diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp | 1412 |
1 files changed, 0 insertions, 1412 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/gnu/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp deleted file mode 100644 index 38b80f48ed0..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp +++ /dev/null @@ -1,1412 +0,0 @@ -//===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This pass implements a simple loop unroller. It works best when loops have -// been canonicalized by the -indvars pass, allowing it to determine the trip -// counts of loops easily. -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/LoopUnrollPass.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseMapInfo.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/CodeMetrics.h" -#include "llvm/Analysis/LoopAnalysisManager.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/LoopUnrollAnalyzer.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DiagnosticInfo.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/PassManager.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Scalar/LoopPassManager.h" -#include "llvm/Transforms/Utils.h" -#include "llvm/Transforms/Utils/LoopSimplify.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -#include "llvm/Transforms/Utils/UnrollLoop.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <limits> -#include <string> -#include <tuple> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "loop-unroll" - -static cl::opt<unsigned> - UnrollThreshold("unroll-threshold", cl::Hidden, - cl::desc("The cost threshold for loop unrolling")); - -static cl::opt<unsigned> UnrollPartialThreshold( - "unroll-partial-threshold", cl::Hidden, - cl::desc("The cost threshold for partial loop unrolling")); - -static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( - "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, - cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " - "to the threshold when aggressively unrolling a loop due to the " - "dynamic cost savings. If completely unrolling a loop will reduce " - "the total runtime from X to Y, we boost the loop unroll " - "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " - "X/Y). This limit avoids excessive code bloat.")); - -static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( - "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, - cl::desc("Don't allow loop unrolling to simulate more than this number of" - "iterations when checking full unroll profitability")); - -static cl::opt<unsigned> UnrollCount( - "unroll-count", cl::Hidden, - cl::desc("Use this unroll count for all loops including those with " - "unroll_count pragma values, for testing purposes")); - -static cl::opt<unsigned> UnrollMaxCount( - "unroll-max-count", cl::Hidden, - cl::desc("Set the max unroll count for partial and runtime unrolling, for" - "testing purposes")); - -static cl::opt<unsigned> UnrollFullMaxCount( - "unroll-full-max-count", cl::Hidden, - cl::desc( - "Set the max unroll count for full unrolling, for testing purposes")); - -static cl::opt<unsigned> UnrollPeelCount( - "unroll-peel-count", cl::Hidden, - cl::desc("Set the unroll peeling count, for testing purposes")); - -static cl::opt<bool> - UnrollAllowPartial("unroll-allow-partial", cl::Hidden, - cl::desc("Allows loops to be partially unrolled until " - "-unroll-threshold loop size is reached.")); - -static cl::opt<bool> UnrollAllowRemainder( - "unroll-allow-remainder", cl::Hidden, - cl::desc("Allow generation of a loop remainder (extra iterations) " - "when unrolling a loop.")); - -static cl::opt<bool> - UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, - cl::desc("Unroll loops with run-time trip counts")); - -static cl::opt<unsigned> UnrollMaxUpperBound( - "unroll-max-upperbound", cl::init(8), cl::Hidden, - cl::desc( - "The max of trip count upper bound that is considered in unrolling")); - -static cl::opt<unsigned> PragmaUnrollThreshold( - "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, - cl::desc("Unrolled size limit for loops with an unroll(full) or " - "unroll_count pragma.")); - -static cl::opt<unsigned> FlatLoopTripCountThreshold( - "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, - cl::desc("If the runtime tripcount for the loop is lower than the " - "threshold, the loop is considered as flat and will be less " - "aggressively unrolled.")); - -static cl::opt<bool> - UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, - cl::desc("Allows loops to be peeled when the dynamic " - "trip count is known to be low.")); - -static cl::opt<bool> UnrollUnrollRemainder( - "unroll-remainder", cl::Hidden, - cl::desc("Allow the loop remainder to be unrolled.")); - -// This option isn't ever intended to be enabled, it serves to allow -// experiments to check the assumptions about when this kind of revisit is -// necessary. -static cl::opt<bool> UnrollRevisitChildLoops( - "unroll-revisit-child-loops", cl::Hidden, - cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " - "This shouldn't typically be needed as child loops (or their " - "clones) were already visited.")); - -/// A magic value for use with the Threshold parameter to indicate -/// that the loop unroll should be performed regardless of how much -/// code expansion would result. -static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); - -/// Gather the various unrolling parameters based on the defaults, compiler -/// flags, TTI overrides and user specified parameters. -TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( - Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel, - Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, - Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, - Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { - TargetTransformInfo::UnrollingPreferences UP; - - // Set up the defaults - UP.Threshold = OptLevel > 2 ? 300 : 150; - UP.MaxPercentThresholdBoost = 400; - UP.OptSizeThreshold = 0; - UP.PartialThreshold = 150; - UP.PartialOptSizeThreshold = 0; - UP.Count = 0; - UP.PeelCount = 0; - UP.DefaultUnrollRuntimeCount = 8; - UP.MaxCount = std::numeric_limits<unsigned>::max(); - UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); - UP.BEInsns = 2; - UP.Partial = false; - UP.Runtime = false; - UP.AllowRemainder = true; - UP.UnrollRemainder = false; - UP.AllowExpensiveTripCount = false; - UP.Force = false; - UP.UpperBound = false; - UP.AllowPeeling = true; - UP.UnrollAndJam = false; - UP.UnrollAndJamInnerLoopThreshold = 60; - - // Override with any target specific settings - TTI.getUnrollingPreferences(L, SE, UP); - - // Apply size attributes - if (L->getHeader()->getParent()->optForSize()) { - UP.Threshold = UP.OptSizeThreshold; - UP.PartialThreshold = UP.PartialOptSizeThreshold; - } - - // Apply any user values specified by cl::opt - if (UnrollThreshold.getNumOccurrences() > 0) - UP.Threshold = UnrollThreshold; - if (UnrollPartialThreshold.getNumOccurrences() > 0) - UP.PartialThreshold = UnrollPartialThreshold; - if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) - UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; - if (UnrollMaxCount.getNumOccurrences() > 0) - UP.MaxCount = UnrollMaxCount; - if (UnrollFullMaxCount.getNumOccurrences() > 0) - UP.FullUnrollMaxCount = UnrollFullMaxCount; - if (UnrollPeelCount.getNumOccurrences() > 0) - UP.PeelCount = UnrollPeelCount; - if (UnrollAllowPartial.getNumOccurrences() > 0) - UP.Partial = UnrollAllowPartial; - if (UnrollAllowRemainder.getNumOccurrences() > 0) - UP.AllowRemainder = UnrollAllowRemainder; - if (UnrollRuntime.getNumOccurrences() > 0) - UP.Runtime = UnrollRuntime; - if (UnrollMaxUpperBound == 0) - UP.UpperBound = false; - if (UnrollAllowPeeling.getNumOccurrences() > 0) - UP.AllowPeeling = UnrollAllowPeeling; - if (UnrollUnrollRemainder.getNumOccurrences() > 0) - UP.UnrollRemainder = UnrollUnrollRemainder; - - // Apply user values provided by argument - if (UserThreshold.hasValue()) { - UP.Threshold = *UserThreshold; - UP.PartialThreshold = *UserThreshold; - } - if (UserCount.hasValue()) - UP.Count = *UserCount; - if (UserAllowPartial.hasValue()) - UP.Partial = *UserAllowPartial; - if (UserRuntime.hasValue()) - UP.Runtime = *UserRuntime; - if (UserUpperBound.hasValue()) - UP.UpperBound = *UserUpperBound; - if (UserAllowPeeling.hasValue()) - UP.AllowPeeling = *UserAllowPeeling; - - return UP; -} - -namespace { - -/// A struct to densely store the state of an instruction after unrolling at -/// each iteration. -/// -/// This is designed to work like a tuple of <Instruction *, int> for the -/// purposes of hashing and lookup, but to be able to associate two boolean -/// states with each key. -struct UnrolledInstState { - Instruction *I; - int Iteration : 30; - unsigned IsFree : 1; - unsigned IsCounted : 1; -}; - -/// Hashing and equality testing for a set of the instruction states. -struct UnrolledInstStateKeyInfo { - using PtrInfo = DenseMapInfo<Instruction *>; - using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; - - static inline UnrolledInstState getEmptyKey() { - return {PtrInfo::getEmptyKey(), 0, 0, 0}; - } - - static inline UnrolledInstState getTombstoneKey() { - return {PtrInfo::getTombstoneKey(), 0, 0, 0}; - } - - static inline unsigned getHashValue(const UnrolledInstState &S) { - return PairInfo::getHashValue({S.I, S.Iteration}); - } - - static inline bool isEqual(const UnrolledInstState &LHS, - const UnrolledInstState &RHS) { - return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); - } -}; - -struct EstimatedUnrollCost { - /// The estimated cost after unrolling. - unsigned UnrolledCost; - - /// The estimated dynamic cost of executing the instructions in the - /// rolled form. - unsigned RolledDynamicCost; -}; - -} // end anonymous namespace - -/// Figure out if the loop is worth full unrolling. -/// -/// Complete loop unrolling can make some loads constant, and we need to know -/// if that would expose any further optimization opportunities. This routine -/// estimates this optimization. It computes cost of unrolled loop -/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By -/// dynamic cost we mean that we won't count costs of blocks that are known not -/// to be executed (i.e. if we have a branch in the loop and we know that at the -/// given iteration its condition would be resolved to true, we won't add up the -/// cost of the 'false'-block). -/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If -/// the analysis failed (no benefits expected from the unrolling, or the loop is -/// too big to analyze), the returned value is None. -static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( - const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, - const SmallPtrSetImpl<const Value *> &EphValues, - const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { - // We want to be able to scale offsets by the trip count and add more offsets - // to them without checking for overflows, and we already don't want to - // analyze *massive* trip counts, so we force the max to be reasonably small. - assert(UnrollMaxIterationsCountToAnalyze < - (unsigned)(std::numeric_limits<int>::max() / 2) && - "The unroll iterations max is too large!"); - - // Only analyze inner loops. We can't properly estimate cost of nested loops - // and we won't visit inner loops again anyway. - if (!L->empty()) - return None; - - // Don't simulate loops with a big or unknown tripcount - if (!UnrollMaxIterationsCountToAnalyze || !TripCount || - TripCount > UnrollMaxIterationsCountToAnalyze) - return None; - - SmallSetVector<BasicBlock *, 16> BBWorklist; - SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; - DenseMap<Value *, Constant *> SimplifiedValues; - SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; - - // The estimated cost of the unrolled form of the loop. We try to estimate - // this by simplifying as much as we can while computing the estimate. - unsigned UnrolledCost = 0; - - // We also track the estimated dynamic (that is, actually executed) cost in - // the rolled form. This helps identify cases when the savings from unrolling - // aren't just exposing dead control flows, but actual reduced dynamic - // instructions due to the simplifications which we expect to occur after - // unrolling. - unsigned RolledDynamicCost = 0; - - // We track the simplification of each instruction in each iteration. We use - // this to recursively merge costs into the unrolled cost on-demand so that - // we don't count the cost of any dead code. This is essentially a map from - // <instruction, int> to <bool, bool>, but stored as a densely packed struct. - DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; - - // A small worklist used to accumulate cost of instructions from each - // observable and reached root in the loop. - SmallVector<Instruction *, 16> CostWorklist; - - // PHI-used worklist used between iterations while accumulating cost. - SmallVector<Instruction *, 4> PHIUsedList; - - // Helper function to accumulate cost for instructions in the loop. - auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { - assert(Iteration >= 0 && "Cannot have a negative iteration!"); - assert(CostWorklist.empty() && "Must start with an empty cost list"); - assert(PHIUsedList.empty() && "Must start with an empty phi used list"); - CostWorklist.push_back(&RootI); - for (;; --Iteration) { - do { - Instruction *I = CostWorklist.pop_back_val(); - - // InstCostMap only uses I and Iteration as a key, the other two values - // don't matter here. - auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); - if (CostIter == InstCostMap.end()) - // If an input to a PHI node comes from a dead path through the loop - // we may have no cost data for it here. What that actually means is - // that it is free. - continue; - auto &Cost = *CostIter; - if (Cost.IsCounted) - // Already counted this instruction. - continue; - - // Mark that we are counting the cost of this instruction now. - Cost.IsCounted = true; - - // If this is a PHI node in the loop header, just add it to the PHI set. - if (auto *PhiI = dyn_cast<PHINode>(I)) - if (PhiI->getParent() == L->getHeader()) { - assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " - "inherently simplify during unrolling."); - if (Iteration == 0) - continue; - - // Push the incoming value from the backedge into the PHI used list - // if it is an in-loop instruction. We'll use this to populate the - // cost worklist for the next iteration (as we count backwards). - if (auto *OpI = dyn_cast<Instruction>( - PhiI->getIncomingValueForBlock(L->getLoopLatch()))) - if (L->contains(OpI)) - PHIUsedList.push_back(OpI); - continue; - } - - // First accumulate the cost of this instruction. - if (!Cost.IsFree) { - UnrolledCost += TTI.getUserCost(I); - LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " - << Iteration << "): "); - LLVM_DEBUG(I->dump()); - } - - // We must count the cost of every operand which is not free, - // recursively. If we reach a loop PHI node, simply add it to the set - // to be considered on the next iteration (backwards!). - for (Value *Op : I->operands()) { - // Check whether this operand is free due to being a constant or - // outside the loop. - auto *OpI = dyn_cast<Instruction>(Op); - if (!OpI || !L->contains(OpI)) - continue; - - // Otherwise accumulate its cost. - CostWorklist.push_back(OpI); - } - } while (!CostWorklist.empty()); - - if (PHIUsedList.empty()) - // We've exhausted the search. - break; - - assert(Iteration > 0 && - "Cannot track PHI-used values past the first iteration!"); - CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); - PHIUsedList.clear(); - } - }; - - // Ensure that we don't violate the loop structure invariants relied on by - // this analysis. - assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); - assert(L->isLCSSAForm(DT) && - "Must have loops in LCSSA form to track live-out values."); - - LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); - - // Simulate execution of each iteration of the loop counting instructions, - // which would be simplified. - // Since the same load will take different values on different iterations, - // we literally have to go through all loop's iterations. - for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { - LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); - - // Prepare for the iteration by collecting any simplified entry or backedge - // inputs. - for (Instruction &I : *L->getHeader()) { - auto *PHI = dyn_cast<PHINode>(&I); - if (!PHI) - break; - - // The loop header PHI nodes must have exactly two input: one from the - // loop preheader and one from the loop latch. - assert( - PHI->getNumIncomingValues() == 2 && - "Must have an incoming value only for the preheader and the latch."); - - Value *V = PHI->getIncomingValueForBlock( - Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); - Constant *C = dyn_cast<Constant>(V); - if (Iteration != 0 && !C) - C = SimplifiedValues.lookup(V); - if (C) - SimplifiedInputValues.push_back({PHI, C}); - } - - // Now clear and re-populate the map for the next iteration. - SimplifiedValues.clear(); - while (!SimplifiedInputValues.empty()) - SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); - - UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); - - BBWorklist.clear(); - BBWorklist.insert(L->getHeader()); - // Note that we *must not* cache the size, this loop grows the worklist. - for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { - BasicBlock *BB = BBWorklist[Idx]; - - // Visit all instructions in the given basic block and try to simplify - // it. We don't change the actual IR, just count optimization - // opportunities. - for (Instruction &I : *BB) { - // These won't get into the final code - don't even try calculating the - // cost for them. - if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) - continue; - - // Track this instruction's expected baseline cost when executing the - // rolled loop form. - RolledDynamicCost += TTI.getUserCost(&I); - - // Visit the instruction to analyze its loop cost after unrolling, - // and if the visitor returns true, mark the instruction as free after - // unrolling and continue. - bool IsFree = Analyzer.visit(I); - bool Inserted = InstCostMap.insert({&I, (int)Iteration, - (unsigned)IsFree, - /*IsCounted*/ false}).second; - (void)Inserted; - assert(Inserted && "Cannot have a state for an unvisited instruction!"); - - if (IsFree) - continue; - - // Can't properly model a cost of a call. - // FIXME: With a proper cost model we should be able to do it. - if (auto *CI = dyn_cast<CallInst>(&I)) { - const Function *Callee = CI->getCalledFunction(); - if (!Callee || TTI.isLoweredToCall(Callee)) { - LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); - return None; - } - } - - // If the instruction might have a side-effect recursively account for - // the cost of it and all the instructions leading up to it. - if (I.mayHaveSideEffects()) - AddCostRecursively(I, Iteration); - - // If unrolled body turns out to be too big, bail out. - if (UnrolledCost > MaxUnrolledLoopSize) { - LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" - << " UnrolledCost: " << UnrolledCost - << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize - << "\n"); - return None; - } - } - - Instruction *TI = BB->getTerminator(); - - // Add in the live successors by first checking whether we have terminator - // that may be simplified based on the values simplified by this call. - BasicBlock *KnownSucc = nullptr; - if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { - if (BI->isConditional()) { - if (Constant *SimpleCond = - SimplifiedValues.lookup(BI->getCondition())) { - // Just take the first successor if condition is undef - if (isa<UndefValue>(SimpleCond)) - KnownSucc = BI->getSuccessor(0); - else if (ConstantInt *SimpleCondVal = - dyn_cast<ConstantInt>(SimpleCond)) - KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); - } - } - } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - if (Constant *SimpleCond = - SimplifiedValues.lookup(SI->getCondition())) { - // Just take the first successor if condition is undef - if (isa<UndefValue>(SimpleCond)) - KnownSucc = SI->getSuccessor(0); - else if (ConstantInt *SimpleCondVal = - dyn_cast<ConstantInt>(SimpleCond)) - KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); - } - } - if (KnownSucc) { - if (L->contains(KnownSucc)) - BBWorklist.insert(KnownSucc); - else - ExitWorklist.insert({BB, KnownSucc}); - continue; - } - - // Add BB's successors to the worklist. - for (BasicBlock *Succ : successors(BB)) - if (L->contains(Succ)) - BBWorklist.insert(Succ); - else - ExitWorklist.insert({BB, Succ}); - AddCostRecursively(*TI, Iteration); - } - - // If we found no optimization opportunities on the first iteration, we - // won't find them on later ones too. - if (UnrolledCost == RolledDynamicCost) { - LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" - << " UnrolledCost: " << UnrolledCost << "\n"); - return None; - } - } - - while (!ExitWorklist.empty()) { - BasicBlock *ExitingBB, *ExitBB; - std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); - - for (Instruction &I : *ExitBB) { - auto *PN = dyn_cast<PHINode>(&I); - if (!PN) - break; - - Value *Op = PN->getIncomingValueForBlock(ExitingBB); - if (auto *OpI = dyn_cast<Instruction>(Op)) - if (L->contains(OpI)) - AddCostRecursively(*OpI, TripCount - 1); - } - } - - LLVM_DEBUG(dbgs() << "Analysis finished:\n" - << "UnrolledCost: " << UnrolledCost << ", " - << "RolledDynamicCost: " << RolledDynamicCost << "\n"); - return {{UnrolledCost, RolledDynamicCost}}; -} - -/// ApproximateLoopSize - Approximate the size of the loop. -unsigned llvm::ApproximateLoopSize( - const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, - const TargetTransformInfo &TTI, - const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { - CodeMetrics Metrics; - for (BasicBlock *BB : L->blocks()) - Metrics.analyzeBasicBlock(BB, TTI, EphValues); - NumCalls = Metrics.NumInlineCandidates; - NotDuplicatable = Metrics.notDuplicatable; - Convergent = Metrics.convergent; - - unsigned LoopSize = Metrics.NumInsts; - - // Don't allow an estimate of size zero. This would allows unrolling of loops - // with huge iteration counts, which is a compile time problem even if it's - // not a problem for code quality. Also, the code using this size may assume - // that each loop has at least three instructions (likely a conditional - // branch, a comparison feeding that branch, and some kind of loop increment - // feeding that comparison instruction). - LoopSize = std::max(LoopSize, BEInsns + 1); - - return LoopSize; -} - -// Returns the loop hint metadata node with the given name (for example, -// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is -// returned. -static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { - if (MDNode *LoopID = L->getLoopID()) - return GetUnrollMetadata(LoopID, Name); - return nullptr; -} - -// Returns true if the loop has an unroll(full) pragma. -static bool HasUnrollFullPragma(const Loop *L) { - return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); -} - -// Returns true if the loop has an unroll(enable) pragma. This metadata is used -// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. -static bool HasUnrollEnablePragma(const Loop *L) { - return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); -} - -// Returns true if the loop has an runtime unroll(disable) pragma. -static bool HasRuntimeUnrollDisablePragma(const Loop *L) { - return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); -} - -// If loop has an unroll_count pragma return the (necessarily -// positive) value from the pragma. Otherwise return 0. -static unsigned UnrollCountPragmaValue(const Loop *L) { - MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); - if (MD) { - assert(MD->getNumOperands() == 2 && - "Unroll count hint metadata should have two operands."); - unsigned Count = - mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); - assert(Count >= 1 && "Unroll count must be positive."); - return Count; - } - return 0; -} - -// Computes the boosting factor for complete unrolling. -// If fully unrolling the loop would save a lot of RolledDynamicCost, it would -// be beneficial to fully unroll the loop even if unrolledcost is large. We -// use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust -// the unroll threshold. -static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, - unsigned MaxPercentThresholdBoost) { - if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) - return 100; - else if (Cost.UnrolledCost != 0) - // The boosting factor is RolledDynamicCost / UnrolledCost - return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, - MaxPercentThresholdBoost); - else - return MaxPercentThresholdBoost; -} - -// Returns loop size estimation for unrolled loop. -static uint64_t getUnrolledLoopSize( - unsigned LoopSize, - TargetTransformInfo::UnrollingPreferences &UP) { - assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); - return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; -} - -// Returns true if unroll count was set explicitly. -// Calculates unroll count and writes it to UP.Count. -// Unless IgnoreUser is true, will also use metadata and command-line options -// that are specific to to the LoopUnroll pass (which, for instance, are -// irrelevant for the LoopUnrollAndJam pass). -// FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes -// many LoopUnroll-specific options. The shared functionality should be -// refactored into it own function. -bool llvm::computeUnrollCount( - Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, - ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, - OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, - unsigned &TripMultiple, unsigned LoopSize, - TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { - - // Check for explicit Count. - // 1st priority is unroll count set by "unroll-count" option. - bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; - if (UserUnrollCount) { - UP.Count = UnrollCount; - UP.AllowExpensiveTripCount = true; - UP.Force = true; - if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) - return true; - } - - // 2nd priority is unroll count set by pragma. - unsigned PragmaCount = UnrollCountPragmaValue(L); - if (PragmaCount > 0) { - UP.Count = PragmaCount; - UP.Runtime = true; - UP.AllowExpensiveTripCount = true; - UP.Force = true; - if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && - getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) - return true; - } - bool PragmaFullUnroll = HasUnrollFullPragma(L); - if (PragmaFullUnroll && TripCount != 0) { - UP.Count = TripCount; - if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) - return false; - } - - bool PragmaEnableUnroll = HasUnrollEnablePragma(L); - bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || - PragmaEnableUnroll || UserUnrollCount; - - if (ExplicitUnroll && TripCount != 0) { - // If the loop has an unrolling pragma, we want to be more aggressive with - // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold - // value which is larger than the default limits. - UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); - UP.PartialThreshold = - std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); - } - - // 3rd priority is full unroll count. - // Full unroll makes sense only when TripCount or its upper bound could be - // statically calculated. - // Also we need to check if we exceed FullUnrollMaxCount. - // If using the upper bound to unroll, TripMultiple should be set to 1 because - // we do not know when loop may exit. - // MaxTripCount and ExactTripCount cannot both be non zero since we only - // compute the former when the latter is zero. - unsigned ExactTripCount = TripCount; - assert((ExactTripCount == 0 || MaxTripCount == 0) && - "ExtractTripCount and MaxTripCount cannot both be non zero."); - unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; - UP.Count = FullUnrollTripCount; - if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { - // When computing the unrolled size, note that BEInsns are not replicated - // like the rest of the loop body. - if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { - UseUpperBound = (MaxTripCount == FullUnrollTripCount); - TripCount = FullUnrollTripCount; - TripMultiple = UP.UpperBound ? 1 : TripMultiple; - return ExplicitUnroll; - } else { - // The loop isn't that small, but we still can fully unroll it if that - // helps to remove a significant number of instructions. - // To check that, run additional analysis on the loop. - if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( - L, FullUnrollTripCount, DT, SE, EphValues, TTI, - UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { - unsigned Boost = - getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); - if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { - UseUpperBound = (MaxTripCount == FullUnrollTripCount); - TripCount = FullUnrollTripCount; - TripMultiple = UP.UpperBound ? 1 : TripMultiple; - return ExplicitUnroll; - } - } - } - } - - // 4th priority is loop peeling. - computePeelCount(L, LoopSize, UP, TripCount, SE); - if (UP.PeelCount) { - UP.Runtime = false; - UP.Count = 1; - return ExplicitUnroll; - } - - // 5th priority is partial unrolling. - // Try partial unroll only when TripCount could be statically calculated. - if (TripCount) { - UP.Partial |= ExplicitUnroll; - if (!UP.Partial) { - LLVM_DEBUG(dbgs() << " will not try to unroll partially because " - << "-unroll-allow-partial not given\n"); - UP.Count = 0; - return false; - } - if (UP.Count == 0) - UP.Count = TripCount; - if (UP.PartialThreshold != NoThreshold) { - // Reduce unroll count to be modulo of TripCount for partial unrolling. - if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) - UP.Count = - (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / - (LoopSize - UP.BEInsns); - if (UP.Count > UP.MaxCount) - UP.Count = UP.MaxCount; - while (UP.Count != 0 && TripCount % UP.Count != 0) - UP.Count--; - if (UP.AllowRemainder && UP.Count <= 1) { - // If there is no Count that is modulo of TripCount, set Count to - // largest power-of-two factor that satisfies the threshold limit. - // As we'll create fixup loop, do the type of unrolling only if - // remainder loop is allowed. - UP.Count = UP.DefaultUnrollRuntimeCount; - while (UP.Count != 0 && - getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) - UP.Count >>= 1; - } - if (UP.Count < 2) { - if (PragmaEnableUnroll) - ORE->emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, - "UnrollAsDirectedTooLarge", - L->getStartLoc(), L->getHeader()) - << "Unable to unroll loop as directed by unroll(enable) " - "pragma " - "because unrolled size is too large."; - }); - UP.Count = 0; - } - } else { - UP.Count = TripCount; - } - if (UP.Count > UP.MaxCount) - UP.Count = UP.MaxCount; - if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && - UP.Count != TripCount) - ORE->emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, - "FullUnrollAsDirectedTooLarge", - L->getStartLoc(), L->getHeader()) - << "Unable to fully unroll loop as directed by unroll pragma " - "because " - "unrolled size is too large."; - }); - return ExplicitUnroll; - } - assert(TripCount == 0 && - "All cases when TripCount is constant should be covered here."); - if (PragmaFullUnroll) - ORE->emit([&]() { - return OptimizationRemarkMissed( - DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", - L->getStartLoc(), L->getHeader()) - << "Unable to fully unroll loop as directed by unroll(full) " - "pragma " - "because loop has a runtime trip count."; - }); - - // 6th priority is runtime unrolling. - // Don't unroll a runtime trip count loop when it is disabled. - if (HasRuntimeUnrollDisablePragma(L)) { - UP.Count = 0; - return false; - } - - // Check if the runtime trip count is too small when profile is available. - if (L->getHeader()->getParent()->hasProfileData()) { - if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { - if (*ProfileTripCount < FlatLoopTripCountThreshold) - return false; - else - UP.AllowExpensiveTripCount = true; - } - } - - // Reduce count based on the type of unrolling and the threshold values. - UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; - if (!UP.Runtime) { - LLVM_DEBUG( - dbgs() << " will not try to unroll loop with runtime trip count " - << "-unroll-runtime not given\n"); - UP.Count = 0; - return false; - } - if (UP.Count == 0) - UP.Count = UP.DefaultUnrollRuntimeCount; - - // Reduce unroll count to be the largest power-of-two factor of - // the original count which satisfies the threshold limit. - while (UP.Count != 0 && - getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) - UP.Count >>= 1; - -#ifndef NDEBUG - unsigned OrigCount = UP.Count; -#endif - - if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { - while (UP.Count != 0 && TripMultiple % UP.Count != 0) - UP.Count >>= 1; - LLVM_DEBUG( - dbgs() << "Remainder loop is restricted (that could architecture " - "specific or because the loop contains a convergent " - "instruction), so unroll count must divide the trip " - "multiple, " - << TripMultiple << ". Reducing unroll count from " << OrigCount - << " to " << UP.Count << ".\n"); - - using namespace ore; - - if (PragmaCount > 0 && !UP.AllowRemainder) - ORE->emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, - "DifferentUnrollCountFromDirected", - L->getStartLoc(), L->getHeader()) - << "Unable to unroll loop the number of times directed by " - "unroll_count pragma because remainder loop is restricted " - "(that could architecture specific or because the loop " - "contains a convergent instruction) and so must have an " - "unroll " - "count that divides the loop trip multiple of " - << NV("TripMultiple", TripMultiple) << ". Unrolling instead " - << NV("UnrollCount", UP.Count) << " time(s)."; - }); - } - - if (UP.Count > UP.MaxCount) - UP.Count = UP.MaxCount; - LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count - << "\n"); - if (UP.Count < 2) - UP.Count = 0; - return ExplicitUnroll; -} - -static LoopUnrollResult tryToUnrollLoop( - Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, - const TargetTransformInfo &TTI, AssumptionCache &AC, - OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel, - bool OnlyWhenForced, Optional<unsigned> ProvidedCount, - Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, - Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, - Optional<bool> ProvidedAllowPeeling) { - LLVM_DEBUG(dbgs() << "Loop Unroll: F[" - << L->getHeader()->getParent()->getName() << "] Loop %" - << L->getHeader()->getName() << "\n"); - TransformationMode TM = hasUnrollTransformation(L); - if (TM & TM_Disable) - return LoopUnrollResult::Unmodified; - if (!L->isLoopSimplifyForm()) { - LLVM_DEBUG( - dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); - return LoopUnrollResult::Unmodified; - } - - // When automtatic unrolling is disabled, do not unroll unless overridden for - // this loop. - if (OnlyWhenForced && !(TM & TM_Enable)) - return LoopUnrollResult::Unmodified; - - unsigned NumInlineCandidates; - bool NotDuplicatable; - bool Convergent; - TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( - L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount, - ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, - ProvidedAllowPeeling); - // Exit early if unrolling is disabled. - if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) - return LoopUnrollResult::Unmodified; - - SmallPtrSet<const Value *, 32> EphValues; - CodeMetrics::collectEphemeralValues(L, &AC, EphValues); - - unsigned LoopSize = - ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, - TTI, EphValues, UP.BEInsns); - LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); - if (NotDuplicatable) { - LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" - << " instructions.\n"); - return LoopUnrollResult::Unmodified; - } - if (NumInlineCandidates != 0) { - LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); - return LoopUnrollResult::Unmodified; - } - - // Find trip count and trip multiple if count is not available - unsigned TripCount = 0; - unsigned MaxTripCount = 0; - unsigned TripMultiple = 1; - // If there are multiple exiting blocks but one of them is the latch, use the - // latch for the trip count estimation. Otherwise insist on a single exiting - // block for the trip count estimation. - BasicBlock *ExitingBlock = L->getLoopLatch(); - if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) - ExitingBlock = L->getExitingBlock(); - if (ExitingBlock) { - TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); - TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); - } - - // If the loop contains a convergent operation, the prelude we'd add - // to do the first few instructions before we hit the unrolled loop - // is unsafe -- it adds a control-flow dependency to the convergent - // operation. Therefore restrict remainder loop (try unrollig without). - // - // TODO: This is quite conservative. In practice, convergent_op() - // is likely to be called unconditionally in the loop. In this - // case, the program would be ill-formed (on most architectures) - // unless n were the same on all threads in a thread group. - // Assuming n is the same on all threads, any kind of unrolling is - // safe. But currently llvm's notion of convergence isn't powerful - // enough to express this. - if (Convergent) - UP.AllowRemainder = false; - - // Try to find the trip count upper bound if we cannot find the exact trip - // count. - bool MaxOrZero = false; - if (!TripCount) { - MaxTripCount = SE.getSmallConstantMaxTripCount(L); - MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); - // We can unroll by the upper bound amount if it's generally allowed or if - // we know that the loop is executed either the upper bound or zero times. - // (MaxOrZero unrolling keeps only the first loop test, so the number of - // loop tests remains the same compared to the non-unrolled version, whereas - // the generic upper bound unrolling keeps all but the last loop test so the - // number of loop tests goes up which may end up being worse on targets with - // constrained branch predictor resources so is controlled by an option.) - // In addition we only unroll small upper bounds. - if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { - MaxTripCount = 0; - } - } - - // computeUnrollCount() decides whether it is beneficial to use upper bound to - // fully unroll the loop. - bool UseUpperBound = false; - bool IsCountSetExplicitly = computeUnrollCount( - L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, - TripMultiple, LoopSize, UP, UseUpperBound); - if (!UP.Count) - return LoopUnrollResult::Unmodified; - // Unroll factor (Count) must be less or equal to TripCount. - if (TripCount && UP.Count > TripCount) - UP.Count = TripCount; - - // Save loop properties before it is transformed. - MDNode *OrigLoopID = L->getLoopID(); - - // Unroll the loop. - Loop *RemainderLoop = nullptr; - LoopUnrollResult UnrollResult = UnrollLoop( - L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, - UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, - LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); - if (UnrollResult == LoopUnrollResult::Unmodified) - return LoopUnrollResult::Unmodified; - - if (RemainderLoop) { - Optional<MDNode *> RemainderLoopID = - makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, - LLVMLoopUnrollFollowupRemainder}); - if (RemainderLoopID.hasValue()) - RemainderLoop->setLoopID(RemainderLoopID.getValue()); - } - - if (UnrollResult != LoopUnrollResult::FullyUnrolled) { - Optional<MDNode *> NewLoopID = - makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, - LLVMLoopUnrollFollowupUnrolled}); - if (NewLoopID.hasValue()) { - L->setLoopID(NewLoopID.getValue()); - - // Do not setLoopAlreadyUnrolled if loop attributes have been specified - // explicitly. - return UnrollResult; - } - } - - // If loop has an unroll count pragma or unrolled by explicitly set count - // mark loop as unrolled to prevent unrolling beyond that requested. - // If the loop was peeled, we already "used up" the profile information - // we had, so we don't want to unroll or peel again. - if (UnrollResult != LoopUnrollResult::FullyUnrolled && - (IsCountSetExplicitly || UP.PeelCount)) - L->setLoopAlreadyUnrolled(); - - return UnrollResult; -} - -namespace { - -class LoopUnroll : public LoopPass { -public: - static char ID; // Pass ID, replacement for typeid - - int OptLevel; - - /// If false, use a cost model to determine whether unrolling of a loop is - /// profitable. If true, only loops that explicitly request unrolling via - /// metadata are considered. All other loops are skipped. - bool OnlyWhenForced; - - Optional<unsigned> ProvidedCount; - Optional<unsigned> ProvidedThreshold; - Optional<bool> ProvidedAllowPartial; - Optional<bool> ProvidedRuntime; - Optional<bool> ProvidedUpperBound; - Optional<bool> ProvidedAllowPeeling; - - LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, - Optional<unsigned> Threshold = None, - Optional<unsigned> Count = None, - Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, - Optional<bool> UpperBound = None, - Optional<bool> AllowPeeling = None) - : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), - ProvidedCount(std::move(Count)), ProvidedThreshold(Threshold), - ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime), - ProvidedUpperBound(UpperBound), ProvidedAllowPeeling(AllowPeeling) { - initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); - } - - bool runOnLoop(Loop *L, LPPassManager &LPM) override { - if (skipLoop(L)) - return false; - - Function &F = *L->getHeader()->getParent(); - - auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - const TargetTransformInfo &TTI = - getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - // For the old PM, we can't use OptimizationRemarkEmitter as an analysis - // pass. Function analyses need to be preserved across loop transformations - // but ORE cannot be preserved (see comment before the pass definition). - OptimizationRemarkEmitter ORE(&F); - bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); - - LoopUnrollResult Result = tryToUnrollLoop( - L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, OnlyWhenForced, - ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, - ProvidedUpperBound, ProvidedAllowPeeling); - - if (Result == LoopUnrollResult::FullyUnrolled) - LPM.markLoopAsDeleted(*L); - - return Result != LoopUnrollResult::Unmodified; - } - - /// This transformation requires natural loop information & requires that - /// loop preheaders be inserted into the CFG... - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - // FIXME: Loop passes are required to preserve domtree, and for now we just - // recreate dom info if anything gets unrolled. - getLoopAnalysisUsage(AU); - } -}; - -} // end anonymous namespace - -char LoopUnroll::ID = 0; - -INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(LoopPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) - -Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, - int Threshold, int Count, int AllowPartial, - int Runtime, int UpperBound, - int AllowPeeling) { - // TODO: It would make more sense for this function to take the optionals - // directly, but that's dangerous since it would silently break out of tree - // callers. - return new LoopUnroll( - OptLevel, OnlyWhenForced, - Threshold == -1 ? None : Optional<unsigned>(Threshold), - Count == -1 ? None : Optional<unsigned>(Count), - AllowPartial == -1 ? None : Optional<bool>(AllowPartial), - Runtime == -1 ? None : Optional<bool>(Runtime), - UpperBound == -1 ? None : Optional<bool>(UpperBound), - AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); -} - -Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced) { - return createLoopUnrollPass(OptLevel, OnlyWhenForced, -1, -1, 0, 0, 0, 0); -} - -PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, - LoopStandardAnalysisResults &AR, - LPMUpdater &Updater) { - const auto &FAM = - AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); - Function *F = L.getHeader()->getParent(); - - auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); - // FIXME: This should probably be optional rather than required. - if (!ORE) - report_fatal_error( - "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " - "cached at a higher level"); - - // Keep track of the previous loop structure so we can identify new loops - // created by unrolling. - Loop *ParentL = L.getParentLoop(); - SmallPtrSet<Loop *, 4> OldLoops; - if (ParentL) - OldLoops.insert(ParentL->begin(), ParentL->end()); - else - OldLoops.insert(AR.LI.begin(), AR.LI.end()); - - std::string LoopName = L.getName(); - - bool Changed = - tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, - /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced, - /*Count*/ None, - /*Threshold*/ None, /*AllowPartial*/ false, - /*Runtime*/ false, /*UpperBound*/ false, - /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; - if (!Changed) - return PreservedAnalyses::all(); - - // The parent must not be damaged by unrolling! -#ifndef NDEBUG - if (ParentL) - ParentL->verifyLoop(); -#endif - - // Unrolling can do several things to introduce new loops into a loop nest: - // - Full unrolling clones child loops within the current loop but then - // removes the current loop making all of the children appear to be new - // sibling loops. - // - // When a new loop appears as a sibling loop after fully unrolling, - // its nesting structure has fundamentally changed and we want to revisit - // it to reflect that. - // - // When unrolling has removed the current loop, we need to tell the - // infrastructure that it is gone. - // - // Finally, we support a debugging/testing mode where we revisit child loops - // as well. These are not expected to require further optimizations as either - // they or the loop they were cloned from have been directly visited already. - // But the debugging mode allows us to check this assumption. - bool IsCurrentLoopValid = false; - SmallVector<Loop *, 4> SibLoops; - if (ParentL) - SibLoops.append(ParentL->begin(), ParentL->end()); - else - SibLoops.append(AR.LI.begin(), AR.LI.end()); - erase_if(SibLoops, [&](Loop *SibLoop) { - if (SibLoop == &L) { - IsCurrentLoopValid = true; - return true; - } - - // Otherwise erase the loop from the list if it was in the old loops. - return OldLoops.count(SibLoop) != 0; - }); - Updater.addSiblingLoops(SibLoops); - - if (!IsCurrentLoopValid) { - Updater.markLoopAsDeleted(L, LoopName); - } else { - // We can only walk child loops if the current loop remained valid. - if (UnrollRevisitChildLoops) { - // Walk *all* of the child loops. - SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); - Updater.addChildLoops(ChildLoops); - } - } - - return getLoopPassPreservedAnalyses(); -} - -template <typename RangeT> -static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { - SmallVector<Loop *, 8> Worklist; - // We use an internal worklist to build up the preorder traversal without - // recursion. - SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; - - for (Loop *RootL : Loops) { - assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); - assert(PreOrderWorklist.empty() && - "Must start with an empty preorder walk worklist."); - PreOrderWorklist.push_back(RootL); - do { - Loop *L = PreOrderWorklist.pop_back_val(); - PreOrderWorklist.append(L->begin(), L->end()); - PreOrderLoops.push_back(L); - } while (!PreOrderWorklist.empty()); - - Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); - PreOrderLoops.clear(); - } - return Worklist; -} - -PreservedAnalyses LoopUnrollPass::run(Function &F, - FunctionAnalysisManager &AM) { - auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); - auto &LI = AM.getResult<LoopAnalysis>(F); - auto &TTI = AM.getResult<TargetIRAnalysis>(F); - auto &DT = AM.getResult<DominatorTreeAnalysis>(F); - auto &AC = AM.getResult<AssumptionAnalysis>(F); - auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); - - LoopAnalysisManager *LAM = nullptr; - if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) - LAM = &LAMProxy->getManager(); - - const ModuleAnalysisManager &MAM = - AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); - ProfileSummaryInfo *PSI = - MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); - - bool Changed = false; - - // The unroller requires loops to be in simplified form, and also needs LCSSA. - // Since simplification may add new inner loops, it has to run before the - // legality and profitability checks. This means running the loop unroller - // will simplify all loops, regardless of whether anything end up being - // unrolled. - for (auto &L : LI) { - Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */); - Changed |= formLCSSARecursively(*L, DT, &LI, &SE); - } - - SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); - - while (!Worklist.empty()) { - // Because the LoopInfo stores the loops in RPO, we walk the worklist - // from back to front so that we work forward across the CFG, which - // for unrolling is only needed to get optimization remarks emitted in - // a forward order. - Loop &L = *Worklist.pop_back_val(); -#ifndef NDEBUG - Loop *ParentL = L.getParentLoop(); -#endif - - // Check if the profile summary indicates that the profiled application - // has a huge working set size, in which case we disable peeling to avoid - // bloating it further. - Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; - if (PSI && PSI->hasHugeWorkingSetSize()) - LocalAllowPeeling = false; - std::string LoopName = L.getName(); - // The API here is quite complex to call and we allow to select some - // flavors of unrolling during construction time (by setting UnrollOpts). - LoopUnrollResult Result = tryToUnrollLoop( - &L, DT, &LI, SE, TTI, AC, ORE, - /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, - /*Count*/ None, - /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, - UnrollOpts.AllowUpperBound, LocalAllowPeeling); - Changed |= Result != LoopUnrollResult::Unmodified; - - // The parent must not be damaged by unrolling! -#ifndef NDEBUG - if (Result != LoopUnrollResult::Unmodified && ParentL) - ParentL->verifyLoop(); -#endif - - // Clear any cached analysis results for L if we removed it completely. - if (LAM && Result == LoopUnrollResult::FullyUnrolled) - LAM->clear(L, LoopName); - } - - if (!Changed) - return PreservedAnalyses::all(); - - return getLoopPassPreservedAnalyses(); -} |
