diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp | 665 |
1 files changed, 0 insertions, 665 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp b/gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp deleted file mode 100644 index 2e5927f9a06..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp +++ /dev/null @@ -1,665 +0,0 @@ -//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the Loop SimplifyCFG Pass. This pass is responsible for -// basic loop CFG cleanup, primarily to assist other loop passes. If you -// encounter a noncanonical CFG construct that causes another loop pass to -// perform suboptimally, this is the place to fix it up. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/BasicAliasAnalysis.h" -#include "llvm/Analysis/DependenceAnalysis.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/MemorySSA.h" -#include "llvm/Analysis/MemorySSAUpdater.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/DomTreeUpdater.h" -#include "llvm/IR/Dominators.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Scalar/LoopPassManager.h" -#include "llvm/Transforms/Utils.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -using namespace llvm; - -#define DEBUG_TYPE "loop-simplifycfg" - -static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", - cl::init(false)); - -STATISTIC(NumTerminatorsFolded, - "Number of terminators folded to unconditional branches"); -STATISTIC(NumLoopBlocksDeleted, - "Number of loop blocks deleted"); -STATISTIC(NumLoopExitsDeleted, - "Number of loop exiting edges deleted"); - -/// If \p BB is a switch or a conditional branch, but only one of its successors -/// can be reached from this block in runtime, return this successor. Otherwise, -/// return nullptr. -static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { - Instruction *TI = BB->getTerminator(); - if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { - if (BI->isUnconditional()) - return nullptr; - if (BI->getSuccessor(0) == BI->getSuccessor(1)) - return BI->getSuccessor(0); - ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); - if (!Cond) - return nullptr; - return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); - } - - if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); - if (!CI) - return nullptr; - for (auto Case : SI->cases()) - if (Case.getCaseValue() == CI) - return Case.getCaseSuccessor(); - return SI->getDefaultDest(); - } - - return nullptr; -} - -namespace { -/// Helper class that can turn branches and switches with constant conditions -/// into unconditional branches. -class ConstantTerminatorFoldingImpl { -private: - Loop &L; - LoopInfo &LI; - DominatorTree &DT; - ScalarEvolution &SE; - MemorySSAUpdater *MSSAU; - - // Whether or not the current loop has irreducible CFG. - bool HasIrreducibleCFG = false; - // Whether or not the current loop will still exist after terminator constant - // folding will be done. In theory, there are two ways how it can happen: - // 1. Loop's latch(es) become unreachable from loop header; - // 2. Loop's header becomes unreachable from method entry. - // In practice, the second situation is impossible because we only modify the - // current loop and its preheader and do not affect preheader's reachibility - // from any other block. So this variable set to true means that loop's latch - // has become unreachable from loop header. - bool DeleteCurrentLoop = false; - - // The blocks of the original loop that will still be reachable from entry - // after the constant folding. - SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; - // The blocks of the original loop that will become unreachable from entry - // after the constant folding. - SmallVector<BasicBlock *, 8> DeadLoopBlocks; - // The exits of the original loop that will still be reachable from entry - // after the constant folding. - SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; - // The exits of the original loop that will become unreachable from entry - // after the constant folding. - SmallVector<BasicBlock *, 8> DeadExitBlocks; - // The blocks that will still be a part of the current loop after folding. - SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; - // The blocks that have terminators with constant condition that can be - // folded. Note: fold candidates should be in L but not in any of its - // subloops to avoid complex LI updates. - SmallVector<BasicBlock *, 8> FoldCandidates; - - void dump() const { - dbgs() << "Constant terminator folding for loop " << L << "\n"; - dbgs() << "After terminator constant-folding, the loop will"; - if (!DeleteCurrentLoop) - dbgs() << " not"; - dbgs() << " be destroyed\n"; - auto PrintOutVector = [&](const char *Message, - const SmallVectorImpl<BasicBlock *> &S) { - dbgs() << Message << "\n"; - for (const BasicBlock *BB : S) - dbgs() << "\t" << BB->getName() << "\n"; - }; - auto PrintOutSet = [&](const char *Message, - const SmallPtrSetImpl<BasicBlock *> &S) { - dbgs() << Message << "\n"; - for (const BasicBlock *BB : S) - dbgs() << "\t" << BB->getName() << "\n"; - }; - PrintOutVector("Blocks in which we can constant-fold terminator:", - FoldCandidates); - PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); - PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); - PrintOutSet("Live exit blocks:", LiveExitBlocks); - PrintOutVector("Dead exit blocks:", DeadExitBlocks); - if (!DeleteCurrentLoop) - PrintOutSet("The following blocks will still be part of the loop:", - BlocksInLoopAfterFolding); - } - - /// Whether or not the current loop has irreducible CFG. - bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { - assert(DFS.isComplete() && "DFS is expected to be finished"); - // Index of a basic block in RPO traversal. - DenseMap<const BasicBlock *, unsigned> RPO; - unsigned Current = 0; - for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) - RPO[*I] = Current++; - - for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { - BasicBlock *BB = *I; - for (auto *Succ : successors(BB)) - if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) - // If an edge goes from a block with greater order number into a block - // with lesses number, and it is not a loop backedge, then it can only - // be a part of irreducible non-loop cycle. - return true; - } - return false; - } - - /// Fill all information about status of blocks and exits of the current loop - /// if constant folding of all branches will be done. - void analyze() { - LoopBlocksDFS DFS(&L); - DFS.perform(&LI); - assert(DFS.isComplete() && "DFS is expected to be finished"); - - // TODO: The algorithm below relies on both RPO and Postorder traversals. - // When the loop has only reducible CFG inside, then the invariant "all - // predecessors of X are processed before X in RPO" is preserved. However - // an irreducible loop can break this invariant (e.g. latch does not have to - // be the last block in the traversal in this case, and the algorithm relies - // on this). We can later decide to support such cases by altering the - // algorithms, but so far we just give up analyzing them. - if (hasIrreducibleCFG(DFS)) { - HasIrreducibleCFG = true; - return; - } - - // Collect live and dead loop blocks and exits. - LiveLoopBlocks.insert(L.getHeader()); - for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { - BasicBlock *BB = *I; - - // If a loop block wasn't marked as live so far, then it's dead. - if (!LiveLoopBlocks.count(BB)) { - DeadLoopBlocks.push_back(BB); - continue; - } - - BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); - - // If a block has only one live successor, it's a candidate on constant - // folding. Only handle blocks from current loop: branches in child loops - // are skipped because if they can be folded, they should be folded during - // the processing of child loops. - if (TheOnlySucc && LI.getLoopFor(BB) == &L) - FoldCandidates.push_back(BB); - - // Handle successors. - for (BasicBlock *Succ : successors(BB)) - if (!TheOnlySucc || TheOnlySucc == Succ) { - if (L.contains(Succ)) - LiveLoopBlocks.insert(Succ); - else - LiveExitBlocks.insert(Succ); - } - } - - // Sanity check: amount of dead and live loop blocks should match the total - // number of blocks in loop. - assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && - "Malformed block sets?"); - - // Now, all exit blocks that are not marked as live are dead. - SmallVector<BasicBlock *, 8> ExitBlocks; - L.getExitBlocks(ExitBlocks); - for (auto *ExitBlock : ExitBlocks) - if (!LiveExitBlocks.count(ExitBlock)) - DeadExitBlocks.push_back(ExitBlock); - - // Whether or not the edge From->To will still be present in graph after the - // folding. - auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { - if (!LiveLoopBlocks.count(From)) - return false; - BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); - return !TheOnlySucc || TheOnlySucc == To; - }; - - // The loop will not be destroyed if its latch is live. - DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); - - // If we are going to delete the current loop completely, no extra analysis - // is needed. - if (DeleteCurrentLoop) - return; - - // Otherwise, we should check which blocks will still be a part of the - // current loop after the transform. - BlocksInLoopAfterFolding.insert(L.getLoopLatch()); - // If the loop is live, then we should compute what blocks are still in - // loop after all branch folding has been done. A block is in loop if - // it has a live edge to another block that is in the loop; by definition, - // latch is in the loop. - auto BlockIsInLoop = [&](BasicBlock *BB) { - return any_of(successors(BB), [&](BasicBlock *Succ) { - return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); - }); - }; - for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { - BasicBlock *BB = *I; - if (BlockIsInLoop(BB)) - BlocksInLoopAfterFolding.insert(BB); - } - - // Sanity check: header must be in loop. - assert(BlocksInLoopAfterFolding.count(L.getHeader()) && - "Header not in loop?"); - assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && - "All blocks that stay in loop should be live!"); - } - - /// We need to preserve static reachibility of all loop exit blocks (this is) - /// required by loop pass manager. In order to do it, we make the following - /// trick: - /// - /// preheader: - /// <preheader code> - /// br label %loop_header - /// - /// loop_header: - /// ... - /// br i1 false, label %dead_exit, label %loop_block - /// ... - /// - /// We cannot simply remove edge from the loop to dead exit because in this - /// case dead_exit (and its successors) may become unreachable. To avoid that, - /// we insert the following fictive preheader: - /// - /// preheader: - /// <preheader code> - /// switch i32 0, label %preheader-split, - /// [i32 1, label %dead_exit_1], - /// [i32 2, label %dead_exit_2], - /// ... - /// [i32 N, label %dead_exit_N], - /// - /// preheader-split: - /// br label %loop_header - /// - /// loop_header: - /// ... - /// br i1 false, label %dead_exit_N, label %loop_block - /// ... - /// - /// Doing so, we preserve static reachibility of all dead exits and can later - /// remove edges from the loop to these blocks. - void handleDeadExits() { - // If no dead exits, nothing to do. - if (DeadExitBlocks.empty()) - return; - - // Construct split preheader and the dummy switch to thread edges from it to - // dead exits. - DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); - BasicBlock *Preheader = L.getLoopPreheader(); - BasicBlock *NewPreheader = Preheader->splitBasicBlock( - Preheader->getTerminator(), - Twine(Preheader->getName()).concat("-split")); - DTU.deleteEdge(Preheader, L.getHeader()); - DTU.insertEdge(NewPreheader, L.getHeader()); - DTU.insertEdge(Preheader, NewPreheader); - IRBuilder<> Builder(Preheader->getTerminator()); - SwitchInst *DummySwitch = - Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); - Preheader->getTerminator()->eraseFromParent(); - - unsigned DummyIdx = 1; - for (BasicBlock *BB : DeadExitBlocks) { - SmallVector<Instruction *, 4> DeadPhis; - for (auto &PN : BB->phis()) - DeadPhis.push_back(&PN); - - // Eliminate all Phis from dead exits. - for (Instruction *PN : DeadPhis) { - PN->replaceAllUsesWith(UndefValue::get(PN->getType())); - PN->eraseFromParent(); - } - assert(DummyIdx != 0 && "Too many dead exits!"); - DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); - DTU.insertEdge(Preheader, BB); - ++NumLoopExitsDeleted; - } - - assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); - if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { - OuterLoop->addBasicBlockToLoop(NewPreheader, LI); - - // When we break dead edges, the outer loop may become unreachable from - // the current loop. We need to fix loop info accordingly. For this, we - // find the most nested loop that still contains L and remove L from all - // loops that are inside of it. - Loop *StillReachable = nullptr; - for (BasicBlock *BB : LiveExitBlocks) { - Loop *BBL = LI.getLoopFor(BB); - if (BBL && BBL->contains(L.getHeader())) - if (!StillReachable || - BBL->getLoopDepth() > StillReachable->getLoopDepth()) - StillReachable = BBL; - } - - // Okay, our loop is no longer in the outer loop (and maybe not in some of - // its parents as well). Make the fixup. - if (StillReachable != OuterLoop) { - LI.changeLoopFor(NewPreheader, StillReachable); - for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable; - NotContaining = NotContaining->getParentLoop()) { - NotContaining->removeBlockFromLoop(NewPreheader); - for (auto *BB : L.blocks()) - NotContaining->removeBlockFromLoop(BB); - } - OuterLoop->removeChildLoop(&L); - if (StillReachable) - StillReachable->addChildLoop(&L); - else - LI.addTopLevelLoop(&L); - } - } - } - - /// Delete loop blocks that have become unreachable after folding. Make all - /// relevant updates to DT and LI. - void deleteDeadLoopBlocks() { - DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); - if (MSSAU) { - SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), - DeadLoopBlocks.end()); - MSSAU->removeBlocks(DeadLoopBlocksSet); - } - for (auto *BB : DeadLoopBlocks) { - assert(BB != L.getHeader() && - "Header of the current loop cannot be dead!"); - LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() - << "\n"); - if (LI.isLoopHeader(BB)) { - assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); - LI.erase(LI.getLoopFor(BB)); - } - LI.removeBlock(BB); - DeleteDeadBlock(BB, &DTU); - ++NumLoopBlocksDeleted; - } - } - - /// Constant-fold terminators of blocks acculumated in FoldCandidates into the - /// unconditional branches. - void foldTerminators() { - DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); - - for (BasicBlock *BB : FoldCandidates) { - assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); - BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); - assert(TheOnlySucc && "Should have one live successor!"); - - LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() - << " with an unconditional branch to the block " - << TheOnlySucc->getName() << "\n"); - - SmallPtrSet<BasicBlock *, 2> DeadSuccessors; - // Remove all BB's successors except for the live one. - unsigned TheOnlySuccDuplicates = 0; - for (auto *Succ : successors(BB)) - if (Succ != TheOnlySucc) { - DeadSuccessors.insert(Succ); - // If our successor lies in a different loop, we don't want to remove - // the one-input Phi because it is a LCSSA Phi. - bool PreserveLCSSAPhi = !L.contains(Succ); - Succ->removePredecessor(BB, PreserveLCSSAPhi); - if (MSSAU) - MSSAU->removeEdge(BB, Succ); - } else - ++TheOnlySuccDuplicates; - - assert(TheOnlySuccDuplicates > 0 && "Should be!"); - // If TheOnlySucc was BB's successor more than once, after transform it - // will be its successor only once. Remove redundant inputs from - // TheOnlySucc's Phis. - bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); - for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) - TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); - if (MSSAU && TheOnlySuccDuplicates > 1) - MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); - - IRBuilder<> Builder(BB->getContext()); - Instruction *Term = BB->getTerminator(); - Builder.SetInsertPoint(Term); - Builder.CreateBr(TheOnlySucc); - Term->eraseFromParent(); - - for (auto *DeadSucc : DeadSuccessors) - DTU.deleteEdge(BB, DeadSucc); - - ++NumTerminatorsFolded; - } - } - -public: - ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, - ScalarEvolution &SE, - MemorySSAUpdater *MSSAU) - : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU) {} - bool run() { - assert(L.getLoopLatch() && "Should be single latch!"); - - // Collect all available information about status of blocks after constant - // folding. - analyze(); - - LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName() - << ": "); - - if (HasIrreducibleCFG) { - LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); - return false; - } - - // Nothing to constant-fold. - if (FoldCandidates.empty()) { - LLVM_DEBUG( - dbgs() << "No constant terminator folding candidates found in loop " - << L.getHeader()->getName() << "\n"); - return false; - } - - // TODO: Support deletion of the current loop. - if (DeleteCurrentLoop) { - LLVM_DEBUG( - dbgs() - << "Give up constant terminator folding in loop " - << L.getHeader()->getName() - << ": we don't currently support deletion of the current loop.\n"); - return false; - } - - // TODO: Support blocks that are not dead, but also not in loop after the - // folding. - if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != - L.getNumBlocks()) { - LLVM_DEBUG( - dbgs() << "Give up constant terminator folding in loop " - << L.getHeader()->getName() - << ": we don't currently" - " support blocks that are not dead, but will stop " - "being a part of the loop after constant-folding.\n"); - return false; - } - - SE.forgetTopmostLoop(&L); - // Dump analysis results. - LLVM_DEBUG(dump()); - - LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() - << " terminators in loop " << L.getHeader()->getName() - << "\n"); - - // Make the actual transforms. - handleDeadExits(); - foldTerminators(); - - if (!DeadLoopBlocks.empty()) { - LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() - << " dead blocks in loop " << L.getHeader()->getName() - << "\n"); - deleteDeadLoopBlocks(); - } - -#ifndef NDEBUG - // Make sure that we have preserved all data structures after the transform. - DT.verify(); - assert(DT.isReachableFromEntry(L.getHeader())); - LI.verify(DT); -#endif - - return true; - } -}; -} // namespace - -/// Turn branches and switches with known constant conditions into unconditional -/// branches. -static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, - ScalarEvolution &SE, - MemorySSAUpdater *MSSAU) { - if (!EnableTermFolding) - return false; - - // To keep things simple, only process loops with single latch. We - // canonicalize most loops to this form. We can support multi-latch if needed. - if (!L.getLoopLatch()) - return false; - - ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); - return BranchFolder.run(); -} - -static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, - LoopInfo &LI, MemorySSAUpdater *MSSAU) { - bool Changed = false; - DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); - // Copy blocks into a temporary array to avoid iterator invalidation issues - // as we remove them. - SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); - - for (auto &Block : Blocks) { - // Attempt to merge blocks in the trivial case. Don't modify blocks which - // belong to other loops. - BasicBlock *Succ = cast_or_null<BasicBlock>(Block); - if (!Succ) - continue; - - BasicBlock *Pred = Succ->getSinglePredecessor(); - if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) - continue; - - // Merge Succ into Pred and delete it. - MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); - - Changed = true; - } - - return Changed; -} - -static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, - ScalarEvolution &SE, MemorySSAUpdater *MSSAU) { - bool Changed = false; - - // Constant-fold terminators with known constant conditions. - Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU); - - // Eliminate unconditional branches by merging blocks into their predecessors. - Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); - - if (Changed) - SE.forgetTopmostLoop(&L); - - return Changed; -} - -PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, - LoopStandardAnalysisResults &AR, - LPMUpdater &) { - Optional<MemorySSAUpdater> MSSAU; - if (EnableMSSALoopDependency && AR.MSSA) - MSSAU = MemorySSAUpdater(AR.MSSA); - if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, - MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) - return PreservedAnalyses::all(); - - return getLoopPassPreservedAnalyses(); -} - -namespace { -class LoopSimplifyCFGLegacyPass : public LoopPass { -public: - static char ID; // Pass ID, replacement for typeid - LoopSimplifyCFGLegacyPass() : LoopPass(ID) { - initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool runOnLoop(Loop *L, LPPassManager &) override { - if (skipLoop(L)) - return false; - - DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - Optional<MemorySSAUpdater> MSSAU; - if (EnableMSSALoopDependency) { - MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); - MSSAU = MemorySSAUpdater(MSSA); - if (VerifyMemorySSA) - MSSA->verifyMemorySSA(); - } - return simplifyLoopCFG(*L, DT, LI, SE, - MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - if (EnableMSSALoopDependency) { - AU.addRequired<MemorySSAWrapperPass>(); - AU.addPreserved<MemorySSAWrapperPass>(); - } - AU.addPreserved<DependenceAnalysisWrapperPass>(); - getLoopAnalysisUsage(AU); - } -}; -} - -char LoopSimplifyCFGLegacyPass::ID = 0; -INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", - "Simplify loop CFG", false, false) -INITIALIZE_PASS_DEPENDENCY(LoopPass) -INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) -INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", - "Simplify loop CFG", false, false) - -Pass *llvm::createLoopSimplifyCFGPass() { - return new LoopSimplifyCFGLegacyPass(); -} |
