summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp1689
1 files changed, 0 insertions, 1689 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp b/gnu/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
deleted file mode 100644
index 9a99e592557..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
+++ /dev/null
@@ -1,1689 +0,0 @@
-//===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass implements a simple loop reroller.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AliasSetTracker.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <cstdlib>
-#include <iterator>
-#include <map>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "loop-reroll"
-
-STATISTIC(NumRerolledLoops, "Number of rerolled loops");
-
-static cl::opt<unsigned>
-NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
- cl::Hidden,
- cl::desc("The maximum number of failures to tolerate"
- " during fuzzy matching. (default: 400)"));
-
-// This loop re-rolling transformation aims to transform loops like this:
-//
-// int foo(int a);
-// void bar(int *x) {
-// for (int i = 0; i < 500; i += 3) {
-// foo(i);
-// foo(i+1);
-// foo(i+2);
-// }
-// }
-//
-// into a loop like this:
-//
-// void bar(int *x) {
-// for (int i = 0; i < 500; ++i)
-// foo(i);
-// }
-//
-// It does this by looking for loops that, besides the latch code, are composed
-// of isomorphic DAGs of instructions, with each DAG rooted at some increment
-// to the induction variable, and where each DAG is isomorphic to the DAG
-// rooted at the induction variable (excepting the sub-DAGs which root the
-// other induction-variable increments). In other words, we're looking for loop
-// bodies of the form:
-//
-// %iv = phi [ (preheader, ...), (body, %iv.next) ]
-// f(%iv)
-// %iv.1 = add %iv, 1 <-- a root increment
-// f(%iv.1)
-// %iv.2 = add %iv, 2 <-- a root increment
-// f(%iv.2)
-// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
-// f(%iv.scale_m_1)
-// ...
-// %iv.next = add %iv, scale
-// %cmp = icmp(%iv, ...)
-// br %cmp, header, exit
-//
-// where each f(i) is a set of instructions that, collectively, are a function
-// only of i (and other loop-invariant values).
-//
-// As a special case, we can also reroll loops like this:
-//
-// int foo(int);
-// void bar(int *x) {
-// for (int i = 0; i < 500; ++i) {
-// x[3*i] = foo(0);
-// x[3*i+1] = foo(0);
-// x[3*i+2] = foo(0);
-// }
-// }
-//
-// into this:
-//
-// void bar(int *x) {
-// for (int i = 0; i < 1500; ++i)
-// x[i] = foo(0);
-// }
-//
-// in which case, we're looking for inputs like this:
-//
-// %iv = phi [ (preheader, ...), (body, %iv.next) ]
-// %scaled.iv = mul %iv, scale
-// f(%scaled.iv)
-// %scaled.iv.1 = add %scaled.iv, 1
-// f(%scaled.iv.1)
-// %scaled.iv.2 = add %scaled.iv, 2
-// f(%scaled.iv.2)
-// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
-// f(%scaled.iv.scale_m_1)
-// ...
-// %iv.next = add %iv, 1
-// %cmp = icmp(%iv, ...)
-// br %cmp, header, exit
-
-namespace {
-
- enum IterationLimits {
- /// The maximum number of iterations that we'll try and reroll.
- IL_MaxRerollIterations = 32,
- /// The bitvector index used by loop induction variables and other
- /// instructions that belong to all iterations.
- IL_All,
- IL_End
- };
-
- class LoopReroll : public LoopPass {
- public:
- static char ID; // Pass ID, replacement for typeid
-
- LoopReroll() : LoopPass(ID) {
- initializeLoopRerollPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
-
- protected:
- AliasAnalysis *AA;
- LoopInfo *LI;
- ScalarEvolution *SE;
- TargetLibraryInfo *TLI;
- DominatorTree *DT;
- bool PreserveLCSSA;
-
- using SmallInstructionVector = SmallVector<Instruction *, 16>;
- using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
-
- // Map between induction variable and its increment
- DenseMap<Instruction *, int64_t> IVToIncMap;
-
- // For loop with multiple induction variable, remember the one used only to
- // control the loop.
- Instruction *LoopControlIV;
-
- // A chain of isomorphic instructions, identified by a single-use PHI
- // representing a reduction. Only the last value may be used outside the
- // loop.
- struct SimpleLoopReduction {
- SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
- assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
- add(L);
- }
-
- bool valid() const {
- return Valid;
- }
-
- Instruction *getPHI() const {
- assert(Valid && "Using invalid reduction");
- return Instructions.front();
- }
-
- Instruction *getReducedValue() const {
- assert(Valid && "Using invalid reduction");
- return Instructions.back();
- }
-
- Instruction *get(size_t i) const {
- assert(Valid && "Using invalid reduction");
- return Instructions[i+1];
- }
-
- Instruction *operator [] (size_t i) const { return get(i); }
-
- // The size, ignoring the initial PHI.
- size_t size() const {
- assert(Valid && "Using invalid reduction");
- return Instructions.size()-1;
- }
-
- using iterator = SmallInstructionVector::iterator;
- using const_iterator = SmallInstructionVector::const_iterator;
-
- iterator begin() {
- assert(Valid && "Using invalid reduction");
- return std::next(Instructions.begin());
- }
-
- const_iterator begin() const {
- assert(Valid && "Using invalid reduction");
- return std::next(Instructions.begin());
- }
-
- iterator end() { return Instructions.end(); }
- const_iterator end() const { return Instructions.end(); }
-
- protected:
- bool Valid = false;
- SmallInstructionVector Instructions;
-
- void add(Loop *L);
- };
-
- // The set of all reductions, and state tracking of possible reductions
- // during loop instruction processing.
- struct ReductionTracker {
- using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
-
- // Add a new possible reduction.
- void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
-
- // Setup to track possible reductions corresponding to the provided
- // rerolling scale. Only reductions with a number of non-PHI instructions
- // that is divisible by the scale are considered. Three instructions sets
- // are filled in:
- // - A set of all possible instructions in eligible reductions.
- // - A set of all PHIs in eligible reductions
- // - A set of all reduced values (last instructions) in eligible
- // reductions.
- void restrictToScale(uint64_t Scale,
- SmallInstructionSet &PossibleRedSet,
- SmallInstructionSet &PossibleRedPHISet,
- SmallInstructionSet &PossibleRedLastSet) {
- PossibleRedIdx.clear();
- PossibleRedIter.clear();
- Reds.clear();
-
- for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
- if (PossibleReds[i].size() % Scale == 0) {
- PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
- PossibleRedPHISet.insert(PossibleReds[i].getPHI());
-
- PossibleRedSet.insert(PossibleReds[i].getPHI());
- PossibleRedIdx[PossibleReds[i].getPHI()] = i;
- for (Instruction *J : PossibleReds[i]) {
- PossibleRedSet.insert(J);
- PossibleRedIdx[J] = i;
- }
- }
- }
-
- // The functions below are used while processing the loop instructions.
-
- // Are the two instructions both from reductions, and furthermore, from
- // the same reduction?
- bool isPairInSame(Instruction *J1, Instruction *J2) {
- DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
- if (J1I != PossibleRedIdx.end()) {
- DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
- if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
- return true;
- }
-
- return false;
- }
-
- // The two provided instructions, the first from the base iteration, and
- // the second from iteration i, form a matched pair. If these are part of
- // a reduction, record that fact.
- void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
- if (PossibleRedIdx.count(J1)) {
- assert(PossibleRedIdx.count(J2) &&
- "Recording reduction vs. non-reduction instruction?");
-
- PossibleRedIter[J1] = 0;
- PossibleRedIter[J2] = i;
-
- int Idx = PossibleRedIdx[J1];
- assert(Idx == PossibleRedIdx[J2] &&
- "Recording pair from different reductions?");
- Reds.insert(Idx);
- }
- }
-
- // The functions below can be called after we've finished processing all
- // instructions in the loop, and we know which reductions were selected.
-
- bool validateSelected();
- void replaceSelected();
-
- protected:
- // The vector of all possible reductions (for any scale).
- SmallReductionVector PossibleReds;
-
- DenseMap<Instruction *, int> PossibleRedIdx;
- DenseMap<Instruction *, int> PossibleRedIter;
- DenseSet<int> Reds;
- };
-
- // A DAGRootSet models an induction variable being used in a rerollable
- // loop. For example,
- //
- // x[i*3+0] = y1
- // x[i*3+1] = y2
- // x[i*3+2] = y3
- //
- // Base instruction -> i*3
- // +---+----+
- // / | \
- // ST[y1] +1 +2 <-- Roots
- // | |
- // ST[y2] ST[y3]
- //
- // There may be multiple DAGRoots, for example:
- //
- // x[i*2+0] = ... (1)
- // x[i*2+1] = ... (1)
- // x[i*2+4] = ... (2)
- // x[i*2+5] = ... (2)
- // x[(i+1234)*2+5678] = ... (3)
- // x[(i+1234)*2+5679] = ... (3)
- //
- // The loop will be rerolled by adding a new loop induction variable,
- // one for the Base instruction in each DAGRootSet.
- //
- struct DAGRootSet {
- Instruction *BaseInst;
- SmallInstructionVector Roots;
-
- // The instructions between IV and BaseInst (but not including BaseInst).
- SmallInstructionSet SubsumedInsts;
- };
-
- // The set of all DAG roots, and state tracking of all roots
- // for a particular induction variable.
- struct DAGRootTracker {
- DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
- ScalarEvolution *SE, AliasAnalysis *AA,
- TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
- bool PreserveLCSSA,
- DenseMap<Instruction *, int64_t> &IncrMap,
- Instruction *LoopCtrlIV)
- : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
- PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
- LoopControlIV(LoopCtrlIV) {}
-
- /// Stage 1: Find all the DAG roots for the induction variable.
- bool findRoots();
-
- /// Stage 2: Validate if the found roots are valid.
- bool validate(ReductionTracker &Reductions);
-
- /// Stage 3: Assuming validate() returned true, perform the
- /// replacement.
- /// @param BackedgeTakenCount The backedge-taken count of L.
- void replace(const SCEV *BackedgeTakenCount);
-
- protected:
- using UsesTy = MapVector<Instruction *, BitVector>;
-
- void findRootsRecursive(Instruction *IVU,
- SmallInstructionSet SubsumedInsts);
- bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
- bool collectPossibleRoots(Instruction *Base,
- std::map<int64_t,Instruction*> &Roots);
- bool validateRootSet(DAGRootSet &DRS);
-
- bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
- void collectInLoopUserSet(const SmallInstructionVector &Roots,
- const SmallInstructionSet &Exclude,
- const SmallInstructionSet &Final,
- DenseSet<Instruction *> &Users);
- void collectInLoopUserSet(Instruction *Root,
- const SmallInstructionSet &Exclude,
- const SmallInstructionSet &Final,
- DenseSet<Instruction *> &Users);
-
- UsesTy::iterator nextInstr(int Val, UsesTy &In,
- const SmallInstructionSet &Exclude,
- UsesTy::iterator *StartI=nullptr);
- bool isBaseInst(Instruction *I);
- bool isRootInst(Instruction *I);
- bool instrDependsOn(Instruction *I,
- UsesTy::iterator Start,
- UsesTy::iterator End);
- void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
-
- LoopReroll *Parent;
-
- // Members of Parent, replicated here for brevity.
- Loop *L;
- ScalarEvolution *SE;
- AliasAnalysis *AA;
- TargetLibraryInfo *TLI;
- DominatorTree *DT;
- LoopInfo *LI;
- bool PreserveLCSSA;
-
- // The loop induction variable.
- Instruction *IV;
-
- // Loop step amount.
- int64_t Inc;
-
- // Loop reroll count; if Inc == 1, this records the scaling applied
- // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
- // If Inc is not 1, Scale = Inc.
- uint64_t Scale;
-
- // The roots themselves.
- SmallVector<DAGRootSet,16> RootSets;
-
- // All increment instructions for IV.
- SmallInstructionVector LoopIncs;
-
- // Map of all instructions in the loop (in order) to the iterations
- // they are used in (or specially, IL_All for instructions
- // used in the loop increment mechanism).
- UsesTy Uses;
-
- // Map between induction variable and its increment
- DenseMap<Instruction *, int64_t> &IVToIncMap;
-
- Instruction *LoopControlIV;
- };
-
- // Check if it is a compare-like instruction whose user is a branch
- bool isCompareUsedByBranch(Instruction *I) {
- auto *TI = I->getParent()->getTerminator();
- if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
- return false;
- return I->hasOneUse() && TI->getOperand(0) == I;
- };
-
- bool isLoopControlIV(Loop *L, Instruction *IV);
- void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
- void collectPossibleReductions(Loop *L,
- ReductionTracker &Reductions);
- bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
- const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
- };
-
-} // end anonymous namespace
-
-char LoopReroll::ID = 0;
-
-INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
-
-Pass *llvm::createLoopRerollPass() {
- return new LoopReroll;
-}
-
-// Returns true if the provided instruction is used outside the given loop.
-// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
-// non-loop blocks to be outside the loop.
-static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
- for (User *U : I->users()) {
- if (!L->contains(cast<Instruction>(U)))
- return true;
- }
- return false;
-}
-
-// Check if an IV is only used to control the loop. There are two cases:
-// 1. It only has one use which is loop increment, and the increment is only
-// used by comparison and the PHI (could has sext with nsw in between), and the
-// comparison is only used by branch.
-// 2. It is used by loop increment and the comparison, the loop increment is
-// only used by the PHI, and the comparison is used only by the branch.
-bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
- unsigned IVUses = IV->getNumUses();
- if (IVUses != 2 && IVUses != 1)
- return false;
-
- for (auto *User : IV->users()) {
- int32_t IncOrCmpUses = User->getNumUses();
- bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
-
- // User can only have one or two uses.
- if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
- return false;
-
- // Case 1
- if (IVUses == 1) {
- // The only user must be the loop increment.
- // The loop increment must have two uses.
- if (IsCompInst || IncOrCmpUses != 2)
- return false;
- }
-
- // Case 2
- if (IVUses == 2 && IncOrCmpUses != 1)
- return false;
-
- // The users of the IV must be a binary operation or a comparison
- if (auto *BO = dyn_cast<BinaryOperator>(User)) {
- if (BO->getOpcode() == Instruction::Add) {
- // Loop Increment
- // User of Loop Increment should be either PHI or CMP
- for (auto *UU : User->users()) {
- if (PHINode *PN = dyn_cast<PHINode>(UU)) {
- if (PN != IV)
- return false;
- }
- // Must be a CMP or an ext (of a value with nsw) then CMP
- else {
- Instruction *UUser = dyn_cast<Instruction>(UU);
- // Skip SExt if we are extending an nsw value
- // TODO: Allow ZExt too
- if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
- isa<SExtInst>(UUser))
- UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
- if (!isCompareUsedByBranch(UUser))
- return false;
- }
- }
- } else
- return false;
- // Compare : can only have one use, and must be branch
- } else if (!IsCompInst)
- return false;
- }
- return true;
-}
-
-// Collect the list of loop induction variables with respect to which it might
-// be possible to reroll the loop.
-void LoopReroll::collectPossibleIVs(Loop *L,
- SmallInstructionVector &PossibleIVs) {
- BasicBlock *Header = L->getHeader();
- for (BasicBlock::iterator I = Header->begin(),
- IE = Header->getFirstInsertionPt(); I != IE; ++I) {
- if (!isa<PHINode>(I))
- continue;
- if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
- continue;
-
- if (const SCEVAddRecExpr *PHISCEV =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
- if (PHISCEV->getLoop() != L)
- continue;
- if (!PHISCEV->isAffine())
- continue;
- auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
- if (IncSCEV) {
- IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
- LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
- << "\n");
-
- if (isLoopControlIV(L, &*I)) {
- assert(!LoopControlIV && "Found two loop control only IV");
- LoopControlIV = &(*I);
- LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
- << " = " << *PHISCEV << "\n");
- } else
- PossibleIVs.push_back(&*I);
- }
- }
- }
-}
-
-// Add the remainder of the reduction-variable chain to the instruction vector
-// (the initial PHINode has already been added). If successful, the object is
-// marked as valid.
-void LoopReroll::SimpleLoopReduction::add(Loop *L) {
- assert(!Valid && "Cannot add to an already-valid chain");
-
- // The reduction variable must be a chain of single-use instructions
- // (including the PHI), except for the last value (which is used by the PHI
- // and also outside the loop).
- Instruction *C = Instructions.front();
- if (C->user_empty())
- return;
-
- do {
- C = cast<Instruction>(*C->user_begin());
- if (C->hasOneUse()) {
- if (!C->isBinaryOp())
- return;
-
- if (!(isa<PHINode>(Instructions.back()) ||
- C->isSameOperationAs(Instructions.back())))
- return;
-
- Instructions.push_back(C);
- }
- } while (C->hasOneUse());
-
- if (Instructions.size() < 2 ||
- !C->isSameOperationAs(Instructions.back()) ||
- C->use_empty())
- return;
-
- // C is now the (potential) last instruction in the reduction chain.
- for (User *U : C->users()) {
- // The only in-loop user can be the initial PHI.
- if (L->contains(cast<Instruction>(U)))
- if (cast<Instruction>(U) != Instructions.front())
- return;
- }
-
- Instructions.push_back(C);
- Valid = true;
-}
-
-// Collect the vector of possible reduction variables.
-void LoopReroll::collectPossibleReductions(Loop *L,
- ReductionTracker &Reductions) {
- BasicBlock *Header = L->getHeader();
- for (BasicBlock::iterator I = Header->begin(),
- IE = Header->getFirstInsertionPt(); I != IE; ++I) {
- if (!isa<PHINode>(I))
- continue;
- if (!I->getType()->isSingleValueType())
- continue;
-
- SimpleLoopReduction SLR(&*I, L);
- if (!SLR.valid())
- continue;
-
- LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
- << SLR.size() << " chained instructions)\n");
- Reductions.addSLR(SLR);
- }
-}
-
-// Collect the set of all users of the provided root instruction. This set of
-// users contains not only the direct users of the root instruction, but also
-// all users of those users, and so on. There are two exceptions:
-//
-// 1. Instructions in the set of excluded instructions are never added to the
-// use set (even if they are users). This is used, for example, to exclude
-// including root increments in the use set of the primary IV.
-//
-// 2. Instructions in the set of final instructions are added to the use set
-// if they are users, but their users are not added. This is used, for
-// example, to prevent a reduction update from forcing all later reduction
-// updates into the use set.
-void LoopReroll::DAGRootTracker::collectInLoopUserSet(
- Instruction *Root, const SmallInstructionSet &Exclude,
- const SmallInstructionSet &Final,
- DenseSet<Instruction *> &Users) {
- SmallInstructionVector Queue(1, Root);
- while (!Queue.empty()) {
- Instruction *I = Queue.pop_back_val();
- if (!Users.insert(I).second)
- continue;
-
- if (!Final.count(I))
- for (Use &U : I->uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- if (PHINode *PN = dyn_cast<PHINode>(User)) {
- // Ignore "wrap-around" uses to PHIs of this loop's header.
- if (PN->getIncomingBlock(U) == L->getHeader())
- continue;
- }
-
- if (L->contains(User) && !Exclude.count(User)) {
- Queue.push_back(User);
- }
- }
-
- // We also want to collect single-user "feeder" values.
- for (User::op_iterator OI = I->op_begin(),
- OIE = I->op_end(); OI != OIE; ++OI) {
- if (Instruction *Op = dyn_cast<Instruction>(*OI))
- if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
- !Final.count(Op))
- Queue.push_back(Op);
- }
- }
-}
-
-// Collect all of the users of all of the provided root instructions (combined
-// into a single set).
-void LoopReroll::DAGRootTracker::collectInLoopUserSet(
- const SmallInstructionVector &Roots,
- const SmallInstructionSet &Exclude,
- const SmallInstructionSet &Final,
- DenseSet<Instruction *> &Users) {
- for (Instruction *Root : Roots)
- collectInLoopUserSet(Root, Exclude, Final, Users);
-}
-
-static bool isUnorderedLoadStore(Instruction *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isUnordered();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isUnordered();
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
- return !MI->isVolatile();
- return false;
-}
-
-/// Return true if IVU is a "simple" arithmetic operation.
-/// This is used for narrowing the search space for DAGRoots; only arithmetic
-/// and GEPs can be part of a DAGRoot.
-static bool isSimpleArithmeticOp(User *IVU) {
- if (Instruction *I = dyn_cast<Instruction>(IVU)) {
- switch (I->getOpcode()) {
- default: return false;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::Shl:
- case Instruction::AShr:
- case Instruction::LShr:
- case Instruction::GetElementPtr:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- return true;
- }
- }
- return false;
-}
-
-static bool isLoopIncrement(User *U, Instruction *IV) {
- BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
-
- if ((BO && BO->getOpcode() != Instruction::Add) ||
- (!BO && !isa<GetElementPtrInst>(U)))
- return false;
-
- for (auto *UU : U->users()) {
- PHINode *PN = dyn_cast<PHINode>(UU);
- if (PN && PN == IV)
- return true;
- }
- return false;
-}
-
-bool LoopReroll::DAGRootTracker::
-collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
- SmallInstructionVector BaseUsers;
-
- for (auto *I : Base->users()) {
- ConstantInt *CI = nullptr;
-
- if (isLoopIncrement(I, IV)) {
- LoopIncs.push_back(cast<Instruction>(I));
- continue;
- }
-
- // The root nodes must be either GEPs, ORs or ADDs.
- if (auto *BO = dyn_cast<BinaryOperator>(I)) {
- if (BO->getOpcode() == Instruction::Add ||
- BO->getOpcode() == Instruction::Or)
- CI = dyn_cast<ConstantInt>(BO->getOperand(1));
- } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
- Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
- CI = dyn_cast<ConstantInt>(LastOperand);
- }
-
- if (!CI) {
- if (Instruction *II = dyn_cast<Instruction>(I)) {
- BaseUsers.push_back(II);
- continue;
- } else {
- LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
- << "\n");
- return false;
- }
- }
-
- int64_t V = std::abs(CI->getValue().getSExtValue());
- if (Roots.find(V) != Roots.end())
- // No duplicates, please.
- return false;
-
- Roots[V] = cast<Instruction>(I);
- }
-
- // Make sure we have at least two roots.
- if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
- return false;
-
- // If we found non-loop-inc, non-root users of Base, assume they are
- // for the zeroth root index. This is because "add %a, 0" gets optimized
- // away.
- if (BaseUsers.size()) {
- if (Roots.find(0) != Roots.end()) {
- LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
- return false;
- }
- Roots[0] = Base;
- }
-
- // Calculate the number of users of the base, or lowest indexed, iteration.
- unsigned NumBaseUses = BaseUsers.size();
- if (NumBaseUses == 0)
- NumBaseUses = Roots.begin()->second->getNumUses();
-
- // Check that every node has the same number of users.
- for (auto &KV : Roots) {
- if (KV.first == 0)
- continue;
- if (!KV.second->hasNUses(NumBaseUses)) {
- LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
- << "#Base=" << NumBaseUses
- << ", #Root=" << KV.second->getNumUses() << "\n");
- return false;
- }
- }
-
- return true;
-}
-
-void LoopReroll::DAGRootTracker::
-findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
- // Does the user look like it could be part of a root set?
- // All its users must be simple arithmetic ops.
- if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
- return;
-
- if (I != IV && findRootsBase(I, SubsumedInsts))
- return;
-
- SubsumedInsts.insert(I);
-
- for (User *V : I->users()) {
- Instruction *I = cast<Instruction>(V);
- if (is_contained(LoopIncs, I))
- continue;
-
- if (!isSimpleArithmeticOp(I))
- continue;
-
- // The recursive call makes a copy of SubsumedInsts.
- findRootsRecursive(I, SubsumedInsts);
- }
-}
-
-bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
- if (DRS.Roots.empty())
- return false;
-
- // Consider a DAGRootSet with N-1 roots (so N different values including
- // BaseInst).
- // Define d = Roots[0] - BaseInst, which should be the same as
- // Roots[I] - Roots[I-1] for all I in [1..N).
- // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
- // loop iteration J.
- //
- // Now, For the loop iterations to be consecutive:
- // D = d * N
- const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
- if (!ADR)
- return false;
- unsigned N = DRS.Roots.size() + 1;
- const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
- const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
- if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
- return false;
-
- return true;
-}
-
-bool LoopReroll::DAGRootTracker::
-findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
- // The base of a RootSet must be an AddRec, so it can be erased.
- const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
- if (!IVU_ADR || IVU_ADR->getLoop() != L)
- return false;
-
- std::map<int64_t, Instruction*> V;
- if (!collectPossibleRoots(IVU, V))
- return false;
-
- // If we didn't get a root for index zero, then IVU must be
- // subsumed.
- if (V.find(0) == V.end())
- SubsumedInsts.insert(IVU);
-
- // Partition the vector into monotonically increasing indexes.
- DAGRootSet DRS;
- DRS.BaseInst = nullptr;
-
- SmallVector<DAGRootSet, 16> PotentialRootSets;
-
- for (auto &KV : V) {
- if (!DRS.BaseInst) {
- DRS.BaseInst = KV.second;
- DRS.SubsumedInsts = SubsumedInsts;
- } else if (DRS.Roots.empty()) {
- DRS.Roots.push_back(KV.second);
- } else if (V.find(KV.first - 1) != V.end()) {
- DRS.Roots.push_back(KV.second);
- } else {
- // Linear sequence terminated.
- if (!validateRootSet(DRS))
- return false;
-
- // Construct a new DAGRootSet with the next sequence.
- PotentialRootSets.push_back(DRS);
- DRS.BaseInst = KV.second;
- DRS.Roots.clear();
- }
- }
-
- if (!validateRootSet(DRS))
- return false;
-
- PotentialRootSets.push_back(DRS);
-
- RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
-
- return true;
-}
-
-bool LoopReroll::DAGRootTracker::findRoots() {
- Inc = IVToIncMap[IV];
-
- assert(RootSets.empty() && "Unclean state!");
- if (std::abs(Inc) == 1) {
- for (auto *IVU : IV->users()) {
- if (isLoopIncrement(IVU, IV))
- LoopIncs.push_back(cast<Instruction>(IVU));
- }
- findRootsRecursive(IV, SmallInstructionSet());
- LoopIncs.push_back(IV);
- } else {
- if (!findRootsBase(IV, SmallInstructionSet()))
- return false;
- }
-
- // Ensure all sets have the same size.
- if (RootSets.empty()) {
- LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
- return false;
- }
- for (auto &V : RootSets) {
- if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
- LLVM_DEBUG(
- dbgs()
- << "LRR: Aborting because not all root sets have the same size\n");
- return false;
- }
- }
-
- Scale = RootSets[0].Roots.size() + 1;
-
- if (Scale > IL_MaxRerollIterations) {
- LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
- << "#Found=" << Scale
- << ", #Max=" << IL_MaxRerollIterations << "\n");
- return false;
- }
-
- LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
- << "\n");
-
- return true;
-}
-
-bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
- // Populate the MapVector with all instructions in the block, in order first,
- // so we can iterate over the contents later in perfect order.
- for (auto &I : *L->getHeader()) {
- Uses[&I].resize(IL_End);
- }
-
- SmallInstructionSet Exclude;
- for (auto &DRS : RootSets) {
- Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
- Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
- Exclude.insert(DRS.BaseInst);
- }
- Exclude.insert(LoopIncs.begin(), LoopIncs.end());
-
- for (auto &DRS : RootSets) {
- DenseSet<Instruction*> VBase;
- collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
- for (auto *I : VBase) {
- Uses[I].set(0);
- }
-
- unsigned Idx = 1;
- for (auto *Root : DRS.Roots) {
- DenseSet<Instruction*> V;
- collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
-
- // While we're here, check the use sets are the same size.
- if (V.size() != VBase.size()) {
- LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
- return false;
- }
-
- for (auto *I : V) {
- Uses[I].set(Idx);
- }
- ++Idx;
- }
-
- // Make sure our subsumed instructions are remembered too.
- for (auto *I : DRS.SubsumedInsts) {
- Uses[I].set(IL_All);
- }
- }
-
- // Make sure the loop increments are also accounted for.
-
- Exclude.clear();
- for (auto &DRS : RootSets) {
- Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
- Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
- Exclude.insert(DRS.BaseInst);
- }
-
- DenseSet<Instruction*> V;
- collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
- for (auto *I : V) {
- Uses[I].set(IL_All);
- }
-
- return true;
-}
-
-/// Get the next instruction in "In" that is a member of set Val.
-/// Start searching from StartI, and do not return anything in Exclude.
-/// If StartI is not given, start from In.begin().
-LoopReroll::DAGRootTracker::UsesTy::iterator
-LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
- const SmallInstructionSet &Exclude,
- UsesTy::iterator *StartI) {
- UsesTy::iterator I = StartI ? *StartI : In.begin();
- while (I != In.end() && (I->second.test(Val) == 0 ||
- Exclude.count(I->first) != 0))
- ++I;
- return I;
-}
-
-bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
- for (auto &DRS : RootSets) {
- if (DRS.BaseInst == I)
- return true;
- }
- return false;
-}
-
-bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
- for (auto &DRS : RootSets) {
- if (is_contained(DRS.Roots, I))
- return true;
- }
- return false;
-}
-
-/// Return true if instruction I depends on any instruction between
-/// Start and End.
-bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
- UsesTy::iterator Start,
- UsesTy::iterator End) {
- for (auto *U : I->users()) {
- for (auto It = Start; It != End; ++It)
- if (U == It->first)
- return true;
- }
- return false;
-}
-
-static bool isIgnorableInst(const Instruction *I) {
- if (isa<DbgInfoIntrinsic>(I))
- return true;
- const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
- if (!II)
- return false;
- switch (II->getIntrinsicID()) {
- default:
- return false;
- case Intrinsic::annotation:
- case Intrinsic::ptr_annotation:
- case Intrinsic::var_annotation:
- // TODO: the following intrinsics may also be whitelisted:
- // lifetime_start, lifetime_end, invariant_start, invariant_end
- return true;
- }
- return false;
-}
-
-bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
- // We now need to check for equivalence of the use graph of each root with
- // that of the primary induction variable (excluding the roots). Our goal
- // here is not to solve the full graph isomorphism problem, but rather to
- // catch common cases without a lot of work. As a result, we will assume
- // that the relative order of the instructions in each unrolled iteration
- // is the same (although we will not make an assumption about how the
- // different iterations are intermixed). Note that while the order must be
- // the same, the instructions may not be in the same basic block.
-
- // An array of just the possible reductions for this scale factor. When we
- // collect the set of all users of some root instructions, these reduction
- // instructions are treated as 'final' (their uses are not considered).
- // This is important because we don't want the root use set to search down
- // the reduction chain.
- SmallInstructionSet PossibleRedSet;
- SmallInstructionSet PossibleRedLastSet;
- SmallInstructionSet PossibleRedPHISet;
- Reductions.restrictToScale(Scale, PossibleRedSet,
- PossibleRedPHISet, PossibleRedLastSet);
-
- // Populate "Uses" with where each instruction is used.
- if (!collectUsedInstructions(PossibleRedSet))
- return false;
-
- // Make sure we mark the reduction PHIs as used in all iterations.
- for (auto *I : PossibleRedPHISet) {
- Uses[I].set(IL_All);
- }
-
- // Make sure we mark loop-control-only PHIs as used in all iterations. See
- // comment above LoopReroll::isLoopControlIV for more information.
- BasicBlock *Header = L->getHeader();
- if (LoopControlIV && LoopControlIV != IV) {
- for (auto *U : LoopControlIV->users()) {
- Instruction *IVUser = dyn_cast<Instruction>(U);
- // IVUser could be loop increment or compare
- Uses[IVUser].set(IL_All);
- for (auto *UU : IVUser->users()) {
- Instruction *UUser = dyn_cast<Instruction>(UU);
- // UUser could be compare, PHI or branch
- Uses[UUser].set(IL_All);
- // Skip SExt
- if (isa<SExtInst>(UUser)) {
- UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
- Uses[UUser].set(IL_All);
- }
- // Is UUser a compare instruction?
- if (UU->hasOneUse()) {
- Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
- if (BI == cast<BranchInst>(Header->getTerminator()))
- Uses[BI].set(IL_All);
- }
- }
- }
- }
-
- // Make sure all instructions in the loop are in one and only one
- // set.
- for (auto &KV : Uses) {
- if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
- LLVM_DEBUG(
- dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
- << *KV.first << " (#uses=" << KV.second.count() << ")\n");
- return false;
- }
- }
-
- LLVM_DEBUG(for (auto &KV
- : Uses) {
- dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
- });
-
- for (unsigned Iter = 1; Iter < Scale; ++Iter) {
- // In addition to regular aliasing information, we need to look for
- // instructions from later (future) iterations that have side effects
- // preventing us from reordering them past other instructions with side
- // effects.
- bool FutureSideEffects = false;
- AliasSetTracker AST(*AA);
- // The map between instructions in f(%iv.(i+1)) and f(%iv).
- DenseMap<Value *, Value *> BaseMap;
-
- // Compare iteration Iter to the base.
- SmallInstructionSet Visited;
- auto BaseIt = nextInstr(0, Uses, Visited);
- auto RootIt = nextInstr(Iter, Uses, Visited);
- auto LastRootIt = Uses.begin();
-
- while (BaseIt != Uses.end() && RootIt != Uses.end()) {
- Instruction *BaseInst = BaseIt->first;
- Instruction *RootInst = RootIt->first;
-
- // Skip over the IV or root instructions; only match their users.
- bool Continue = false;
- if (isBaseInst(BaseInst)) {
- Visited.insert(BaseInst);
- BaseIt = nextInstr(0, Uses, Visited);
- Continue = true;
- }
- if (isRootInst(RootInst)) {
- LastRootIt = RootIt;
- Visited.insert(RootInst);
- RootIt = nextInstr(Iter, Uses, Visited);
- Continue = true;
- }
- if (Continue) continue;
-
- if (!BaseInst->isSameOperationAs(RootInst)) {
- // Last chance saloon. We don't try and solve the full isomorphism
- // problem, but try and at least catch the case where two instructions
- // *of different types* are round the wrong way. We won't be able to
- // efficiently tell, given two ADD instructions, which way around we
- // should match them, but given an ADD and a SUB, we can at least infer
- // which one is which.
- //
- // This should allow us to deal with a greater subset of the isomorphism
- // problem. It does however change a linear algorithm into a quadratic
- // one, so limit the number of probes we do.
- auto TryIt = RootIt;
- unsigned N = NumToleratedFailedMatches;
- while (TryIt != Uses.end() &&
- !BaseInst->isSameOperationAs(TryIt->first) &&
- N--) {
- ++TryIt;
- TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
- }
-
- if (TryIt == Uses.end() || TryIt == RootIt ||
- instrDependsOn(TryIt->first, RootIt, TryIt)) {
- LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
- << *BaseInst << " vs. " << *RootInst << "\n");
- return false;
- }
-
- RootIt = TryIt;
- RootInst = TryIt->first;
- }
-
- // All instructions between the last root and this root
- // may belong to some other iteration. If they belong to a
- // future iteration, then they're dangerous to alias with.
- //
- // Note that because we allow a limited amount of flexibility in the order
- // that we visit nodes, LastRootIt might be *before* RootIt, in which
- // case we've already checked this set of instructions so we shouldn't
- // do anything.
- for (; LastRootIt < RootIt; ++LastRootIt) {
- Instruction *I = LastRootIt->first;
- if (LastRootIt->second.find_first() < (int)Iter)
- continue;
- if (I->mayWriteToMemory())
- AST.add(I);
- // Note: This is specifically guarded by a check on isa<PHINode>,
- // which while a valid (somewhat arbitrary) micro-optimization, is
- // needed because otherwise isSafeToSpeculativelyExecute returns
- // false on PHI nodes.
- if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
- !isSafeToSpeculativelyExecute(I))
- // Intervening instructions cause side effects.
- FutureSideEffects = true;
- }
-
- // Make sure that this instruction, which is in the use set of this
- // root instruction, does not also belong to the base set or the set of
- // some other root instruction.
- if (RootIt->second.count() > 1) {
- LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
- << " vs. " << *RootInst << " (prev. case overlap)\n");
- return false;
- }
-
- // Make sure that we don't alias with any instruction in the alias set
- // tracker. If we do, then we depend on a future iteration, and we
- // can't reroll.
- if (RootInst->mayReadFromMemory())
- for (auto &K : AST) {
- if (K.aliasesUnknownInst(RootInst, *AA)) {
- LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
- << *BaseInst << " vs. " << *RootInst
- << " (depends on future store)\n");
- return false;
- }
- }
-
- // If we've past an instruction from a future iteration that may have
- // side effects, and this instruction might also, then we can't reorder
- // them, and this matching fails. As an exception, we allow the alias
- // set tracker to handle regular (unordered) load/store dependencies.
- if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
- !isSafeToSpeculativelyExecute(BaseInst)) ||
- (!isUnorderedLoadStore(RootInst) &&
- !isSafeToSpeculativelyExecute(RootInst)))) {
- LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
- << " vs. " << *RootInst
- << " (side effects prevent reordering)\n");
- return false;
- }
-
- // For instructions that are part of a reduction, if the operation is
- // associative, then don't bother matching the operands (because we
- // already know that the instructions are isomorphic, and the order
- // within the iteration does not matter). For non-associative reductions,
- // we do need to match the operands, because we need to reject
- // out-of-order instructions within an iteration!
- // For example (assume floating-point addition), we need to reject this:
- // x += a[i]; x += b[i];
- // x += a[i+1]; x += b[i+1];
- // x += b[i+2]; x += a[i+2];
- bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
-
- if (!(InReduction && BaseInst->isAssociative())) {
- bool Swapped = false, SomeOpMatched = false;
- for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
- Value *Op2 = RootInst->getOperand(j);
-
- // If this is part of a reduction (and the operation is not
- // associatve), then we match all operands, but not those that are
- // part of the reduction.
- if (InReduction)
- if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
- if (Reductions.isPairInSame(RootInst, Op2I))
- continue;
-
- DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
- if (BMI != BaseMap.end()) {
- Op2 = BMI->second;
- } else {
- for (auto &DRS : RootSets) {
- if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
- Op2 = DRS.BaseInst;
- break;
- }
- }
- }
-
- if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
- // If we've not already decided to swap the matched operands, and
- // we've not already matched our first operand (note that we could
- // have skipped matching the first operand because it is part of a
- // reduction above), and the instruction is commutative, then try
- // the swapped match.
- if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
- BaseInst->getOperand(!j) == Op2) {
- Swapped = true;
- } else {
- LLVM_DEBUG(dbgs()
- << "LRR: iteration root match failed at " << *BaseInst
- << " vs. " << *RootInst << " (operand " << j << ")\n");
- return false;
- }
- }
-
- SomeOpMatched = true;
- }
- }
-
- if ((!PossibleRedLastSet.count(BaseInst) &&
- hasUsesOutsideLoop(BaseInst, L)) ||
- (!PossibleRedLastSet.count(RootInst) &&
- hasUsesOutsideLoop(RootInst, L))) {
- LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
- << " vs. " << *RootInst << " (uses outside loop)\n");
- return false;
- }
-
- Reductions.recordPair(BaseInst, RootInst, Iter);
- BaseMap.insert(std::make_pair(RootInst, BaseInst));
-
- LastRootIt = RootIt;
- Visited.insert(BaseInst);
- Visited.insert(RootInst);
- BaseIt = nextInstr(0, Uses, Visited);
- RootIt = nextInstr(Iter, Uses, Visited);
- }
- assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
- "Mismatched set sizes!");
- }
-
- LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
- << "\n");
-
- return true;
-}
-
-void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
- BasicBlock *Header = L->getHeader();
-
- // Compute the start and increment for each BaseInst before we start erasing
- // instructions.
- SmallVector<const SCEV *, 8> StartExprs;
- SmallVector<const SCEV *, 8> IncrExprs;
- for (auto &DRS : RootSets) {
- const SCEVAddRecExpr *IVSCEV =
- cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
- StartExprs.push_back(IVSCEV->getStart());
- IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
- }
-
- // Remove instructions associated with non-base iterations.
- for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
- J != JE;) {
- unsigned I = Uses[&*J].find_first();
- if (I > 0 && I < IL_All) {
- LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
- J++->eraseFromParent();
- continue;
- }
-
- ++J;
- }
-
- // Rewrite each BaseInst using SCEV.
- for (size_t i = 0, e = RootSets.size(); i != e; ++i)
- // Insert the new induction variable.
- replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
-
- { // Limit the lifetime of SCEVExpander.
- BranchInst *BI = cast<BranchInst>(Header->getTerminator());
- const DataLayout &DL = Header->getModule()->getDataLayout();
- SCEVExpander Expander(*SE, DL, "reroll");
- auto Zero = SE->getZero(BackedgeTakenCount->getType());
- auto One = SE->getOne(BackedgeTakenCount->getType());
- auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
- Value *NewIV =
- Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
- Header->getFirstNonPHIOrDbg());
- // FIXME: This arithmetic can overflow.
- auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
- auto ScaledTripCount = SE->getMulExpr(
- TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
- auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
- Value *TakenCount =
- Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
- Header->getFirstNonPHIOrDbg());
- Value *Cond =
- new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
- BI->setCondition(Cond);
-
- if (BI->getSuccessor(1) != Header)
- BI->swapSuccessors();
- }
-
- SimplifyInstructionsInBlock(Header, TLI);
- DeleteDeadPHIs(Header, TLI);
-}
-
-void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
- const SCEV *Start,
- const SCEV *IncrExpr) {
- BasicBlock *Header = L->getHeader();
- Instruction *Inst = DRS.BaseInst;
-
- const SCEV *NewIVSCEV =
- SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
-
- { // Limit the lifetime of SCEVExpander.
- const DataLayout &DL = Header->getModule()->getDataLayout();
- SCEVExpander Expander(*SE, DL, "reroll");
- Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
- Header->getFirstNonPHIOrDbg());
-
- for (auto &KV : Uses)
- if (KV.second.find_first() == 0)
- KV.first->replaceUsesOfWith(Inst, NewIV);
- }
-}
-
-// Validate the selected reductions. All iterations must have an isomorphic
-// part of the reduction chain and, for non-associative reductions, the chain
-// entries must appear in order.
-bool LoopReroll::ReductionTracker::validateSelected() {
- // For a non-associative reduction, the chain entries must appear in order.
- for (int i : Reds) {
- int PrevIter = 0, BaseCount = 0, Count = 0;
- for (Instruction *J : PossibleReds[i]) {
- // Note that all instructions in the chain must have been found because
- // all instructions in the function must have been assigned to some
- // iteration.
- int Iter = PossibleRedIter[J];
- if (Iter != PrevIter && Iter != PrevIter + 1 &&
- !PossibleReds[i].getReducedValue()->isAssociative()) {
- LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
- << J << "\n");
- return false;
- }
-
- if (Iter != PrevIter) {
- if (Count != BaseCount) {
- LLVM_DEBUG(dbgs()
- << "LRR: Iteration " << PrevIter << " reduction use count "
- << Count << " is not equal to the base use count "
- << BaseCount << "\n");
- return false;
- }
-
- Count = 0;
- }
-
- ++Count;
- if (Iter == 0)
- ++BaseCount;
-
- PrevIter = Iter;
- }
- }
-
- return true;
-}
-
-// For all selected reductions, remove all parts except those in the first
-// iteration (and the PHI). Replace outside uses of the reduced value with uses
-// of the first-iteration reduced value (in other words, reroll the selected
-// reductions).
-void LoopReroll::ReductionTracker::replaceSelected() {
- // Fixup reductions to refer to the last instruction associated with the
- // first iteration (not the last).
- for (int i : Reds) {
- int j = 0;
- for (int e = PossibleReds[i].size(); j != e; ++j)
- if (PossibleRedIter[PossibleReds[i][j]] != 0) {
- --j;
- break;
- }
-
- // Replace users with the new end-of-chain value.
- SmallInstructionVector Users;
- for (User *U : PossibleReds[i].getReducedValue()->users()) {
- Users.push_back(cast<Instruction>(U));
- }
-
- for (Instruction *User : Users)
- User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
- PossibleReds[i][j]);
- }
-}
-
-// Reroll the provided loop with respect to the provided induction variable.
-// Generally, we're looking for a loop like this:
-//
-// %iv = phi [ (preheader, ...), (body, %iv.next) ]
-// f(%iv)
-// %iv.1 = add %iv, 1 <-- a root increment
-// f(%iv.1)
-// %iv.2 = add %iv, 2 <-- a root increment
-// f(%iv.2)
-// %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
-// f(%iv.scale_m_1)
-// ...
-// %iv.next = add %iv, scale
-// %cmp = icmp(%iv, ...)
-// br %cmp, header, exit
-//
-// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
-// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
-// be intermixed with eachother. The restriction imposed by this algorithm is
-// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
-// etc. be the same.
-//
-// First, we collect the use set of %iv, excluding the other increment roots.
-// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
-// times, having collected the use set of f(%iv.(i+1)), during which we:
-// - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
-// the next unmatched instruction in f(%iv.(i+1)).
-// - Ensure that both matched instructions don't have any external users
-// (with the exception of last-in-chain reduction instructions).
-// - Track the (aliasing) write set, and other side effects, of all
-// instructions that belong to future iterations that come before the matched
-// instructions. If the matched instructions read from that write set, then
-// f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
-// f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
-// if any of these future instructions had side effects (could not be
-// speculatively executed), and so do the matched instructions, when we
-// cannot reorder those side-effect-producing instructions, and rerolling
-// fails.
-//
-// Finally, we make sure that all loop instructions are either loop increment
-// roots, belong to simple latch code, parts of validated reductions, part of
-// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
-// have been validated), then we reroll the loop.
-bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
- const SCEV *BackedgeTakenCount,
- ReductionTracker &Reductions) {
- DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
- IVToIncMap, LoopControlIV);
-
- if (!DAGRoots.findRoots())
- return false;
- LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
- << "\n");
-
- if (!DAGRoots.validate(Reductions))
- return false;
- if (!Reductions.validateSelected())
- return false;
- // At this point, we've validated the rerolling, and we're committed to
- // making changes!
-
- Reductions.replaceSelected();
- DAGRoots.replace(BackedgeTakenCount);
-
- ++NumRerolledLoops;
- return true;
-}
-
-bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipLoop(L))
- return false;
-
- AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
-
- BasicBlock *Header = L->getHeader();
- LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
- << Header->getName() << " (" << L->getNumBlocks()
- << " block(s))\n");
-
- // For now, we'll handle only single BB loops.
- if (L->getNumBlocks() > 1)
- return false;
-
- if (!SE->hasLoopInvariantBackedgeTakenCount(L))
- return false;
-
- const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
- LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
- LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
- << "\n");
-
- // First, we need to find the induction variable with respect to which we can
- // reroll (there may be several possible options).
- SmallInstructionVector PossibleIVs;
- IVToIncMap.clear();
- LoopControlIV = nullptr;
- collectPossibleIVs(L, PossibleIVs);
-
- if (PossibleIVs.empty()) {
- LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
- return false;
- }
-
- ReductionTracker Reductions;
- collectPossibleReductions(L, Reductions);
- bool Changed = false;
-
- // For each possible IV, collect the associated possible set of 'root' nodes
- // (i+1, i+2, etc.).
- for (Instruction *PossibleIV : PossibleIVs)
- if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
- Changed = true;
- break;
- }
- LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
-
- // Trip count of L has changed so SE must be re-evaluated.
- if (Changed)
- SE->forgetLoop(L);
-
- return Changed;
-}