diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp | 837 |
1 files changed, 0 insertions, 837 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp b/gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp deleted file mode 100644 index 5983c804c0c..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp +++ /dev/null @@ -1,837 +0,0 @@ -//===-- LoopPredication.cpp - Guard based loop predication pass -----------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// The LoopPredication pass tries to convert loop variant range checks to loop -// invariant by widening checks across loop iterations. For example, it will -// convert -// -// for (i = 0; i < n; i++) { -// guard(i < len); -// ... -// } -// -// to -// -// for (i = 0; i < n; i++) { -// guard(n - 1 < len); -// ... -// } -// -// After this transformation the condition of the guard is loop invariant, so -// loop-unswitch can later unswitch the loop by this condition which basically -// predicates the loop by the widened condition: -// -// if (n - 1 < len) -// for (i = 0; i < n; i++) { -// ... -// } -// else -// deoptimize -// -// It's tempting to rely on SCEV here, but it has proven to be problematic. -// Generally the facts SCEV provides about the increment step of add -// recurrences are true if the backedge of the loop is taken, which implicitly -// assumes that the guard doesn't fail. Using these facts to optimize the -// guard results in a circular logic where the guard is optimized under the -// assumption that it never fails. -// -// For example, in the loop below the induction variable will be marked as nuw -// basing on the guard. Basing on nuw the guard predicate will be considered -// monotonic. Given a monotonic condition it's tempting to replace the induction -// variable in the condition with its value on the last iteration. But this -// transformation is not correct, e.g. e = 4, b = 5 breaks the loop. -// -// for (int i = b; i != e; i++) -// guard(i u< len) -// -// One of the ways to reason about this problem is to use an inductive proof -// approach. Given the loop: -// -// if (B(0)) { -// do { -// I = PHI(0, I.INC) -// I.INC = I + Step -// guard(G(I)); -// } while (B(I)); -// } -// -// where B(x) and G(x) are predicates that map integers to booleans, we want a -// loop invariant expression M such the following program has the same semantics -// as the above: -// -// if (B(0)) { -// do { -// I = PHI(0, I.INC) -// I.INC = I + Step -// guard(G(0) && M); -// } while (B(I)); -// } -// -// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) -// -// Informal proof that the transformation above is correct: -// -// By the definition of guards we can rewrite the guard condition to: -// G(I) && G(0) && M -// -// Let's prove that for each iteration of the loop: -// G(0) && M => G(I) -// And the condition above can be simplified to G(Start) && M. -// -// Induction base. -// G(0) && M => G(0) -// -// Induction step. Assuming G(0) && M => G(I) on the subsequent -// iteration: -// -// B(I) is true because it's the backedge condition. -// G(I) is true because the backedge is guarded by this condition. -// -// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). -// -// Note that we can use anything stronger than M, i.e. any condition which -// implies M. -// -// When S = 1 (i.e. forward iterating loop), the transformation is supported -// when: -// * The loop has a single latch with the condition of the form: -// B(X) = latchStart + X <pred> latchLimit, -// where <pred> is u<, u<=, s<, or s<=. -// * The guard condition is of the form -// G(X) = guardStart + X u< guardLimit -// -// For the ult latch comparison case M is: -// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => -// guardStart + X + 1 u< guardLimit -// -// The only way the antecedent can be true and the consequent can be false is -// if -// X == guardLimit - 1 - guardStart -// (and guardLimit is non-zero, but we won't use this latter fact). -// If X == guardLimit - 1 - guardStart then the second half of the antecedent is -// latchStart + guardLimit - 1 - guardStart u< latchLimit -// and its negation is -// latchStart + guardLimit - 1 - guardStart u>= latchLimit -// -// In other words, if -// latchLimit u<= latchStart + guardLimit - 1 - guardStart -// then: -// (the ranges below are written in ConstantRange notation, where [A, B) is the -// set for (I = A; I != B; I++ /*maywrap*/) yield(I);) -// -// forall X . guardStart + X u< guardLimit && -// latchStart + X u< latchLimit => -// guardStart + X + 1 u< guardLimit -// == forall X . guardStart + X u< guardLimit && -// latchStart + X u< latchStart + guardLimit - 1 - guardStart => -// guardStart + X + 1 u< guardLimit -// == forall X . (guardStart + X) in [0, guardLimit) && -// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => -// (guardStart + X + 1) in [0, guardLimit) -// == forall X . X in [-guardStart, guardLimit - guardStart) && -// X in [-latchStart, guardLimit - 1 - guardStart) => -// X in [-guardStart - 1, guardLimit - guardStart - 1) -// == true -// -// So the widened condition is: -// guardStart u< guardLimit && -// latchStart + guardLimit - 1 - guardStart u>= latchLimit -// Similarly for ule condition the widened condition is: -// guardStart u< guardLimit && -// latchStart + guardLimit - 1 - guardStart u> latchLimit -// For slt condition the widened condition is: -// guardStart u< guardLimit && -// latchStart + guardLimit - 1 - guardStart s>= latchLimit -// For sle condition the widened condition is: -// guardStart u< guardLimit && -// latchStart + guardLimit - 1 - guardStart s> latchLimit -// -// When S = -1 (i.e. reverse iterating loop), the transformation is supported -// when: -// * The loop has a single latch with the condition of the form: -// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. -// * The guard condition is of the form -// G(X) = X - 1 u< guardLimit -// -// For the ugt latch comparison case M is: -// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit -// -// The only way the antecedent can be true and the consequent can be false is if -// X == 1. -// If X == 1 then the second half of the antecedent is -// 1 u> latchLimit, and its negation is latchLimit u>= 1. -// -// So the widened condition is: -// guardStart u< guardLimit && latchLimit u>= 1. -// Similarly for sgt condition the widened condition is: -// guardStart u< guardLimit && latchLimit s>= 1. -// For uge condition the widened condition is: -// guardStart u< guardLimit && latchLimit u> 1. -// For sge condition the widened condition is: -// guardStart u< guardLimit && latchLimit s> 1. -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/LoopPredication.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/GuardUtils.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionExpander.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/Pass.h" -#include "llvm/Support/Debug.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/LoopUtils.h" - -#define DEBUG_TYPE "loop-predication" - -STATISTIC(TotalConsidered, "Number of guards considered"); -STATISTIC(TotalWidened, "Number of checks widened"); - -using namespace llvm; - -static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", - cl::Hidden, cl::init(true)); - -static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", - cl::Hidden, cl::init(true)); - -static cl::opt<bool> - SkipProfitabilityChecks("loop-predication-skip-profitability-checks", - cl::Hidden, cl::init(false)); - -// This is the scale factor for the latch probability. We use this during -// profitability analysis to find other exiting blocks that have a much higher -// probability of exiting the loop instead of loop exiting via latch. -// This value should be greater than 1 for a sane profitability check. -static cl::opt<float> LatchExitProbabilityScale( - "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), - cl::desc("scale factor for the latch probability. Value should be greater " - "than 1. Lower values are ignored")); - -namespace { -class LoopPredication { - /// Represents an induction variable check: - /// icmp Pred, <induction variable>, <loop invariant limit> - struct LoopICmp { - ICmpInst::Predicate Pred; - const SCEVAddRecExpr *IV; - const SCEV *Limit; - LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, - const SCEV *Limit) - : Pred(Pred), IV(IV), Limit(Limit) {} - LoopICmp() {} - void dump() { - dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV - << ", Limit = " << *Limit << "\n"; - } - }; - - ScalarEvolution *SE; - BranchProbabilityInfo *BPI; - - Loop *L; - const DataLayout *DL; - BasicBlock *Preheader; - LoopICmp LatchCheck; - - bool isSupportedStep(const SCEV* Step); - Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { - return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), - ICI->getOperand(1)); - } - Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, - Value *RHS); - - Optional<LoopICmp> parseLoopLatchICmp(); - - bool CanExpand(const SCEV* S); - Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, - ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, - Instruction *InsertAt); - - Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, - IRBuilder<> &Builder); - Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, - LoopICmp RangeCheck, - SCEVExpander &Expander, - IRBuilder<> &Builder); - Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, - LoopICmp RangeCheck, - SCEVExpander &Expander, - IRBuilder<> &Builder); - bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); - - // If the loop always exits through another block in the loop, we should not - // predicate based on the latch check. For example, the latch check can be a - // very coarse grained check and there can be more fine grained exit checks - // within the loop. We identify such unprofitable loops through BPI. - bool isLoopProfitableToPredicate(); - - // When the IV type is wider than the range operand type, we can still do loop - // predication, by generating SCEVs for the range and latch that are of the - // same type. We achieve this by generating a SCEV truncate expression for the - // latch IV. This is done iff truncation of the IV is a safe operation, - // without loss of information. - // Another way to achieve this is by generating a wider type SCEV for the - // range check operand, however, this needs a more involved check that - // operands do not overflow. This can lead to loss of information when the - // range operand is of the form: add i32 %offset, %iv. We need to prove that - // sext(x + y) is same as sext(x) + sext(y). - // This function returns true if we can safely represent the IV type in - // the RangeCheckType without loss of information. - bool isSafeToTruncateWideIVType(Type *RangeCheckType); - // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do - // so. - Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); - -public: - LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) - : SE(SE), BPI(BPI){}; - bool runOnLoop(Loop *L); -}; - -class LoopPredicationLegacyPass : public LoopPass { -public: - static char ID; - LoopPredicationLegacyPass() : LoopPass(ID) { - initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<BranchProbabilityInfoWrapperPass>(); - getLoopAnalysisUsage(AU); - } - - bool runOnLoop(Loop *L, LPPassManager &LPM) override { - if (skipLoop(L)) - return false; - auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - BranchProbabilityInfo &BPI = - getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); - LoopPredication LP(SE, &BPI); - return LP.runOnLoop(L); - } -}; - -char LoopPredicationLegacyPass::ID = 0; -} // end namespace llvm - -INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", - "Loop predication", false, false) -INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LoopPass) -INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", - "Loop predication", false, false) - -Pass *llvm::createLoopPredicationPass() { - return new LoopPredicationLegacyPass(); -} - -PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, - LoopStandardAnalysisResults &AR, - LPMUpdater &U) { - const auto &FAM = - AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); - Function *F = L.getHeader()->getParent(); - auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); - LoopPredication LP(&AR.SE, BPI); - if (!LP.runOnLoop(&L)) - return PreservedAnalyses::all(); - - return getLoopPassPreservedAnalyses(); -} - -Optional<LoopPredication::LoopICmp> -LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, - Value *RHS) { - const SCEV *LHSS = SE->getSCEV(LHS); - if (isa<SCEVCouldNotCompute>(LHSS)) - return None; - const SCEV *RHSS = SE->getSCEV(RHS); - if (isa<SCEVCouldNotCompute>(RHSS)) - return None; - - // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV - if (SE->isLoopInvariant(LHSS, L)) { - std::swap(LHS, RHS); - std::swap(LHSS, RHSS); - Pred = ICmpInst::getSwappedPredicate(Pred); - } - - const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); - if (!AR || AR->getLoop() != L) - return None; - - return LoopICmp(Pred, AR, RHSS); -} - -Value *LoopPredication::expandCheck(SCEVExpander &Expander, - IRBuilder<> &Builder, - ICmpInst::Predicate Pred, const SCEV *LHS, - const SCEV *RHS, Instruction *InsertAt) { - // TODO: we can check isLoopEntryGuardedByCond before emitting the check - - Type *Ty = LHS->getType(); - assert(Ty == RHS->getType() && "expandCheck operands have different types?"); - - if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) - return Builder.getTrue(); - - Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); - Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); - return Builder.CreateICmp(Pred, LHSV, RHSV); -} - -Optional<LoopPredication::LoopICmp> -LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { - - auto *LatchType = LatchCheck.IV->getType(); - if (RangeCheckType == LatchType) - return LatchCheck; - // For now, bail out if latch type is narrower than range type. - if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) - return None; - if (!isSafeToTruncateWideIVType(RangeCheckType)) - return None; - // We can now safely identify the truncated version of the IV and limit for - // RangeCheckType. - LoopICmp NewLatchCheck; - NewLatchCheck.Pred = LatchCheck.Pred; - NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( - SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); - if (!NewLatchCheck.IV) - return None; - NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); - LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType - << "can be represented as range check type:" - << *RangeCheckType << "\n"); - LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); - LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); - return NewLatchCheck; -} - -bool LoopPredication::isSupportedStep(const SCEV* Step) { - return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); -} - -bool LoopPredication::CanExpand(const SCEV* S) { - return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); -} - -Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( - LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, - SCEVExpander &Expander, IRBuilder<> &Builder) { - auto *Ty = RangeCheck.IV->getType(); - // Generate the widened condition for the forward loop: - // guardStart u< guardLimit && - // latchLimit <pred> guardLimit - 1 - guardStart + latchStart - // where <pred> depends on the latch condition predicate. See the file - // header comment for the reasoning. - // guardLimit - guardStart + latchStart - 1 - const SCEV *GuardStart = RangeCheck.IV->getStart(); - const SCEV *GuardLimit = RangeCheck.Limit; - const SCEV *LatchStart = LatchCheck.IV->getStart(); - const SCEV *LatchLimit = LatchCheck.Limit; - - // guardLimit - guardStart + latchStart - 1 - const SCEV *RHS = - SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), - SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); - if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || - !CanExpand(LatchLimit) || !CanExpand(RHS)) { - LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); - return None; - } - auto LimitCheckPred = - ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); - - LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); - LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); - LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); - - Instruction *InsertAt = Preheader->getTerminator(); - auto *LimitCheck = - expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); - auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, - GuardStart, GuardLimit, InsertAt); - return Builder.CreateAnd(FirstIterationCheck, LimitCheck); -} - -Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( - LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, - SCEVExpander &Expander, IRBuilder<> &Builder) { - auto *Ty = RangeCheck.IV->getType(); - const SCEV *GuardStart = RangeCheck.IV->getStart(); - const SCEV *GuardLimit = RangeCheck.Limit; - const SCEV *LatchLimit = LatchCheck.Limit; - if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || - !CanExpand(LatchLimit)) { - LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); - return None; - } - // The decrement of the latch check IV should be the same as the - // rangeCheckIV. - auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); - if (RangeCheck.IV != PostDecLatchCheckIV) { - LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " - << *PostDecLatchCheckIV - << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); - return None; - } - - // Generate the widened condition for CountDownLoop: - // guardStart u< guardLimit && - // latchLimit <pred> 1. - // See the header comment for reasoning of the checks. - Instruction *InsertAt = Preheader->getTerminator(); - auto LimitCheckPred = - ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); - auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, - GuardStart, GuardLimit, InsertAt); - auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, - SE->getOne(Ty), InsertAt); - return Builder.CreateAnd(FirstIterationCheck, LimitCheck); -} - -/// If ICI can be widened to a loop invariant condition emits the loop -/// invariant condition in the loop preheader and return it, otherwise -/// returns None. -Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, - SCEVExpander &Expander, - IRBuilder<> &Builder) { - LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); - LLVM_DEBUG(ICI->dump()); - - // parseLoopStructure guarantees that the latch condition is: - // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. - // We are looking for the range checks of the form: - // i u< guardLimit - auto RangeCheck = parseLoopICmp(ICI); - if (!RangeCheck) { - LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); - return None; - } - LLVM_DEBUG(dbgs() << "Guard check:\n"); - LLVM_DEBUG(RangeCheck->dump()); - if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { - LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" - << RangeCheck->Pred << ")!\n"); - return None; - } - auto *RangeCheckIV = RangeCheck->IV; - if (!RangeCheckIV->isAffine()) { - LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); - return None; - } - auto *Step = RangeCheckIV->getStepRecurrence(*SE); - // We cannot just compare with latch IV step because the latch and range IVs - // may have different types. - if (!isSupportedStep(Step)) { - LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); - return None; - } - auto *Ty = RangeCheckIV->getType(); - auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); - if (!CurrLatchCheckOpt) { - LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " - "corresponding to range type: " - << *Ty << "\n"); - return None; - } - - LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; - // At this point, the range and latch step should have the same type, but need - // not have the same value (we support both 1 and -1 steps). - assert(Step->getType() == - CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && - "Range and latch steps should be of same type!"); - if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { - LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); - return None; - } - - if (Step->isOne()) - return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, - Expander, Builder); - else { - assert(Step->isAllOnesValue() && "Step should be -1!"); - return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, - Expander, Builder); - } -} - -bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, - SCEVExpander &Expander) { - LLVM_DEBUG(dbgs() << "Processing guard:\n"); - LLVM_DEBUG(Guard->dump()); - - TotalConsidered++; - - IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); - - // The guard condition is expected to be in form of: - // cond1 && cond2 && cond3 ... - // Iterate over subconditions looking for icmp conditions which can be - // widened across loop iterations. Widening these conditions remember the - // resulting list of subconditions in Checks vector. - SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); - SmallPtrSet<Value *, 4> Visited; - - SmallVector<Value *, 4> Checks; - - unsigned NumWidened = 0; - do { - Value *Condition = Worklist.pop_back_val(); - if (!Visited.insert(Condition).second) - continue; - - Value *LHS, *RHS; - using namespace llvm::PatternMatch; - if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { - Worklist.push_back(LHS); - Worklist.push_back(RHS); - continue; - } - - if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { - if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { - Checks.push_back(NewRangeCheck.getValue()); - NumWidened++; - continue; - } - } - - // Save the condition as is if we can't widen it - Checks.push_back(Condition); - } while (Worklist.size() != 0); - - if (NumWidened == 0) - return false; - - TotalWidened += NumWidened; - - // Emit the new guard condition - Builder.SetInsertPoint(Guard); - Value *LastCheck = nullptr; - for (auto *Check : Checks) - if (!LastCheck) - LastCheck = Check; - else - LastCheck = Builder.CreateAnd(LastCheck, Check); - Guard->setOperand(0, LastCheck); - - LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); - return true; -} - -Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { - using namespace PatternMatch; - - BasicBlock *LoopLatch = L->getLoopLatch(); - if (!LoopLatch) { - LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); - return None; - } - - ICmpInst::Predicate Pred; - Value *LHS, *RHS; - BasicBlock *TrueDest, *FalseDest; - - if (!match(LoopLatch->getTerminator(), - m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, - FalseDest))) { - LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); - return None; - } - assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && - "One of the latch's destinations must be the header"); - if (TrueDest != L->getHeader()) - Pred = ICmpInst::getInversePredicate(Pred); - - auto Result = parseLoopICmp(Pred, LHS, RHS); - if (!Result) { - LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); - return None; - } - - // Check affine first, so if it's not we don't try to compute the step - // recurrence. - if (!Result->IV->isAffine()) { - LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); - return None; - } - - auto *Step = Result->IV->getStepRecurrence(*SE); - if (!isSupportedStep(Step)) { - LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); - return None; - } - - auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { - if (Step->isOne()) { - return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && - Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; - } else { - assert(Step->isAllOnesValue() && "Step should be -1!"); - return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && - Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; - } - }; - - if (IsUnsupportedPredicate(Step, Result->Pred)) { - LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred - << ")!\n"); - return None; - } - return Result; -} - -// Returns true if its safe to truncate the IV to RangeCheckType. -bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { - if (!EnableIVTruncation) - return false; - assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > - DL->getTypeSizeInBits(RangeCheckType) && - "Expected latch check IV type to be larger than range check operand " - "type!"); - // The start and end values of the IV should be known. This is to guarantee - // that truncating the wide type will not lose information. - auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); - auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); - if (!Limit || !Start) - return false; - // This check makes sure that the IV does not change sign during loop - // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, - // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the - // IV wraps around, and the truncation of the IV would lose the range of - // iterations between 2^32 and 2^64. - bool Increasing; - if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) - return false; - // The active bits should be less than the bits in the RangeCheckType. This - // guarantees that truncating the latch check to RangeCheckType is a safe - // operation. - auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); - return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && - Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; -} - -bool LoopPredication::isLoopProfitableToPredicate() { - if (SkipProfitabilityChecks || !BPI) - return true; - - SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; - L->getExitEdges(ExitEdges); - // If there is only one exiting edge in the loop, it is always profitable to - // predicate the loop. - if (ExitEdges.size() == 1) - return true; - - // Calculate the exiting probabilities of all exiting edges from the loop, - // starting with the LatchExitProbability. - // Heuristic for profitability: If any of the exiting blocks' probability of - // exiting the loop is larger than exiting through the latch block, it's not - // profitable to predicate the loop. - auto *LatchBlock = L->getLoopLatch(); - assert(LatchBlock && "Should have a single latch at this point!"); - auto *LatchTerm = LatchBlock->getTerminator(); - assert(LatchTerm->getNumSuccessors() == 2 && - "expected to be an exiting block with 2 succs!"); - unsigned LatchBrExitIdx = - LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; - BranchProbability LatchExitProbability = - BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); - - // Protect against degenerate inputs provided by the user. Providing a value - // less than one, can invert the definition of profitable loop predication. - float ScaleFactor = LatchExitProbabilityScale; - if (ScaleFactor < 1) { - LLVM_DEBUG( - dbgs() - << "Ignored user setting for loop-predication-latch-probability-scale: " - << LatchExitProbabilityScale << "\n"); - LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); - ScaleFactor = 1.0; - } - const auto LatchProbabilityThreshold = - LatchExitProbability * ScaleFactor; - - for (const auto &ExitEdge : ExitEdges) { - BranchProbability ExitingBlockProbability = - BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); - // Some exiting edge has higher probability than the latch exiting edge. - // No longer profitable to predicate. - if (ExitingBlockProbability > LatchProbabilityThreshold) - return false; - } - // Using BPI, we have concluded that the most probable way to exit from the - // loop is through the latch (or there's no profile information and all - // exits are equally likely). - return true; -} - -bool LoopPredication::runOnLoop(Loop *Loop) { - L = Loop; - - LLVM_DEBUG(dbgs() << "Analyzing "); - LLVM_DEBUG(L->dump()); - - Module *M = L->getHeader()->getModule(); - - // There is nothing to do if the module doesn't use guards - auto *GuardDecl = - M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); - if (!GuardDecl || GuardDecl->use_empty()) - return false; - - DL = &M->getDataLayout(); - - Preheader = L->getLoopPreheader(); - if (!Preheader) - return false; - - auto LatchCheckOpt = parseLoopLatchICmp(); - if (!LatchCheckOpt) - return false; - LatchCheck = *LatchCheckOpt; - - LLVM_DEBUG(dbgs() << "Latch check:\n"); - LLVM_DEBUG(LatchCheck.dump()); - - if (!isLoopProfitableToPredicate()) { - LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); - return false; - } - // Collect all the guards into a vector and process later, so as not - // to invalidate the instruction iterator. - SmallVector<IntrinsicInst *, 4> Guards; - for (const auto BB : L->blocks()) - for (auto &I : *BB) - if (isGuard(&I)) - Guards.push_back(cast<IntrinsicInst>(&I)); - - if (Guards.empty()) - return false; - - SCEVExpander Expander(*SE, *DL, "loop-predication"); - - bool Changed = false; - for (auto *Guard : Guards) - Changed |= widenGuardConditions(Guard, Expander); - - return Changed; -} |
