diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/GVNHoist.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/GVNHoist.cpp | 1207 |
1 files changed, 0 insertions, 1207 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/GVNHoist.cpp b/gnu/llvm/lib/Transforms/Scalar/GVNHoist.cpp deleted file mode 100644 index 76a42d7fe75..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/GVNHoist.cpp +++ /dev/null @@ -1,1207 +0,0 @@ -//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This pass hoists expressions from branches to a common dominator. It uses -// GVN (global value numbering) to discover expressions computing the same -// values. The primary goals of code-hoisting are: -// 1. To reduce the code size. -// 2. In some cases reduce critical path (by exposing more ILP). -// -// The algorithm factors out the reachability of values such that multiple -// queries to find reachability of values are fast. This is based on finding the -// ANTIC points in the CFG which do not change during hoisting. The ANTIC points -// are basically the dominance-frontiers in the inverse graph. So we introduce a -// data structure (CHI nodes) to keep track of values flowing out of a basic -// block. We only do this for values with multiple occurrences in the function -// as they are the potential hoistable candidates. This approach allows us to -// hoist instructions to a basic block with more than two successors, as well as -// deal with infinite loops in a trivial way. -// -// Limitations: This pass does not hoist fully redundant expressions because -// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before -// and after gvn-pre because gvn-pre creates opportunities for more instructions -// to be hoisted. -// -// Hoisting may affect the performance in some cases. To mitigate that, hoisting -// is disabled in the following cases. -// 1. Scalars across calls. -// 2. geps when corresponding load/store cannot be hoisted. -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/IteratedDominanceFrontier.h" -#include "llvm/Analysis/MemoryDependenceAnalysis.h" -#include "llvm/Analysis/MemorySSA.h" -#include "llvm/Analysis/MemorySSAUpdater.h" -#include "llvm/Analysis/PostDominators.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Scalar/GVN.h" -#include <algorithm> -#include <cassert> -#include <iterator> -#include <memory> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "gvn-hoist" - -STATISTIC(NumHoisted, "Number of instructions hoisted"); -STATISTIC(NumRemoved, "Number of instructions removed"); -STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); -STATISTIC(NumLoadsRemoved, "Number of loads removed"); -STATISTIC(NumStoresHoisted, "Number of stores hoisted"); -STATISTIC(NumStoresRemoved, "Number of stores removed"); -STATISTIC(NumCallsHoisted, "Number of calls hoisted"); -STATISTIC(NumCallsRemoved, "Number of calls removed"); - -static cl::opt<int> - MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), - cl::desc("Max number of instructions to hoist " - "(default unlimited = -1)")); - -static cl::opt<int> MaxNumberOfBBSInPath( - "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), - cl::desc("Max number of basic blocks on the path between " - "hoisting locations (default = 4, unlimited = -1)")); - -static cl::opt<int> MaxDepthInBB( - "gvn-hoist-max-depth", cl::Hidden, cl::init(100), - cl::desc("Hoist instructions from the beginning of the BB up to the " - "maximum specified depth (default = 100, unlimited = -1)")); - -static cl::opt<int> - MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), - cl::desc("Maximum length of dependent chains to hoist " - "(default = 10, unlimited = -1)")); - -namespace llvm { - -using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; -using SmallVecInsn = SmallVector<Instruction *, 4>; -using SmallVecImplInsn = SmallVectorImpl<Instruction *>; - -// Each element of a hoisting list contains the basic block where to hoist and -// a list of instructions to be hoisted. -using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; - -using HoistingPointList = SmallVector<HoistingPointInfo, 4>; - -// A map from a pair of VNs to all the instructions with those VNs. -using VNType = std::pair<unsigned, unsigned>; - -using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; - -// CHI keeps information about values flowing out of a basic block. It is -// similar to PHI but in the inverse graph, and used for outgoing values on each -// edge. For conciseness, it is computed only for instructions with multiple -// occurrences in the CFG because they are the only hoistable candidates. -// A (CHI[{V, B, I1}, {V, C, I2}] -// / \ -// / \ -// B(I1) C (I2) -// The Value number for both I1 and I2 is V, the CHI node will save the -// instruction as well as the edge where the value is flowing to. -struct CHIArg { - VNType VN; - - // Edge destination (shows the direction of flow), may not be where the I is. - BasicBlock *Dest; - - // The instruction (VN) which uses the values flowing out of CHI. - Instruction *I; - - bool operator==(const CHIArg &A) { return VN == A.VN; } - bool operator!=(const CHIArg &A) { return !(*this == A); } -}; - -using CHIIt = SmallVectorImpl<CHIArg>::iterator; -using CHIArgs = iterator_range<CHIIt>; -using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; -using InValuesType = - DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; - -// An invalid value number Used when inserting a single value number into -// VNtoInsns. -enum : unsigned { InvalidVN = ~2U }; - -// Records all scalar instructions candidate for code hoisting. -class InsnInfo { - VNtoInsns VNtoScalars; - -public: - // Inserts I and its value number in VNtoScalars. - void insert(Instruction *I, GVN::ValueTable &VN) { - // Scalar instruction. - unsigned V = VN.lookupOrAdd(I); - VNtoScalars[{V, InvalidVN}].push_back(I); - } - - const VNtoInsns &getVNTable() const { return VNtoScalars; } -}; - -// Records all load instructions candidate for code hoisting. -class LoadInfo { - VNtoInsns VNtoLoads; - -public: - // Insert Load and the value number of its memory address in VNtoLoads. - void insert(LoadInst *Load, GVN::ValueTable &VN) { - if (Load->isSimple()) { - unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); - VNtoLoads[{V, InvalidVN}].push_back(Load); - } - } - - const VNtoInsns &getVNTable() const { return VNtoLoads; } -}; - -// Records all store instructions candidate for code hoisting. -class StoreInfo { - VNtoInsns VNtoStores; - -public: - // Insert the Store and a hash number of the store address and the stored - // value in VNtoStores. - void insert(StoreInst *Store, GVN::ValueTable &VN) { - if (!Store->isSimple()) - return; - // Hash the store address and the stored value. - Value *Ptr = Store->getPointerOperand(); - Value *Val = Store->getValueOperand(); - VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); - } - - const VNtoInsns &getVNTable() const { return VNtoStores; } -}; - -// Records all call instructions candidate for code hoisting. -class CallInfo { - VNtoInsns VNtoCallsScalars; - VNtoInsns VNtoCallsLoads; - VNtoInsns VNtoCallsStores; - -public: - // Insert Call and its value numbering in one of the VNtoCalls* containers. - void insert(CallInst *Call, GVN::ValueTable &VN) { - // A call that doesNotAccessMemory is handled as a Scalar, - // onlyReadsMemory will be handled as a Load instruction, - // all other calls will be handled as stores. - unsigned V = VN.lookupOrAdd(Call); - auto Entry = std::make_pair(V, InvalidVN); - - if (Call->doesNotAccessMemory()) - VNtoCallsScalars[Entry].push_back(Call); - else if (Call->onlyReadsMemory()) - VNtoCallsLoads[Entry].push_back(Call); - else - VNtoCallsStores[Entry].push_back(Call); - } - - const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } - const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } - const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } -}; - -static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { - static const unsigned KnownIDs[] = { - LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, - LLVMContext::MD_noalias, LLVMContext::MD_range, - LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, - LLVMContext::MD_invariant_group, LLVMContext::MD_access_group}; - combineMetadata(ReplInst, I, KnownIDs, true); -} - -// This pass hoists common computations across branches sharing common -// dominator. The primary goal is to reduce the code size, and in some -// cases reduce critical path (by exposing more ILP). -class GVNHoist { -public: - GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, - MemoryDependenceResults *MD, MemorySSA *MSSA) - : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), - MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} - - bool run(Function &F) { - NumFuncArgs = F.arg_size(); - VN.setDomTree(DT); - VN.setAliasAnalysis(AA); - VN.setMemDep(MD); - bool Res = false; - // Perform DFS Numbering of instructions. - unsigned BBI = 0; - for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { - DFSNumber[BB] = ++BBI; - unsigned I = 0; - for (auto &Inst : *BB) - DFSNumber[&Inst] = ++I; - } - - int ChainLength = 0; - - // FIXME: use lazy evaluation of VN to avoid the fix-point computation. - while (true) { - if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) - return Res; - - auto HoistStat = hoistExpressions(F); - if (HoistStat.first + HoistStat.second == 0) - return Res; - - if (HoistStat.second > 0) - // To address a limitation of the current GVN, we need to rerun the - // hoisting after we hoisted loads or stores in order to be able to - // hoist all scalars dependent on the hoisted ld/st. - VN.clear(); - - Res = true; - } - - return Res; - } - - // Copied from NewGVN.cpp - // This function provides global ranking of operations so that we can place - // them in a canonical order. Note that rank alone is not necessarily enough - // for a complete ordering, as constants all have the same rank. However, - // generally, we will simplify an operation with all constants so that it - // doesn't matter what order they appear in. - unsigned int rank(const Value *V) const { - // Prefer constants to undef to anything else - // Undef is a constant, have to check it first. - // Prefer smaller constants to constantexprs - if (isa<ConstantExpr>(V)) - return 2; - if (isa<UndefValue>(V)) - return 1; - if (isa<Constant>(V)) - return 0; - else if (auto *A = dyn_cast<Argument>(V)) - return 3 + A->getArgNo(); - - // Need to shift the instruction DFS by number of arguments + 3 to account - // for the constant and argument ranking above. - auto Result = DFSNumber.lookup(V); - if (Result > 0) - return 4 + NumFuncArgs + Result; - // Unreachable or something else, just return a really large number. - return ~0; - } - -private: - GVN::ValueTable VN; - DominatorTree *DT; - PostDominatorTree *PDT; - AliasAnalysis *AA; - MemoryDependenceResults *MD; - MemorySSA *MSSA; - std::unique_ptr<MemorySSAUpdater> MSSAUpdater; - DenseMap<const Value *, unsigned> DFSNumber; - BBSideEffectsSet BBSideEffects; - DenseSet<const BasicBlock *> HoistBarrier; - SmallVector<BasicBlock *, 32> IDFBlocks; - unsigned NumFuncArgs; - const bool HoistingGeps = false; - - enum InsKind { Unknown, Scalar, Load, Store }; - - // Return true when there are exception handling in BB. - bool hasEH(const BasicBlock *BB) { - auto It = BBSideEffects.find(BB); - if (It != BBSideEffects.end()) - return It->second; - - if (BB->isEHPad() || BB->hasAddressTaken()) { - BBSideEffects[BB] = true; - return true; - } - - if (BB->getTerminator()->mayThrow()) { - BBSideEffects[BB] = true; - return true; - } - - BBSideEffects[BB] = false; - return false; - } - - // Return true when a successor of BB dominates A. - bool successorDominate(const BasicBlock *BB, const BasicBlock *A) { - for (const BasicBlock *Succ : successors(BB)) - if (DT->dominates(Succ, A)) - return true; - - return false; - } - - // Return true when I1 appears before I2 in the instructions of BB. - bool firstInBB(const Instruction *I1, const Instruction *I2) { - assert(I1->getParent() == I2->getParent()); - unsigned I1DFS = DFSNumber.lookup(I1); - unsigned I2DFS = DFSNumber.lookup(I2); - assert(I1DFS && I2DFS); - return I1DFS < I2DFS; - } - - // Return true when there are memory uses of Def in BB. - bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, - const BasicBlock *BB) { - const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); - if (!Acc) - return false; - - Instruction *OldPt = Def->getMemoryInst(); - const BasicBlock *OldBB = OldPt->getParent(); - const BasicBlock *NewBB = NewPt->getParent(); - bool ReachedNewPt = false; - - for (const MemoryAccess &MA : *Acc) - if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { - Instruction *Insn = MU->getMemoryInst(); - - // Do not check whether MU aliases Def when MU occurs after OldPt. - if (BB == OldBB && firstInBB(OldPt, Insn)) - break; - - // Do not check whether MU aliases Def when MU occurs before NewPt. - if (BB == NewBB) { - if (!ReachedNewPt) { - if (firstInBB(Insn, NewPt)) - continue; - ReachedNewPt = true; - } - } - if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) - return true; - } - - return false; - } - - bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, - int &NBBsOnAllPaths) { - // Stop walk once the limit is reached. - if (NBBsOnAllPaths == 0) - return true; - - // Impossible to hoist with exceptions on the path. - if (hasEH(BB)) - return true; - - // No such instruction after HoistBarrier in a basic block was - // selected for hoisting so instructions selected within basic block with - // a hoist barrier can be hoisted. - if ((BB != SrcBB) && HoistBarrier.count(BB)) - return true; - - return false; - } - - // Return true when there are exception handling or loads of memory Def - // between Def and NewPt. This function is only called for stores: Def is - // the MemoryDef of the store to be hoisted. - - // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and - // return true when the counter NBBsOnAllPaths reaces 0, except when it is - // initialized to -1 which is unlimited. - bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, - int &NBBsOnAllPaths) { - const BasicBlock *NewBB = NewPt->getParent(); - const BasicBlock *OldBB = Def->getBlock(); - assert(DT->dominates(NewBB, OldBB) && "invalid path"); - assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && - "def does not dominate new hoisting point"); - - // Walk all basic blocks reachable in depth-first iteration on the inverse - // CFG from OldBB to NewBB. These blocks are all the blocks that may be - // executed between the execution of NewBB and OldBB. Hoisting an expression - // from OldBB into NewBB has to be safe on all execution paths. - for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { - const BasicBlock *BB = *I; - if (BB == NewBB) { - // Stop traversal when reaching HoistPt. - I.skipChildren(); - continue; - } - - if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) - return true; - - // Check that we do not move a store past loads. - if (hasMemoryUse(NewPt, Def, BB)) - return true; - - // -1 is unlimited number of blocks on all paths. - if (NBBsOnAllPaths != -1) - --NBBsOnAllPaths; - - ++I; - } - - return false; - } - - // Return true when there are exception handling between HoistPt and BB. - // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and - // return true when the counter NBBsOnAllPaths reaches 0, except when it is - // initialized to -1 which is unlimited. - bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, - int &NBBsOnAllPaths) { - assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); - - // Walk all basic blocks reachable in depth-first iteration on - // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the - // blocks that may be executed between the execution of NewHoistPt and - // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe - // on all execution paths. - for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { - const BasicBlock *BB = *I; - if (BB == HoistPt) { - // Stop traversal when reaching NewHoistPt. - I.skipChildren(); - continue; - } - - if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) - return true; - - // -1 is unlimited number of blocks on all paths. - if (NBBsOnAllPaths != -1) - --NBBsOnAllPaths; - - ++I; - } - - return false; - } - - // Return true when it is safe to hoist a memory load or store U from OldPt - // to NewPt. - bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, - MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { - // In place hoisting is safe. - if (NewPt == OldPt) - return true; - - const BasicBlock *NewBB = NewPt->getParent(); - const BasicBlock *OldBB = OldPt->getParent(); - const BasicBlock *UBB = U->getBlock(); - - // Check for dependences on the Memory SSA. - MemoryAccess *D = U->getDefiningAccess(); - BasicBlock *DBB = D->getBlock(); - if (DT->properlyDominates(NewBB, DBB)) - // Cannot move the load or store to NewBB above its definition in DBB. - return false; - - if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) - if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) - if (!firstInBB(UD->getMemoryInst(), NewPt)) - // Cannot move the load or store to NewPt above its definition in D. - return false; - - // Check for unsafe hoistings due to side effects. - if (K == InsKind::Store) { - if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths)) - return false; - } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) - return false; - - if (UBB == NewBB) { - if (DT->properlyDominates(DBB, NewBB)) - return true; - assert(UBB == DBB); - assert(MSSA->locallyDominates(D, U)); - } - - // No side effects: it is safe to hoist. - return true; - } - - // Return true when it is safe to hoist scalar instructions from all blocks in - // WL to HoistBB. - bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, - int &NBBsOnAllPaths) { - return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); - } - - // In the inverse CFG, the dominance frontier of basic block (BB) is the - // point where ANTIC needs to be computed for instructions which are going - // to be hoisted. Since this point does not change during gvn-hoist, - // we compute it only once (on demand). - // The ides is inspired from: - // "Partial Redundancy Elimination in SSA Form" - // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW - // They use similar idea in the forward graph to find fully redundant and - // partially redundant expressions, here it is used in the inverse graph to - // find fully anticipable instructions at merge point (post-dominator in - // the inverse CFG). - // Returns the edge via which an instruction in BB will get the values from. - - // Returns true when the values are flowing out to each edge. - bool valueAnticipable(CHIArgs C, Instruction *TI) const { - if (TI->getNumSuccessors() > (unsigned)size(C)) - return false; // Not enough args in this CHI. - - for (auto CHI : C) { - BasicBlock *Dest = CHI.Dest; - // Find if all the edges have values flowing out of BB. - bool Found = llvm::any_of( - successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; }); - if (!Found) - return false; - } - return true; - } - - // Check if it is safe to hoist values tracked by CHI in the range - // [Begin, End) and accumulate them in Safe. - void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, - SmallVectorImpl<CHIArg> &Safe) { - int NumBBsOnAllPaths = MaxNumberOfBBSInPath; - for (auto CHI : C) { - Instruction *Insn = CHI.I; - if (!Insn) // No instruction was inserted in this CHI. - continue; - if (K == InsKind::Scalar) { - if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) - Safe.push_back(CHI); - } else { - MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn); - if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths)) - Safe.push_back(CHI); - } - } - } - - using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; - - // Push all the VNs corresponding to BB into RenameStack. - void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, - RenameStackType &RenameStack) { - auto it1 = ValueBBs.find(BB); - if (it1 != ValueBBs.end()) { - // Iterate in reverse order to keep lower ranked values on the top. - for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { - // Get the value of instruction I - LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); - RenameStack[VI.first].push_back(VI.second); - } - } - } - - void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, - RenameStackType &RenameStack) { - // For each *predecessor* (because Post-DOM) of BB check if it has a CHI - for (auto Pred : predecessors(BB)) { - auto P = CHIBBs.find(Pred); - if (P == CHIBBs.end()) { - continue; - } - LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); - // A CHI is found (BB -> Pred is an edge in the CFG) - // Pop the stack until Top(V) = Ve. - auto &VCHI = P->second; - for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { - CHIArg &C = *It; - if (!C.Dest) { - auto si = RenameStack.find(C.VN); - // The Basic Block where CHI is must dominate the value we want to - // track in a CHI. In the PDom walk, there can be values in the - // stack which are not control dependent e.g., nested loop. - if (si != RenameStack.end() && si->second.size() && - DT->properlyDominates(Pred, si->second.back()->getParent())) { - C.Dest = BB; // Assign the edge - C.I = si->second.pop_back_val(); // Assign the argument - LLVM_DEBUG(dbgs() - << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I - << ", VN: " << C.VN.first << ", " << C.VN.second); - } - // Move to next CHI of a different value - It = std::find_if(It, VCHI.end(), - [It](CHIArg &A) { return A != *It; }); - } else - ++It; - } - } - } - - // Walk the post-dominator tree top-down and use a stack for each value to - // store the last value you see. When you hit a CHI from a given edge, the - // value to use as the argument is at the top of the stack, add the value to - // CHI and pop. - void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { - auto Root = PDT->getNode(nullptr); - if (!Root) - return; - // Depth first walk on PDom tree to fill the CHIargs at each PDF. - RenameStackType RenameStack; - for (auto Node : depth_first(Root)) { - BasicBlock *BB = Node->getBlock(); - if (!BB) - continue; - - // Collect all values in BB and push to stack. - fillRenameStack(BB, ValueBBs, RenameStack); - - // Fill outgoing values in each CHI corresponding to BB. - fillChiArgs(BB, CHIBBs, RenameStack); - } - } - - // Walk all the CHI-nodes to find ones which have a empty-entry and remove - // them Then collect all the instructions which are safe to hoist and see if - // they form a list of anticipable values. OutValues contains CHIs - // corresponding to each basic block. - void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, - HoistingPointList &HPL) { - auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; - - // CHIArgs now have the outgoing values, so check for anticipability and - // accumulate hoistable candidates in HPL. - for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { - BasicBlock *BB = A.first; - SmallVectorImpl<CHIArg> &CHIs = A.second; - // Vector of PHIs contains PHIs for different instructions. - // Sort the args according to their VNs, such that identical - // instructions are together. - std::stable_sort(CHIs.begin(), CHIs.end(), cmpVN); - auto TI = BB->getTerminator(); - auto B = CHIs.begin(); - // [PreIt, PHIIt) form a range of CHIs which have identical VNs. - auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(), - [B](CHIArg &A) { return A != *B; }); - auto PrevIt = CHIs.begin(); - while (PrevIt != PHIIt) { - // Collect values which satisfy safety checks. - SmallVector<CHIArg, 2> Safe; - // We check for safety first because there might be multiple values in - // the same path, some of which are not safe to be hoisted, but overall - // each edge has at least one value which can be hoisted, making the - // value anticipable along that path. - checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); - - // List of safe values should be anticipable at TI. - if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { - HPL.push_back({BB, SmallVecInsn()}); - SmallVecInsn &V = HPL.back().second; - for (auto B : Safe) - V.push_back(B.I); - } - - // Check other VNs - PrevIt = PHIIt; - PHIIt = std::find_if(PrevIt, CHIs.end(), - [PrevIt](CHIArg &A) { return A != *PrevIt; }); - } - } - } - - // Compute insertion points for each values which can be fully anticipated at - // a dominator. HPL contains all such values. - void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, - InsKind K) { - // Sort VNs based on their rankings - std::vector<VNType> Ranks; - for (const auto &Entry : Map) { - Ranks.push_back(Entry.first); - } - - // TODO: Remove fully-redundant expressions. - // Get instruction from the Map, assume that all the Instructions - // with same VNs have same rank (this is an approximation). - llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { - return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); - }); - - // - Sort VNs according to their rank, and start with lowest ranked VN - // - Take a VN and for each instruction with same VN - // - Find the dominance frontier in the inverse graph (PDF) - // - Insert the chi-node at PDF - // - Remove the chi-nodes with missing entries - // - Remove values from CHI-nodes which do not truly flow out, e.g., - // modified along the path. - // - Collect the remaining values that are still anticipable - SmallVector<BasicBlock *, 2> IDFBlocks; - ReverseIDFCalculator IDFs(*PDT); - OutValuesType OutValue; - InValuesType InValue; - for (const auto &R : Ranks) { - const SmallVecInsn &V = Map.lookup(R); - if (V.size() < 2) - continue; - const VNType &VN = R; - SmallPtrSet<BasicBlock *, 2> VNBlocks; - for (auto &I : V) { - BasicBlock *BBI = I->getParent(); - if (!hasEH(BBI)) - VNBlocks.insert(BBI); - } - // Compute the Post Dominance Frontiers of each basic block - // The dominance frontier of a live block X in the reverse - // control graph is the set of blocks upon which X is control - // dependent. The following sequence computes the set of blocks - // which currently have dead terminators that are control - // dependence sources of a block which is in NewLiveBlocks. - IDFs.setDefiningBlocks(VNBlocks); - IDFBlocks.clear(); - IDFs.calculate(IDFBlocks); - - // Make a map of BB vs instructions to be hoisted. - for (unsigned i = 0; i < V.size(); ++i) { - InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); - } - // Insert empty CHI node for this VN. This is used to factor out - // basic blocks where the ANTIC can potentially change. - for (auto IDFB : IDFBlocks) { - for (unsigned i = 0; i < V.size(); ++i) { - CHIArg C = {VN, nullptr, nullptr}; - // Ignore spurious PDFs. - if (DT->properlyDominates(IDFB, V[i]->getParent())) { - OutValue[IDFB].push_back(C); - LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName() - << ", for Insn: " << *V[i]); - } - } - } - } - - // Insert CHI args at each PDF to iterate on factored graph of - // control dependence. - insertCHI(InValue, OutValue); - // Using the CHI args inserted at each PDF, find fully anticipable values. - findHoistableCandidates(OutValue, K, HPL); - } - - // Return true when all operands of Instr are available at insertion point - // HoistPt. When limiting the number of hoisted expressions, one could hoist - // a load without hoisting its access function. So before hoisting any - // expression, make sure that all its operands are available at insert point. - bool allOperandsAvailable(const Instruction *I, - const BasicBlock *HoistPt) const { - for (const Use &Op : I->operands()) - if (const auto *Inst = dyn_cast<Instruction>(&Op)) - if (!DT->dominates(Inst->getParent(), HoistPt)) - return false; - - return true; - } - - // Same as allOperandsAvailable with recursive check for GEP operands. - bool allGepOperandsAvailable(const Instruction *I, - const BasicBlock *HoistPt) const { - for (const Use &Op : I->operands()) - if (const auto *Inst = dyn_cast<Instruction>(&Op)) - if (!DT->dominates(Inst->getParent(), HoistPt)) { - if (const GetElementPtrInst *GepOp = - dyn_cast<GetElementPtrInst>(Inst)) { - if (!allGepOperandsAvailable(GepOp, HoistPt)) - return false; - // Gep is available if all operands of GepOp are available. - } else { - // Gep is not available if it has operands other than GEPs that are - // defined in blocks not dominating HoistPt. - return false; - } - } - return true; - } - - // Make all operands of the GEP available. - void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, - const SmallVecInsn &InstructionsToHoist, - Instruction *Gep) const { - assert(allGepOperandsAvailable(Gep, HoistPt) && - "GEP operands not available"); - - Instruction *ClonedGep = Gep->clone(); - for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) - if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { - // Check whether the operand is already available. - if (DT->dominates(Op->getParent(), HoistPt)) - continue; - - // As a GEP can refer to other GEPs, recursively make all the operands - // of this GEP available at HoistPt. - if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) - makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); - } - - // Copy Gep and replace its uses in Repl with ClonedGep. - ClonedGep->insertBefore(HoistPt->getTerminator()); - - // Conservatively discard any optimization hints, they may differ on the - // other paths. - ClonedGep->dropUnknownNonDebugMetadata(); - - // If we have optimization hints which agree with each other along different - // paths, preserve them. - for (const Instruction *OtherInst : InstructionsToHoist) { - const GetElementPtrInst *OtherGep; - if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) - OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); - else - OtherGep = cast<GetElementPtrInst>( - cast<StoreInst>(OtherInst)->getPointerOperand()); - ClonedGep->andIRFlags(OtherGep); - } - - // Replace uses of Gep with ClonedGep in Repl. - Repl->replaceUsesOfWith(Gep, ClonedGep); - } - - void updateAlignment(Instruction *I, Instruction *Repl) { - if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { - ReplacementLoad->setAlignment( - std::min(ReplacementLoad->getAlignment(), - cast<LoadInst>(I)->getAlignment())); - ++NumLoadsRemoved; - } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { - ReplacementStore->setAlignment( - std::min(ReplacementStore->getAlignment(), - cast<StoreInst>(I)->getAlignment())); - ++NumStoresRemoved; - } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { - ReplacementAlloca->setAlignment( - std::max(ReplacementAlloca->getAlignment(), - cast<AllocaInst>(I)->getAlignment())); - } else if (isa<CallInst>(Repl)) { - ++NumCallsRemoved; - } - } - - // Remove all the instructions in Candidates and replace their usage with Repl. - // Returns the number of instructions removed. - unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, - MemoryUseOrDef *NewMemAcc) { - unsigned NR = 0; - for (Instruction *I : Candidates) { - if (I != Repl) { - ++NR; - updateAlignment(I, Repl); - if (NewMemAcc) { - // Update the uses of the old MSSA access with NewMemAcc. - MemoryAccess *OldMA = MSSA->getMemoryAccess(I); - OldMA->replaceAllUsesWith(NewMemAcc); - MSSAUpdater->removeMemoryAccess(OldMA); - } - - Repl->andIRFlags(I); - combineKnownMetadata(Repl, I); - I->replaceAllUsesWith(Repl); - // Also invalidate the Alias Analysis cache. - MD->removeInstruction(I); - I->eraseFromParent(); - } - } - return NR; - } - - // Replace all Memory PHI usage with NewMemAcc. - void raMPHIuw(MemoryUseOrDef *NewMemAcc) { - SmallPtrSet<MemoryPhi *, 4> UsePhis; - for (User *U : NewMemAcc->users()) - if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) - UsePhis.insert(Phi); - - for (MemoryPhi *Phi : UsePhis) { - auto In = Phi->incoming_values(); - if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { - Phi->replaceAllUsesWith(NewMemAcc); - MSSAUpdater->removeMemoryAccess(Phi); - } - } - } - - // Remove all other instructions and replace them with Repl. - unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, - BasicBlock *DestBB, bool MoveAccess) { - MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); - if (MoveAccess && NewMemAcc) { - // The definition of this ld/st will not change: ld/st hoisting is - // legal when the ld/st is not moved past its current definition. - MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End); - } - - // Replace all other instructions with Repl with memory access NewMemAcc. - unsigned NR = rauw(Candidates, Repl, NewMemAcc); - - // Remove MemorySSA phi nodes with the same arguments. - if (NewMemAcc) - raMPHIuw(NewMemAcc); - return NR; - } - - // In the case Repl is a load or a store, we make all their GEPs - // available: GEPs are not hoisted by default to avoid the address - // computations to be hoisted without the associated load or store. - bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, - const SmallVecInsn &InstructionsToHoist) const { - // Check whether the GEP of a ld/st can be synthesized at HoistPt. - GetElementPtrInst *Gep = nullptr; - Instruction *Val = nullptr; - if (auto *Ld = dyn_cast<LoadInst>(Repl)) { - Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); - } else if (auto *St = dyn_cast<StoreInst>(Repl)) { - Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); - Val = dyn_cast<Instruction>(St->getValueOperand()); - // Check that the stored value is available. - if (Val) { - if (isa<GetElementPtrInst>(Val)) { - // Check whether we can compute the GEP at HoistPt. - if (!allGepOperandsAvailable(Val, HoistPt)) - return false; - } else if (!DT->dominates(Val->getParent(), HoistPt)) - return false; - } - } - - // Check whether we can compute the Gep at HoistPt. - if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) - return false; - - makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); - - if (Val && isa<GetElementPtrInst>(Val)) - makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); - - return true; - } - - std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { - unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; - for (const HoistingPointInfo &HP : HPL) { - // Find out whether we already have one of the instructions in HoistPt, - // in which case we do not have to move it. - BasicBlock *DestBB = HP.first; - const SmallVecInsn &InstructionsToHoist = HP.second; - Instruction *Repl = nullptr; - for (Instruction *I : InstructionsToHoist) - if (I->getParent() == DestBB) - // If there are two instructions in HoistPt to be hoisted in place: - // update Repl to be the first one, such that we can rename the uses - // of the second based on the first. - if (!Repl || firstInBB(I, Repl)) - Repl = I; - - // Keep track of whether we moved the instruction so we know whether we - // should move the MemoryAccess. - bool MoveAccess = true; - if (Repl) { - // Repl is already in HoistPt: it remains in place. - assert(allOperandsAvailable(Repl, DestBB) && - "instruction depends on operands that are not available"); - MoveAccess = false; - } else { - // When we do not find Repl in HoistPt, select the first in the list - // and move it to HoistPt. - Repl = InstructionsToHoist.front(); - - // We can move Repl in HoistPt only when all operands are available. - // The order in which hoistings are done may influence the availability - // of operands. - if (!allOperandsAvailable(Repl, DestBB)) { - // When HoistingGeps there is nothing more we can do to make the - // operands available: just continue. - if (HoistingGeps) - continue; - - // When not HoistingGeps we need to copy the GEPs. - if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) - continue; - } - - // Move the instruction at the end of HoistPt. - Instruction *Last = DestBB->getTerminator(); - MD->removeInstruction(Repl); - Repl->moveBefore(Last); - - DFSNumber[Repl] = DFSNumber[Last]++; - } - - NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); - - if (isa<LoadInst>(Repl)) - ++NL; - else if (isa<StoreInst>(Repl)) - ++NS; - else if (isa<CallInst>(Repl)) - ++NC; - else // Scalar - ++NI; - } - - NumHoisted += NL + NS + NC + NI; - NumRemoved += NR; - NumLoadsHoisted += NL; - NumStoresHoisted += NS; - NumCallsHoisted += NC; - return {NI, NL + NC + NS}; - } - - // Hoist all expressions. Returns Number of scalars hoisted - // and number of non-scalars hoisted. - std::pair<unsigned, unsigned> hoistExpressions(Function &F) { - InsnInfo II; - LoadInfo LI; - StoreInfo SI; - CallInfo CI; - for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { - int InstructionNb = 0; - for (Instruction &I1 : *BB) { - // If I1 cannot guarantee progress, subsequent instructions - // in BB cannot be hoisted anyways. - if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { - HoistBarrier.insert(BB); - break; - } - // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting - // deeper may increase the register pressure and compilation time. - if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) - break; - - // Do not value number terminator instructions. - if (I1.isTerminator()) - break; - - if (auto *Load = dyn_cast<LoadInst>(&I1)) - LI.insert(Load, VN); - else if (auto *Store = dyn_cast<StoreInst>(&I1)) - SI.insert(Store, VN); - else if (auto *Call = dyn_cast<CallInst>(&I1)) { - if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { - if (isa<DbgInfoIntrinsic>(Intr) || - Intr->getIntrinsicID() == Intrinsic::assume || - Intr->getIntrinsicID() == Intrinsic::sideeffect) - continue; - } - if (Call->mayHaveSideEffects()) - break; - - if (Call->isConvergent()) - break; - - CI.insert(Call, VN); - } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) - // Do not hoist scalars past calls that may write to memory because - // that could result in spills later. geps are handled separately. - // TODO: We can relax this for targets like AArch64 as they have more - // registers than X86. - II.insert(&I1, VN); - } - } - - HoistingPointList HPL; - computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); - computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); - computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); - computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); - computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); - computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); - return hoist(HPL); - } -}; - -class GVNHoistLegacyPass : public FunctionPass { -public: - static char ID; - - GVNHoistLegacyPass() : FunctionPass(ID) { - initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override { - if (skipFunction(F)) - return false; - auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); - auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); - auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); - auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); - - GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); - return G.run(F); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<PostDominatorTreeWrapperPass>(); - AU.addRequired<AAResultsWrapperPass>(); - AU.addRequired<MemoryDependenceWrapperPass>(); - AU.addRequired<MemorySSAWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addPreserved<MemorySSAWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - } -}; - -} // end namespace llvm - -PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { - DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); - PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); - AliasAnalysis &AA = AM.getResult<AAManager>(F); - MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); - MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); - GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); - if (!G.run(F)) - return PreservedAnalyses::all(); - - PreservedAnalyses PA; - PA.preserve<DominatorTreeAnalysis>(); - PA.preserve<MemorySSAAnalysis>(); - PA.preserve<GlobalsAA>(); - return PA; -} - -char GVNHoistLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", - "Early GVN Hoisting of Expressions", false, false) -INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) -INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", - "Early GVN Hoisting of Expressions", false, false) - -FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } |
