diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/NaryReassociate.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/NaryReassociate.cpp | 548 |
1 files changed, 0 insertions, 548 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/NaryReassociate.cpp b/gnu/llvm/lib/Transforms/Scalar/NaryReassociate.cpp deleted file mode 100644 index 7106ea216ad..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/NaryReassociate.cpp +++ /dev/null @@ -1,548 +0,0 @@ -//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This pass reassociates n-ary add expressions and eliminates the redundancy -// exposed by the reassociation. -// -// A motivating example: -// -// void foo(int a, int b) { -// bar(a + b); -// bar((a + 2) + b); -// } -// -// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify -// the above code to -// -// int t = a + b; -// bar(t); -// bar(t + 2); -// -// However, the Reassociate pass is unable to do that because it processes each -// instruction individually and believes (a + 2) + b is the best form according -// to its rank system. -// -// To address this limitation, NaryReassociate reassociates an expression in a -// form that reuses existing instructions. As a result, NaryReassociate can -// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that -// (a + b) is computed before. -// -// NaryReassociate works as follows. For every instruction in the form of (a + -// b) + c, it checks whether a + c or b + c is already computed by a dominating -// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + -// c) + a and removes the redundancy accordingly. To efficiently look up whether -// an expression is computed before, we store each instruction seen and its SCEV -// into an SCEV-to-instruction map. -// -// Although the algorithm pattern-matches only ternary additions, it -// automatically handles many >3-ary expressions by walking through the function -// in the depth-first order. For example, given -// -// (a + c) + d -// ((a + b) + c) + d -// -// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites -// ((a + c) + b) + d into ((a + c) + d) + b. -// -// Finally, the above dominator-based algorithm may need to be run multiple -// iterations before emitting optimal code. One source of this need is that we -// only split an operand when it is used only once. The above algorithm can -// eliminate an instruction and decrease the usage count of its operands. As a -// result, an instruction that previously had multiple uses may become a -// single-use instruction and thus eligible for split consideration. For -// example, -// -// ac = a + c -// ab = a + b -// abc = ab + c -// ab2 = ab + b -// ab2c = ab2 + c -// -// In the first iteration, we cannot reassociate abc to ac+b because ab is used -// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a -// result, ab2 becomes dead and ab will be used only once in the second -// iteration. -// -// Limitations and TODO items: -// -// 1) We only considers n-ary adds and muls for now. This should be extended -// and generalized. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/NaryReassociate.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Transforms/Scalar.h" -#include <cassert> -#include <cstdint> - -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "nary-reassociate" - -namespace { - -class NaryReassociateLegacyPass : public FunctionPass { -public: - static char ID; - - NaryReassociateLegacyPass() : FunctionPass(ID) { - initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool doInitialization(Module &M) override { - return false; - } - - bool runOnFunction(Function &F) override; - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addPreserved<ScalarEvolutionWrapperPass>(); - AU.addPreserved<TargetLibraryInfoWrapperPass>(); - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<ScalarEvolutionWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.setPreservesCFG(); - } - -private: - NaryReassociatePass Impl; -}; - -} // end anonymous namespace - -char NaryReassociateLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate", - "Nary reassociation", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate", - "Nary reassociation", false, false) - -FunctionPass *llvm::createNaryReassociatePass() { - return new NaryReassociateLegacyPass(); -} - -bool NaryReassociateLegacyPass::runOnFunction(Function &F) { - if (skipFunction(F)) - return false; - - auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - - return Impl.runImpl(F, AC, DT, SE, TLI, TTI); -} - -PreservedAnalyses NaryReassociatePass::run(Function &F, - FunctionAnalysisManager &AM) { - auto *AC = &AM.getResult<AssumptionAnalysis>(F); - auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); - auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); - auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); - auto *TTI = &AM.getResult<TargetIRAnalysis>(F); - - if (!runImpl(F, AC, DT, SE, TLI, TTI)) - return PreservedAnalyses::all(); - - PreservedAnalyses PA; - PA.preserveSet<CFGAnalyses>(); - PA.preserve<ScalarEvolutionAnalysis>(); - return PA; -} - -bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_, - DominatorTree *DT_, ScalarEvolution *SE_, - TargetLibraryInfo *TLI_, - TargetTransformInfo *TTI_) { - AC = AC_; - DT = DT_; - SE = SE_; - TLI = TLI_; - TTI = TTI_; - DL = &F.getParent()->getDataLayout(); - - bool Changed = false, ChangedInThisIteration; - do { - ChangedInThisIteration = doOneIteration(F); - Changed |= ChangedInThisIteration; - } while (ChangedInThisIteration); - return Changed; -} - -// Whitelist the instruction types NaryReassociate handles for now. -static bool isPotentiallyNaryReassociable(Instruction *I) { - switch (I->getOpcode()) { - case Instruction::Add: - case Instruction::GetElementPtr: - case Instruction::Mul: - return true; - default: - return false; - } -} - -bool NaryReassociatePass::doOneIteration(Function &F) { - bool Changed = false; - SeenExprs.clear(); - // Process the basic blocks in a depth first traversal of the dominator - // tree. This order ensures that all bases of a candidate are in Candidates - // when we process it. - for (const auto Node : depth_first(DT)) { - BasicBlock *BB = Node->getBlock(); - for (auto I = BB->begin(); I != BB->end(); ++I) { - if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) { - const SCEV *OldSCEV = SE->getSCEV(&*I); - if (Instruction *NewI = tryReassociate(&*I)) { - Changed = true; - SE->forgetValue(&*I); - I->replaceAllUsesWith(NewI); - WeakVH NewIExist = NewI; - // If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that - // entry will be replaced with nullptr if deleted. - RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI); - if (!NewIExist) { - // Rare occation where the new instruction (NewI) have been removed, - // probably due to parts of the input code was dead from the - // beginning, reset the iterator and start over from the beginning - I = BB->begin(); - continue; - } - I = NewI->getIterator(); - } - // Add the rewritten instruction to SeenExprs; the original instruction - // is deleted. - const SCEV *NewSCEV = SE->getSCEV(&*I); - SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I)); - // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I) - // is equivalent to I. However, ScalarEvolution::getSCEV may - // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose - // we reassociate - // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4 - // to - // NewI = &a[sext(i)] + sext(j). - // - // ScalarEvolution computes - // getSCEV(I) = a + 4 * sext(i + j) - // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j) - // which are different SCEVs. - // - // To alleviate this issue of ScalarEvolution not always capturing - // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can - // map both SCEV before and after tryReassociate(I) to I. - // - // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll. - if (NewSCEV != OldSCEV) - SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I)); - } - } - } - return Changed; -} - -Instruction *NaryReassociatePass::tryReassociate(Instruction *I) { - switch (I->getOpcode()) { - case Instruction::Add: - case Instruction::Mul: - return tryReassociateBinaryOp(cast<BinaryOperator>(I)); - case Instruction::GetElementPtr: - return tryReassociateGEP(cast<GetElementPtrInst>(I)); - default: - llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable"); - } -} - -static bool isGEPFoldable(GetElementPtrInst *GEP, - const TargetTransformInfo *TTI) { - SmallVector<const Value*, 4> Indices; - for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) - Indices.push_back(*I); - return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), - Indices) == TargetTransformInfo::TCC_Free; -} - -Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) { - // Not worth reassociating GEP if it is foldable. - if (isGEPFoldable(GEP, TTI)) - return nullptr; - - gep_type_iterator GTI = gep_type_begin(*GEP); - for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { - if (GTI.isSequential()) { - if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, - GTI.getIndexedType())) { - return NewGEP; - } - } - } - return nullptr; -} - -bool NaryReassociatePass::requiresSignExtension(Value *Index, - GetElementPtrInst *GEP) { - unsigned PointerSizeInBits = - DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace()); - return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits; -} - -GetElementPtrInst * -NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, - unsigned I, Type *IndexedType) { - Value *IndexToSplit = GEP->getOperand(I + 1); - if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) { - IndexToSplit = SExt->getOperand(0); - } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) { - // zext can be treated as sext if the source is non-negative. - if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT)) - IndexToSplit = ZExt->getOperand(0); - } - - if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) { - // If the I-th index needs sext and the underlying add is not equipped with - // nsw, we cannot split the add because - // sext(LHS + RHS) != sext(LHS) + sext(RHS). - if (requiresSignExtension(IndexToSplit, GEP) && - computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) != - OverflowResult::NeverOverflows) - return nullptr; - - Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1); - // IndexToSplit = LHS + RHS. - if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType)) - return NewGEP; - // Symmetrically, try IndexToSplit = RHS + LHS. - if (LHS != RHS) { - if (auto *NewGEP = - tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType)) - return NewGEP; - } - } - return nullptr; -} - -GetElementPtrInst * -NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, - unsigned I, Value *LHS, - Value *RHS, Type *IndexedType) { - // Look for GEP's closest dominator that has the same SCEV as GEP except that - // the I-th index is replaced with LHS. - SmallVector<const SCEV *, 4> IndexExprs; - for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) - IndexExprs.push_back(SE->getSCEV(*Index)); - // Replace the I-th index with LHS. - IndexExprs[I] = SE->getSCEV(LHS); - if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) && - DL->getTypeSizeInBits(LHS->getType()) < - DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) { - // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to - // zext if the source operand is proved non-negative. We should do that - // consistently so that CandidateExpr more likely appears before. See - // @reassociate_gep_assume for an example of this canonicalization. - IndexExprs[I] = - SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType()); - } - const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), - IndexExprs); - - Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP); - if (Candidate == nullptr) - return nullptr; - - IRBuilder<> Builder(GEP); - // Candidate does not necessarily have the same pointer type as GEP. Use - // bitcast or pointer cast to make sure they have the same type, so that the - // later RAUW doesn't complain. - Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType()); - assert(Candidate->getType() == GEP->getType()); - - // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType) - uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType); - Type *ElementType = GEP->getResultElementType(); - uint64_t ElementSize = DL->getTypeAllocSize(ElementType); - // Another less rare case: because I is not necessarily the last index of the - // GEP, the size of the type at the I-th index (IndexedSize) is not - // necessarily divisible by ElementSize. For example, - // - // #pragma pack(1) - // struct S { - // int a[3]; - // int64 b[8]; - // }; - // #pragma pack() - // - // sizeof(S) = 100 is indivisible by sizeof(int64) = 8. - // - // TODO: bail out on this case for now. We could emit uglygep. - if (IndexedSize % ElementSize != 0) - return nullptr; - - // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0]))); - Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); - if (RHS->getType() != IntPtrTy) - RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy); - if (IndexedSize != ElementSize) { - RHS = Builder.CreateMul( - RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize)); - } - GetElementPtrInst *NewGEP = - cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS)); - NewGEP->setIsInBounds(GEP->isInBounds()); - NewGEP->takeName(GEP); - return NewGEP; -} - -Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) { - Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); - // There is no need to reassociate 0. - if (SE->getSCEV(I)->isZero()) - return nullptr; - if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I)) - return NewI; - if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I)) - return NewI; - return nullptr; -} - -Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS, - BinaryOperator *I) { - Value *A = nullptr, *B = nullptr; - // To be conservative, we reassociate I only when it is the only user of (A op - // B). - if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) { - // I = (A op B) op RHS - // = (A op RHS) op B or (B op RHS) op A - const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B); - const SCEV *RHSExpr = SE->getSCEV(RHS); - if (BExpr != RHSExpr) { - if (auto *NewI = - tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I)) - return NewI; - } - if (AExpr != RHSExpr) { - if (auto *NewI = - tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I)) - return NewI; - } - } - return nullptr; -} - -Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr, - Value *RHS, - BinaryOperator *I) { - // Look for the closest dominator LHS of I that computes LHSExpr, and replace - // I with LHS op RHS. - auto *LHS = findClosestMatchingDominator(LHSExpr, I); - if (LHS == nullptr) - return nullptr; - - Instruction *NewI = nullptr; - switch (I->getOpcode()) { - case Instruction::Add: - NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I); - break; - case Instruction::Mul: - NewI = BinaryOperator::CreateMul(LHS, RHS, "", I); - break; - default: - llvm_unreachable("Unexpected instruction."); - } - NewI->takeName(I); - return NewI; -} - -bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V, - Value *&Op1, Value *&Op2) { - switch (I->getOpcode()) { - case Instruction::Add: - return match(V, m_Add(m_Value(Op1), m_Value(Op2))); - case Instruction::Mul: - return match(V, m_Mul(m_Value(Op1), m_Value(Op2))); - default: - llvm_unreachable("Unexpected instruction."); - } - return false; -} - -const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I, - const SCEV *LHS, - const SCEV *RHS) { - switch (I->getOpcode()) { - case Instruction::Add: - return SE->getAddExpr(LHS, RHS); - case Instruction::Mul: - return SE->getMulExpr(LHS, RHS); - default: - llvm_unreachable("Unexpected instruction."); - } - return nullptr; -} - -Instruction * -NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr, - Instruction *Dominatee) { - auto Pos = SeenExprs.find(CandidateExpr); - if (Pos == SeenExprs.end()) - return nullptr; - - auto &Candidates = Pos->second; - // Because we process the basic blocks in pre-order of the dominator tree, a - // candidate that doesn't dominate the current instruction won't dominate any - // future instruction either. Therefore, we pop it out of the stack. This - // optimization makes the algorithm O(n). - while (!Candidates.empty()) { - // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's - // removed - // during rewriting. - if (Value *Candidate = Candidates.back()) { - Instruction *CandidateInstruction = cast<Instruction>(Candidate); - if (DT->dominates(CandidateInstruction, Dominatee)) - return CandidateInstruction; - } - Candidates.pop_back(); - } - return nullptr; -} |
