summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp837
1 files changed, 0 insertions, 837 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp b/gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp
deleted file mode 100644
index 5983c804c0c..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/LoopPredication.cpp
+++ /dev/null
@@ -1,837 +0,0 @@
-//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// The LoopPredication pass tries to convert loop variant range checks to loop
-// invariant by widening checks across loop iterations. For example, it will
-// convert
-//
-// for (i = 0; i < n; i++) {
-// guard(i < len);
-// ...
-// }
-//
-// to
-//
-// for (i = 0; i < n; i++) {
-// guard(n - 1 < len);
-// ...
-// }
-//
-// After this transformation the condition of the guard is loop invariant, so
-// loop-unswitch can later unswitch the loop by this condition which basically
-// predicates the loop by the widened condition:
-//
-// if (n - 1 < len)
-// for (i = 0; i < n; i++) {
-// ...
-// }
-// else
-// deoptimize
-//
-// It's tempting to rely on SCEV here, but it has proven to be problematic.
-// Generally the facts SCEV provides about the increment step of add
-// recurrences are true if the backedge of the loop is taken, which implicitly
-// assumes that the guard doesn't fail. Using these facts to optimize the
-// guard results in a circular logic where the guard is optimized under the
-// assumption that it never fails.
-//
-// For example, in the loop below the induction variable will be marked as nuw
-// basing on the guard. Basing on nuw the guard predicate will be considered
-// monotonic. Given a monotonic condition it's tempting to replace the induction
-// variable in the condition with its value on the last iteration. But this
-// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
-//
-// for (int i = b; i != e; i++)
-// guard(i u< len)
-//
-// One of the ways to reason about this problem is to use an inductive proof
-// approach. Given the loop:
-//
-// if (B(0)) {
-// do {
-// I = PHI(0, I.INC)
-// I.INC = I + Step
-// guard(G(I));
-// } while (B(I));
-// }
-//
-// where B(x) and G(x) are predicates that map integers to booleans, we want a
-// loop invariant expression M such the following program has the same semantics
-// as the above:
-//
-// if (B(0)) {
-// do {
-// I = PHI(0, I.INC)
-// I.INC = I + Step
-// guard(G(0) && M);
-// } while (B(I));
-// }
-//
-// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
-//
-// Informal proof that the transformation above is correct:
-//
-// By the definition of guards we can rewrite the guard condition to:
-// G(I) && G(0) && M
-//
-// Let's prove that for each iteration of the loop:
-// G(0) && M => G(I)
-// And the condition above can be simplified to G(Start) && M.
-//
-// Induction base.
-// G(0) && M => G(0)
-//
-// Induction step. Assuming G(0) && M => G(I) on the subsequent
-// iteration:
-//
-// B(I) is true because it's the backedge condition.
-// G(I) is true because the backedge is guarded by this condition.
-//
-// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
-//
-// Note that we can use anything stronger than M, i.e. any condition which
-// implies M.
-//
-// When S = 1 (i.e. forward iterating loop), the transformation is supported
-// when:
-// * The loop has a single latch with the condition of the form:
-// B(X) = latchStart + X <pred> latchLimit,
-// where <pred> is u<, u<=, s<, or s<=.
-// * The guard condition is of the form
-// G(X) = guardStart + X u< guardLimit
-//
-// For the ult latch comparison case M is:
-// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
-// guardStart + X + 1 u< guardLimit
-//
-// The only way the antecedent can be true and the consequent can be false is
-// if
-// X == guardLimit - 1 - guardStart
-// (and guardLimit is non-zero, but we won't use this latter fact).
-// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
-// latchStart + guardLimit - 1 - guardStart u< latchLimit
-// and its negation is
-// latchStart + guardLimit - 1 - guardStart u>= latchLimit
-//
-// In other words, if
-// latchLimit u<= latchStart + guardLimit - 1 - guardStart
-// then:
-// (the ranges below are written in ConstantRange notation, where [A, B) is the
-// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
-//
-// forall X . guardStart + X u< guardLimit &&
-// latchStart + X u< latchLimit =>
-// guardStart + X + 1 u< guardLimit
-// == forall X . guardStart + X u< guardLimit &&
-// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
-// guardStart + X + 1 u< guardLimit
-// == forall X . (guardStart + X) in [0, guardLimit) &&
-// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
-// (guardStart + X + 1) in [0, guardLimit)
-// == forall X . X in [-guardStart, guardLimit - guardStart) &&
-// X in [-latchStart, guardLimit - 1 - guardStart) =>
-// X in [-guardStart - 1, guardLimit - guardStart - 1)
-// == true
-//
-// So the widened condition is:
-// guardStart u< guardLimit &&
-// latchStart + guardLimit - 1 - guardStart u>= latchLimit
-// Similarly for ule condition the widened condition is:
-// guardStart u< guardLimit &&
-// latchStart + guardLimit - 1 - guardStart u> latchLimit
-// For slt condition the widened condition is:
-// guardStart u< guardLimit &&
-// latchStart + guardLimit - 1 - guardStart s>= latchLimit
-// For sle condition the widened condition is:
-// guardStart u< guardLimit &&
-// latchStart + guardLimit - 1 - guardStart s> latchLimit
-//
-// When S = -1 (i.e. reverse iterating loop), the transformation is supported
-// when:
-// * The loop has a single latch with the condition of the form:
-// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
-// * The guard condition is of the form
-// G(X) = X - 1 u< guardLimit
-//
-// For the ugt latch comparison case M is:
-// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
-//
-// The only way the antecedent can be true and the consequent can be false is if
-// X == 1.
-// If X == 1 then the second half of the antecedent is
-// 1 u> latchLimit, and its negation is latchLimit u>= 1.
-//
-// So the widened condition is:
-// guardStart u< guardLimit && latchLimit u>= 1.
-// Similarly for sgt condition the widened condition is:
-// guardStart u< guardLimit && latchLimit s>= 1.
-// For uge condition the widened condition is:
-// guardStart u< guardLimit && latchLimit u> 1.
-// For sge condition the widened condition is:
-// guardStart u< guardLimit && latchLimit s> 1.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/LoopPredication.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/BranchProbabilityInfo.h"
-#include "llvm/Analysis/GuardUtils.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-
-#define DEBUG_TYPE "loop-predication"
-
-STATISTIC(TotalConsidered, "Number of guards considered");
-STATISTIC(TotalWidened, "Number of checks widened");
-
-using namespace llvm;
-
-static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
- cl::Hidden, cl::init(true));
-
-static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
- cl::Hidden, cl::init(true));
-
-static cl::opt<bool>
- SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
- cl::Hidden, cl::init(false));
-
-// This is the scale factor for the latch probability. We use this during
-// profitability analysis to find other exiting blocks that have a much higher
-// probability of exiting the loop instead of loop exiting via latch.
-// This value should be greater than 1 for a sane profitability check.
-static cl::opt<float> LatchExitProbabilityScale(
- "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
- cl::desc("scale factor for the latch probability. Value should be greater "
- "than 1. Lower values are ignored"));
-
-namespace {
-class LoopPredication {
- /// Represents an induction variable check:
- /// icmp Pred, <induction variable>, <loop invariant limit>
- struct LoopICmp {
- ICmpInst::Predicate Pred;
- const SCEVAddRecExpr *IV;
- const SCEV *Limit;
- LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
- const SCEV *Limit)
- : Pred(Pred), IV(IV), Limit(Limit) {}
- LoopICmp() {}
- void dump() {
- dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
- << ", Limit = " << *Limit << "\n";
- }
- };
-
- ScalarEvolution *SE;
- BranchProbabilityInfo *BPI;
-
- Loop *L;
- const DataLayout *DL;
- BasicBlock *Preheader;
- LoopICmp LatchCheck;
-
- bool isSupportedStep(const SCEV* Step);
- Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
- return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
- ICI->getOperand(1));
- }
- Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
- Value *RHS);
-
- Optional<LoopICmp> parseLoopLatchICmp();
-
- bool CanExpand(const SCEV* S);
- Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
- ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
- Instruction *InsertAt);
-
- Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
- IRBuilder<> &Builder);
- Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
- LoopICmp RangeCheck,
- SCEVExpander &Expander,
- IRBuilder<> &Builder);
- Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
- LoopICmp RangeCheck,
- SCEVExpander &Expander,
- IRBuilder<> &Builder);
- bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
-
- // If the loop always exits through another block in the loop, we should not
- // predicate based on the latch check. For example, the latch check can be a
- // very coarse grained check and there can be more fine grained exit checks
- // within the loop. We identify such unprofitable loops through BPI.
- bool isLoopProfitableToPredicate();
-
- // When the IV type is wider than the range operand type, we can still do loop
- // predication, by generating SCEVs for the range and latch that are of the
- // same type. We achieve this by generating a SCEV truncate expression for the
- // latch IV. This is done iff truncation of the IV is a safe operation,
- // without loss of information.
- // Another way to achieve this is by generating a wider type SCEV for the
- // range check operand, however, this needs a more involved check that
- // operands do not overflow. This can lead to loss of information when the
- // range operand is of the form: add i32 %offset, %iv. We need to prove that
- // sext(x + y) is same as sext(x) + sext(y).
- // This function returns true if we can safely represent the IV type in
- // the RangeCheckType without loss of information.
- bool isSafeToTruncateWideIVType(Type *RangeCheckType);
- // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
- // so.
- Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
-
-public:
- LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
- : SE(SE), BPI(BPI){};
- bool runOnLoop(Loop *L);
-};
-
-class LoopPredicationLegacyPass : public LoopPass {
-public:
- static char ID;
- LoopPredicationLegacyPass() : LoopPass(ID) {
- initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<BranchProbabilityInfoWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L))
- return false;
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- BranchProbabilityInfo &BPI =
- getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
- LoopPredication LP(SE, &BPI);
- return LP.runOnLoop(L);
- }
-};
-
-char LoopPredicationLegacyPass::ID = 0;
-} // end namespace llvm
-
-INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
- "Loop predication", false, false)
-INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
- "Loop predication", false, false)
-
-Pass *llvm::createLoopPredicationPass() {
- return new LoopPredicationLegacyPass();
-}
-
-PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &U) {
- const auto &FAM =
- AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
- Function *F = L.getHeader()->getParent();
- auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
- LoopPredication LP(&AR.SE, BPI);
- if (!LP.runOnLoop(&L))
- return PreservedAnalyses::all();
-
- return getLoopPassPreservedAnalyses();
-}
-
-Optional<LoopPredication::LoopICmp>
-LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
- Value *RHS) {
- const SCEV *LHSS = SE->getSCEV(LHS);
- if (isa<SCEVCouldNotCompute>(LHSS))
- return None;
- const SCEV *RHSS = SE->getSCEV(RHS);
- if (isa<SCEVCouldNotCompute>(RHSS))
- return None;
-
- // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
- if (SE->isLoopInvariant(LHSS, L)) {
- std::swap(LHS, RHS);
- std::swap(LHSS, RHSS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
-
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
- if (!AR || AR->getLoop() != L)
- return None;
-
- return LoopICmp(Pred, AR, RHSS);
-}
-
-Value *LoopPredication::expandCheck(SCEVExpander &Expander,
- IRBuilder<> &Builder,
- ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS, Instruction *InsertAt) {
- // TODO: we can check isLoopEntryGuardedByCond before emitting the check
-
- Type *Ty = LHS->getType();
- assert(Ty == RHS->getType() && "expandCheck operands have different types?");
-
- if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
- return Builder.getTrue();
-
- Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
- Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
- return Builder.CreateICmp(Pred, LHSV, RHSV);
-}
-
-Optional<LoopPredication::LoopICmp>
-LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
-
- auto *LatchType = LatchCheck.IV->getType();
- if (RangeCheckType == LatchType)
- return LatchCheck;
- // For now, bail out if latch type is narrower than range type.
- if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
- return None;
- if (!isSafeToTruncateWideIVType(RangeCheckType))
- return None;
- // We can now safely identify the truncated version of the IV and limit for
- // RangeCheckType.
- LoopICmp NewLatchCheck;
- NewLatchCheck.Pred = LatchCheck.Pred;
- NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
- SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
- if (!NewLatchCheck.IV)
- return None;
- NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
- LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
- << "can be represented as range check type:"
- << *RangeCheckType << "\n");
- LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
- LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
- return NewLatchCheck;
-}
-
-bool LoopPredication::isSupportedStep(const SCEV* Step) {
- return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
-}
-
-bool LoopPredication::CanExpand(const SCEV* S) {
- return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
-}
-
-Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
- LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
- SCEVExpander &Expander, IRBuilder<> &Builder) {
- auto *Ty = RangeCheck.IV->getType();
- // Generate the widened condition for the forward loop:
- // guardStart u< guardLimit &&
- // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
- // where <pred> depends on the latch condition predicate. See the file
- // header comment for the reasoning.
- // guardLimit - guardStart + latchStart - 1
- const SCEV *GuardStart = RangeCheck.IV->getStart();
- const SCEV *GuardLimit = RangeCheck.Limit;
- const SCEV *LatchStart = LatchCheck.IV->getStart();
- const SCEV *LatchLimit = LatchCheck.Limit;
-
- // guardLimit - guardStart + latchStart - 1
- const SCEV *RHS =
- SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
- SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
- if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
- !CanExpand(LatchLimit) || !CanExpand(RHS)) {
- LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
- return None;
- }
- auto LimitCheckPred =
- ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
-
- LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
- LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
- LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
-
- Instruction *InsertAt = Preheader->getTerminator();
- auto *LimitCheck =
- expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
- auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
- GuardStart, GuardLimit, InsertAt);
- return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
-}
-
-Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
- LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
- SCEVExpander &Expander, IRBuilder<> &Builder) {
- auto *Ty = RangeCheck.IV->getType();
- const SCEV *GuardStart = RangeCheck.IV->getStart();
- const SCEV *GuardLimit = RangeCheck.Limit;
- const SCEV *LatchLimit = LatchCheck.Limit;
- if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
- !CanExpand(LatchLimit)) {
- LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
- return None;
- }
- // The decrement of the latch check IV should be the same as the
- // rangeCheckIV.
- auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
- if (RangeCheck.IV != PostDecLatchCheckIV) {
- LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
- << *PostDecLatchCheckIV
- << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
- return None;
- }
-
- // Generate the widened condition for CountDownLoop:
- // guardStart u< guardLimit &&
- // latchLimit <pred> 1.
- // See the header comment for reasoning of the checks.
- Instruction *InsertAt = Preheader->getTerminator();
- auto LimitCheckPred =
- ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
- auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
- GuardStart, GuardLimit, InsertAt);
- auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
- SE->getOne(Ty), InsertAt);
- return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
-}
-
-/// If ICI can be widened to a loop invariant condition emits the loop
-/// invariant condition in the loop preheader and return it, otherwise
-/// returns None.
-Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
- SCEVExpander &Expander,
- IRBuilder<> &Builder) {
- LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
- LLVM_DEBUG(ICI->dump());
-
- // parseLoopStructure guarantees that the latch condition is:
- // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
- // We are looking for the range checks of the form:
- // i u< guardLimit
- auto RangeCheck = parseLoopICmp(ICI);
- if (!RangeCheck) {
- LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
- return None;
- }
- LLVM_DEBUG(dbgs() << "Guard check:\n");
- LLVM_DEBUG(RangeCheck->dump());
- if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
- LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
- << RangeCheck->Pred << ")!\n");
- return None;
- }
- auto *RangeCheckIV = RangeCheck->IV;
- if (!RangeCheckIV->isAffine()) {
- LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
- return None;
- }
- auto *Step = RangeCheckIV->getStepRecurrence(*SE);
- // We cannot just compare with latch IV step because the latch and range IVs
- // may have different types.
- if (!isSupportedStep(Step)) {
- LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
- return None;
- }
- auto *Ty = RangeCheckIV->getType();
- auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
- if (!CurrLatchCheckOpt) {
- LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
- "corresponding to range type: "
- << *Ty << "\n");
- return None;
- }
-
- LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
- // At this point, the range and latch step should have the same type, but need
- // not have the same value (we support both 1 and -1 steps).
- assert(Step->getType() ==
- CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
- "Range and latch steps should be of same type!");
- if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
- LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
- return None;
- }
-
- if (Step->isOne())
- return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
- Expander, Builder);
- else {
- assert(Step->isAllOnesValue() && "Step should be -1!");
- return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
- Expander, Builder);
- }
-}
-
-bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
- SCEVExpander &Expander) {
- LLVM_DEBUG(dbgs() << "Processing guard:\n");
- LLVM_DEBUG(Guard->dump());
-
- TotalConsidered++;
-
- IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
-
- // The guard condition is expected to be in form of:
- // cond1 && cond2 && cond3 ...
- // Iterate over subconditions looking for icmp conditions which can be
- // widened across loop iterations. Widening these conditions remember the
- // resulting list of subconditions in Checks vector.
- SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
- SmallPtrSet<Value *, 4> Visited;
-
- SmallVector<Value *, 4> Checks;
-
- unsigned NumWidened = 0;
- do {
- Value *Condition = Worklist.pop_back_val();
- if (!Visited.insert(Condition).second)
- continue;
-
- Value *LHS, *RHS;
- using namespace llvm::PatternMatch;
- if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
- Worklist.push_back(LHS);
- Worklist.push_back(RHS);
- continue;
- }
-
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
- if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
- Checks.push_back(NewRangeCheck.getValue());
- NumWidened++;
- continue;
- }
- }
-
- // Save the condition as is if we can't widen it
- Checks.push_back(Condition);
- } while (Worklist.size() != 0);
-
- if (NumWidened == 0)
- return false;
-
- TotalWidened += NumWidened;
-
- // Emit the new guard condition
- Builder.SetInsertPoint(Guard);
- Value *LastCheck = nullptr;
- for (auto *Check : Checks)
- if (!LastCheck)
- LastCheck = Check;
- else
- LastCheck = Builder.CreateAnd(LastCheck, Check);
- Guard->setOperand(0, LastCheck);
-
- LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
- return true;
-}
-
-Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
- using namespace PatternMatch;
-
- BasicBlock *LoopLatch = L->getLoopLatch();
- if (!LoopLatch) {
- LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
- return None;
- }
-
- ICmpInst::Predicate Pred;
- Value *LHS, *RHS;
- BasicBlock *TrueDest, *FalseDest;
-
- if (!match(LoopLatch->getTerminator(),
- m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
- FalseDest))) {
- LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
- return None;
- }
- assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
- "One of the latch's destinations must be the header");
- if (TrueDest != L->getHeader())
- Pred = ICmpInst::getInversePredicate(Pred);
-
- auto Result = parseLoopICmp(Pred, LHS, RHS);
- if (!Result) {
- LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
- return None;
- }
-
- // Check affine first, so if it's not we don't try to compute the step
- // recurrence.
- if (!Result->IV->isAffine()) {
- LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
- return None;
- }
-
- auto *Step = Result->IV->getStepRecurrence(*SE);
- if (!isSupportedStep(Step)) {
- LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
- return None;
- }
-
- auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
- if (Step->isOne()) {
- return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
- Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
- } else {
- assert(Step->isAllOnesValue() && "Step should be -1!");
- return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
- Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
- }
- };
-
- if (IsUnsupportedPredicate(Step, Result->Pred)) {
- LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
- << ")!\n");
- return None;
- }
- return Result;
-}
-
-// Returns true if its safe to truncate the IV to RangeCheckType.
-bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
- if (!EnableIVTruncation)
- return false;
- assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
- DL->getTypeSizeInBits(RangeCheckType) &&
- "Expected latch check IV type to be larger than range check operand "
- "type!");
- // The start and end values of the IV should be known. This is to guarantee
- // that truncating the wide type will not lose information.
- auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
- auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
- if (!Limit || !Start)
- return false;
- // This check makes sure that the IV does not change sign during loop
- // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
- // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
- // IV wraps around, and the truncation of the IV would lose the range of
- // iterations between 2^32 and 2^64.
- bool Increasing;
- if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
- return false;
- // The active bits should be less than the bits in the RangeCheckType. This
- // guarantees that truncating the latch check to RangeCheckType is a safe
- // operation.
- auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
- return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
- Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
-}
-
-bool LoopPredication::isLoopProfitableToPredicate() {
- if (SkipProfitabilityChecks || !BPI)
- return true;
-
- SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
- L->getExitEdges(ExitEdges);
- // If there is only one exiting edge in the loop, it is always profitable to
- // predicate the loop.
- if (ExitEdges.size() == 1)
- return true;
-
- // Calculate the exiting probabilities of all exiting edges from the loop,
- // starting with the LatchExitProbability.
- // Heuristic for profitability: If any of the exiting blocks' probability of
- // exiting the loop is larger than exiting through the latch block, it's not
- // profitable to predicate the loop.
- auto *LatchBlock = L->getLoopLatch();
- assert(LatchBlock && "Should have a single latch at this point!");
- auto *LatchTerm = LatchBlock->getTerminator();
- assert(LatchTerm->getNumSuccessors() == 2 &&
- "expected to be an exiting block with 2 succs!");
- unsigned LatchBrExitIdx =
- LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
- BranchProbability LatchExitProbability =
- BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
-
- // Protect against degenerate inputs provided by the user. Providing a value
- // less than one, can invert the definition of profitable loop predication.
- float ScaleFactor = LatchExitProbabilityScale;
- if (ScaleFactor < 1) {
- LLVM_DEBUG(
- dbgs()
- << "Ignored user setting for loop-predication-latch-probability-scale: "
- << LatchExitProbabilityScale << "\n");
- LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
- ScaleFactor = 1.0;
- }
- const auto LatchProbabilityThreshold =
- LatchExitProbability * ScaleFactor;
-
- for (const auto &ExitEdge : ExitEdges) {
- BranchProbability ExitingBlockProbability =
- BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
- // Some exiting edge has higher probability than the latch exiting edge.
- // No longer profitable to predicate.
- if (ExitingBlockProbability > LatchProbabilityThreshold)
- return false;
- }
- // Using BPI, we have concluded that the most probable way to exit from the
- // loop is through the latch (or there's no profile information and all
- // exits are equally likely).
- return true;
-}
-
-bool LoopPredication::runOnLoop(Loop *Loop) {
- L = Loop;
-
- LLVM_DEBUG(dbgs() << "Analyzing ");
- LLVM_DEBUG(L->dump());
-
- Module *M = L->getHeader()->getModule();
-
- // There is nothing to do if the module doesn't use guards
- auto *GuardDecl =
- M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
- if (!GuardDecl || GuardDecl->use_empty())
- return false;
-
- DL = &M->getDataLayout();
-
- Preheader = L->getLoopPreheader();
- if (!Preheader)
- return false;
-
- auto LatchCheckOpt = parseLoopLatchICmp();
- if (!LatchCheckOpt)
- return false;
- LatchCheck = *LatchCheckOpt;
-
- LLVM_DEBUG(dbgs() << "Latch check:\n");
- LLVM_DEBUG(LatchCheck.dump());
-
- if (!isLoopProfitableToPredicate()) {
- LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
- return false;
- }
- // Collect all the guards into a vector and process later, so as not
- // to invalidate the instruction iterator.
- SmallVector<IntrinsicInst *, 4> Guards;
- for (const auto BB : L->blocks())
- for (auto &I : *BB)
- if (isGuard(&I))
- Guards.push_back(cast<IntrinsicInst>(&I));
-
- if (Guards.empty())
- return false;
-
- SCEVExpander Expander(*SE, *DL, "loop-predication");
-
- bool Changed = false;
- for (auto *Guard : Guards)
- Changed |= widenGuardConditions(Guard, Expander);
-
- return Changed;
-}