summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp685
1 files changed, 0 insertions, 685 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp b/gnu/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
deleted file mode 100644
index 19bd9ebcc15..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
+++ /dev/null
@@ -1,685 +0,0 @@
-//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implement a loop-aware load elimination pass.
-//
-// It uses LoopAccessAnalysis to identify loop-carried dependences with a
-// distance of one between stores and loads. These form the candidates for the
-// transformation. The source value of each store then propagated to the user
-// of the corresponding load. This makes the load dead.
-//
-// The pass can also version the loop and add memchecks in order to prove that
-// may-aliasing stores can't change the value in memory before it's read by the
-// load.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/LoopLoadElimination.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/LoopAccessAnalysis.h"
-#include "llvm/Analysis/LoopAnalysisManager.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils.h"
-#include "llvm/Transforms/Utils/LoopVersioning.h"
-#include <algorithm>
-#include <cassert>
-#include <forward_list>
-#include <set>
-#include <tuple>
-#include <utility>
-
-using namespace llvm;
-
-#define LLE_OPTION "loop-load-elim"
-#define DEBUG_TYPE LLE_OPTION
-
-static cl::opt<unsigned> CheckPerElim(
- "runtime-check-per-loop-load-elim", cl::Hidden,
- cl::desc("Max number of memchecks allowed per eliminated load on average"),
- cl::init(1));
-
-static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
- "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
- cl::desc("The maximum number of SCEV checks allowed for Loop "
- "Load Elimination"));
-
-STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
-
-namespace {
-
-/// Represent a store-to-forwarding candidate.
-struct StoreToLoadForwardingCandidate {
- LoadInst *Load;
- StoreInst *Store;
-
- StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
- : Load(Load), Store(Store) {}
-
- /// Return true if the dependence from the store to the load has a
- /// distance of one. E.g. A[i+1] = A[i]
- bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
- Loop *L) const {
- Value *LoadPtr = Load->getPointerOperand();
- Value *StorePtr = Store->getPointerOperand();
- Type *LoadPtrType = LoadPtr->getType();
- Type *LoadType = LoadPtrType->getPointerElementType();
-
- assert(LoadPtrType->getPointerAddressSpace() ==
- StorePtr->getType()->getPointerAddressSpace() &&
- LoadType == StorePtr->getType()->getPointerElementType() &&
- "Should be a known dependence");
-
- // Currently we only support accesses with unit stride. FIXME: we should be
- // able to handle non unit stirde as well as long as the stride is equal to
- // the dependence distance.
- if (getPtrStride(PSE, LoadPtr, L) != 1 ||
- getPtrStride(PSE, StorePtr, L) != 1)
- return false;
-
- auto &DL = Load->getParent()->getModule()->getDataLayout();
- unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
-
- auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
- auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
-
- // We don't need to check non-wrapping here because forward/backward
- // dependence wouldn't be valid if these weren't monotonic accesses.
- auto *Dist = cast<SCEVConstant>(
- PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
- const APInt &Val = Dist->getAPInt();
- return Val == TypeByteSize;
- }
-
- Value *getLoadPtr() const { return Load->getPointerOperand(); }
-
-#ifndef NDEBUG
- friend raw_ostream &operator<<(raw_ostream &OS,
- const StoreToLoadForwardingCandidate &Cand) {
- OS << *Cand.Store << " -->\n";
- OS.indent(2) << *Cand.Load << "\n";
- return OS;
- }
-#endif
-};
-
-} // end anonymous namespace
-
-/// Check if the store dominates all latches, so as long as there is no
-/// intervening store this value will be loaded in the next iteration.
-static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
- DominatorTree *DT) {
- SmallVector<BasicBlock *, 8> Latches;
- L->getLoopLatches(Latches);
- return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
- return DT->dominates(StoreBlock, Latch);
- });
-}
-
-/// Return true if the load is not executed on all paths in the loop.
-static bool isLoadConditional(LoadInst *Load, Loop *L) {
- return Load->getParent() != L->getHeader();
-}
-
-namespace {
-
-/// The per-loop class that does most of the work.
-class LoadEliminationForLoop {
-public:
- LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
- DominatorTree *DT)
- : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
-
- /// Look through the loop-carried and loop-independent dependences in
- /// this loop and find store->load dependences.
- ///
- /// Note that no candidate is returned if LAA has failed to analyze the loop
- /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
- std::forward_list<StoreToLoadForwardingCandidate>
- findStoreToLoadDependences(const LoopAccessInfo &LAI) {
- std::forward_list<StoreToLoadForwardingCandidate> Candidates;
-
- const auto *Deps = LAI.getDepChecker().getDependences();
- if (!Deps)
- return Candidates;
-
- // Find store->load dependences (consequently true dep). Both lexically
- // forward and backward dependences qualify. Disqualify loads that have
- // other unknown dependences.
-
- SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
-
- for (const auto &Dep : *Deps) {
- Instruction *Source = Dep.getSource(LAI);
- Instruction *Destination = Dep.getDestination(LAI);
-
- if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
- if (isa<LoadInst>(Source))
- LoadsWithUnknownDepedence.insert(Source);
- if (isa<LoadInst>(Destination))
- LoadsWithUnknownDepedence.insert(Destination);
- continue;
- }
-
- if (Dep.isBackward())
- // Note that the designations source and destination follow the program
- // order, i.e. source is always first. (The direction is given by the
- // DepType.)
- std::swap(Source, Destination);
- else
- assert(Dep.isForward() && "Needs to be a forward dependence");
-
- auto *Store = dyn_cast<StoreInst>(Source);
- if (!Store)
- continue;
- auto *Load = dyn_cast<LoadInst>(Destination);
- if (!Load)
- continue;
-
- // Only progagate the value if they are of the same type.
- if (Store->getPointerOperandType() != Load->getPointerOperandType())
- continue;
-
- Candidates.emplace_front(Load, Store);
- }
-
- if (!LoadsWithUnknownDepedence.empty())
- Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
- return LoadsWithUnknownDepedence.count(C.Load);
- });
-
- return Candidates;
- }
-
- /// Return the index of the instruction according to program order.
- unsigned getInstrIndex(Instruction *Inst) {
- auto I = InstOrder.find(Inst);
- assert(I != InstOrder.end() && "No index for instruction");
- return I->second;
- }
-
- /// If a load has multiple candidates associated (i.e. different
- /// stores), it means that it could be forwarding from multiple stores
- /// depending on control flow. Remove these candidates.
- ///
- /// Here, we rely on LAA to include the relevant loop-independent dependences.
- /// LAA is known to omit these in the very simple case when the read and the
- /// write within an alias set always takes place using the *same* pointer.
- ///
- /// However, we know that this is not the case here, i.e. we can rely on LAA
- /// to provide us with loop-independent dependences for the cases we're
- /// interested. Consider the case for example where a loop-independent
- /// dependece S1->S2 invalidates the forwarding S3->S2.
- ///
- /// A[i] = ... (S1)
- /// ... = A[i] (S2)
- /// A[i+1] = ... (S3)
- ///
- /// LAA will perform dependence analysis here because there are two
- /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
- void removeDependencesFromMultipleStores(
- std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
- // If Store is nullptr it means that we have multiple stores forwarding to
- // this store.
- using LoadToSingleCandT =
- DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
- LoadToSingleCandT LoadToSingleCand;
-
- for (const auto &Cand : Candidates) {
- bool NewElt;
- LoadToSingleCandT::iterator Iter;
-
- std::tie(Iter, NewElt) =
- LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
- if (!NewElt) {
- const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
- // Already multiple stores forward to this load.
- if (OtherCand == nullptr)
- continue;
-
- // Handle the very basic case when the two stores are in the same block
- // so deciding which one forwards is easy. The later one forwards as
- // long as they both have a dependence distance of one to the load.
- if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
- Cand.isDependenceDistanceOfOne(PSE, L) &&
- OtherCand->isDependenceDistanceOfOne(PSE, L)) {
- // They are in the same block, the later one will forward to the load.
- if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
- OtherCand = &Cand;
- } else
- OtherCand = nullptr;
- }
- }
-
- Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
- if (LoadToSingleCand[Cand.Load] != &Cand) {
- LLVM_DEBUG(
- dbgs() << "Removing from candidates: \n"
- << Cand
- << " The load may have multiple stores forwarding to "
- << "it\n");
- return true;
- }
- return false;
- });
- }
-
- /// Given two pointers operations by their RuntimePointerChecking
- /// indices, return true if they require an alias check.
- ///
- /// We need a check if one is a pointer for a candidate load and the other is
- /// a pointer for a possibly intervening store.
- bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
- const SmallPtrSet<Value *, 4> &PtrsWrittenOnFwdingPath,
- const std::set<Value *> &CandLoadPtrs) {
- Value *Ptr1 =
- LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
- Value *Ptr2 =
- LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
- return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
- (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
- }
-
- /// Return pointers that are possibly written to on the path from a
- /// forwarding store to a load.
- ///
- /// These pointers need to be alias-checked against the forwarding candidates.
- SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
- const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
- // From FirstStore to LastLoad neither of the elimination candidate loads
- // should overlap with any of the stores.
- //
- // E.g.:
- //
- // st1 C[i]
- // ld1 B[i] <-------,
- // ld0 A[i] <----, | * LastLoad
- // ... | |
- // st2 E[i] | |
- // st3 B[i+1] -- | -' * FirstStore
- // st0 A[i+1] ---'
- // st4 D[i]
- //
- // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
- // ld0.
-
- LoadInst *LastLoad =
- std::max_element(Candidates.begin(), Candidates.end(),
- [&](const StoreToLoadForwardingCandidate &A,
- const StoreToLoadForwardingCandidate &B) {
- return getInstrIndex(A.Load) < getInstrIndex(B.Load);
- })
- ->Load;
- StoreInst *FirstStore =
- std::min_element(Candidates.begin(), Candidates.end(),
- [&](const StoreToLoadForwardingCandidate &A,
- const StoreToLoadForwardingCandidate &B) {
- return getInstrIndex(A.Store) <
- getInstrIndex(B.Store);
- })
- ->Store;
-
- // We're looking for stores after the first forwarding store until the end
- // of the loop, then from the beginning of the loop until the last
- // forwarded-to load. Collect the pointer for the stores.
- SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
-
- auto InsertStorePtr = [&](Instruction *I) {
- if (auto *S = dyn_cast<StoreInst>(I))
- PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
- };
- const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
- std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
- MemInstrs.end(), InsertStorePtr);
- std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
- InsertStorePtr);
-
- return PtrsWrittenOnFwdingPath;
- }
-
- /// Determine the pointer alias checks to prove that there are no
- /// intervening stores.
- SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
- const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
-
- SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
- findPointersWrittenOnForwardingPath(Candidates);
-
- // Collect the pointers of the candidate loads.
- // FIXME: SmallPtrSet does not work with std::inserter.
- std::set<Value *> CandLoadPtrs;
- transform(Candidates,
- std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
- std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
-
- const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
- SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
-
- copy_if(AllChecks, std::back_inserter(Checks),
- [&](const RuntimePointerChecking::PointerCheck &Check) {
- for (auto PtrIdx1 : Check.first->Members)
- for (auto PtrIdx2 : Check.second->Members)
- if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
- CandLoadPtrs))
- return true;
- return false;
- });
-
- LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
- << "):\n");
- LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
-
- return Checks;
- }
-
- /// Perform the transformation for a candidate.
- void
- propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
- SCEVExpander &SEE) {
- // loop:
- // %x = load %gep_i
- // = ... %x
- // store %y, %gep_i_plus_1
- //
- // =>
- //
- // ph:
- // %x.initial = load %gep_0
- // loop:
- // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
- // %x = load %gep_i <---- now dead
- // = ... %x.storeforward
- // store %y, %gep_i_plus_1
-
- Value *Ptr = Cand.Load->getPointerOperand();
- auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
- auto *PH = L->getLoopPreheader();
- Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
- PH->getTerminator());
- Value *Initial =
- new LoadInst(InitialPtr, "load_initial", /* isVolatile */ false,
- Cand.Load->getAlignment(), PH->getTerminator());
-
- PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
- &L->getHeader()->front());
- PHI->addIncoming(Initial, PH);
- PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
-
- Cand.Load->replaceAllUsesWith(PHI);
- }
-
- /// Top-level driver for each loop: find store->load forwarding
- /// candidates, add run-time checks and perform transformation.
- bool processLoop() {
- LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
- << "\" checking " << *L << "\n");
-
- // Look for store-to-load forwarding cases across the
- // backedge. E.g.:
- //
- // loop:
- // %x = load %gep_i
- // = ... %x
- // store %y, %gep_i_plus_1
- //
- // =>
- //
- // ph:
- // %x.initial = load %gep_0
- // loop:
- // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
- // %x = load %gep_i <---- now dead
- // = ... %x.storeforward
- // store %y, %gep_i_plus_1
-
- // First start with store->load dependences.
- auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
- if (StoreToLoadDependences.empty())
- return false;
-
- // Generate an index for each load and store according to the original
- // program order. This will be used later.
- InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
-
- // To keep things simple for now, remove those where the load is potentially
- // fed by multiple stores.
- removeDependencesFromMultipleStores(StoreToLoadDependences);
- if (StoreToLoadDependences.empty())
- return false;
-
- // Filter the candidates further.
- SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
- unsigned NumForwarding = 0;
- for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
- LLVM_DEBUG(dbgs() << "Candidate " << Cand);
-
- // Make sure that the stored values is available everywhere in the loop in
- // the next iteration.
- if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
- continue;
-
- // If the load is conditional we can't hoist its 0-iteration instance to
- // the preheader because that would make it unconditional. Thus we would
- // access a memory location that the original loop did not access.
- if (isLoadConditional(Cand.Load, L))
- continue;
-
- // Check whether the SCEV difference is the same as the induction step,
- // thus we load the value in the next iteration.
- if (!Cand.isDependenceDistanceOfOne(PSE, L))
- continue;
-
- ++NumForwarding;
- LLVM_DEBUG(
- dbgs()
- << NumForwarding
- << ". Valid store-to-load forwarding across the loop backedge\n");
- Candidates.push_back(Cand);
- }
- if (Candidates.empty())
- return false;
-
- // Check intervening may-alias stores. These need runtime checks for alias
- // disambiguation.
- SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
- collectMemchecks(Candidates);
-
- // Too many checks are likely to outweigh the benefits of forwarding.
- if (Checks.size() > Candidates.size() * CheckPerElim) {
- LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
- return false;
- }
-
- if (LAI.getPSE().getUnionPredicate().getComplexity() >
- LoadElimSCEVCheckThreshold) {
- LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
- return false;
- }
-
- if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
- if (L->getHeader()->getParent()->optForSize()) {
- LLVM_DEBUG(
- dbgs() << "Versioning is needed but not allowed when optimizing "
- "for size.\n");
- return false;
- }
-
- if (!L->isLoopSimplifyForm()) {
- LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
- return false;
- }
-
- // Point of no-return, start the transformation. First, version the loop
- // if necessary.
-
- LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
- LV.setAliasChecks(std::move(Checks));
- LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
- LV.versionLoop();
- }
-
- // Next, propagate the value stored by the store to the users of the load.
- // Also for the first iteration, generate the initial value of the load.
- SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
- "storeforward");
- for (const auto &Cand : Candidates)
- propagateStoredValueToLoadUsers(Cand, SEE);
- NumLoopLoadEliminted += NumForwarding;
-
- return true;
- }
-
-private:
- Loop *L;
-
- /// Maps the load/store instructions to their index according to
- /// program order.
- DenseMap<Instruction *, unsigned> InstOrder;
-
- // Analyses used.
- LoopInfo *LI;
- const LoopAccessInfo &LAI;
- DominatorTree *DT;
- PredicatedScalarEvolution PSE;
-};
-
-} // end anonymous namespace
-
-static bool
-eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
- function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
- // Build up a worklist of inner-loops to transform to avoid iterator
- // invalidation.
- // FIXME: This logic comes from other passes that actually change the loop
- // nest structure. It isn't clear this is necessary (or useful) for a pass
- // which merely optimizes the use of loads in a loop.
- SmallVector<Loop *, 8> Worklist;
-
- for (Loop *TopLevelLoop : LI)
- for (Loop *L : depth_first(TopLevelLoop))
- // We only handle inner-most loops.
- if (L->empty())
- Worklist.push_back(L);
-
- // Now walk the identified inner loops.
- bool Changed = false;
- for (Loop *L : Worklist) {
- // The actual work is performed by LoadEliminationForLoop.
- LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT);
- Changed |= LEL.processLoop();
- }
- return Changed;
-}
-
-namespace {
-
-/// The pass. Most of the work is delegated to the per-loop
-/// LoadEliminationForLoop class.
-class LoopLoadElimination : public FunctionPass {
-public:
- static char ID;
-
- LoopLoadElimination() : FunctionPass(ID) {
- initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
-
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-
- // Process each loop nest in the function.
- return eliminateLoadsAcrossLoops(
- F, LI, DT,
- [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequired<LoopAccessLegacyAnalysis>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- }
-};
-
-} // end anonymous namespace
-
-char LoopLoadElimination::ID;
-
-static const char LLE_name[] = "Loop Load Elimination";
-
-INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
-INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
-INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
-
-FunctionPass *llvm::createLoopLoadEliminationPass() {
- return new LoopLoadElimination();
-}
-
-PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
- auto &LI = AM.getResult<LoopAnalysis>(F);
- auto &TTI = AM.getResult<TargetIRAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
-
- auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
- bool Changed = eliminateLoadsAcrossLoops(
- F, LI, DT, [&](Loop &L) -> const LoopAccessInfo & {
- LoopStandardAnalysisResults AR = {AA, AC, DT, LI,
- SE, TLI, TTI, nullptr};
- return LAM.getResult<LoopAccessAnalysis>(L, AR);
- });
-
- if (!Changed)
- return PreservedAnalyses::all();
-
- PreservedAnalyses PA;
- return PA;
-}