoc()); - SDI->replaceAllUsesWith(BO); - SDI->eraseFromParent(); - - // Try to process our new urem. - processUDivOrURem(BO, LVI); - - return true; -} - -/// See if LazyValueInfo's ability to exploit edge conditions or range -/// information is sufficient to prove the both operands of this SDiv are -/// positive. If this is the case, replace the SDiv with a UDiv. Even for local -/// conditions, this can sometimes prove conditions instcombine can't by -/// exploiting range information. -static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) { - if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI)) - return false; - - ++NumSDivs; - auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1), - SDI->getName(), SDI); - BO->setDebugLoc(SDI->getDebugLoc()); - BO->setIsExact(SDI->isExact()); - SDI->replaceAllUsesWith(BO); - SDI->eraseFromParent(); - - // Try to simplify our new udiv. - processUDivOrURem(BO, LVI); - - return true; -} - -static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) { - if (SDI->getType()->isVectorTy()) - return false; - - Constant *Zero = ConstantInt::get(SDI->getType(), 0); - if (LVI->getPredicateAt(ICmpInst::ICMP_SGE, SDI->getOperand(0), Zero, SDI) != - LazyValueInfo::True) - return false; - - ++NumAShrs; - auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1), - SDI->getName(), SDI); - BO->setDebugLoc(SDI->getDebugLoc()); - BO->setIsExact(SDI->isExact()); - SDI->replaceAllUsesWith(BO); - SDI->eraseFromParent(); - - return true; -} - -static bool processAdd(BinaryOperator *AddOp, LazyValueInfo *LVI) { - using OBO = OverflowingBinaryOperator; - - if (DontProcessAdds) - return false; - - if (AddOp->getType()->isVectorTy()) - return false; - - bool NSW = AddOp->hasNoSignedWrap(); - bool NUW = AddOp->hasNoUnsignedWrap(); - if (NSW && NUW) - return false; - - BasicBlock *BB = AddOp->getParent(); - - Value *LHS = AddOp->getOperand(0); - Value *RHS = AddOp->getOperand(1); - - ConstantRange LRange = LVI->getConstantRange(LHS, BB, AddOp); - - // Initialize RRange only if we need it. If we know that guaranteed no wrap - // range for the given LHS range is empty don't spend time calculating the - // range for the RHS. - Optional<ConstantRange> RRange; - auto LazyRRange = [&] () { - if (!RRange) - RRange = LVI->getConstantRange(RHS, BB, AddOp); - return RRange.getValue(); - }; - - bool Changed = false; - if (!NUW) { - ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion( - BinaryOperator::Add, LRange, OBO::NoUnsignedWrap); - if (!NUWRange.isEmptySet()) { - bool NewNUW = NUWRange.contains(LazyRRange()); - AddOp->setHasNoUnsignedWrap(NewNUW); - Changed |= NewNUW; - } - } - if (!NSW) { - ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion( - BinaryOperator::Add, LRange, OBO::NoSignedWrap); - if (!NSWRange.isEmptySet()) { - bool NewNSW = NSWRange.contains(LazyRRange()); - AddOp->setHasNoSignedWrap(NewNSW); - Changed |= NewNSW; - } - } - - return Changed; -} - -static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) { - if (Constant *C = LVI->getConstant(V, At->getParent(), At)) - return C; - - // TODO: The following really should be sunk inside LVI's core algorithm, or - // at least the outer shims around such. - auto *C = dyn_cast<CmpInst>(V); - if (!C) return nullptr; - - Value *Op0 = C->getOperand(0); - Constant *Op1 = dyn_cast<Constant>(C->getOperand(1)); - if (!Op1) return nullptr; - - LazyValueInfo::Tristate Result = - LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At); - if (Result == LazyValueInfo::Unknown) - return nullptr; - - return (Result == LazyValueInfo::True) ? - ConstantInt::getTrue(C->getContext()) : - ConstantInt::getFalse(C->getContext()); -} - -static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT, - const SimplifyQuery &SQ) { - bool FnChanged = false; - // Visiting in a pre-order depth-first traversal causes us to simplify early - // blocks before querying later blocks (which require us to analyze early - // blocks). Eagerly simplifying shallow blocks means there is strictly less - // work to do for deep blocks. This also means we don't visit unreachable - // blocks. - for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { - bool BBChanged = false; - for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { - Instruction *II = &*BI++; - switch (II->getOpcode()) { - case Instruction::Select: - BBChanged |= processSelect(cast<SelectInst>(II), LVI); - break; - case Instruction::PHI: - BBChanged |= processPHI(cast<PHINode>(II), LVI, DT, SQ); - break; - case Instruction::ICmp: - case Instruction::FCmp: - BBChanged |= processCmp(cast<CmpInst>(II), LVI); - break; - case Instruction::Load: - case Instruction::Store: - BBChanged |= processMemAccess(II, LVI); - break; - case Instruction::Call: - case Instruction::Invoke: - BBChanged |= processCallSite(CallSite(II), LVI); - break; - case Instruction::SRem: - BBChanged |= processSRem(cast<BinaryOperator>(II), LVI); - break; - case Instruction::SDiv: - BBChanged |= processSDiv(cast<BinaryOperator>(II), LVI); - break; - case Instruction::UDiv: - case Instruction::URem: - BBChanged |= processUDivOrURem(cast<BinaryOperator>(II), LVI); - break; - case Instruction::AShr: - BBChanged |= processAShr(cast<BinaryOperator>(II), LVI); - break; - case Instruction::Add: - BBChanged |= processAdd(cast<BinaryOperator>(II), LVI); - break; - } - } - - Instruction *Term = BB->getTerminator(); - switch (Term->getOpcode()) { - case Instruction::Switch: - BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT); - break; - case Instruction::Ret: { - auto *RI = cast<ReturnInst>(Term); - // Try to determine the return value if we can. This is mainly here to - // simplify the writing of unit tests, but also helps to enable IPO by - // constant folding the return values of callees. - auto *RetVal = RI->getReturnValue(); - if (!RetVal) break; // handle "ret void" - if (isa<Constant>(RetVal)) break; // nothing to do - if (auto *C = getConstantAt(RetVal, RI, LVI)) { - ++NumReturns; - RI->replaceUsesOfWith(RetVal, C); - BBChanged = true; - } - } - } - - FnChanged |= BBChanged; - } - - return FnChanged; -} - -bool CorrelatedValuePropagation::runOnFunction(Function &F) { - if (skipFunction(F)) - return false; - - LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); - DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - - return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F)); -} - -PreservedAnalyses -CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) { - LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); - DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); - - bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F)); - - if (!Changed) - return PreservedAnalyses::all(); - PreservedAnalyses PA; - PA.preserve<GlobalsAA>(); - PA.preserve<DominatorTreeAnalysis>(); - return PA; -} |
