diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp | 1399 |
1 files changed, 0 insertions, 1399 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp b/gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp deleted file mode 100644 index 469930ca6a1..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp +++ /dev/null @@ -1,1399 +0,0 @@ -//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements a trivial dead store elimination that only considers -// basic-block local redundant stores. -// -// FIXME: This should eventually be extended to be a post-dominator tree -// traversal. Doing so would be pretty trivial. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/DeadStoreElimination.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/CaptureTracking.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/MemoryDependenceAnalysis.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <iterator> -#include <map> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "dse" - -STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); -STATISTIC(NumFastStores, "Number of stores deleted"); -STATISTIC(NumFastOther, "Number of other instrs removed"); -STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); -STATISTIC(NumModifiedStores, "Number of stores modified"); - -static cl::opt<bool> -EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", - cl::init(true), cl::Hidden, - cl::desc("Enable partial-overwrite tracking in DSE")); - -static cl::opt<bool> -EnablePartialStoreMerging("enable-dse-partial-store-merging", - cl::init(true), cl::Hidden, - cl::desc("Enable partial store merging in DSE")); - -//===----------------------------------------------------------------------===// -// Helper functions -//===----------------------------------------------------------------------===// -using OverlapIntervalsTy = std::map<int64_t, int64_t>; -using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; - -/// Delete this instruction. Before we do, go through and zero out all the -/// operands of this instruction. If any of them become dead, delete them and -/// the computation tree that feeds them. -/// If ValueSet is non-null, remove any deleted instructions from it as well. -static void -deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI, - MemoryDependenceResults &MD, const TargetLibraryInfo &TLI, - InstOverlapIntervalsTy &IOL, - DenseMap<Instruction*, size_t> *InstrOrdering, - SmallSetVector<Value *, 16> *ValueSet = nullptr) { - SmallVector<Instruction*, 32> NowDeadInsts; - - NowDeadInsts.push_back(I); - --NumFastOther; - - // Keeping the iterator straight is a pain, so we let this routine tell the - // caller what the next instruction is after we're done mucking about. - BasicBlock::iterator NewIter = *BBI; - - // Before we touch this instruction, remove it from memdep! - do { - Instruction *DeadInst = NowDeadInsts.pop_back_val(); - ++NumFastOther; - - // Try to preserve debug information attached to the dead instruction. - salvageDebugInfo(*DeadInst); - - // This instruction is dead, zap it, in stages. Start by removing it from - // MemDep, which needs to know the operands and needs it to be in the - // function. - MD.removeInstruction(DeadInst); - - for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { - Value *Op = DeadInst->getOperand(op); - DeadInst->setOperand(op, nullptr); - - // If this operand just became dead, add it to the NowDeadInsts list. - if (!Op->use_empty()) continue; - - if (Instruction *OpI = dyn_cast<Instruction>(Op)) - if (isInstructionTriviallyDead(OpI, &TLI)) - NowDeadInsts.push_back(OpI); - } - - if (ValueSet) ValueSet->remove(DeadInst); - InstrOrdering->erase(DeadInst); - IOL.erase(DeadInst); - - if (NewIter == DeadInst->getIterator()) - NewIter = DeadInst->eraseFromParent(); - else - DeadInst->eraseFromParent(); - } while (!NowDeadInsts.empty()); - *BBI = NewIter; -} - -/// Does this instruction write some memory? This only returns true for things -/// that we can analyze with other helpers below. -static bool hasAnalyzableMemoryWrite(Instruction *I, - const TargetLibraryInfo &TLI) { - if (isa<StoreInst>(I)) - return true; - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { - switch (II->getIntrinsicID()) { - default: - return false; - case Intrinsic::memset: - case Intrinsic::memmove: - case Intrinsic::memcpy: - case Intrinsic::memcpy_element_unordered_atomic: - case Intrinsic::memmove_element_unordered_atomic: - case Intrinsic::memset_element_unordered_atomic: - case Intrinsic::init_trampoline: - case Intrinsic::lifetime_end: - return true; - } - } - if (auto CS = CallSite(I)) { - if (Function *F = CS.getCalledFunction()) { - StringRef FnName = F->getName(); - if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy)) - return true; - if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy)) - return true; - if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat)) - return true; - if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat)) - return true; - } - } - return false; -} - -/// Return a Location stored to by the specified instruction. If isRemovable -/// returns true, this function and getLocForRead completely describe the memory -/// operations for this instruction. -static MemoryLocation getLocForWrite(Instruction *Inst) { - - if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) - return MemoryLocation::get(SI); - - if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) { - // memcpy/memmove/memset. - MemoryLocation Loc = MemoryLocation::getForDest(MI); - return Loc; - } - - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { - switch (II->getIntrinsicID()) { - default: - return MemoryLocation(); // Unhandled intrinsic. - case Intrinsic::init_trampoline: - return MemoryLocation(II->getArgOperand(0)); - case Intrinsic::lifetime_end: { - uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); - return MemoryLocation(II->getArgOperand(1), Len); - } - } - } - if (auto CS = CallSite(Inst)) - // All the supported TLI functions so far happen to have dest as their - // first argument. - return MemoryLocation(CS.getArgument(0)); - return MemoryLocation(); -} - -/// Return the location read by the specified "hasAnalyzableMemoryWrite" -/// instruction if any. -static MemoryLocation getLocForRead(Instruction *Inst, - const TargetLibraryInfo &TLI) { - assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case"); - - // The only instructions that both read and write are the mem transfer - // instructions (memcpy/memmove). - if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst)) - return MemoryLocation::getForSource(MTI); - return MemoryLocation(); -} - -/// If the value of this instruction and the memory it writes to is unused, may -/// we delete this instruction? -static bool isRemovable(Instruction *I) { - // Don't remove volatile/atomic stores. - if (StoreInst *SI = dyn_cast<StoreInst>(I)) - return SI->isUnordered(); - - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { - switch (II->getIntrinsicID()) { - default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate"); - case Intrinsic::lifetime_end: - // Never remove dead lifetime_end's, e.g. because it is followed by a - // free. - return false; - case Intrinsic::init_trampoline: - // Always safe to remove init_trampoline. - return true; - case Intrinsic::memset: - case Intrinsic::memmove: - case Intrinsic::memcpy: - // Don't remove volatile memory intrinsics. - return !cast<MemIntrinsic>(II)->isVolatile(); - case Intrinsic::memcpy_element_unordered_atomic: - case Intrinsic::memmove_element_unordered_atomic: - case Intrinsic::memset_element_unordered_atomic: - return true; - } - } - - // note: only get here for calls with analyzable writes - i.e. libcalls - if (auto CS = CallSite(I)) - return CS.getInstruction()->use_empty(); - - return false; -} - -/// Returns true if the end of this instruction can be safely shortened in -/// length. -static bool isShortenableAtTheEnd(Instruction *I) { - // Don't shorten stores for now - if (isa<StoreInst>(I)) - return false; - - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { - switch (II->getIntrinsicID()) { - default: return false; - case Intrinsic::memset: - case Intrinsic::memcpy: - case Intrinsic::memcpy_element_unordered_atomic: - case Intrinsic::memset_element_unordered_atomic: - // Do shorten memory intrinsics. - // FIXME: Add memmove if it's also safe to transform. - return true; - } - } - - // Don't shorten libcalls calls for now. - - return false; -} - -/// Returns true if the beginning of this instruction can be safely shortened -/// in length. -static bool isShortenableAtTheBeginning(Instruction *I) { - // FIXME: Handle only memset for now. Supporting memcpy/memmove should be - // easily done by offsetting the source address. - return isa<AnyMemSetInst>(I); -} - -/// Return the pointer that is being written to. -static Value *getStoredPointerOperand(Instruction *I) { - //TODO: factor this to reuse getLocForWrite - MemoryLocation Loc = getLocForWrite(I); - assert(Loc.Ptr && - "unable to find pointer written for analyzable instruction?"); - // TODO: most APIs don't expect const Value * - return const_cast<Value*>(Loc.Ptr); -} - -static uint64_t getPointerSize(const Value *V, const DataLayout &DL, - const TargetLibraryInfo &TLI, - const Function *F) { - uint64_t Size; - ObjectSizeOpts Opts; - Opts.NullIsUnknownSize = NullPointerIsDefined(F); - - if (getObjectSize(V, Size, DL, &TLI, Opts)) - return Size; - return MemoryLocation::UnknownSize; -} - -namespace { - -enum OverwriteResult { - OW_Begin, - OW_Complete, - OW_End, - OW_PartialEarlierWithFullLater, - OW_Unknown -}; - -} // end anonymous namespace - -/// Return 'OW_Complete' if a store to the 'Later' location completely -/// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the -/// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the -/// beginning of the 'Earlier' location is overwritten by 'Later'. -/// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was -/// overwritten by a latter (smaller) store which doesn't write outside the big -/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. -static OverwriteResult isOverwrite(const MemoryLocation &Later, - const MemoryLocation &Earlier, - const DataLayout &DL, - const TargetLibraryInfo &TLI, - int64_t &EarlierOff, int64_t &LaterOff, - Instruction *DepWrite, - InstOverlapIntervalsTy &IOL, - AliasAnalysis &AA, - const Function *F) { - // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll - // get imprecise values here, though (except for unknown sizes). - if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise()) - return OW_Unknown; - - const uint64_t LaterSize = Later.Size.getValue(); - const uint64_t EarlierSize = Earlier.Size.getValue(); - - const Value *P1 = Earlier.Ptr->stripPointerCasts(); - const Value *P2 = Later.Ptr->stripPointerCasts(); - - // If the start pointers are the same, we just have to compare sizes to see if - // the later store was larger than the earlier store. - if (P1 == P2 || AA.isMustAlias(P1, P2)) { - // Make sure that the Later size is >= the Earlier size. - if (LaterSize >= EarlierSize) - return OW_Complete; - } - - // Check to see if the later store is to the entire object (either a global, - // an alloca, or a byval/inalloca argument). If so, then it clearly - // overwrites any other store to the same object. - const Value *UO1 = GetUnderlyingObject(P1, DL), - *UO2 = GetUnderlyingObject(P2, DL); - - // If we can't resolve the same pointers to the same object, then we can't - // analyze them at all. - if (UO1 != UO2) - return OW_Unknown; - - // If the "Later" store is to a recognizable object, get its size. - uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F); - if (ObjectSize != MemoryLocation::UnknownSize) - if (ObjectSize == LaterSize && ObjectSize >= EarlierSize) - return OW_Complete; - - // Okay, we have stores to two completely different pointers. Try to - // decompose the pointer into a "base + constant_offset" form. If the base - // pointers are equal, then we can reason about the two stores. - EarlierOff = 0; - LaterOff = 0; - const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL); - const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL); - - // If the base pointers still differ, we have two completely different stores. - if (BP1 != BP2) - return OW_Unknown; - - // The later store completely overlaps the earlier store if: - // - // 1. Both start at the same offset and the later one's size is greater than - // or equal to the earlier one's, or - // - // |--earlier--| - // |-- later --| - // - // 2. The earlier store has an offset greater than the later offset, but which - // still lies completely within the later store. - // - // |--earlier--| - // |----- later ------| - // - // We have to be careful here as *Off is signed while *.Size is unsigned. - if (EarlierOff >= LaterOff && - LaterSize >= EarlierSize && - uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize) - return OW_Complete; - - // We may now overlap, although the overlap is not complete. There might also - // be other incomplete overlaps, and together, they might cover the complete - // earlier write. - // Note: The correctness of this logic depends on the fact that this function - // is not even called providing DepWrite when there are any intervening reads. - if (EnablePartialOverwriteTracking && - LaterOff < int64_t(EarlierOff + EarlierSize) && - int64_t(LaterOff + LaterSize) >= EarlierOff) { - - // Insert our part of the overlap into the map. - auto &IM = IOL[DepWrite]; - LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff - << ", " << int64_t(EarlierOff + EarlierSize) - << ") Later [" << LaterOff << ", " - << int64_t(LaterOff + LaterSize) << ")\n"); - - // Make sure that we only insert non-overlapping intervals and combine - // adjacent intervals. The intervals are stored in the map with the ending - // offset as the key (in the half-open sense) and the starting offset as - // the value. - int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize; - - // Find any intervals ending at, or after, LaterIntStart which start - // before LaterIntEnd. - auto ILI = IM.lower_bound(LaterIntStart); - if (ILI != IM.end() && ILI->second <= LaterIntEnd) { - // This existing interval is overlapped with the current store somewhere - // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing - // intervals and adjusting our start and end. - LaterIntStart = std::min(LaterIntStart, ILI->second); - LaterIntEnd = std::max(LaterIntEnd, ILI->first); - ILI = IM.erase(ILI); - - // Continue erasing and adjusting our end in case other previous - // intervals are also overlapped with the current store. - // - // |--- ealier 1 ---| |--- ealier 2 ---| - // |------- later---------| - // - while (ILI != IM.end() && ILI->second <= LaterIntEnd) { - assert(ILI->second > LaterIntStart && "Unexpected interval"); - LaterIntEnd = std::max(LaterIntEnd, ILI->first); - ILI = IM.erase(ILI); - } - } - - IM[LaterIntEnd] = LaterIntStart; - - ILI = IM.begin(); - if (ILI->second <= EarlierOff && - ILI->first >= int64_t(EarlierOff + EarlierSize)) { - LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier [" - << EarlierOff << ", " - << int64_t(EarlierOff + EarlierSize) - << ") Composite Later [" << ILI->second << ", " - << ILI->first << ")\n"); - ++NumCompletePartials; - return OW_Complete; - } - } - - // Check for an earlier store which writes to all the memory locations that - // the later store writes to. - if (EnablePartialStoreMerging && LaterOff >= EarlierOff && - int64_t(EarlierOff + EarlierSize) > LaterOff && - uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) { - LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load [" - << EarlierOff << ", " - << int64_t(EarlierOff + EarlierSize) - << ") by a later store [" << LaterOff << ", " - << int64_t(LaterOff + LaterSize) << ")\n"); - // TODO: Maybe come up with a better name? - return OW_PartialEarlierWithFullLater; - } - - // Another interesting case is if the later store overwrites the end of the - // earlier store. - // - // |--earlier--| - // |-- later --| - // - // In this case we may want to trim the size of earlier to avoid generating - // writes to addresses which will definitely be overwritten later - if (!EnablePartialOverwriteTracking && - (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) && - int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize))) - return OW_End; - - // Finally, we also need to check if the later store overwrites the beginning - // of the earlier store. - // - // |--earlier--| - // |-- later --| - // - // In this case we may want to move the destination address and trim the size - // of earlier to avoid generating writes to addresses which will definitely - // be overwritten later. - if (!EnablePartialOverwriteTracking && - (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) { - assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) && - "Expect to be handled as OW_Complete"); - return OW_Begin; - } - // Otherwise, they don't completely overlap. - return OW_Unknown; -} - -/// If 'Inst' might be a self read (i.e. a noop copy of a -/// memory region into an identical pointer) then it doesn't actually make its -/// input dead in the traditional sense. Consider this case: -/// -/// memmove(A <- B) -/// memmove(A <- A) -/// -/// In this case, the second store to A does not make the first store to A dead. -/// The usual situation isn't an explicit A<-A store like this (which can be -/// trivially removed) but a case where two pointers may alias. -/// -/// This function detects when it is unsafe to remove a dependent instruction -/// because the DSE inducing instruction may be a self-read. -static bool isPossibleSelfRead(Instruction *Inst, - const MemoryLocation &InstStoreLoc, - Instruction *DepWrite, - const TargetLibraryInfo &TLI, - AliasAnalysis &AA) { - // Self reads can only happen for instructions that read memory. Get the - // location read. - MemoryLocation InstReadLoc = getLocForRead(Inst, TLI); - if (!InstReadLoc.Ptr) - return false; // Not a reading instruction. - - // If the read and written loc obviously don't alias, it isn't a read. - if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) - return false; - - if (isa<AnyMemCpyInst>(Inst)) { - // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763) - // but in practice memcpy(A <- B) either means that A and B are disjoint or - // are equal (i.e. there are not partial overlaps). Given that, if we have: - // - // memcpy/memmove(A <- B) // DepWrite - // memcpy(A <- B) // Inst - // - // with Inst reading/writing a >= size than DepWrite, we can reason as - // follows: - // - // - If A == B then both the copies are no-ops, so the DepWrite can be - // removed. - // - If A != B then A and B are disjoint locations in Inst. Since - // Inst.size >= DepWrite.size A and B are disjoint in DepWrite too. - // Therefore DepWrite can be removed. - MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI); - - if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr)) - return false; - } - - // If DepWrite doesn't read memory or if we can't prove it is a must alias, - // then it can't be considered dead. - return true; -} - -/// Returns true if the memory which is accessed by the second instruction is not -/// modified between the first and the second instruction. -/// Precondition: Second instruction must be dominated by the first -/// instruction. -static bool memoryIsNotModifiedBetween(Instruction *FirstI, - Instruction *SecondI, - AliasAnalysis *AA) { - SmallVector<BasicBlock *, 16> WorkList; - SmallPtrSet<BasicBlock *, 8> Visited; - BasicBlock::iterator FirstBBI(FirstI); - ++FirstBBI; - BasicBlock::iterator SecondBBI(SecondI); - BasicBlock *FirstBB = FirstI->getParent(); - BasicBlock *SecondBB = SecondI->getParent(); - MemoryLocation MemLoc = MemoryLocation::get(SecondI); - - // Start checking the store-block. - WorkList.push_back(SecondBB); - bool isFirstBlock = true; - - // Check all blocks going backward until we reach the load-block. - while (!WorkList.empty()) { - BasicBlock *B = WorkList.pop_back_val(); - - // Ignore instructions before LI if this is the FirstBB. - BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); - - BasicBlock::iterator EI; - if (isFirstBlock) { - // Ignore instructions after SI if this is the first visit of SecondBB. - assert(B == SecondBB && "first block is not the store block"); - EI = SecondBBI; - isFirstBlock = false; - } else { - // It's not SecondBB or (in case of a loop) the second visit of SecondBB. - // In this case we also have to look at instructions after SI. - EI = B->end(); - } - for (; BI != EI; ++BI) { - Instruction *I = &*BI; - if (I->mayWriteToMemory() && I != SecondI) - if (isModSet(AA->getModRefInfo(I, MemLoc))) - return false; - } - if (B != FirstBB) { - assert(B != &FirstBB->getParent()->getEntryBlock() && - "Should not hit the entry block because SI must be dominated by LI"); - for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) { - if (!Visited.insert(*PredI).second) - continue; - WorkList.push_back(*PredI); - } - } - } - return true; -} - -/// Find all blocks that will unconditionally lead to the block BB and append -/// them to F. -static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks, - BasicBlock *BB, DominatorTree *DT) { - for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { - BasicBlock *Pred = *I; - if (Pred == BB) continue; - Instruction *PredTI = Pred->getTerminator(); - if (PredTI->getNumSuccessors() != 1) - continue; - - if (DT->isReachableFromEntry(Pred)) - Blocks.push_back(Pred); - } -} - -/// Handle frees of entire structures whose dependency is a store -/// to a field of that structure. -static bool handleFree(CallInst *F, AliasAnalysis *AA, - MemoryDependenceResults *MD, DominatorTree *DT, - const TargetLibraryInfo *TLI, - InstOverlapIntervalsTy &IOL, - DenseMap<Instruction*, size_t> *InstrOrdering) { - bool MadeChange = false; - - MemoryLocation Loc = MemoryLocation(F->getOperand(0)); - SmallVector<BasicBlock *, 16> Blocks; - Blocks.push_back(F->getParent()); - const DataLayout &DL = F->getModule()->getDataLayout(); - - while (!Blocks.empty()) { - BasicBlock *BB = Blocks.pop_back_val(); - Instruction *InstPt = BB->getTerminator(); - if (BB == F->getParent()) InstPt = F; - - MemDepResult Dep = - MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB); - while (Dep.isDef() || Dep.isClobber()) { - Instruction *Dependency = Dep.getInst(); - if (!hasAnalyzableMemoryWrite(Dependency, *TLI) || - !isRemovable(Dependency)) - break; - - Value *DepPointer = - GetUnderlyingObject(getStoredPointerOperand(Dependency), DL); - - // Check for aliasing. - if (!AA->isMustAlias(F->getArgOperand(0), DepPointer)) - break; - - LLVM_DEBUG( - dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: " - << *Dependency << '\n'); - - // DCE instructions only used to calculate that store. - BasicBlock::iterator BBI(Dependency); - deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, InstrOrdering); - ++NumFastStores; - MadeChange = true; - - // Inst's old Dependency is now deleted. Compute the next dependency, - // which may also be dead, as in - // s[0] = 0; - // s[1] = 0; // This has just been deleted. - // free(s); - Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB); - } - - if (Dep.isNonLocal()) - findUnconditionalPreds(Blocks, BB, DT); - } - - return MadeChange; -} - -/// Check to see if the specified location may alias any of the stack objects in -/// the DeadStackObjects set. If so, they become live because the location is -/// being loaded. -static void removeAccessedObjects(const MemoryLocation &LoadedLoc, - SmallSetVector<Value *, 16> &DeadStackObjects, - const DataLayout &DL, AliasAnalysis *AA, - const TargetLibraryInfo *TLI, - const Function *F) { - const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL); - - // A constant can't be in the dead pointer set. - if (isa<Constant>(UnderlyingPointer)) - return; - - // If the kill pointer can be easily reduced to an alloca, don't bother doing - // extraneous AA queries. - if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) { - DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer)); - return; - } - - // Remove objects that could alias LoadedLoc. - DeadStackObjects.remove_if([&](Value *I) { - // See if the loaded location could alias the stack location. - MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F)); - return !AA->isNoAlias(StackLoc, LoadedLoc); - }); -} - -/// Remove dead stores to stack-allocated locations in the function end block. -/// Ex: -/// %A = alloca i32 -/// ... -/// store i32 1, i32* %A -/// ret void -static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA, - MemoryDependenceResults *MD, - const TargetLibraryInfo *TLI, - InstOverlapIntervalsTy &IOL, - DenseMap<Instruction*, size_t> *InstrOrdering) { - bool MadeChange = false; - - // Keep track of all of the stack objects that are dead at the end of the - // function. - SmallSetVector<Value*, 16> DeadStackObjects; - - // Find all of the alloca'd pointers in the entry block. - BasicBlock &Entry = BB.getParent()->front(); - for (Instruction &I : Entry) { - if (isa<AllocaInst>(&I)) - DeadStackObjects.insert(&I); - - // Okay, so these are dead heap objects, but if the pointer never escapes - // then it's leaked by this function anyways. - else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true)) - DeadStackObjects.insert(&I); - } - - // Treat byval or inalloca arguments the same, stores to them are dead at the - // end of the function. - for (Argument &AI : BB.getParent()->args()) - if (AI.hasByValOrInAllocaAttr()) - DeadStackObjects.insert(&AI); - - const DataLayout &DL = BB.getModule()->getDataLayout(); - - // Scan the basic block backwards - for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){ - --BBI; - - // If we find a store, check to see if it points into a dead stack value. - if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) { - // See through pointer-to-pointer bitcasts - SmallVector<Value *, 4> Pointers; - GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL); - - // Stores to stack values are valid candidates for removal. - bool AllDead = true; - for (Value *Pointer : Pointers) - if (!DeadStackObjects.count(Pointer)) { - AllDead = false; - break; - } - - if (AllDead) { - Instruction *Dead = &*BBI; - - LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: " - << *Dead << "\n Objects: "; - for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(), - E = Pointers.end(); - I != E; ++I) { - dbgs() << **I; - if (std::next(I) != E) - dbgs() << ", "; - } dbgs() - << '\n'); - - // DCE instructions only used to calculate that store. - deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects); - ++NumFastStores; - MadeChange = true; - continue; - } - } - - // Remove any dead non-memory-mutating instructions. - if (isInstructionTriviallyDead(&*BBI, TLI)) { - LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: " - << *&*BBI << '\n'); - deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects); - ++NumFastOther; - MadeChange = true; - continue; - } - - if (isa<AllocaInst>(BBI)) { - // Remove allocas from the list of dead stack objects; there can't be - // any references before the definition. - DeadStackObjects.remove(&*BBI); - continue; - } - - if (auto *Call = dyn_cast<CallBase>(&*BBI)) { - // Remove allocation function calls from the list of dead stack objects; - // there can't be any references before the definition. - if (isAllocLikeFn(&*BBI, TLI)) - DeadStackObjects.remove(&*BBI); - - // If this call does not access memory, it can't be loading any of our - // pointers. - if (AA->doesNotAccessMemory(Call)) - continue; - - // If the call might load from any of our allocas, then any store above - // the call is live. - DeadStackObjects.remove_if([&](Value *I) { - // See if the call site touches the value. - return isRefSet(AA->getModRefInfo( - Call, I, getPointerSize(I, DL, *TLI, BB.getParent()))); - }); - - // If all of the allocas were clobbered by the call then we're not going - // to find anything else to process. - if (DeadStackObjects.empty()) - break; - - continue; - } - - // We can remove the dead stores, irrespective of the fence and its ordering - // (release/acquire/seq_cst). Fences only constraints the ordering of - // already visible stores, it does not make a store visible to other - // threads. So, skipping over a fence does not change a store from being - // dead. - if (isa<FenceInst>(*BBI)) - continue; - - MemoryLocation LoadedLoc; - - // If we encounter a use of the pointer, it is no longer considered dead - if (LoadInst *L = dyn_cast<LoadInst>(BBI)) { - if (!L->isUnordered()) // Be conservative with atomic/volatile load - break; - LoadedLoc = MemoryLocation::get(L); - } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) { - LoadedLoc = MemoryLocation::get(V); - } else if (!BBI->mayReadFromMemory()) { - // Instruction doesn't read memory. Note that stores that weren't removed - // above will hit this case. - continue; - } else { - // Unknown inst; assume it clobbers everything. - break; - } - - // Remove any allocas from the DeadPointer set that are loaded, as this - // makes any stores above the access live. - removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent()); - - // If all of the allocas were clobbered by the access then we're not going - // to find anything else to process. - if (DeadStackObjects.empty()) - break; - } - - return MadeChange; -} - -static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset, - int64_t &EarlierSize, int64_t LaterOffset, - int64_t LaterSize, bool IsOverwriteEnd) { - // TODO: base this on the target vector size so that if the earlier - // store was too small to get vector writes anyway then its likely - // a good idea to shorten it - // Power of 2 vector writes are probably always a bad idea to optimize - // as any store/memset/memcpy is likely using vector instructions so - // shortening it to not vector size is likely to be slower - auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite); - unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment(); - if (!IsOverwriteEnd) - LaterOffset = int64_t(LaterOffset + LaterSize); - - if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) && - !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0)) - return false; - - int64_t NewLength = IsOverwriteEnd - ? LaterOffset - EarlierOffset - : EarlierSize - (LaterOffset - EarlierOffset); - - if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) { - // When shortening an atomic memory intrinsic, the newly shortened - // length must remain an integer multiple of the element size. - const uint32_t ElementSize = AMI->getElementSizeInBytes(); - if (0 != NewLength % ElementSize) - return false; - } - - LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " - << (IsOverwriteEnd ? "END" : "BEGIN") << ": " - << *EarlierWrite << "\n KILLER (offset " << LaterOffset - << ", " << EarlierSize << ")\n"); - - Value *EarlierWriteLength = EarlierIntrinsic->getLength(); - Value *TrimmedLength = - ConstantInt::get(EarlierWriteLength->getType(), NewLength); - EarlierIntrinsic->setLength(TrimmedLength); - - EarlierSize = NewLength; - if (!IsOverwriteEnd) { - int64_t OffsetMoved = (LaterOffset - EarlierOffset); - Value *Indices[1] = { - ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)}; - GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds( - EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite); - EarlierIntrinsic->setDest(NewDestGEP); - EarlierOffset = EarlierOffset + OffsetMoved; - } - return true; -} - -static bool tryToShortenEnd(Instruction *EarlierWrite, - OverlapIntervalsTy &IntervalMap, - int64_t &EarlierStart, int64_t &EarlierSize) { - if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite)) - return false; - - OverlapIntervalsTy::iterator OII = --IntervalMap.end(); - int64_t LaterStart = OII->second; - int64_t LaterSize = OII->first - LaterStart; - - if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize && - LaterStart + LaterSize >= EarlierStart + EarlierSize) { - if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, - LaterSize, true)) { - IntervalMap.erase(OII); - return true; - } - } - return false; -} - -static bool tryToShortenBegin(Instruction *EarlierWrite, - OverlapIntervalsTy &IntervalMap, - int64_t &EarlierStart, int64_t &EarlierSize) { - if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite)) - return false; - - OverlapIntervalsTy::iterator OII = IntervalMap.begin(); - int64_t LaterStart = OII->second; - int64_t LaterSize = OII->first - LaterStart; - - if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) { - assert(LaterStart + LaterSize < EarlierStart + EarlierSize && - "Should have been handled as OW_Complete"); - if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, - LaterSize, false)) { - IntervalMap.erase(OII); - return true; - } - } - return false; -} - -static bool removePartiallyOverlappedStores(AliasAnalysis *AA, - const DataLayout &DL, - InstOverlapIntervalsTy &IOL) { - bool Changed = false; - for (auto OI : IOL) { - Instruction *EarlierWrite = OI.first; - MemoryLocation Loc = getLocForWrite(EarlierWrite); - assert(isRemovable(EarlierWrite) && "Expect only removable instruction"); - - const Value *Ptr = Loc.Ptr->stripPointerCasts(); - int64_t EarlierStart = 0; - int64_t EarlierSize = int64_t(Loc.Size.getValue()); - GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL); - OverlapIntervalsTy &IntervalMap = OI.second; - Changed |= - tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); - if (IntervalMap.empty()) - continue; - Changed |= - tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); - } - return Changed; -} - -static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI, - AliasAnalysis *AA, MemoryDependenceResults *MD, - const DataLayout &DL, - const TargetLibraryInfo *TLI, - InstOverlapIntervalsTy &IOL, - DenseMap<Instruction*, size_t> *InstrOrdering) { - // Must be a store instruction. - StoreInst *SI = dyn_cast<StoreInst>(Inst); - if (!SI) - return false; - - // If we're storing the same value back to a pointer that we just loaded from, - // then the store can be removed. - if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) { - if (SI->getPointerOperand() == DepLoad->getPointerOperand() && - isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) { - - LLVM_DEBUG( - dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: " - << *DepLoad << "\n STORE: " << *SI << '\n'); - - deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering); - ++NumRedundantStores; - return true; - } - } - - // Remove null stores into the calloc'ed objects - Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand()); - if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) { - Instruction *UnderlyingPointer = - dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL)); - - if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) && - memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) { - LLVM_DEBUG( - dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: " - << *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n'); - - deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering); - ++NumRedundantStores; - return true; - } - } - return false; -} - -static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA, - MemoryDependenceResults *MD, DominatorTree *DT, - const TargetLibraryInfo *TLI) { - const DataLayout &DL = BB.getModule()->getDataLayout(); - bool MadeChange = false; - - // FIXME: Maybe change this to use some abstraction like OrderedBasicBlock? - // The current OrderedBasicBlock can't deal with mutation at the moment. - size_t LastThrowingInstIndex = 0; - DenseMap<Instruction*, size_t> InstrOrdering; - size_t InstrIndex = 1; - - // A map of interval maps representing partially-overwritten value parts. - InstOverlapIntervalsTy IOL; - - // Do a top-down walk on the BB. - for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) { - // Handle 'free' calls specially. - if (CallInst *F = isFreeCall(&*BBI, TLI)) { - MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, &InstrOrdering); - // Increment BBI after handleFree has potentially deleted instructions. - // This ensures we maintain a valid iterator. - ++BBI; - continue; - } - - Instruction *Inst = &*BBI++; - - size_t CurInstNumber = InstrIndex++; - InstrOrdering.insert(std::make_pair(Inst, CurInstNumber)); - if (Inst->mayThrow()) { - LastThrowingInstIndex = CurInstNumber; - continue; - } - - // Check to see if Inst writes to memory. If not, continue. - if (!hasAnalyzableMemoryWrite(Inst, *TLI)) - continue; - - // eliminateNoopStore will update in iterator, if necessary. - if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, &InstrOrdering)) { - MadeChange = true; - continue; - } - - // If we find something that writes memory, get its memory dependence. - MemDepResult InstDep = MD->getDependency(Inst); - - // Ignore any store where we can't find a local dependence. - // FIXME: cross-block DSE would be fun. :) - if (!InstDep.isDef() && !InstDep.isClobber()) - continue; - - // Figure out what location is being stored to. - MemoryLocation Loc = getLocForWrite(Inst); - - // If we didn't get a useful location, fail. - if (!Loc.Ptr) - continue; - - // Loop until we find a store we can eliminate or a load that - // invalidates the analysis. Without an upper bound on the number of - // instructions examined, this analysis can become very time-consuming. - // However, the potential gain diminishes as we process more instructions - // without eliminating any of them. Therefore, we limit the number of - // instructions we look at. - auto Limit = MD->getDefaultBlockScanLimit(); - while (InstDep.isDef() || InstDep.isClobber()) { - // Get the memory clobbered by the instruction we depend on. MemDep will - // skip any instructions that 'Loc' clearly doesn't interact with. If we - // end up depending on a may- or must-aliased load, then we can't optimize - // away the store and we bail out. However, if we depend on something - // that overwrites the memory location we *can* potentially optimize it. - // - // Find out what memory location the dependent instruction stores. - Instruction *DepWrite = InstDep.getInst(); - if (!hasAnalyzableMemoryWrite(DepWrite, *TLI)) - break; - MemoryLocation DepLoc = getLocForWrite(DepWrite); - // If we didn't get a useful location, or if it isn't a size, bail out. - if (!DepLoc.Ptr) - break; - - // Make sure we don't look past a call which might throw. This is an - // issue because MemoryDependenceAnalysis works in the wrong direction: - // it finds instructions which dominate the current instruction, rather than - // instructions which are post-dominated by the current instruction. - // - // If the underlying object is a non-escaping memory allocation, any store - // to it is dead along the unwind edge. Otherwise, we need to preserve - // the store. - size_t DepIndex = InstrOrdering.lookup(DepWrite); - assert(DepIndex && "Unexpected instruction"); - if (DepIndex <= LastThrowingInstIndex) { - const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL); - bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying); - if (!IsStoreDeadOnUnwind) { - // We're looking for a call to an allocation function - // where the allocation doesn't escape before the last - // throwing instruction; PointerMayBeCaptured - // reasonably fast approximation. - IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) && - !PointerMayBeCaptured(Underlying, false, true); - } - if (!IsStoreDeadOnUnwind) - break; - } - - // If we find a write that is a) removable (i.e., non-volatile), b) is - // completely obliterated by the store to 'Loc', and c) which we know that - // 'Inst' doesn't load from, then we can remove it. - // Also try to merge two stores if a later one only touches memory written - // to by the earlier one. - if (isRemovable(DepWrite) && - !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) { - int64_t InstWriteOffset, DepWriteOffset; - OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset, - InstWriteOffset, DepWrite, IOL, *AA, - BB.getParent()); - if (OR == OW_Complete) { - LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DepWrite - << "\n KILLER: " << *Inst << '\n'); - - // Delete the store and now-dead instructions that feed it. - deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, &InstrOrdering); - ++NumFastStores; - MadeChange = true; - - // We erased DepWrite; start over. - InstDep = MD->getDependency(Inst); - continue; - } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) || - ((OR == OW_Begin && - isShortenableAtTheBeginning(DepWrite)))) { - assert(!EnablePartialOverwriteTracking && "Do not expect to perform " - "when partial-overwrite " - "tracking is enabled"); - // The overwrite result is known, so these must be known, too. - int64_t EarlierSize = DepLoc.Size.getValue(); - int64_t LaterSize = Loc.Size.getValue(); - bool IsOverwriteEnd = (OR == OW_End); - MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize, - InstWriteOffset, LaterSize, IsOverwriteEnd); - } else if (EnablePartialStoreMerging && - OR == OW_PartialEarlierWithFullLater) { - auto *Earlier = dyn_cast<StoreInst>(DepWrite); - auto *Later = dyn_cast<StoreInst>(Inst); - if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) && - Later && isa<ConstantInt>(Later->getValueOperand()) && - memoryIsNotModifiedBetween(Earlier, Later, AA)) { - // If the store we find is: - // a) partially overwritten by the store to 'Loc' - // b) the later store is fully contained in the earlier one and - // c) they both have a constant value - // Merge the two stores, replacing the earlier store's value with a - // merge of both values. - // TODO: Deal with other constant types (vectors, etc), and probably - // some mem intrinsics (if needed) - - APInt EarlierValue = - cast<ConstantInt>(Earlier->getValueOperand())->getValue(); - APInt LaterValue = - cast<ConstantInt>(Later->getValueOperand())->getValue(); - unsigned LaterBits = LaterValue.getBitWidth(); - assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth()); - LaterValue = LaterValue.zext(EarlierValue.getBitWidth()); - - // Offset of the smaller store inside the larger store - unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8; - unsigned LShiftAmount = - DL.isBigEndian() - ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits - : BitOffsetDiff; - APInt Mask = - APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount, - LShiftAmount + LaterBits); - // Clear the bits we'll be replacing, then OR with the smaller - // store, shifted appropriately. - APInt Merged = - (EarlierValue & ~Mask) | (LaterValue << LShiftAmount); - LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *DepWrite - << "\n Later: " << *Inst - << "\n Merged Value: " << Merged << '\n'); - - auto *SI = new StoreInst( - ConstantInt::get(Earlier->getValueOperand()->getType(), Merged), - Earlier->getPointerOperand(), false, Earlier->getAlignment(), - Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite); - - unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa, - LLVMContext::MD_alias_scope, - LLVMContext::MD_noalias, - LLVMContext::MD_nontemporal}; - SI->copyMetadata(*DepWrite, MDToKeep); - ++NumModifiedStores; - - // Remove earlier, wider, store - size_t Idx = InstrOrdering.lookup(DepWrite); - InstrOrdering.erase(DepWrite); - InstrOrdering.insert(std::make_pair(SI, Idx)); - - // Delete the old stores and now-dead instructions that feed them. - deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, &InstrOrdering); - deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, - &InstrOrdering); - MadeChange = true; - - // We erased DepWrite and Inst (Loc); start over. - break; - } - } - } - - // If this is a may-aliased store that is clobbering the store value, we - // can keep searching past it for another must-aliased pointer that stores - // to the same location. For example, in: - // store -> P - // store -> Q - // store -> P - // we can remove the first store to P even though we don't know if P and Q - // alias. - if (DepWrite == &BB.front()) break; - - // Can't look past this instruction if it might read 'Loc'. - if (isRefSet(AA->getModRefInfo(DepWrite, Loc))) - break; - - InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false, - DepWrite->getIterator(), &BB, - /*QueryInst=*/ nullptr, &Limit); - } - } - - if (EnablePartialOverwriteTracking) - MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL); - - // If this block ends in a return, unwind, or unreachable, all allocas are - // dead at its end, which means stores to them are also dead. - if (BB.getTerminator()->getNumSuccessors() == 0) - MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, &InstrOrdering); - - return MadeChange; -} - -static bool eliminateDeadStores(Function &F, AliasAnalysis *AA, - MemoryDependenceResults *MD, DominatorTree *DT, - const TargetLibraryInfo *TLI) { - bool MadeChange = false; - for (BasicBlock &BB : F) - // Only check non-dead blocks. Dead blocks may have strange pointer - // cycles that will confuse alias analysis. - if (DT->isReachableFromEntry(&BB)) - MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI); - - return MadeChange; -} - -//===----------------------------------------------------------------------===// -// DSE Pass -//===----------------------------------------------------------------------===// -PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { - AliasAnalysis *AA = &AM.getResult<AAManager>(F); - DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); - MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F); - const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); - - if (!eliminateDeadStores(F, AA, MD, DT, TLI)) - return PreservedAnalyses::all(); - - PreservedAnalyses PA; - PA.preserveSet<CFGAnalyses>(); - PA.preserve<GlobalsAA>(); - PA.preserve<MemoryDependenceAnalysis>(); - return PA; -} - -namespace { - -/// A legacy pass for the legacy pass manager that wraps \c DSEPass. -class DSELegacyPass : public FunctionPass { -public: - static char ID; // Pass identification, replacement for typeid - - DSELegacyPass() : FunctionPass(ID) { - initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override { - if (skipFunction(F)) - return false; - - DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); - MemoryDependenceResults *MD = - &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); - const TargetLibraryInfo *TLI = - &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - - return eliminateDeadStores(F, AA, MD, DT, TLI); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesCFG(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<AAResultsWrapperPass>(); - AU.addRequired<MemoryDependenceWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.addPreserved<MemoryDependenceWrapperPass>(); - } -}; - -} // end anonymous namespace - -char DSELegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, - false) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) -INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, - false) - -FunctionPass *llvm::createDeadStoreEliminationPass() { - return new DSELegacyPass(); -} |
