summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp1399
1 files changed, 0 insertions, 1399 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp b/gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
deleted file mode 100644
index 469930ca6a1..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ /dev/null
@@ -1,1399 +0,0 @@
-//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a trivial dead store elimination that only considers
-// basic-block local redundant stores.
-//
-// FIXME: This should eventually be extended to be a post-dominator tree
-// traversal. Doing so would be pretty trivial.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/MemoryDependenceAnalysis.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <iterator>
-#include <map>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "dse"
-
-STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
-STATISTIC(NumFastStores, "Number of stores deleted");
-STATISTIC(NumFastOther, "Number of other instrs removed");
-STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
-STATISTIC(NumModifiedStores, "Number of stores modified");
-
-static cl::opt<bool>
-EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
- cl::init(true), cl::Hidden,
- cl::desc("Enable partial-overwrite tracking in DSE"));
-
-static cl::opt<bool>
-EnablePartialStoreMerging("enable-dse-partial-store-merging",
- cl::init(true), cl::Hidden,
- cl::desc("Enable partial store merging in DSE"));
-
-//===----------------------------------------------------------------------===//
-// Helper functions
-//===----------------------------------------------------------------------===//
-using OverlapIntervalsTy = std::map<int64_t, int64_t>;
-using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
-
-/// Delete this instruction. Before we do, go through and zero out all the
-/// operands of this instruction. If any of them become dead, delete them and
-/// the computation tree that feeds them.
-/// If ValueSet is non-null, remove any deleted instructions from it as well.
-static void
-deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
- MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
- InstOverlapIntervalsTy &IOL,
- DenseMap<Instruction*, size_t> *InstrOrdering,
- SmallSetVector<Value *, 16> *ValueSet = nullptr) {
- SmallVector<Instruction*, 32> NowDeadInsts;
-
- NowDeadInsts.push_back(I);
- --NumFastOther;
-
- // Keeping the iterator straight is a pain, so we let this routine tell the
- // caller what the next instruction is after we're done mucking about.
- BasicBlock::iterator NewIter = *BBI;
-
- // Before we touch this instruction, remove it from memdep!
- do {
- Instruction *DeadInst = NowDeadInsts.pop_back_val();
- ++NumFastOther;
-
- // Try to preserve debug information attached to the dead instruction.
- salvageDebugInfo(*DeadInst);
-
- // This instruction is dead, zap it, in stages. Start by removing it from
- // MemDep, which needs to know the operands and needs it to be in the
- // function.
- MD.removeInstruction(DeadInst);
-
- for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
- Value *Op = DeadInst->getOperand(op);
- DeadInst->setOperand(op, nullptr);
-
- // If this operand just became dead, add it to the NowDeadInsts list.
- if (!Op->use_empty()) continue;
-
- if (Instruction *OpI = dyn_cast<Instruction>(Op))
- if (isInstructionTriviallyDead(OpI, &TLI))
- NowDeadInsts.push_back(OpI);
- }
-
- if (ValueSet) ValueSet->remove(DeadInst);
- InstrOrdering->erase(DeadInst);
- IOL.erase(DeadInst);
-
- if (NewIter == DeadInst->getIterator())
- NewIter = DeadInst->eraseFromParent();
- else
- DeadInst->eraseFromParent();
- } while (!NowDeadInsts.empty());
- *BBI = NewIter;
-}
-
-/// Does this instruction write some memory? This only returns true for things
-/// that we can analyze with other helpers below.
-static bool hasAnalyzableMemoryWrite(Instruction *I,
- const TargetLibraryInfo &TLI) {
- if (isa<StoreInst>(I))
- return true;
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default:
- return false;
- case Intrinsic::memset:
- case Intrinsic::memmove:
- case Intrinsic::memcpy:
- case Intrinsic::memcpy_element_unordered_atomic:
- case Intrinsic::memmove_element_unordered_atomic:
- case Intrinsic::memset_element_unordered_atomic:
- case Intrinsic::init_trampoline:
- case Intrinsic::lifetime_end:
- return true;
- }
- }
- if (auto CS = CallSite(I)) {
- if (Function *F = CS.getCalledFunction()) {
- StringRef FnName = F->getName();
- if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy))
- return true;
- if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy))
- return true;
- if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat))
- return true;
- if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat))
- return true;
- }
- }
- return false;
-}
-
-/// Return a Location stored to by the specified instruction. If isRemovable
-/// returns true, this function and getLocForRead completely describe the memory
-/// operations for this instruction.
-static MemoryLocation getLocForWrite(Instruction *Inst) {
-
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- return MemoryLocation::get(SI);
-
- if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
- // memcpy/memmove/memset.
- MemoryLocation Loc = MemoryLocation::getForDest(MI);
- return Loc;
- }
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- switch (II->getIntrinsicID()) {
- default:
- return MemoryLocation(); // Unhandled intrinsic.
- case Intrinsic::init_trampoline:
- return MemoryLocation(II->getArgOperand(0));
- case Intrinsic::lifetime_end: {
- uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
- return MemoryLocation(II->getArgOperand(1), Len);
- }
- }
- }
- if (auto CS = CallSite(Inst))
- // All the supported TLI functions so far happen to have dest as their
- // first argument.
- return MemoryLocation(CS.getArgument(0));
- return MemoryLocation();
-}
-
-/// Return the location read by the specified "hasAnalyzableMemoryWrite"
-/// instruction if any.
-static MemoryLocation getLocForRead(Instruction *Inst,
- const TargetLibraryInfo &TLI) {
- assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");
-
- // The only instructions that both read and write are the mem transfer
- // instructions (memcpy/memmove).
- if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
- return MemoryLocation::getForSource(MTI);
- return MemoryLocation();
-}
-
-/// If the value of this instruction and the memory it writes to is unused, may
-/// we delete this instruction?
-static bool isRemovable(Instruction *I) {
- // Don't remove volatile/atomic stores.
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isUnordered();
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
- case Intrinsic::lifetime_end:
- // Never remove dead lifetime_end's, e.g. because it is followed by a
- // free.
- return false;
- case Intrinsic::init_trampoline:
- // Always safe to remove init_trampoline.
- return true;
- case Intrinsic::memset:
- case Intrinsic::memmove:
- case Intrinsic::memcpy:
- // Don't remove volatile memory intrinsics.
- return !cast<MemIntrinsic>(II)->isVolatile();
- case Intrinsic::memcpy_element_unordered_atomic:
- case Intrinsic::memmove_element_unordered_atomic:
- case Intrinsic::memset_element_unordered_atomic:
- return true;
- }
- }
-
- // note: only get here for calls with analyzable writes - i.e. libcalls
- if (auto CS = CallSite(I))
- return CS.getInstruction()->use_empty();
-
- return false;
-}
-
-/// Returns true if the end of this instruction can be safely shortened in
-/// length.
-static bool isShortenableAtTheEnd(Instruction *I) {
- // Don't shorten stores for now
- if (isa<StoreInst>(I))
- return false;
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default: return false;
- case Intrinsic::memset:
- case Intrinsic::memcpy:
- case Intrinsic::memcpy_element_unordered_atomic:
- case Intrinsic::memset_element_unordered_atomic:
- // Do shorten memory intrinsics.
- // FIXME: Add memmove if it's also safe to transform.
- return true;
- }
- }
-
- // Don't shorten libcalls calls for now.
-
- return false;
-}
-
-/// Returns true if the beginning of this instruction can be safely shortened
-/// in length.
-static bool isShortenableAtTheBeginning(Instruction *I) {
- // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
- // easily done by offsetting the source address.
- return isa<AnyMemSetInst>(I);
-}
-
-/// Return the pointer that is being written to.
-static Value *getStoredPointerOperand(Instruction *I) {
- //TODO: factor this to reuse getLocForWrite
- MemoryLocation Loc = getLocForWrite(I);
- assert(Loc.Ptr &&
- "unable to find pointer written for analyzable instruction?");
- // TODO: most APIs don't expect const Value *
- return const_cast<Value*>(Loc.Ptr);
-}
-
-static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
- const TargetLibraryInfo &TLI,
- const Function *F) {
- uint64_t Size;
- ObjectSizeOpts Opts;
- Opts.NullIsUnknownSize = NullPointerIsDefined(F);
-
- if (getObjectSize(V, Size, DL, &TLI, Opts))
- return Size;
- return MemoryLocation::UnknownSize;
-}
-
-namespace {
-
-enum OverwriteResult {
- OW_Begin,
- OW_Complete,
- OW_End,
- OW_PartialEarlierWithFullLater,
- OW_Unknown
-};
-
-} // end anonymous namespace
-
-/// Return 'OW_Complete' if a store to the 'Later' location completely
-/// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
-/// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
-/// beginning of the 'Earlier' location is overwritten by 'Later'.
-/// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
-/// overwritten by a latter (smaller) store which doesn't write outside the big
-/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
-static OverwriteResult isOverwrite(const MemoryLocation &Later,
- const MemoryLocation &Earlier,
- const DataLayout &DL,
- const TargetLibraryInfo &TLI,
- int64_t &EarlierOff, int64_t &LaterOff,
- Instruction *DepWrite,
- InstOverlapIntervalsTy &IOL,
- AliasAnalysis &AA,
- const Function *F) {
- // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
- // get imprecise values here, though (except for unknown sizes).
- if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise())
- return OW_Unknown;
-
- const uint64_t LaterSize = Later.Size.getValue();
- const uint64_t EarlierSize = Earlier.Size.getValue();
-
- const Value *P1 = Earlier.Ptr->stripPointerCasts();
- const Value *P2 = Later.Ptr->stripPointerCasts();
-
- // If the start pointers are the same, we just have to compare sizes to see if
- // the later store was larger than the earlier store.
- if (P1 == P2 || AA.isMustAlias(P1, P2)) {
- // Make sure that the Later size is >= the Earlier size.
- if (LaterSize >= EarlierSize)
- return OW_Complete;
- }
-
- // Check to see if the later store is to the entire object (either a global,
- // an alloca, or a byval/inalloca argument). If so, then it clearly
- // overwrites any other store to the same object.
- const Value *UO1 = GetUnderlyingObject(P1, DL),
- *UO2 = GetUnderlyingObject(P2, DL);
-
- // If we can't resolve the same pointers to the same object, then we can't
- // analyze them at all.
- if (UO1 != UO2)
- return OW_Unknown;
-
- // If the "Later" store is to a recognizable object, get its size.
- uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
- if (ObjectSize != MemoryLocation::UnknownSize)
- if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
- return OW_Complete;
-
- // Okay, we have stores to two completely different pointers. Try to
- // decompose the pointer into a "base + constant_offset" form. If the base
- // pointers are equal, then we can reason about the two stores.
- EarlierOff = 0;
- LaterOff = 0;
- const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
- const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
-
- // If the base pointers still differ, we have two completely different stores.
- if (BP1 != BP2)
- return OW_Unknown;
-
- // The later store completely overlaps the earlier store if:
- //
- // 1. Both start at the same offset and the later one's size is greater than
- // or equal to the earlier one's, or
- //
- // |--earlier--|
- // |-- later --|
- //
- // 2. The earlier store has an offset greater than the later offset, but which
- // still lies completely within the later store.
- //
- // |--earlier--|
- // |----- later ------|
- //
- // We have to be careful here as *Off is signed while *.Size is unsigned.
- if (EarlierOff >= LaterOff &&
- LaterSize >= EarlierSize &&
- uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
- return OW_Complete;
-
- // We may now overlap, although the overlap is not complete. There might also
- // be other incomplete overlaps, and together, they might cover the complete
- // earlier write.
- // Note: The correctness of this logic depends on the fact that this function
- // is not even called providing DepWrite when there are any intervening reads.
- if (EnablePartialOverwriteTracking &&
- LaterOff < int64_t(EarlierOff + EarlierSize) &&
- int64_t(LaterOff + LaterSize) >= EarlierOff) {
-
- // Insert our part of the overlap into the map.
- auto &IM = IOL[DepWrite];
- LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
- << ", " << int64_t(EarlierOff + EarlierSize)
- << ") Later [" << LaterOff << ", "
- << int64_t(LaterOff + LaterSize) << ")\n");
-
- // Make sure that we only insert non-overlapping intervals and combine
- // adjacent intervals. The intervals are stored in the map with the ending
- // offset as the key (in the half-open sense) and the starting offset as
- // the value.
- int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;
-
- // Find any intervals ending at, or after, LaterIntStart which start
- // before LaterIntEnd.
- auto ILI = IM.lower_bound(LaterIntStart);
- if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
- // This existing interval is overlapped with the current store somewhere
- // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
- // intervals and adjusting our start and end.
- LaterIntStart = std::min(LaterIntStart, ILI->second);
- LaterIntEnd = std::max(LaterIntEnd, ILI->first);
- ILI = IM.erase(ILI);
-
- // Continue erasing and adjusting our end in case other previous
- // intervals are also overlapped with the current store.
- //
- // |--- ealier 1 ---| |--- ealier 2 ---|
- // |------- later---------|
- //
- while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
- assert(ILI->second > LaterIntStart && "Unexpected interval");
- LaterIntEnd = std::max(LaterIntEnd, ILI->first);
- ILI = IM.erase(ILI);
- }
- }
-
- IM[LaterIntEnd] = LaterIntStart;
-
- ILI = IM.begin();
- if (ILI->second <= EarlierOff &&
- ILI->first >= int64_t(EarlierOff + EarlierSize)) {
- LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
- << EarlierOff << ", "
- << int64_t(EarlierOff + EarlierSize)
- << ") Composite Later [" << ILI->second << ", "
- << ILI->first << ")\n");
- ++NumCompletePartials;
- return OW_Complete;
- }
- }
-
- // Check for an earlier store which writes to all the memory locations that
- // the later store writes to.
- if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
- int64_t(EarlierOff + EarlierSize) > LaterOff &&
- uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
- LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
- << EarlierOff << ", "
- << int64_t(EarlierOff + EarlierSize)
- << ") by a later store [" << LaterOff << ", "
- << int64_t(LaterOff + LaterSize) << ")\n");
- // TODO: Maybe come up with a better name?
- return OW_PartialEarlierWithFullLater;
- }
-
- // Another interesting case is if the later store overwrites the end of the
- // earlier store.
- //
- // |--earlier--|
- // |-- later --|
- //
- // In this case we may want to trim the size of earlier to avoid generating
- // writes to addresses which will definitely be overwritten later
- if (!EnablePartialOverwriteTracking &&
- (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
- int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
- return OW_End;
-
- // Finally, we also need to check if the later store overwrites the beginning
- // of the earlier store.
- //
- // |--earlier--|
- // |-- later --|
- //
- // In this case we may want to move the destination address and trim the size
- // of earlier to avoid generating writes to addresses which will definitely
- // be overwritten later.
- if (!EnablePartialOverwriteTracking &&
- (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
- assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
- "Expect to be handled as OW_Complete");
- return OW_Begin;
- }
- // Otherwise, they don't completely overlap.
- return OW_Unknown;
-}
-
-/// If 'Inst' might be a self read (i.e. a noop copy of a
-/// memory region into an identical pointer) then it doesn't actually make its
-/// input dead in the traditional sense. Consider this case:
-///
-/// memmove(A <- B)
-/// memmove(A <- A)
-///
-/// In this case, the second store to A does not make the first store to A dead.
-/// The usual situation isn't an explicit A<-A store like this (which can be
-/// trivially removed) but a case where two pointers may alias.
-///
-/// This function detects when it is unsafe to remove a dependent instruction
-/// because the DSE inducing instruction may be a self-read.
-static bool isPossibleSelfRead(Instruction *Inst,
- const MemoryLocation &InstStoreLoc,
- Instruction *DepWrite,
- const TargetLibraryInfo &TLI,
- AliasAnalysis &AA) {
- // Self reads can only happen for instructions that read memory. Get the
- // location read.
- MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
- if (!InstReadLoc.Ptr)
- return false; // Not a reading instruction.
-
- // If the read and written loc obviously don't alias, it isn't a read.
- if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
- return false;
-
- if (isa<AnyMemCpyInst>(Inst)) {
- // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
- // but in practice memcpy(A <- B) either means that A and B are disjoint or
- // are equal (i.e. there are not partial overlaps). Given that, if we have:
- //
- // memcpy/memmove(A <- B) // DepWrite
- // memcpy(A <- B) // Inst
- //
- // with Inst reading/writing a >= size than DepWrite, we can reason as
- // follows:
- //
- // - If A == B then both the copies are no-ops, so the DepWrite can be
- // removed.
- // - If A != B then A and B are disjoint locations in Inst. Since
- // Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
- // Therefore DepWrite can be removed.
- MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
-
- if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
- return false;
- }
-
- // If DepWrite doesn't read memory or if we can't prove it is a must alias,
- // then it can't be considered dead.
- return true;
-}
-
-/// Returns true if the memory which is accessed by the second instruction is not
-/// modified between the first and the second instruction.
-/// Precondition: Second instruction must be dominated by the first
-/// instruction.
-static bool memoryIsNotModifiedBetween(Instruction *FirstI,
- Instruction *SecondI,
- AliasAnalysis *AA) {
- SmallVector<BasicBlock *, 16> WorkList;
- SmallPtrSet<BasicBlock *, 8> Visited;
- BasicBlock::iterator FirstBBI(FirstI);
- ++FirstBBI;
- BasicBlock::iterator SecondBBI(SecondI);
- BasicBlock *FirstBB = FirstI->getParent();
- BasicBlock *SecondBB = SecondI->getParent();
- MemoryLocation MemLoc = MemoryLocation::get(SecondI);
-
- // Start checking the store-block.
- WorkList.push_back(SecondBB);
- bool isFirstBlock = true;
-
- // Check all blocks going backward until we reach the load-block.
- while (!WorkList.empty()) {
- BasicBlock *B = WorkList.pop_back_val();
-
- // Ignore instructions before LI if this is the FirstBB.
- BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
-
- BasicBlock::iterator EI;
- if (isFirstBlock) {
- // Ignore instructions after SI if this is the first visit of SecondBB.
- assert(B == SecondBB && "first block is not the store block");
- EI = SecondBBI;
- isFirstBlock = false;
- } else {
- // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
- // In this case we also have to look at instructions after SI.
- EI = B->end();
- }
- for (; BI != EI; ++BI) {
- Instruction *I = &*BI;
- if (I->mayWriteToMemory() && I != SecondI)
- if (isModSet(AA->getModRefInfo(I, MemLoc)))
- return false;
- }
- if (B != FirstBB) {
- assert(B != &FirstBB->getParent()->getEntryBlock() &&
- "Should not hit the entry block because SI must be dominated by LI");
- for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
- if (!Visited.insert(*PredI).second)
- continue;
- WorkList.push_back(*PredI);
- }
- }
- }
- return true;
-}
-
-/// Find all blocks that will unconditionally lead to the block BB and append
-/// them to F.
-static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
- BasicBlock *BB, DominatorTree *DT) {
- for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
- BasicBlock *Pred = *I;
- if (Pred == BB) continue;
- Instruction *PredTI = Pred->getTerminator();
- if (PredTI->getNumSuccessors() != 1)
- continue;
-
- if (DT->isReachableFromEntry(Pred))
- Blocks.push_back(Pred);
- }
-}
-
-/// Handle frees of entire structures whose dependency is a store
-/// to a field of that structure.
-static bool handleFree(CallInst *F, AliasAnalysis *AA,
- MemoryDependenceResults *MD, DominatorTree *DT,
- const TargetLibraryInfo *TLI,
- InstOverlapIntervalsTy &IOL,
- DenseMap<Instruction*, size_t> *InstrOrdering) {
- bool MadeChange = false;
-
- MemoryLocation Loc = MemoryLocation(F->getOperand(0));
- SmallVector<BasicBlock *, 16> Blocks;
- Blocks.push_back(F->getParent());
- const DataLayout &DL = F->getModule()->getDataLayout();
-
- while (!Blocks.empty()) {
- BasicBlock *BB = Blocks.pop_back_val();
- Instruction *InstPt = BB->getTerminator();
- if (BB == F->getParent()) InstPt = F;
-
- MemDepResult Dep =
- MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
- while (Dep.isDef() || Dep.isClobber()) {
- Instruction *Dependency = Dep.getInst();
- if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
- !isRemovable(Dependency))
- break;
-
- Value *DepPointer =
- GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
-
- // Check for aliasing.
- if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
- break;
-
- LLVM_DEBUG(
- dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: "
- << *Dependency << '\n');
-
- // DCE instructions only used to calculate that store.
- BasicBlock::iterator BBI(Dependency);
- deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, InstrOrdering);
- ++NumFastStores;
- MadeChange = true;
-
- // Inst's old Dependency is now deleted. Compute the next dependency,
- // which may also be dead, as in
- // s[0] = 0;
- // s[1] = 0; // This has just been deleted.
- // free(s);
- Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
- }
-
- if (Dep.isNonLocal())
- findUnconditionalPreds(Blocks, BB, DT);
- }
-
- return MadeChange;
-}
-
-/// Check to see if the specified location may alias any of the stack objects in
-/// the DeadStackObjects set. If so, they become live because the location is
-/// being loaded.
-static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
- SmallSetVector<Value *, 16> &DeadStackObjects,
- const DataLayout &DL, AliasAnalysis *AA,
- const TargetLibraryInfo *TLI,
- const Function *F) {
- const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
-
- // A constant can't be in the dead pointer set.
- if (isa<Constant>(UnderlyingPointer))
- return;
-
- // If the kill pointer can be easily reduced to an alloca, don't bother doing
- // extraneous AA queries.
- if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
- DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
- return;
- }
-
- // Remove objects that could alias LoadedLoc.
- DeadStackObjects.remove_if([&](Value *I) {
- // See if the loaded location could alias the stack location.
- MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
- return !AA->isNoAlias(StackLoc, LoadedLoc);
- });
-}
-
-/// Remove dead stores to stack-allocated locations in the function end block.
-/// Ex:
-/// %A = alloca i32
-/// ...
-/// store i32 1, i32* %A
-/// ret void
-static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
- MemoryDependenceResults *MD,
- const TargetLibraryInfo *TLI,
- InstOverlapIntervalsTy &IOL,
- DenseMap<Instruction*, size_t> *InstrOrdering) {
- bool MadeChange = false;
-
- // Keep track of all of the stack objects that are dead at the end of the
- // function.
- SmallSetVector<Value*, 16> DeadStackObjects;
-
- // Find all of the alloca'd pointers in the entry block.
- BasicBlock &Entry = BB.getParent()->front();
- for (Instruction &I : Entry) {
- if (isa<AllocaInst>(&I))
- DeadStackObjects.insert(&I);
-
- // Okay, so these are dead heap objects, but if the pointer never escapes
- // then it's leaked by this function anyways.
- else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
- DeadStackObjects.insert(&I);
- }
-
- // Treat byval or inalloca arguments the same, stores to them are dead at the
- // end of the function.
- for (Argument &AI : BB.getParent()->args())
- if (AI.hasByValOrInAllocaAttr())
- DeadStackObjects.insert(&AI);
-
- const DataLayout &DL = BB.getModule()->getDataLayout();
-
- // Scan the basic block backwards
- for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
- --BBI;
-
- // If we find a store, check to see if it points into a dead stack value.
- if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
- // See through pointer-to-pointer bitcasts
- SmallVector<Value *, 4> Pointers;
- GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
-
- // Stores to stack values are valid candidates for removal.
- bool AllDead = true;
- for (Value *Pointer : Pointers)
- if (!DeadStackObjects.count(Pointer)) {
- AllDead = false;
- break;
- }
-
- if (AllDead) {
- Instruction *Dead = &*BBI;
-
- LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
- << *Dead << "\n Objects: ";
- for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
- E = Pointers.end();
- I != E; ++I) {
- dbgs() << **I;
- if (std::next(I) != E)
- dbgs() << ", ";
- } dbgs()
- << '\n');
-
- // DCE instructions only used to calculate that store.
- deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
- ++NumFastStores;
- MadeChange = true;
- continue;
- }
- }
-
- // Remove any dead non-memory-mutating instructions.
- if (isInstructionTriviallyDead(&*BBI, TLI)) {
- LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: "
- << *&*BBI << '\n');
- deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
- ++NumFastOther;
- MadeChange = true;
- continue;
- }
-
- if (isa<AllocaInst>(BBI)) {
- // Remove allocas from the list of dead stack objects; there can't be
- // any references before the definition.
- DeadStackObjects.remove(&*BBI);
- continue;
- }
-
- if (auto *Call = dyn_cast<CallBase>(&*BBI)) {
- // Remove allocation function calls from the list of dead stack objects;
- // there can't be any references before the definition.
- if (isAllocLikeFn(&*BBI, TLI))
- DeadStackObjects.remove(&*BBI);
-
- // If this call does not access memory, it can't be loading any of our
- // pointers.
- if (AA->doesNotAccessMemory(Call))
- continue;
-
- // If the call might load from any of our allocas, then any store above
- // the call is live.
- DeadStackObjects.remove_if([&](Value *I) {
- // See if the call site touches the value.
- return isRefSet(AA->getModRefInfo(
- Call, I, getPointerSize(I, DL, *TLI, BB.getParent())));
- });
-
- // If all of the allocas were clobbered by the call then we're not going
- // to find anything else to process.
- if (DeadStackObjects.empty())
- break;
-
- continue;
- }
-
- // We can remove the dead stores, irrespective of the fence and its ordering
- // (release/acquire/seq_cst). Fences only constraints the ordering of
- // already visible stores, it does not make a store visible to other
- // threads. So, skipping over a fence does not change a store from being
- // dead.
- if (isa<FenceInst>(*BBI))
- continue;
-
- MemoryLocation LoadedLoc;
-
- // If we encounter a use of the pointer, it is no longer considered dead
- if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
- if (!L->isUnordered()) // Be conservative with atomic/volatile load
- break;
- LoadedLoc = MemoryLocation::get(L);
- } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
- LoadedLoc = MemoryLocation::get(V);
- } else if (!BBI->mayReadFromMemory()) {
- // Instruction doesn't read memory. Note that stores that weren't removed
- // above will hit this case.
- continue;
- } else {
- // Unknown inst; assume it clobbers everything.
- break;
- }
-
- // Remove any allocas from the DeadPointer set that are loaded, as this
- // makes any stores above the access live.
- removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());
-
- // If all of the allocas were clobbered by the access then we're not going
- // to find anything else to process.
- if (DeadStackObjects.empty())
- break;
- }
-
- return MadeChange;
-}
-
-static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
- int64_t &EarlierSize, int64_t LaterOffset,
- int64_t LaterSize, bool IsOverwriteEnd) {
- // TODO: base this on the target vector size so that if the earlier
- // store was too small to get vector writes anyway then its likely
- // a good idea to shorten it
- // Power of 2 vector writes are probably always a bad idea to optimize
- // as any store/memset/memcpy is likely using vector instructions so
- // shortening it to not vector size is likely to be slower
- auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
- unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
- if (!IsOverwriteEnd)
- LaterOffset = int64_t(LaterOffset + LaterSize);
-
- if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
- !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
- return false;
-
- int64_t NewLength = IsOverwriteEnd
- ? LaterOffset - EarlierOffset
- : EarlierSize - (LaterOffset - EarlierOffset);
-
- if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
- // When shortening an atomic memory intrinsic, the newly shortened
- // length must remain an integer multiple of the element size.
- const uint32_t ElementSize = AMI->getElementSizeInBytes();
- if (0 != NewLength % ElementSize)
- return false;
- }
-
- LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
- << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
- << *EarlierWrite << "\n KILLER (offset " << LaterOffset
- << ", " << EarlierSize << ")\n");
-
- Value *EarlierWriteLength = EarlierIntrinsic->getLength();
- Value *TrimmedLength =
- ConstantInt::get(EarlierWriteLength->getType(), NewLength);
- EarlierIntrinsic->setLength(TrimmedLength);
-
- EarlierSize = NewLength;
- if (!IsOverwriteEnd) {
- int64_t OffsetMoved = (LaterOffset - EarlierOffset);
- Value *Indices[1] = {
- ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
- GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
- EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
- EarlierIntrinsic->setDest(NewDestGEP);
- EarlierOffset = EarlierOffset + OffsetMoved;
- }
- return true;
-}
-
-static bool tryToShortenEnd(Instruction *EarlierWrite,
- OverlapIntervalsTy &IntervalMap,
- int64_t &EarlierStart, int64_t &EarlierSize) {
- if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
- return false;
-
- OverlapIntervalsTy::iterator OII = --IntervalMap.end();
- int64_t LaterStart = OII->second;
- int64_t LaterSize = OII->first - LaterStart;
-
- if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
- LaterStart + LaterSize >= EarlierStart + EarlierSize) {
- if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
- LaterSize, true)) {
- IntervalMap.erase(OII);
- return true;
- }
- }
- return false;
-}
-
-static bool tryToShortenBegin(Instruction *EarlierWrite,
- OverlapIntervalsTy &IntervalMap,
- int64_t &EarlierStart, int64_t &EarlierSize) {
- if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
- return false;
-
- OverlapIntervalsTy::iterator OII = IntervalMap.begin();
- int64_t LaterStart = OII->second;
- int64_t LaterSize = OII->first - LaterStart;
-
- if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
- assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
- "Should have been handled as OW_Complete");
- if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
- LaterSize, false)) {
- IntervalMap.erase(OII);
- return true;
- }
- }
- return false;
-}
-
-static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
- const DataLayout &DL,
- InstOverlapIntervalsTy &IOL) {
- bool Changed = false;
- for (auto OI : IOL) {
- Instruction *EarlierWrite = OI.first;
- MemoryLocation Loc = getLocForWrite(EarlierWrite);
- assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
-
- const Value *Ptr = Loc.Ptr->stripPointerCasts();
- int64_t EarlierStart = 0;
- int64_t EarlierSize = int64_t(Loc.Size.getValue());
- GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
- OverlapIntervalsTy &IntervalMap = OI.second;
- Changed |=
- tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
- if (IntervalMap.empty())
- continue;
- Changed |=
- tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
- }
- return Changed;
-}
-
-static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
- AliasAnalysis *AA, MemoryDependenceResults *MD,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- InstOverlapIntervalsTy &IOL,
- DenseMap<Instruction*, size_t> *InstrOrdering) {
- // Must be a store instruction.
- StoreInst *SI = dyn_cast<StoreInst>(Inst);
- if (!SI)
- return false;
-
- // If we're storing the same value back to a pointer that we just loaded from,
- // then the store can be removed.
- if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
- if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
- isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
-
- LLVM_DEBUG(
- dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: "
- << *DepLoad << "\n STORE: " << *SI << '\n');
-
- deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
- ++NumRedundantStores;
- return true;
- }
- }
-
- // Remove null stores into the calloc'ed objects
- Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
- if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
- Instruction *UnderlyingPointer =
- dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
-
- if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
- memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
- LLVM_DEBUG(
- dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: "
- << *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n');
-
- deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
- ++NumRedundantStores;
- return true;
- }
- }
- return false;
-}
-
-static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
- MemoryDependenceResults *MD, DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- const DataLayout &DL = BB.getModule()->getDataLayout();
- bool MadeChange = false;
-
- // FIXME: Maybe change this to use some abstraction like OrderedBasicBlock?
- // The current OrderedBasicBlock can't deal with mutation at the moment.
- size_t LastThrowingInstIndex = 0;
- DenseMap<Instruction*, size_t> InstrOrdering;
- size_t InstrIndex = 1;
-
- // A map of interval maps representing partially-overwritten value parts.
- InstOverlapIntervalsTy IOL;
-
- // Do a top-down walk on the BB.
- for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
- // Handle 'free' calls specially.
- if (CallInst *F = isFreeCall(&*BBI, TLI)) {
- MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, &InstrOrdering);
- // Increment BBI after handleFree has potentially deleted instructions.
- // This ensures we maintain a valid iterator.
- ++BBI;
- continue;
- }
-
- Instruction *Inst = &*BBI++;
-
- size_t CurInstNumber = InstrIndex++;
- InstrOrdering.insert(std::make_pair(Inst, CurInstNumber));
- if (Inst->mayThrow()) {
- LastThrowingInstIndex = CurInstNumber;
- continue;
- }
-
- // Check to see if Inst writes to memory. If not, continue.
- if (!hasAnalyzableMemoryWrite(Inst, *TLI))
- continue;
-
- // eliminateNoopStore will update in iterator, if necessary.
- if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, &InstrOrdering)) {
- MadeChange = true;
- continue;
- }
-
- // If we find something that writes memory, get its memory dependence.
- MemDepResult InstDep = MD->getDependency(Inst);
-
- // Ignore any store where we can't find a local dependence.
- // FIXME: cross-block DSE would be fun. :)
- if (!InstDep.isDef() && !InstDep.isClobber())
- continue;
-
- // Figure out what location is being stored to.
- MemoryLocation Loc = getLocForWrite(Inst);
-
- // If we didn't get a useful location, fail.
- if (!Loc.Ptr)
- continue;
-
- // Loop until we find a store we can eliminate or a load that
- // invalidates the analysis. Without an upper bound on the number of
- // instructions examined, this analysis can become very time-consuming.
- // However, the potential gain diminishes as we process more instructions
- // without eliminating any of them. Therefore, we limit the number of
- // instructions we look at.
- auto Limit = MD->getDefaultBlockScanLimit();
- while (InstDep.isDef() || InstDep.isClobber()) {
- // Get the memory clobbered by the instruction we depend on. MemDep will
- // skip any instructions that 'Loc' clearly doesn't interact with. If we
- // end up depending on a may- or must-aliased load, then we can't optimize
- // away the store and we bail out. However, if we depend on something
- // that overwrites the memory location we *can* potentially optimize it.
- //
- // Find out what memory location the dependent instruction stores.
- Instruction *DepWrite = InstDep.getInst();
- if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
- break;
- MemoryLocation DepLoc = getLocForWrite(DepWrite);
- // If we didn't get a useful location, or if it isn't a size, bail out.
- if (!DepLoc.Ptr)
- break;
-
- // Make sure we don't look past a call which might throw. This is an
- // issue because MemoryDependenceAnalysis works in the wrong direction:
- // it finds instructions which dominate the current instruction, rather than
- // instructions which are post-dominated by the current instruction.
- //
- // If the underlying object is a non-escaping memory allocation, any store
- // to it is dead along the unwind edge. Otherwise, we need to preserve
- // the store.
- size_t DepIndex = InstrOrdering.lookup(DepWrite);
- assert(DepIndex && "Unexpected instruction");
- if (DepIndex <= LastThrowingInstIndex) {
- const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
- bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
- if (!IsStoreDeadOnUnwind) {
- // We're looking for a call to an allocation function
- // where the allocation doesn't escape before the last
- // throwing instruction; PointerMayBeCaptured
- // reasonably fast approximation.
- IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
- !PointerMayBeCaptured(Underlying, false, true);
- }
- if (!IsStoreDeadOnUnwind)
- break;
- }
-
- // If we find a write that is a) removable (i.e., non-volatile), b) is
- // completely obliterated by the store to 'Loc', and c) which we know that
- // 'Inst' doesn't load from, then we can remove it.
- // Also try to merge two stores if a later one only touches memory written
- // to by the earlier one.
- if (isRemovable(DepWrite) &&
- !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
- int64_t InstWriteOffset, DepWriteOffset;
- OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset,
- InstWriteOffset, DepWrite, IOL, *AA,
- BB.getParent());
- if (OR == OW_Complete) {
- LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DepWrite
- << "\n KILLER: " << *Inst << '\n');
-
- // Delete the store and now-dead instructions that feed it.
- deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, &InstrOrdering);
- ++NumFastStores;
- MadeChange = true;
-
- // We erased DepWrite; start over.
- InstDep = MD->getDependency(Inst);
- continue;
- } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
- ((OR == OW_Begin &&
- isShortenableAtTheBeginning(DepWrite)))) {
- assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
- "when partial-overwrite "
- "tracking is enabled");
- // The overwrite result is known, so these must be known, too.
- int64_t EarlierSize = DepLoc.Size.getValue();
- int64_t LaterSize = Loc.Size.getValue();
- bool IsOverwriteEnd = (OR == OW_End);
- MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
- InstWriteOffset, LaterSize, IsOverwriteEnd);
- } else if (EnablePartialStoreMerging &&
- OR == OW_PartialEarlierWithFullLater) {
- auto *Earlier = dyn_cast<StoreInst>(DepWrite);
- auto *Later = dyn_cast<StoreInst>(Inst);
- if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
- Later && isa<ConstantInt>(Later->getValueOperand()) &&
- memoryIsNotModifiedBetween(Earlier, Later, AA)) {
- // If the store we find is:
- // a) partially overwritten by the store to 'Loc'
- // b) the later store is fully contained in the earlier one and
- // c) they both have a constant value
- // Merge the two stores, replacing the earlier store's value with a
- // merge of both values.
- // TODO: Deal with other constant types (vectors, etc), and probably
- // some mem intrinsics (if needed)
-
- APInt EarlierValue =
- cast<ConstantInt>(Earlier->getValueOperand())->getValue();
- APInt LaterValue =
- cast<ConstantInt>(Later->getValueOperand())->getValue();
- unsigned LaterBits = LaterValue.getBitWidth();
- assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
- LaterValue = LaterValue.zext(EarlierValue.getBitWidth());
-
- // Offset of the smaller store inside the larger store
- unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
- unsigned LShiftAmount =
- DL.isBigEndian()
- ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits
- : BitOffsetDiff;
- APInt Mask =
- APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
- LShiftAmount + LaterBits);
- // Clear the bits we'll be replacing, then OR with the smaller
- // store, shifted appropriately.
- APInt Merged =
- (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
- LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *DepWrite
- << "\n Later: " << *Inst
- << "\n Merged Value: " << Merged << '\n');
-
- auto *SI = new StoreInst(
- ConstantInt::get(Earlier->getValueOperand()->getType(), Merged),
- Earlier->getPointerOperand(), false, Earlier->getAlignment(),
- Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite);
-
- unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
- LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias,
- LLVMContext::MD_nontemporal};
- SI->copyMetadata(*DepWrite, MDToKeep);
- ++NumModifiedStores;
-
- // Remove earlier, wider, store
- size_t Idx = InstrOrdering.lookup(DepWrite);
- InstrOrdering.erase(DepWrite);
- InstrOrdering.insert(std::make_pair(SI, Idx));
-
- // Delete the old stores and now-dead instructions that feed them.
- deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, &InstrOrdering);
- deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL,
- &InstrOrdering);
- MadeChange = true;
-
- // We erased DepWrite and Inst (Loc); start over.
- break;
- }
- }
- }
-
- // If this is a may-aliased store that is clobbering the store value, we
- // can keep searching past it for another must-aliased pointer that stores
- // to the same location. For example, in:
- // store -> P
- // store -> Q
- // store -> P
- // we can remove the first store to P even though we don't know if P and Q
- // alias.
- if (DepWrite == &BB.front()) break;
-
- // Can't look past this instruction if it might read 'Loc'.
- if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
- break;
-
- InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
- DepWrite->getIterator(), &BB,
- /*QueryInst=*/ nullptr, &Limit);
- }
- }
-
- if (EnablePartialOverwriteTracking)
- MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
-
- // If this block ends in a return, unwind, or unreachable, all allocas are
- // dead at its end, which means stores to them are also dead.
- if (BB.getTerminator()->getNumSuccessors() == 0)
- MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, &InstrOrdering);
-
- return MadeChange;
-}
-
-static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
- MemoryDependenceResults *MD, DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- bool MadeChange = false;
- for (BasicBlock &BB : F)
- // Only check non-dead blocks. Dead blocks may have strange pointer
- // cycles that will confuse alias analysis.
- if (DT->isReachableFromEntry(&BB))
- MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
-
- return MadeChange;
-}
-
-//===----------------------------------------------------------------------===//
-// DSE Pass
-//===----------------------------------------------------------------------===//
-PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
- AliasAnalysis *AA = &AM.getResult<AAManager>(F);
- DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
- const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
-
- if (!eliminateDeadStores(F, AA, MD, DT, TLI))
- return PreservedAnalyses::all();
-
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<GlobalsAA>();
- PA.preserve<MemoryDependenceAnalysis>();
- return PA;
-}
-
-namespace {
-
-/// A legacy pass for the legacy pass manager that wraps \c DSEPass.
-class DSELegacyPass : public FunctionPass {
-public:
- static char ID; // Pass identification, replacement for typeid
-
- DSELegacyPass() : FunctionPass(ID) {
- initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
-
- DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- MemoryDependenceResults *MD =
- &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
- const TargetLibraryInfo *TLI =
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
-
- return eliminateDeadStores(F, AA, MD, DT, TLI);
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<MemoryDependenceWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<MemoryDependenceWrapperPass>();
- }
-};
-
-} // end anonymous namespace
-
-char DSELegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
- false)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
- false)
-
-FunctionPass *llvm::createDeadStoreEliminationPass() {
- return new DSELegacyPass();
-}