summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/GVNSink.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/GVNSink.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/GVNSink.cpp923
1 files changed, 0 insertions, 923 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/GVNSink.cpp b/gnu/llvm/lib/Transforms/Scalar/GVNSink.cpp
deleted file mode 100644
index 1df5f5400c1..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/GVNSink.cpp
+++ /dev/null
@@ -1,923 +0,0 @@
-//===- GVNSink.cpp - sink expressions into successors ---------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-/// \file GVNSink.cpp
-/// This pass attempts to sink instructions into successors, reducing static
-/// instruction count and enabling if-conversion.
-///
-/// We use a variant of global value numbering to decide what can be sunk.
-/// Consider:
-///
-/// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ]
-/// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ]
-/// \ /
-/// [ %e = phi i32 %a2, %c2 ]
-/// [ add i32 %e, 4 ]
-///
-///
-/// GVN would number %a1 and %c1 differently because they compute different
-/// results - the VN of an instruction is a function of its opcode and the
-/// transitive closure of its operands. This is the key property for hoisting
-/// and CSE.
-///
-/// What we want when sinking however is for a numbering that is a function of
-/// the *uses* of an instruction, which allows us to answer the question "if I
-/// replace %a1 with %c1, will it contribute in an equivalent way to all
-/// successive instructions?". The PostValueTable class in GVN provides this
-/// mapping.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseMapInfo.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Hashing.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/ArrayRecycler.h"
-#include "llvm/Support/AtomicOrdering.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Scalar/GVN.h"
-#include "llvm/Transforms/Scalar/GVNExpression.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <iterator>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "gvn-sink"
-
-STATISTIC(NumRemoved, "Number of instructions removed");
-
-namespace llvm {
-namespace GVNExpression {
-
-LLVM_DUMP_METHOD void Expression::dump() const {
- print(dbgs());
- dbgs() << "\n";
-}
-
-} // end namespace GVNExpression
-} // end namespace llvm
-
-namespace {
-
-static bool isMemoryInst(const Instruction *I) {
- return isa<LoadInst>(I) || isa<StoreInst>(I) ||
- (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
- (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
-}
-
-/// Iterates through instructions in a set of blocks in reverse order from the
-/// first non-terminator. For example (assume all blocks have size n):
-/// LockstepReverseIterator I([B1, B2, B3]);
-/// *I-- = [B1[n], B2[n], B3[n]];
-/// *I-- = [B1[n-1], B2[n-1], B3[n-1]];
-/// *I-- = [B1[n-2], B2[n-2], B3[n-2]];
-/// ...
-///
-/// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
-/// to
-/// determine which blocks are still going and the order they appear in the
-/// list returned by operator*.
-class LockstepReverseIterator {
- ArrayRef<BasicBlock *> Blocks;
- SmallSetVector<BasicBlock *, 4> ActiveBlocks;
- SmallVector<Instruction *, 4> Insts;
- bool Fail;
-
-public:
- LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
- reset();
- }
-
- void reset() {
- Fail = false;
- ActiveBlocks.clear();
- for (BasicBlock *BB : Blocks)
- ActiveBlocks.insert(BB);
- Insts.clear();
- for (BasicBlock *BB : Blocks) {
- if (BB->size() <= 1) {
- // Block wasn't big enough - only contained a terminator.
- ActiveBlocks.remove(BB);
- continue;
- }
- Insts.push_back(BB->getTerminator()->getPrevNode());
- }
- if (Insts.empty())
- Fail = true;
- }
-
- bool isValid() const { return !Fail; }
- ArrayRef<Instruction *> operator*() const { return Insts; }
-
- // Note: This needs to return a SmallSetVector as the elements of
- // ActiveBlocks will be later copied to Blocks using std::copy. The
- // resultant order of elements in Blocks needs to be deterministic.
- // Using SmallPtrSet instead causes non-deterministic order while
- // copying. And we cannot simply sort Blocks as they need to match the
- // corresponding Values.
- SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }
-
- void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
- for (auto II = Insts.begin(); II != Insts.end();) {
- if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) ==
- Blocks.end()) {
- ActiveBlocks.remove((*II)->getParent());
- II = Insts.erase(II);
- } else {
- ++II;
- }
- }
- }
-
- void operator--() {
- if (Fail)
- return;
- SmallVector<Instruction *, 4> NewInsts;
- for (auto *Inst : Insts) {
- if (Inst == &Inst->getParent()->front())
- ActiveBlocks.remove(Inst->getParent());
- else
- NewInsts.push_back(Inst->getPrevNode());
- }
- if (NewInsts.empty()) {
- Fail = true;
- return;
- }
- Insts = NewInsts;
- }
-};
-
-//===----------------------------------------------------------------------===//
-
-/// Candidate solution for sinking. There may be different ways to
-/// sink instructions, differing in the number of instructions sunk,
-/// the number of predecessors sunk from and the number of PHIs
-/// required.
-struct SinkingInstructionCandidate {
- unsigned NumBlocks;
- unsigned NumInstructions;
- unsigned NumPHIs;
- unsigned NumMemoryInsts;
- int Cost = -1;
- SmallVector<BasicBlock *, 4> Blocks;
-
- void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
- unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
- unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
- Cost = (NumInstructions * (NumBlocks - 1)) -
- (NumExtraPHIs *
- NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
- - SplitEdgeCost;
- }
-
- bool operator>(const SinkingInstructionCandidate &Other) const {
- return Cost > Other.Cost;
- }
-};
-
-#ifndef NDEBUG
-raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
- OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
- << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
- return OS;
-}
-#endif
-
-//===----------------------------------------------------------------------===//
-
-/// Describes a PHI node that may or may not exist. These track the PHIs
-/// that must be created if we sunk a sequence of instructions. It provides
-/// a hash function for efficient equality comparisons.
-class ModelledPHI {
- SmallVector<Value *, 4> Values;
- SmallVector<BasicBlock *, 4> Blocks;
-
-public:
- ModelledPHI() = default;
-
- ModelledPHI(const PHINode *PN) {
- // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
- SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
- for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
- Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
- llvm::sort(Ops);
- for (auto &P : Ops) {
- Blocks.push_back(P.first);
- Values.push_back(P.second);
- }
- }
-
- /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
- /// without the same ID.
- /// \note This is specifically for DenseMapInfo - do not use this!
- static ModelledPHI createDummy(size_t ID) {
- ModelledPHI M;
- M.Values.push_back(reinterpret_cast<Value*>(ID));
- return M;
- }
-
- /// Create a PHI from an array of incoming values and incoming blocks.
- template <typename VArray, typename BArray>
- ModelledPHI(const VArray &V, const BArray &B) {
- llvm::copy(V, std::back_inserter(Values));
- llvm::copy(B, std::back_inserter(Blocks));
- }
-
- /// Create a PHI from [I[OpNum] for I in Insts].
- template <typename BArray>
- ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
- llvm::copy(B, std::back_inserter(Blocks));
- for (auto *I : Insts)
- Values.push_back(I->getOperand(OpNum));
- }
-
- /// Restrict the PHI's contents down to only \c NewBlocks.
- /// \c NewBlocks must be a subset of \c this->Blocks.
- void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
- auto BI = Blocks.begin();
- auto VI = Values.begin();
- while (BI != Blocks.end()) {
- assert(VI != Values.end());
- if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) ==
- NewBlocks.end()) {
- BI = Blocks.erase(BI);
- VI = Values.erase(VI);
- } else {
- ++BI;
- ++VI;
- }
- }
- assert(Blocks.size() == NewBlocks.size());
- }
-
- ArrayRef<Value *> getValues() const { return Values; }
-
- bool areAllIncomingValuesSame() const {
- return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
- }
-
- bool areAllIncomingValuesSameType() const {
- return llvm::all_of(
- Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
- }
-
- bool areAnyIncomingValuesConstant() const {
- return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
- }
-
- // Hash functor
- unsigned hash() const {
- return (unsigned)hash_combine_range(Values.begin(), Values.end());
- }
-
- bool operator==(const ModelledPHI &Other) const {
- return Values == Other.Values && Blocks == Other.Blocks;
- }
-};
-
-template <typename ModelledPHI> struct DenseMapInfo {
- static inline ModelledPHI &getEmptyKey() {
- static ModelledPHI Dummy = ModelledPHI::createDummy(0);
- return Dummy;
- }
-
- static inline ModelledPHI &getTombstoneKey() {
- static ModelledPHI Dummy = ModelledPHI::createDummy(1);
- return Dummy;
- }
-
- static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }
-
- static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
- return LHS == RHS;
- }
-};
-
-using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;
-
-//===----------------------------------------------------------------------===//
-// ValueTable
-//===----------------------------------------------------------------------===//
-// This is a value number table where the value number is a function of the
-// *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
-// that the program would be equivalent if we replaced A with PHI(A, B).
-//===----------------------------------------------------------------------===//
-
-/// A GVN expression describing how an instruction is used. The operands
-/// field of BasicExpression is used to store uses, not operands.
-///
-/// This class also contains fields for discriminators used when determining
-/// equivalence of instructions with sideeffects.
-class InstructionUseExpr : public GVNExpression::BasicExpression {
- unsigned MemoryUseOrder = -1;
- bool Volatile = false;
-
-public:
- InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
- BumpPtrAllocator &A)
- : GVNExpression::BasicExpression(I->getNumUses()) {
- allocateOperands(R, A);
- setOpcode(I->getOpcode());
- setType(I->getType());
-
- for (auto &U : I->uses())
- op_push_back(U.getUser());
- llvm::sort(op_begin(), op_end());
- }
-
- void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
- void setVolatile(bool V) { Volatile = V; }
-
- hash_code getHashValue() const override {
- return hash_combine(GVNExpression::BasicExpression::getHashValue(),
- MemoryUseOrder, Volatile);
- }
-
- template <typename Function> hash_code getHashValue(Function MapFn) {
- hash_code H =
- hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile);
- for (auto *V : operands())
- H = hash_combine(H, MapFn(V));
- return H;
- }
-};
-
-class ValueTable {
- DenseMap<Value *, uint32_t> ValueNumbering;
- DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
- DenseMap<size_t, uint32_t> HashNumbering;
- BumpPtrAllocator Allocator;
- ArrayRecycler<Value *> Recycler;
- uint32_t nextValueNumber = 1;
-
- /// Create an expression for I based on its opcode and its uses. If I
- /// touches or reads memory, the expression is also based upon its memory
- /// order - see \c getMemoryUseOrder().
- InstructionUseExpr *createExpr(Instruction *I) {
- InstructionUseExpr *E =
- new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
- if (isMemoryInst(I))
- E->setMemoryUseOrder(getMemoryUseOrder(I));
-
- if (CmpInst *C = dyn_cast<CmpInst>(I)) {
- CmpInst::Predicate Predicate = C->getPredicate();
- E->setOpcode((C->getOpcode() << 8) | Predicate);
- }
- return E;
- }
-
- /// Helper to compute the value number for a memory instruction
- /// (LoadInst/StoreInst), including checking the memory ordering and
- /// volatility.
- template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
- if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
- return nullptr;
- InstructionUseExpr *E = createExpr(I);
- E->setVolatile(I->isVolatile());
- return E;
- }
-
-public:
- ValueTable() = default;
-
- /// Returns the value number for the specified value, assigning
- /// it a new number if it did not have one before.
- uint32_t lookupOrAdd(Value *V) {
- auto VI = ValueNumbering.find(V);
- if (VI != ValueNumbering.end())
- return VI->second;
-
- if (!isa<Instruction>(V)) {
- ValueNumbering[V] = nextValueNumber;
- return nextValueNumber++;
- }
-
- Instruction *I = cast<Instruction>(V);
- InstructionUseExpr *exp = nullptr;
- switch (I->getOpcode()) {
- case Instruction::Load:
- exp = createMemoryExpr(cast<LoadInst>(I));
- break;
- case Instruction::Store:
- exp = createMemoryExpr(cast<StoreInst>(I));
- break;
- case Instruction::Call:
- case Instruction::Invoke:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- case Instruction::Select:
- case Instruction::ExtractElement:
- case Instruction::InsertElement:
- case Instruction::ShuffleVector:
- case Instruction::InsertValue:
- case Instruction::GetElementPtr:
- exp = createExpr(I);
- break;
- default:
- break;
- }
-
- if (!exp) {
- ValueNumbering[V] = nextValueNumber;
- return nextValueNumber++;
- }
-
- uint32_t e = ExpressionNumbering[exp];
- if (!e) {
- hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
- auto I = HashNumbering.find(H);
- if (I != HashNumbering.end()) {
- e = I->second;
- } else {
- e = nextValueNumber++;
- HashNumbering[H] = e;
- ExpressionNumbering[exp] = e;
- }
- }
- ValueNumbering[V] = e;
- return e;
- }
-
- /// Returns the value number of the specified value. Fails if the value has
- /// not yet been numbered.
- uint32_t lookup(Value *V) const {
- auto VI = ValueNumbering.find(V);
- assert(VI != ValueNumbering.end() && "Value not numbered?");
- return VI->second;
- }
-
- /// Removes all value numberings and resets the value table.
- void clear() {
- ValueNumbering.clear();
- ExpressionNumbering.clear();
- HashNumbering.clear();
- Recycler.clear(Allocator);
- nextValueNumber = 1;
- }
-
- /// \c Inst uses or touches memory. Return an ID describing the memory state
- /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
- /// the exact same memory operations happen after I1 and I2.
- ///
- /// This is a very hard problem in general, so we use domain-specific
- /// knowledge that we only ever check for equivalence between blocks sharing a
- /// single immediate successor that is common, and when determining if I1 ==
- /// I2 we will have already determined that next(I1) == next(I2). This
- /// inductive property allows us to simply return the value number of the next
- /// instruction that defines memory.
- uint32_t getMemoryUseOrder(Instruction *Inst) {
- auto *BB = Inst->getParent();
- for (auto I = std::next(Inst->getIterator()), E = BB->end();
- I != E && !I->isTerminator(); ++I) {
- if (!isMemoryInst(&*I))
- continue;
- if (isa<LoadInst>(&*I))
- continue;
- CallInst *CI = dyn_cast<CallInst>(&*I);
- if (CI && CI->onlyReadsMemory())
- continue;
- InvokeInst *II = dyn_cast<InvokeInst>(&*I);
- if (II && II->onlyReadsMemory())
- continue;
- return lookupOrAdd(&*I);
- }
- return 0;
- }
-};
-
-//===----------------------------------------------------------------------===//
-
-class GVNSink {
-public:
- GVNSink() = default;
-
- bool run(Function &F) {
- LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
- << "\n");
-
- unsigned NumSunk = 0;
- ReversePostOrderTraversal<Function*> RPOT(&F);
- for (auto *N : RPOT)
- NumSunk += sinkBB(N);
-
- return NumSunk > 0;
- }
-
-private:
- ValueTable VN;
-
- bool isInstructionBlacklisted(Instruction *I) {
- // These instructions may change or break semantics if moved.
- if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
- I->getType()->isTokenTy())
- return true;
- return false;
- }
-
- /// The main heuristic function. Analyze the set of instructions pointed to by
- /// LRI and return a candidate solution if these instructions can be sunk, or
- /// None otherwise.
- Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
- LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
- ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);
-
- /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
- void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
- SmallPtrSetImpl<Value *> &PHIContents) {
- for (PHINode &PN : BB->phis()) {
- auto MPHI = ModelledPHI(&PN);
- PHIs.insert(MPHI);
- for (auto *V : MPHI.getValues())
- PHIContents.insert(V);
- }
- }
-
- /// The main instruction sinking driver. Set up state and try and sink
- /// instructions into BBEnd from its predecessors.
- unsigned sinkBB(BasicBlock *BBEnd);
-
- /// Perform the actual mechanics of sinking an instruction from Blocks into
- /// BBEnd, which is their only successor.
- void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);
-
- /// Remove PHIs that all have the same incoming value.
- void foldPointlessPHINodes(BasicBlock *BB) {
- auto I = BB->begin();
- while (PHINode *PN = dyn_cast<PHINode>(I++)) {
- if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
- return V == PN->getIncomingValue(0);
- }))
- continue;
- if (PN->getIncomingValue(0) != PN)
- PN->replaceAllUsesWith(PN->getIncomingValue(0));
- else
- PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
- PN->eraseFromParent();
- }
- }
-};
-
-Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
- LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
- ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
- auto Insts = *LRI;
- LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
- : Insts) {
- I->dump();
- } dbgs() << " ]\n";);
-
- DenseMap<uint32_t, unsigned> VNums;
- for (auto *I : Insts) {
- uint32_t N = VN.lookupOrAdd(I);
- LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
- if (N == ~0U)
- return None;
- VNums[N]++;
- }
- unsigned VNumToSink =
- std::max_element(VNums.begin(), VNums.end(),
- [](const std::pair<uint32_t, unsigned> &I,
- const std::pair<uint32_t, unsigned> &J) {
- return I.second < J.second;
- })
- ->first;
-
- if (VNums[VNumToSink] == 1)
- // Can't sink anything!
- return None;
-
- // Now restrict the number of incoming blocks down to only those with
- // VNumToSink.
- auto &ActivePreds = LRI.getActiveBlocks();
- unsigned InitialActivePredSize = ActivePreds.size();
- SmallVector<Instruction *, 4> NewInsts;
- for (auto *I : Insts) {
- if (VN.lookup(I) != VNumToSink)
- ActivePreds.remove(I->getParent());
- else
- NewInsts.push_back(I);
- }
- for (auto *I : NewInsts)
- if (isInstructionBlacklisted(I))
- return None;
-
- // If we've restricted the incoming blocks, restrict all needed PHIs also
- // to that set.
- bool RecomputePHIContents = false;
- if (ActivePreds.size() != InitialActivePredSize) {
- ModelledPHISet NewNeededPHIs;
- for (auto P : NeededPHIs) {
- P.restrictToBlocks(ActivePreds);
- NewNeededPHIs.insert(P);
- }
- NeededPHIs = NewNeededPHIs;
- LRI.restrictToBlocks(ActivePreds);
- RecomputePHIContents = true;
- }
-
- // The sunk instruction's results.
- ModelledPHI NewPHI(NewInsts, ActivePreds);
-
- // Does sinking this instruction render previous PHIs redundant?
- if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) {
- NeededPHIs.erase(NewPHI);
- RecomputePHIContents = true;
- }
-
- if (RecomputePHIContents) {
- // The needed PHIs have changed, so recompute the set of all needed
- // values.
- PHIContents.clear();
- for (auto &PHI : NeededPHIs)
- PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
- }
-
- // Is this instruction required by a later PHI that doesn't match this PHI?
- // if so, we can't sink this instruction.
- for (auto *V : NewPHI.getValues())
- if (PHIContents.count(V))
- // V exists in this PHI, but the whole PHI is different to NewPHI
- // (else it would have been removed earlier). We cannot continue
- // because this isn't representable.
- return None;
-
- // Which operands need PHIs?
- // FIXME: If any of these fail, we should partition up the candidates to
- // try and continue making progress.
- Instruction *I0 = NewInsts[0];
- for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
- ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
- if (PHI.areAllIncomingValuesSame())
- continue;
- if (!canReplaceOperandWithVariable(I0, OpNum))
- // We can 't create a PHI from this instruction!
- return None;
- if (NeededPHIs.count(PHI))
- continue;
- if (!PHI.areAllIncomingValuesSameType())
- return None;
- // Don't create indirect calls! The called value is the final operand.
- if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
- PHI.areAnyIncomingValuesConstant())
- return None;
-
- NeededPHIs.reserve(NeededPHIs.size());
- NeededPHIs.insert(PHI);
- PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
- }
-
- if (isMemoryInst(NewInsts[0]))
- ++MemoryInstNum;
-
- SinkingInstructionCandidate Cand;
- Cand.NumInstructions = ++InstNum;
- Cand.NumMemoryInsts = MemoryInstNum;
- Cand.NumBlocks = ActivePreds.size();
- Cand.NumPHIs = NeededPHIs.size();
- for (auto *C : ActivePreds)
- Cand.Blocks.push_back(C);
-
- return Cand;
-}
-
-unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
- LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
- BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
- SmallVector<BasicBlock *, 4> Preds;
- for (auto *B : predecessors(BBEnd)) {
- auto *T = B->getTerminator();
- if (isa<BranchInst>(T) || isa<SwitchInst>(T))
- Preds.push_back(B);
- else
- return 0;
- }
- if (Preds.size() < 2)
- return 0;
- llvm::sort(Preds);
-
- unsigned NumOrigPreds = Preds.size();
- // We can only sink instructions through unconditional branches.
- for (auto I = Preds.begin(); I != Preds.end();) {
- if ((*I)->getTerminator()->getNumSuccessors() != 1)
- I = Preds.erase(I);
- else
- ++I;
- }
-
- LockstepReverseIterator LRI(Preds);
- SmallVector<SinkingInstructionCandidate, 4> Candidates;
- unsigned InstNum = 0, MemoryInstNum = 0;
- ModelledPHISet NeededPHIs;
- SmallPtrSet<Value *, 4> PHIContents;
- analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
- unsigned NumOrigPHIs = NeededPHIs.size();
-
- while (LRI.isValid()) {
- auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
- NeededPHIs, PHIContents);
- if (!Cand)
- break;
- Cand->calculateCost(NumOrigPHIs, Preds.size());
- Candidates.emplace_back(*Cand);
- --LRI;
- }
-
- std::stable_sort(
- Candidates.begin(), Candidates.end(),
- [](const SinkingInstructionCandidate &A,
- const SinkingInstructionCandidate &B) { return A > B; });
- LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
- : Candidates) dbgs()
- << " " << C << "\n";);
-
- // Pick the top candidate, as long it is positive!
- if (Candidates.empty() || Candidates.front().Cost <= 0)
- return 0;
- auto C = Candidates.front();
-
- LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
- BasicBlock *InsertBB = BBEnd;
- if (C.Blocks.size() < NumOrigPreds) {
- LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
- BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
- InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
- if (!InsertBB) {
- LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
- // Edge couldn't be split.
- return 0;
- }
- }
-
- for (unsigned I = 0; I < C.NumInstructions; ++I)
- sinkLastInstruction(C.Blocks, InsertBB);
-
- return C.NumInstructions;
-}
-
-void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
- BasicBlock *BBEnd) {
- SmallVector<Instruction *, 4> Insts;
- for (BasicBlock *BB : Blocks)
- Insts.push_back(BB->getTerminator()->getPrevNode());
- Instruction *I0 = Insts.front();
-
- SmallVector<Value *, 4> NewOperands;
- for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
- bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
- return I->getOperand(O) != I0->getOperand(O);
- });
- if (!NeedPHI) {
- NewOperands.push_back(I0->getOperand(O));
- continue;
- }
-
- // Create a new PHI in the successor block and populate it.
- auto *Op = I0->getOperand(O);
- assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
- auto *PN = PHINode::Create(Op->getType(), Insts.size(),
- Op->getName() + ".sink", &BBEnd->front());
- for (auto *I : Insts)
- PN->addIncoming(I->getOperand(O), I->getParent());
- NewOperands.push_back(PN);
- }
-
- // Arbitrarily use I0 as the new "common" instruction; remap its operands
- // and move it to the start of the successor block.
- for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
- I0->getOperandUse(O).set(NewOperands[O]);
- I0->moveBefore(&*BBEnd->getFirstInsertionPt());
-
- // Update metadata and IR flags.
- for (auto *I : Insts)
- if (I != I0) {
- combineMetadataForCSE(I0, I, true);
- I0->andIRFlags(I);
- }
-
- for (auto *I : Insts)
- if (I != I0)
- I->replaceAllUsesWith(I0);
- foldPointlessPHINodes(BBEnd);
-
- // Finally nuke all instructions apart from the common instruction.
- for (auto *I : Insts)
- if (I != I0)
- I->eraseFromParent();
-
- NumRemoved += Insts.size() - 1;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// Pass machinery / boilerplate
-
-class GVNSinkLegacyPass : public FunctionPass {
-public:
- static char ID;
-
- GVNSinkLegacyPass() : FunctionPass(ID) {
- initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- GVNSink G;
- return G.run(F);
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<GlobalsAAWrapperPass>();
- }
-};
-
-} // end anonymous namespace
-
-PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
- GVNSink G;
- if (!G.run(F))
- return PreservedAnalyses::all();
-
- PreservedAnalyses PA;
- PA.preserve<GlobalsAA>();
- return PA;
-}
-
-char GVNSinkLegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
- "Early GVN sinking of Expressions", false, false)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
-INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
- "Early GVN sinking of Expressions", false, false)
-
-FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }