summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp665
1 files changed, 0 insertions, 665 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp b/gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
deleted file mode 100644
index 2e5927f9a06..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
+++ /dev/null
@@ -1,665 +0,0 @@
-//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the Loop SimplifyCFG Pass. This pass is responsible for
-// basic loop CFG cleanup, primarily to assist other loop passes. If you
-// encounter a noncanonical CFG construct that causes another loop pass to
-// perform suboptimally, this is the place to fix it up.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/BasicAliasAnalysis.h"
-#include "llvm/Analysis/DependenceAnalysis.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/MemorySSA.h"
-#include "llvm/Analysis/MemorySSAUpdater.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/DomTreeUpdater.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Scalar/LoopPassManager.h"
-#include "llvm/Transforms/Utils.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "loop-simplifycfg"
-
-static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
- cl::init(false));
-
-STATISTIC(NumTerminatorsFolded,
- "Number of terminators folded to unconditional branches");
-STATISTIC(NumLoopBlocksDeleted,
- "Number of loop blocks deleted");
-STATISTIC(NumLoopExitsDeleted,
- "Number of loop exiting edges deleted");
-
-/// If \p BB is a switch or a conditional branch, but only one of its successors
-/// can be reached from this block in runtime, return this successor. Otherwise,
-/// return nullptr.
-static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
- Instruction *TI = BB->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isUnconditional())
- return nullptr;
- if (BI->getSuccessor(0) == BI->getSuccessor(1))
- return BI->getSuccessor(0);
- ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
- if (!Cond)
- return nullptr;
- return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
- }
-
- if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
- if (!CI)
- return nullptr;
- for (auto Case : SI->cases())
- if (Case.getCaseValue() == CI)
- return Case.getCaseSuccessor();
- return SI->getDefaultDest();
- }
-
- return nullptr;
-}
-
-namespace {
-/// Helper class that can turn branches and switches with constant conditions
-/// into unconditional branches.
-class ConstantTerminatorFoldingImpl {
-private:
- Loop &L;
- LoopInfo &LI;
- DominatorTree &DT;
- ScalarEvolution &SE;
- MemorySSAUpdater *MSSAU;
-
- // Whether or not the current loop has irreducible CFG.
- bool HasIrreducibleCFG = false;
- // Whether or not the current loop will still exist after terminator constant
- // folding will be done. In theory, there are two ways how it can happen:
- // 1. Loop's latch(es) become unreachable from loop header;
- // 2. Loop's header becomes unreachable from method entry.
- // In practice, the second situation is impossible because we only modify the
- // current loop and its preheader and do not affect preheader's reachibility
- // from any other block. So this variable set to true means that loop's latch
- // has become unreachable from loop header.
- bool DeleteCurrentLoop = false;
-
- // The blocks of the original loop that will still be reachable from entry
- // after the constant folding.
- SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
- // The blocks of the original loop that will become unreachable from entry
- // after the constant folding.
- SmallVector<BasicBlock *, 8> DeadLoopBlocks;
- // The exits of the original loop that will still be reachable from entry
- // after the constant folding.
- SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
- // The exits of the original loop that will become unreachable from entry
- // after the constant folding.
- SmallVector<BasicBlock *, 8> DeadExitBlocks;
- // The blocks that will still be a part of the current loop after folding.
- SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
- // The blocks that have terminators with constant condition that can be
- // folded. Note: fold candidates should be in L but not in any of its
- // subloops to avoid complex LI updates.
- SmallVector<BasicBlock *, 8> FoldCandidates;
-
- void dump() const {
- dbgs() << "Constant terminator folding for loop " << L << "\n";
- dbgs() << "After terminator constant-folding, the loop will";
- if (!DeleteCurrentLoop)
- dbgs() << " not";
- dbgs() << " be destroyed\n";
- auto PrintOutVector = [&](const char *Message,
- const SmallVectorImpl<BasicBlock *> &S) {
- dbgs() << Message << "\n";
- for (const BasicBlock *BB : S)
- dbgs() << "\t" << BB->getName() << "\n";
- };
- auto PrintOutSet = [&](const char *Message,
- const SmallPtrSetImpl<BasicBlock *> &S) {
- dbgs() << Message << "\n";
- for (const BasicBlock *BB : S)
- dbgs() << "\t" << BB->getName() << "\n";
- };
- PrintOutVector("Blocks in which we can constant-fold terminator:",
- FoldCandidates);
- PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
- PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
- PrintOutSet("Live exit blocks:", LiveExitBlocks);
- PrintOutVector("Dead exit blocks:", DeadExitBlocks);
- if (!DeleteCurrentLoop)
- PrintOutSet("The following blocks will still be part of the loop:",
- BlocksInLoopAfterFolding);
- }
-
- /// Whether or not the current loop has irreducible CFG.
- bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
- assert(DFS.isComplete() && "DFS is expected to be finished");
- // Index of a basic block in RPO traversal.
- DenseMap<const BasicBlock *, unsigned> RPO;
- unsigned Current = 0;
- for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
- RPO[*I] = Current++;
-
- for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
- BasicBlock *BB = *I;
- for (auto *Succ : successors(BB))
- if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
- // If an edge goes from a block with greater order number into a block
- // with lesses number, and it is not a loop backedge, then it can only
- // be a part of irreducible non-loop cycle.
- return true;
- }
- return false;
- }
-
- /// Fill all information about status of blocks and exits of the current loop
- /// if constant folding of all branches will be done.
- void analyze() {
- LoopBlocksDFS DFS(&L);
- DFS.perform(&LI);
- assert(DFS.isComplete() && "DFS is expected to be finished");
-
- // TODO: The algorithm below relies on both RPO and Postorder traversals.
- // When the loop has only reducible CFG inside, then the invariant "all
- // predecessors of X are processed before X in RPO" is preserved. However
- // an irreducible loop can break this invariant (e.g. latch does not have to
- // be the last block in the traversal in this case, and the algorithm relies
- // on this). We can later decide to support such cases by altering the
- // algorithms, but so far we just give up analyzing them.
- if (hasIrreducibleCFG(DFS)) {
- HasIrreducibleCFG = true;
- return;
- }
-
- // Collect live and dead loop blocks and exits.
- LiveLoopBlocks.insert(L.getHeader());
- for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
- BasicBlock *BB = *I;
-
- // If a loop block wasn't marked as live so far, then it's dead.
- if (!LiveLoopBlocks.count(BB)) {
- DeadLoopBlocks.push_back(BB);
- continue;
- }
-
- BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
-
- // If a block has only one live successor, it's a candidate on constant
- // folding. Only handle blocks from current loop: branches in child loops
- // are skipped because if they can be folded, they should be folded during
- // the processing of child loops.
- if (TheOnlySucc && LI.getLoopFor(BB) == &L)
- FoldCandidates.push_back(BB);
-
- // Handle successors.
- for (BasicBlock *Succ : successors(BB))
- if (!TheOnlySucc || TheOnlySucc == Succ) {
- if (L.contains(Succ))
- LiveLoopBlocks.insert(Succ);
- else
- LiveExitBlocks.insert(Succ);
- }
- }
-
- // Sanity check: amount of dead and live loop blocks should match the total
- // number of blocks in loop.
- assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
- "Malformed block sets?");
-
- // Now, all exit blocks that are not marked as live are dead.
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L.getExitBlocks(ExitBlocks);
- for (auto *ExitBlock : ExitBlocks)
- if (!LiveExitBlocks.count(ExitBlock))
- DeadExitBlocks.push_back(ExitBlock);
-
- // Whether or not the edge From->To will still be present in graph after the
- // folding.
- auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
- if (!LiveLoopBlocks.count(From))
- return false;
- BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
- return !TheOnlySucc || TheOnlySucc == To;
- };
-
- // The loop will not be destroyed if its latch is live.
- DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
-
- // If we are going to delete the current loop completely, no extra analysis
- // is needed.
- if (DeleteCurrentLoop)
- return;
-
- // Otherwise, we should check which blocks will still be a part of the
- // current loop after the transform.
- BlocksInLoopAfterFolding.insert(L.getLoopLatch());
- // If the loop is live, then we should compute what blocks are still in
- // loop after all branch folding has been done. A block is in loop if
- // it has a live edge to another block that is in the loop; by definition,
- // latch is in the loop.
- auto BlockIsInLoop = [&](BasicBlock *BB) {
- return any_of(successors(BB), [&](BasicBlock *Succ) {
- return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
- });
- };
- for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
- BasicBlock *BB = *I;
- if (BlockIsInLoop(BB))
- BlocksInLoopAfterFolding.insert(BB);
- }
-
- // Sanity check: header must be in loop.
- assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
- "Header not in loop?");
- assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
- "All blocks that stay in loop should be live!");
- }
-
- /// We need to preserve static reachibility of all loop exit blocks (this is)
- /// required by loop pass manager. In order to do it, we make the following
- /// trick:
- ///
- /// preheader:
- /// <preheader code>
- /// br label %loop_header
- ///
- /// loop_header:
- /// ...
- /// br i1 false, label %dead_exit, label %loop_block
- /// ...
- ///
- /// We cannot simply remove edge from the loop to dead exit because in this
- /// case dead_exit (and its successors) may become unreachable. To avoid that,
- /// we insert the following fictive preheader:
- ///
- /// preheader:
- /// <preheader code>
- /// switch i32 0, label %preheader-split,
- /// [i32 1, label %dead_exit_1],
- /// [i32 2, label %dead_exit_2],
- /// ...
- /// [i32 N, label %dead_exit_N],
- ///
- /// preheader-split:
- /// br label %loop_header
- ///
- /// loop_header:
- /// ...
- /// br i1 false, label %dead_exit_N, label %loop_block
- /// ...
- ///
- /// Doing so, we preserve static reachibility of all dead exits and can later
- /// remove edges from the loop to these blocks.
- void handleDeadExits() {
- // If no dead exits, nothing to do.
- if (DeadExitBlocks.empty())
- return;
-
- // Construct split preheader and the dummy switch to thread edges from it to
- // dead exits.
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- BasicBlock *Preheader = L.getLoopPreheader();
- BasicBlock *NewPreheader = Preheader->splitBasicBlock(
- Preheader->getTerminator(),
- Twine(Preheader->getName()).concat("-split"));
- DTU.deleteEdge(Preheader, L.getHeader());
- DTU.insertEdge(NewPreheader, L.getHeader());
- DTU.insertEdge(Preheader, NewPreheader);
- IRBuilder<> Builder(Preheader->getTerminator());
- SwitchInst *DummySwitch =
- Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
- Preheader->getTerminator()->eraseFromParent();
-
- unsigned DummyIdx = 1;
- for (BasicBlock *BB : DeadExitBlocks) {
- SmallVector<Instruction *, 4> DeadPhis;
- for (auto &PN : BB->phis())
- DeadPhis.push_back(&PN);
-
- // Eliminate all Phis from dead exits.
- for (Instruction *PN : DeadPhis) {
- PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
- PN->eraseFromParent();
- }
- assert(DummyIdx != 0 && "Too many dead exits!");
- DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
- DTU.insertEdge(Preheader, BB);
- ++NumLoopExitsDeleted;
- }
-
- assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
- if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
- OuterLoop->addBasicBlockToLoop(NewPreheader, LI);
-
- // When we break dead edges, the outer loop may become unreachable from
- // the current loop. We need to fix loop info accordingly. For this, we
- // find the most nested loop that still contains L and remove L from all
- // loops that are inside of it.
- Loop *StillReachable = nullptr;
- for (BasicBlock *BB : LiveExitBlocks) {
- Loop *BBL = LI.getLoopFor(BB);
- if (BBL && BBL->contains(L.getHeader()))
- if (!StillReachable ||
- BBL->getLoopDepth() > StillReachable->getLoopDepth())
- StillReachable = BBL;
- }
-
- // Okay, our loop is no longer in the outer loop (and maybe not in some of
- // its parents as well). Make the fixup.
- if (StillReachable != OuterLoop) {
- LI.changeLoopFor(NewPreheader, StillReachable);
- for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable;
- NotContaining = NotContaining->getParentLoop()) {
- NotContaining->removeBlockFromLoop(NewPreheader);
- for (auto *BB : L.blocks())
- NotContaining->removeBlockFromLoop(BB);
- }
- OuterLoop->removeChildLoop(&L);
- if (StillReachable)
- StillReachable->addChildLoop(&L);
- else
- LI.addTopLevelLoop(&L);
- }
- }
- }
-
- /// Delete loop blocks that have become unreachable after folding. Make all
- /// relevant updates to DT and LI.
- void deleteDeadLoopBlocks() {
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- if (MSSAU) {
- SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
- DeadLoopBlocks.end());
- MSSAU->removeBlocks(DeadLoopBlocksSet);
- }
- for (auto *BB : DeadLoopBlocks) {
- assert(BB != L.getHeader() &&
- "Header of the current loop cannot be dead!");
- LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
- << "\n");
- if (LI.isLoopHeader(BB)) {
- assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
- LI.erase(LI.getLoopFor(BB));
- }
- LI.removeBlock(BB);
- DeleteDeadBlock(BB, &DTU);
- ++NumLoopBlocksDeleted;
- }
- }
-
- /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
- /// unconditional branches.
- void foldTerminators() {
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
-
- for (BasicBlock *BB : FoldCandidates) {
- assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
- BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
- assert(TheOnlySucc && "Should have one live successor!");
-
- LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
- << " with an unconditional branch to the block "
- << TheOnlySucc->getName() << "\n");
-
- SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
- // Remove all BB's successors except for the live one.
- unsigned TheOnlySuccDuplicates = 0;
- for (auto *Succ : successors(BB))
- if (Succ != TheOnlySucc) {
- DeadSuccessors.insert(Succ);
- // If our successor lies in a different loop, we don't want to remove
- // the one-input Phi because it is a LCSSA Phi.
- bool PreserveLCSSAPhi = !L.contains(Succ);
- Succ->removePredecessor(BB, PreserveLCSSAPhi);
- if (MSSAU)
- MSSAU->removeEdge(BB, Succ);
- } else
- ++TheOnlySuccDuplicates;
-
- assert(TheOnlySuccDuplicates > 0 && "Should be!");
- // If TheOnlySucc was BB's successor more than once, after transform it
- // will be its successor only once. Remove redundant inputs from
- // TheOnlySucc's Phis.
- bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
- for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
- TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
- if (MSSAU && TheOnlySuccDuplicates > 1)
- MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
-
- IRBuilder<> Builder(BB->getContext());
- Instruction *Term = BB->getTerminator();
- Builder.SetInsertPoint(Term);
- Builder.CreateBr(TheOnlySucc);
- Term->eraseFromParent();
-
- for (auto *DeadSucc : DeadSuccessors)
- DTU.deleteEdge(BB, DeadSucc);
-
- ++NumTerminatorsFolded;
- }
- }
-
-public:
- ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
- ScalarEvolution &SE,
- MemorySSAUpdater *MSSAU)
- : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU) {}
- bool run() {
- assert(L.getLoopLatch() && "Should be single latch!");
-
- // Collect all available information about status of blocks after constant
- // folding.
- analyze();
-
- LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName()
- << ": ");
-
- if (HasIrreducibleCFG) {
- LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
- return false;
- }
-
- // Nothing to constant-fold.
- if (FoldCandidates.empty()) {
- LLVM_DEBUG(
- dbgs() << "No constant terminator folding candidates found in loop "
- << L.getHeader()->getName() << "\n");
- return false;
- }
-
- // TODO: Support deletion of the current loop.
- if (DeleteCurrentLoop) {
- LLVM_DEBUG(
- dbgs()
- << "Give up constant terminator folding in loop "
- << L.getHeader()->getName()
- << ": we don't currently support deletion of the current loop.\n");
- return false;
- }
-
- // TODO: Support blocks that are not dead, but also not in loop after the
- // folding.
- if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
- L.getNumBlocks()) {
- LLVM_DEBUG(
- dbgs() << "Give up constant terminator folding in loop "
- << L.getHeader()->getName()
- << ": we don't currently"
- " support blocks that are not dead, but will stop "
- "being a part of the loop after constant-folding.\n");
- return false;
- }
-
- SE.forgetTopmostLoop(&L);
- // Dump analysis results.
- LLVM_DEBUG(dump());
-
- LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
- << " terminators in loop " << L.getHeader()->getName()
- << "\n");
-
- // Make the actual transforms.
- handleDeadExits();
- foldTerminators();
-
- if (!DeadLoopBlocks.empty()) {
- LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
- << " dead blocks in loop " << L.getHeader()->getName()
- << "\n");
- deleteDeadLoopBlocks();
- }
-
-#ifndef NDEBUG
- // Make sure that we have preserved all data structures after the transform.
- DT.verify();
- assert(DT.isReachableFromEntry(L.getHeader()));
- LI.verify(DT);
-#endif
-
- return true;
- }
-};
-} // namespace
-
-/// Turn branches and switches with known constant conditions into unconditional
-/// branches.
-static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
- ScalarEvolution &SE,
- MemorySSAUpdater *MSSAU) {
- if (!EnableTermFolding)
- return false;
-
- // To keep things simple, only process loops with single latch. We
- // canonicalize most loops to this form. We can support multi-latch if needed.
- if (!L.getLoopLatch())
- return false;
-
- ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
- return BranchFolder.run();
-}
-
-static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
- LoopInfo &LI, MemorySSAUpdater *MSSAU) {
- bool Changed = false;
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- // Copy blocks into a temporary array to avoid iterator invalidation issues
- // as we remove them.
- SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
-
- for (auto &Block : Blocks) {
- // Attempt to merge blocks in the trivial case. Don't modify blocks which
- // belong to other loops.
- BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
- if (!Succ)
- continue;
-
- BasicBlock *Pred = Succ->getSinglePredecessor();
- if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
- continue;
-
- // Merge Succ into Pred and delete it.
- MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
-
- Changed = true;
- }
-
- return Changed;
-}
-
-static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
- ScalarEvolution &SE, MemorySSAUpdater *MSSAU) {
- bool Changed = false;
-
- // Constant-fold terminators with known constant conditions.
- Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU);
-
- // Eliminate unconditional branches by merging blocks into their predecessors.
- Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
-
- if (Changed)
- SE.forgetTopmostLoop(&L);
-
- return Changed;
-}
-
-PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &) {
- Optional<MemorySSAUpdater> MSSAU;
- if (EnableMSSALoopDependency && AR.MSSA)
- MSSAU = MemorySSAUpdater(AR.MSSA);
- if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
- MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
- return PreservedAnalyses::all();
-
- return getLoopPassPreservedAnalyses();
-}
-
-namespace {
-class LoopSimplifyCFGLegacyPass : public LoopPass {
-public:
- static char ID; // Pass ID, replacement for typeid
- LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
- initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnLoop(Loop *L, LPPassManager &) override {
- if (skipLoop(L))
- return false;
-
- DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- Optional<MemorySSAUpdater> MSSAU;
- if (EnableMSSALoopDependency) {
- MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
- MSSAU = MemorySSAUpdater(MSSA);
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- }
- return simplifyLoopCFG(*L, DT, LI, SE,
- MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- if (EnableMSSALoopDependency) {
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- AU.addPreserved<DependenceAnalysisWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
-};
-}
-
-char LoopSimplifyCFGLegacyPass::ID = 0;
-INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
- "Simplify loop CFG", false, false)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
-INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
- "Simplify loop CFG", false, false)
-
-Pass *llvm::createLoopSimplifyCFGPass() {
- return new LoopSimplifyCFGLegacyPass();
-}