summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Scalar/SROA.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/SROA.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Scalar/SROA.cpp4592
1 files changed, 0 insertions, 4592 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/SROA.cpp b/gnu/llvm/lib/Transforms/Scalar/SROA.cpp
deleted file mode 100644
index 68ca6c47c8f..00000000000
--- a/gnu/llvm/lib/Transforms/Scalar/SROA.cpp
+++ /dev/null
@@ -1,4592 +0,0 @@
-//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-/// \file
-/// This transformation implements the well known scalar replacement of
-/// aggregates transformation. It tries to identify promotable elements of an
-/// aggregate alloca, and promote them to registers. It will also try to
-/// convert uses of an element (or set of elements) of an alloca into a vector
-/// or bitfield-style integer scalar if appropriate.
-///
-/// It works to do this with minimal slicing of the alloca so that regions
-/// which are merely transferred in and out of external memory remain unchanged
-/// and are not decomposed to scalar code.
-///
-/// Because this also performs alloca promotion, it can be thought of as also
-/// serving the purpose of SSA formation. The algorithm iterates on the
-/// function until all opportunities for promotion have been realized.
-///
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/SROA.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/PointerIntPair.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallBitVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/ADT/iterator.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Analysis/PtrUseVisitor.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/ConstantFolder.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DIBuilder.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GetElementPtrTypeIterator.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstVisitor.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/PromoteMemToReg.h"
-#include <algorithm>
-#include <cassert>
-#include <chrono>
-#include <cstddef>
-#include <cstdint>
-#include <cstring>
-#include <iterator>
-#include <string>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-#ifndef NDEBUG
-// We only use this for a debug check.
-#include <random>
-#endif
-
-using namespace llvm;
-using namespace llvm::sroa;
-
-#define DEBUG_TYPE "sroa"
-
-STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
-STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
-STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
-STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
-STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
-STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
-STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
-STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
-STATISTIC(NumDeleted, "Number of instructions deleted");
-STATISTIC(NumVectorized, "Number of vectorized aggregates");
-
-/// Hidden option to enable randomly shuffling the slices to help uncover
-/// instability in their order.
-static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
- cl::init(false), cl::Hidden);
-
-/// Hidden option to experiment with completely strict handling of inbounds
-/// GEPs.
-static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
- cl::Hidden);
-
-namespace {
-
-/// A custom IRBuilder inserter which prefixes all names, but only in
-/// Assert builds.
-class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter {
- std::string Prefix;
-
- const Twine getNameWithPrefix(const Twine &Name) const {
- return Name.isTriviallyEmpty() ? Name : Prefix + Name;
- }
-
-public:
- void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
-
-protected:
- void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
- BasicBlock::iterator InsertPt) const {
- IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
- InsertPt);
- }
-};
-
-/// Provide a type for IRBuilder that drops names in release builds.
-using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
-
-/// A used slice of an alloca.
-///
-/// This structure represents a slice of an alloca used by some instruction. It
-/// stores both the begin and end offsets of this use, a pointer to the use
-/// itself, and a flag indicating whether we can classify the use as splittable
-/// or not when forming partitions of the alloca.
-class Slice {
- /// The beginning offset of the range.
- uint64_t BeginOffset = 0;
-
- /// The ending offset, not included in the range.
- uint64_t EndOffset = 0;
-
- /// Storage for both the use of this slice and whether it can be
- /// split.
- PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
-
-public:
- Slice() = default;
-
- Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
- : BeginOffset(BeginOffset), EndOffset(EndOffset),
- UseAndIsSplittable(U, IsSplittable) {}
-
- uint64_t beginOffset() const { return BeginOffset; }
- uint64_t endOffset() const { return EndOffset; }
-
- bool isSplittable() const { return UseAndIsSplittable.getInt(); }
- void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
-
- Use *getUse() const { return UseAndIsSplittable.getPointer(); }
-
- bool isDead() const { return getUse() == nullptr; }
- void kill() { UseAndIsSplittable.setPointer(nullptr); }
-
- /// Support for ordering ranges.
- ///
- /// This provides an ordering over ranges such that start offsets are
- /// always increasing, and within equal start offsets, the end offsets are
- /// decreasing. Thus the spanning range comes first in a cluster with the
- /// same start position.
- bool operator<(const Slice &RHS) const {
- if (beginOffset() < RHS.beginOffset())
- return true;
- if (beginOffset() > RHS.beginOffset())
- return false;
- if (isSplittable() != RHS.isSplittable())
- return !isSplittable();
- if (endOffset() > RHS.endOffset())
- return true;
- return false;
- }
-
- /// Support comparison with a single offset to allow binary searches.
- friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
- uint64_t RHSOffset) {
- return LHS.beginOffset() < RHSOffset;
- }
- friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
- const Slice &RHS) {
- return LHSOffset < RHS.beginOffset();
- }
-
- bool operator==(const Slice &RHS) const {
- return isSplittable() == RHS.isSplittable() &&
- beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
- }
- bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
-};
-
-} // end anonymous namespace
-
-namespace llvm {
-
-template <typename T> struct isPodLike;
-template <> struct isPodLike<Slice> { static const bool value = true; };
-
-} // end namespace llvm
-
-/// Representation of the alloca slices.
-///
-/// This class represents the slices of an alloca which are formed by its
-/// various uses. If a pointer escapes, we can't fully build a representation
-/// for the slices used and we reflect that in this structure. The uses are
-/// stored, sorted by increasing beginning offset and with unsplittable slices
-/// starting at a particular offset before splittable slices.
-class llvm::sroa::AllocaSlices {
-public:
- /// Construct the slices of a particular alloca.
- AllocaSlices(const DataLayout &DL, AllocaInst &AI);
-
- /// Test whether a pointer to the allocation escapes our analysis.
- ///
- /// If this is true, the slices are never fully built and should be
- /// ignored.
- bool isEscaped() const { return PointerEscapingInstr; }
-
- /// Support for iterating over the slices.
- /// @{
- using iterator = SmallVectorImpl<Slice>::iterator;
- using range = iterator_range<iterator>;
-
- iterator begin() { return Slices.begin(); }
- iterator end() { return Slices.end(); }
-
- using const_iterator = SmallVectorImpl<Slice>::const_iterator;
- using const_range = iterator_range<const_iterator>;
-
- const_iterator begin() const { return Slices.begin(); }
- const_iterator end() const { return Slices.end(); }
- /// @}
-
- /// Erase a range of slices.
- void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
-
- /// Insert new slices for this alloca.
- ///
- /// This moves the slices into the alloca's slices collection, and re-sorts
- /// everything so that the usual ordering properties of the alloca's slices
- /// hold.
- void insert(ArrayRef<Slice> NewSlices) {
- int OldSize = Slices.size();
- Slices.append(NewSlices.begin(), NewSlices.end());
- auto SliceI = Slices.begin() + OldSize;
- llvm::sort(SliceI, Slices.end());
- std::inplace_merge(Slices.begin(), SliceI, Slices.end());
- }
-
- // Forward declare the iterator and range accessor for walking the
- // partitions.
- class partition_iterator;
- iterator_range<partition_iterator> partitions();
-
- /// Access the dead users for this alloca.
- ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
-
- /// Access the dead operands referring to this alloca.
- ///
- /// These are operands which have cannot actually be used to refer to the
- /// alloca as they are outside its range and the user doesn't correct for
- /// that. These mostly consist of PHI node inputs and the like which we just
- /// need to replace with undef.
- ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
- void printSlice(raw_ostream &OS, const_iterator I,
- StringRef Indent = " ") const;
- void printUse(raw_ostream &OS, const_iterator I,
- StringRef Indent = " ") const;
- void print(raw_ostream &OS) const;
- void dump(const_iterator I) const;
- void dump() const;
-#endif
-
-private:
- template <typename DerivedT, typename RetT = void> class BuilderBase;
- class SliceBuilder;
-
- friend class AllocaSlices::SliceBuilder;
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- /// Handle to alloca instruction to simplify method interfaces.
- AllocaInst &AI;
-#endif
-
- /// The instruction responsible for this alloca not having a known set
- /// of slices.
- ///
- /// When an instruction (potentially) escapes the pointer to the alloca, we
- /// store a pointer to that here and abort trying to form slices of the
- /// alloca. This will be null if the alloca slices are analyzed successfully.
- Instruction *PointerEscapingInstr;
-
- /// The slices of the alloca.
- ///
- /// We store a vector of the slices formed by uses of the alloca here. This
- /// vector is sorted by increasing begin offset, and then the unsplittable
- /// slices before the splittable ones. See the Slice inner class for more
- /// details.
- SmallVector<Slice, 8> Slices;
-
- /// Instructions which will become dead if we rewrite the alloca.
- ///
- /// Note that these are not separated by slice. This is because we expect an
- /// alloca to be completely rewritten or not rewritten at all. If rewritten,
- /// all these instructions can simply be removed and replaced with undef as
- /// they come from outside of the allocated space.
- SmallVector<Instruction *, 8> DeadUsers;
-
- /// Operands which will become dead if we rewrite the alloca.
- ///
- /// These are operands that in their particular use can be replaced with
- /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
- /// to PHI nodes and the like. They aren't entirely dead (there might be
- /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
- /// want to swap this particular input for undef to simplify the use lists of
- /// the alloca.
- SmallVector<Use *, 8> DeadOperands;
-};
-
-/// A partition of the slices.
-///
-/// An ephemeral representation for a range of slices which can be viewed as
-/// a partition of the alloca. This range represents a span of the alloca's
-/// memory which cannot be split, and provides access to all of the slices
-/// overlapping some part of the partition.
-///
-/// Objects of this type are produced by traversing the alloca's slices, but
-/// are only ephemeral and not persistent.
-class llvm::sroa::Partition {
-private:
- friend class AllocaSlices;
- friend class AllocaSlices::partition_iterator;
-
- using iterator = AllocaSlices::iterator;
-
- /// The beginning and ending offsets of the alloca for this
- /// partition.
- uint64_t BeginOffset, EndOffset;
-
- /// The start and end iterators of this partition.
- iterator SI, SJ;
-
- /// A collection of split slice tails overlapping the partition.
- SmallVector<Slice *, 4> SplitTails;
-
- /// Raw constructor builds an empty partition starting and ending at
- /// the given iterator.
- Partition(iterator SI) : SI(SI), SJ(SI) {}
-
-public:
- /// The start offset of this partition.
- ///
- /// All of the contained slices start at or after this offset.
- uint64_t beginOffset() const { return BeginOffset; }
-
- /// The end offset of this partition.
- ///
- /// All of the contained slices end at or before this offset.
- uint64_t endOffset() const { return EndOffset; }
-
- /// The size of the partition.
- ///
- /// Note that this can never be zero.
- uint64_t size() const {
- assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
- return EndOffset - BeginOffset;
- }
-
- /// Test whether this partition contains no slices, and merely spans
- /// a region occupied by split slices.
- bool empty() const { return SI == SJ; }
-
- /// \name Iterate slices that start within the partition.
- /// These may be splittable or unsplittable. They have a begin offset >= the
- /// partition begin offset.
- /// @{
- // FIXME: We should probably define a "concat_iterator" helper and use that
- // to stitch together pointee_iterators over the split tails and the
- // contiguous iterators of the partition. That would give a much nicer
- // interface here. We could then additionally expose filtered iterators for
- // split, unsplit, and unsplittable splices based on the usage patterns.
- iterator begin() const { return SI; }
- iterator end() const { return SJ; }
- /// @}
-
- /// Get the sequence of split slice tails.
- ///
- /// These tails are of slices which start before this partition but are
- /// split and overlap into the partition. We accumulate these while forming
- /// partitions.
- ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
-};
-
-/// An iterator over partitions of the alloca's slices.
-///
-/// This iterator implements the core algorithm for partitioning the alloca's
-/// slices. It is a forward iterator as we don't support backtracking for
-/// efficiency reasons, and re-use a single storage area to maintain the
-/// current set of split slices.
-///
-/// It is templated on the slice iterator type to use so that it can operate
-/// with either const or non-const slice iterators.
-class AllocaSlices::partition_iterator
- : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
- Partition> {
- friend class AllocaSlices;
-
- /// Most of the state for walking the partitions is held in a class
- /// with a nice interface for examining them.
- Partition P;
-
- /// We need to keep the end of the slices to know when to stop.
- AllocaSlices::iterator SE;
-
- /// We also need to keep track of the maximum split end offset seen.
- /// FIXME: Do we really?
- uint64_t MaxSplitSliceEndOffset = 0;
-
- /// Sets the partition to be empty at given iterator, and sets the
- /// end iterator.
- partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
- : P(SI), SE(SE) {
- // If not already at the end, advance our state to form the initial
- // partition.
- if (SI != SE)
- advance();
- }
-
- /// Advance the iterator to the next partition.
- ///
- /// Requires that the iterator not be at the end of the slices.
- void advance() {
- assert((P.SI != SE || !P.SplitTails.empty()) &&
- "Cannot advance past the end of the slices!");
-
- // Clear out any split uses which have ended.
- if (!P.SplitTails.empty()) {
- if (P.EndOffset >= MaxSplitSliceEndOffset) {
- // If we've finished all splits, this is easy.
- P.SplitTails.clear();
- MaxSplitSliceEndOffset = 0;
- } else {
- // Remove the uses which have ended in the prior partition. This
- // cannot change the max split slice end because we just checked that
- // the prior partition ended prior to that max.
- P.SplitTails.erase(llvm::remove_if(P.SplitTails,
- [&](Slice *S) {
- return S->endOffset() <=
- P.EndOffset;
- }),
- P.SplitTails.end());
- assert(llvm::any_of(P.SplitTails,
- [&](Slice *S) {
- return S->endOffset() == MaxSplitSliceEndOffset;
- }) &&
- "Could not find the current max split slice offset!");
- assert(llvm::all_of(P.SplitTails,
- [&](Slice *S) {
- return S->endOffset() <= MaxSplitSliceEndOffset;
- }) &&
- "Max split slice end offset is not actually the max!");
- }
- }
-
- // If P.SI is already at the end, then we've cleared the split tail and
- // now have an end iterator.
- if (P.SI == SE) {
- assert(P.SplitTails.empty() && "Failed to clear the split slices!");
- return;
- }
-
- // If we had a non-empty partition previously, set up the state for
- // subsequent partitions.
- if (P.SI != P.SJ) {
- // Accumulate all the splittable slices which started in the old
- // partition into the split list.
- for (Slice &S : P)
- if (S.isSplittable() && S.endOffset() > P.EndOffset) {
- P.SplitTails.push_back(&S);
- MaxSplitSliceEndOffset =
- std::max(S.endOffset(), MaxSplitSliceEndOffset);
- }
-
- // Start from the end of the previous partition.
- P.SI = P.SJ;
-
- // If P.SI is now at the end, we at most have a tail of split slices.
- if (P.SI == SE) {
- P.BeginOffset = P.EndOffset;
- P.EndOffset = MaxSplitSliceEndOffset;
- return;
- }
-
- // If the we have split slices and the next slice is after a gap and is
- // not splittable immediately form an empty partition for the split
- // slices up until the next slice begins.
- if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
- !P.SI->isSplittable()) {
- P.BeginOffset = P.EndOffset;
- P.EndOffset = P.SI->beginOffset();
- return;
- }
- }
-
- // OK, we need to consume new slices. Set the end offset based on the
- // current slice, and step SJ past it. The beginning offset of the
- // partition is the beginning offset of the next slice unless we have
- // pre-existing split slices that are continuing, in which case we begin
- // at the prior end offset.
- P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
- P.EndOffset = P.SI->endOffset();
- ++P.SJ;
-
- // There are two strategies to form a partition based on whether the
- // partition starts with an unsplittable slice or a splittable slice.
- if (!P.SI->isSplittable()) {
- // When we're forming an unsplittable region, it must always start at
- // the first slice and will extend through its end.
- assert(P.BeginOffset == P.SI->beginOffset());
-
- // Form a partition including all of the overlapping slices with this
- // unsplittable slice.
- while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
- if (!P.SJ->isSplittable())
- P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
- ++P.SJ;
- }
-
- // We have a partition across a set of overlapping unsplittable
- // partitions.
- return;
- }
-
- // If we're starting with a splittable slice, then we need to form
- // a synthetic partition spanning it and any other overlapping splittable
- // splices.
- assert(P.SI->isSplittable() && "Forming a splittable partition!");
-
- // Collect all of the overlapping splittable slices.
- while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
- P.SJ->isSplittable()) {
- P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
- ++P.SJ;
- }
-
- // Back upiP.EndOffset if we ended the span early when encountering an
- // unsplittable slice. This synthesizes the early end offset of
- // a partition spanning only splittable slices.
- if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
- assert(!P.SJ->isSplittable());
- P.EndOffset = P.SJ->beginOffset();
- }
- }
-
-public:
- bool operator==(const partition_iterator &RHS) const {
- assert(SE == RHS.SE &&
- "End iterators don't match between compared partition iterators!");
-
- // The observed positions of partitions is marked by the P.SI iterator and
- // the emptiness of the split slices. The latter is only relevant when
- // P.SI == SE, as the end iterator will additionally have an empty split
- // slices list, but the prior may have the same P.SI and a tail of split
- // slices.
- if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
- assert(P.SJ == RHS.P.SJ &&
- "Same set of slices formed two different sized partitions!");
- assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
- "Same slice position with differently sized non-empty split "
- "slice tails!");
- return true;
- }
- return false;
- }
-
- partition_iterator &operator++() {
- advance();
- return *this;
- }
-
- Partition &operator*() { return P; }
-};
-
-/// A forward range over the partitions of the alloca's slices.
-///
-/// This accesses an iterator range over the partitions of the alloca's
-/// slices. It computes these partitions on the fly based on the overlapping
-/// offsets of the slices and the ability to split them. It will visit "empty"
-/// partitions to cover regions of the alloca only accessed via split
-/// slices.
-iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
- return make_range(partition_iterator(begin(), end()),
- partition_iterator(end(), end()));
-}
-
-static Value *foldSelectInst(SelectInst &SI) {
- // If the condition being selected on is a constant or the same value is
- // being selected between, fold the select. Yes this does (rarely) happen
- // early on.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
- return SI.getOperand(1 + CI->isZero());
- if (SI.getOperand(1) == SI.getOperand(2))
- return SI.getOperand(1);
-
- return nullptr;
-}
-
-/// A helper that folds a PHI node or a select.
-static Value *foldPHINodeOrSelectInst(Instruction &I) {
- if (PHINode *PN = dyn_cast<PHINode>(&I)) {
- // If PN merges together the same value, return that value.
- return PN->hasConstantValue();
- }
- return foldSelectInst(cast<SelectInst>(I));
-}
-
-/// Builder for the alloca slices.
-///
-/// This class builds a set of alloca slices by recursively visiting the uses
-/// of an alloca and making a slice for each load and store at each offset.
-class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
- friend class PtrUseVisitor<SliceBuilder>;
- friend class InstVisitor<SliceBuilder>;
-
- using Base = PtrUseVisitor<SliceBuilder>;
-
- const uint64_t AllocSize;
- AllocaSlices &AS;
-
- SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
- SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
-
- /// Set to de-duplicate dead instructions found in the use walk.
- SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
-
-public:
- SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
- : PtrUseVisitor<SliceBuilder>(DL),
- AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
-
-private:
- void markAsDead(Instruction &I) {
- if (VisitedDeadInsts.insert(&I).second)
- AS.DeadUsers.push_back(&I);
- }
-
- void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
- bool IsSplittable = false) {
- // Completely skip uses which have a zero size or start either before or
- // past the end of the allocation.
- if (Size == 0 || Offset.uge(AllocSize)) {
- LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
- << Offset
- << " which has zero size or starts outside of the "
- << AllocSize << " byte alloca:\n"
- << " alloca: " << AS.AI << "\n"
- << " use: " << I << "\n");
- return markAsDead(I);
- }
-
- uint64_t BeginOffset = Offset.getZExtValue();
- uint64_t EndOffset = BeginOffset + Size;
-
- // Clamp the end offset to the end of the allocation. Note that this is
- // formulated to handle even the case where "BeginOffset + Size" overflows.
- // This may appear superficially to be something we could ignore entirely,
- // but that is not so! There may be widened loads or PHI-node uses where
- // some instructions are dead but not others. We can't completely ignore
- // them, and so have to record at least the information here.
- assert(AllocSize >= BeginOffset); // Established above.
- if (Size > AllocSize - BeginOffset) {
- LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
- << Offset << " to remain within the " << AllocSize
- << " byte alloca:\n"
- << " alloca: " << AS.AI << "\n"
- << " use: " << I << "\n");
- EndOffset = AllocSize;
- }
-
- AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
- }
-
- void visitBitCastInst(BitCastInst &BC) {
- if (BC.use_empty())
- return markAsDead(BC);
-
- return Base::visitBitCastInst(BC);
- }
-
- void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
- if (GEPI.use_empty())
- return markAsDead(GEPI);
-
- if (SROAStrictInbounds && GEPI.isInBounds()) {
- // FIXME: This is a manually un-factored variant of the basic code inside
- // of GEPs with checking of the inbounds invariant specified in the
- // langref in a very strict sense. If we ever want to enable
- // SROAStrictInbounds, this code should be factored cleanly into
- // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
- // by writing out the code here where we have the underlying allocation
- // size readily available.
- APInt GEPOffset = Offset;
- const DataLayout &DL = GEPI.getModule()->getDataLayout();
- for (gep_type_iterator GTI = gep_type_begin(GEPI),
- GTE = gep_type_end(GEPI);
- GTI != GTE; ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
- if (!OpC)
- break;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = DL.getStructLayout(STy);
- GEPOffset +=
- APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
- } else {
- // For array or vector indices, scale the index by the size of the
- // type.
- APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
- GEPOffset += Index * APInt(Offset.getBitWidth(),
- DL.getTypeAllocSize(GTI.getIndexedType()));
- }
-
- // If this index has computed an intermediate pointer which is not
- // inbounds, then the result of the GEP is a poison value and we can
- // delete it and all uses.
- if (GEPOffset.ugt(AllocSize))
- return markAsDead(GEPI);
- }
- }
-
- return Base::visitGetElementPtrInst(GEPI);
- }
-
- void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
- uint64_t Size, bool IsVolatile) {
- // We allow splitting of non-volatile loads and stores where the type is an
- // integer type. These may be used to implement 'memcpy' or other "transfer
- // of bits" patterns.
- bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
-
- insertUse(I, Offset, Size, IsSplittable);
- }
-
- void visitLoadInst(LoadInst &LI) {
- assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
- "All simple FCA loads should have been pre-split");
-
- if (!IsOffsetKnown)
- return PI.setAborted(&LI);
-
- const DataLayout &DL = LI.getModule()->getDataLayout();
- uint64_t Size = DL.getTypeStoreSize(LI.getType());
- return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
- }
-
- void visitStoreInst(StoreInst &SI) {
- Value *ValOp = SI.getValueOperand();
- if (ValOp == *U)
- return PI.setEscapedAndAborted(&SI);
- if (!IsOffsetKnown)
- return PI.setAborted(&SI);
-
- const DataLayout &DL = SI.getModule()->getDataLayout();
- uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
-
- // If this memory access can be shown to *statically* extend outside the
- // bounds of the allocation, it's behavior is undefined, so simply
- // ignore it. Note that this is more strict than the generic clamping
- // behavior of insertUse. We also try to handle cases which might run the
- // risk of overflow.
- // FIXME: We should instead consider the pointer to have escaped if this
- // function is being instrumented for addressing bugs or race conditions.
- if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
- LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
- << Offset << " which extends past the end of the "
- << AllocSize << " byte alloca:\n"
- << " alloca: " << AS.AI << "\n"
- << " use: " << SI << "\n");
- return markAsDead(SI);
- }
-
- assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
- "All simple FCA stores should have been pre-split");
- handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
- }
-
- void visitMemSetInst(MemSetInst &II) {
- assert(II.getRawDest() == *U && "Pointer use is not the destination?");
- ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- if ((Length && Length->getValue() == 0) ||
- (IsOffsetKnown && Offset.uge(AllocSize)))
- // Zero-length mem transfer intrinsics can be ignored entirely.
- return markAsDead(II);
-
- if (!IsOffsetKnown)
- return PI.setAborted(&II);
-
- insertUse(II, Offset, Length ? Length->getLimitedValue()
- : AllocSize - Offset.getLimitedValue(),
- (bool)Length);
- }
-
- void visitMemTransferInst(MemTransferInst &II) {
- ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- if (Length && Length->getValue() == 0)
- // Zero-length mem transfer intrinsics can be ignored entirely.
- return markAsDead(II);
-
- // Because we can visit these intrinsics twice, also check to see if the
- // first time marked this instruction as dead. If so, skip it.
- if (VisitedDeadInsts.count(&II))
- return;
-
- if (!IsOffsetKnown)
- return PI.setAborted(&II);
-
- // This side of the transfer is completely out-of-bounds, and so we can
- // nuke the entire transfer. However, we also need to nuke the other side
- // if already added to our partitions.
- // FIXME: Yet another place we really should bypass this when
- // instrumenting for ASan.
- if (Offset.uge(AllocSize)) {
- SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
- MemTransferSliceMap.find(&II);
- if (MTPI != MemTransferSliceMap.end())
- AS.Slices[MTPI->second].kill();
- return markAsDead(II);
- }
-
- uint64_t RawOffset = Offset.getLimitedValue();
- uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
-
- // Check for the special case where the same exact value is used for both
- // source and dest.
- if (*U == II.getRawDest() && *U == II.getRawSource()) {
- // For non-volatile transfers this is a no-op.
- if (!II.isVolatile())
- return markAsDead(II);
-
- return insertUse(II, Offset, Size, /*IsSplittable=*/false);
- }
-
- // If we have seen both source and destination for a mem transfer, then
- // they both point to the same alloca.
- bool Inserted;
- SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
- std::tie(MTPI, Inserted) =
- MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
- unsigned PrevIdx = MTPI->second;
- if (!Inserted) {
- Slice &PrevP = AS.Slices[PrevIdx];
-
- // Check if the begin offsets match and this is a non-volatile transfer.
- // In that case, we can completely elide the transfer.
- if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
- PrevP.kill();
- return markAsDead(II);
- }
-
- // Otherwise we have an offset transfer within the same alloca. We can't
- // split those.
- PrevP.makeUnsplittable();
- }
-
- // Insert the use now that we've fixed up the splittable nature.
- insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
-
- // Check that we ended up with a valid index in the map.
- assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
- "Map index doesn't point back to a slice with this user.");
- }
-
- // Disable SRoA for any intrinsics except for lifetime invariants.
- // FIXME: What about debug intrinsics? This matches old behavior, but
- // doesn't make sense.
- void visitIntrinsicInst(IntrinsicInst &II) {
- if (!IsOffsetKnown)
- return PI.setAborted(&II);
-
- if (II.isLifetimeStartOrEnd()) {
- ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
- uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
- Length->getLimitedValue());
- insertUse(II, Offset, Size, true);
- return;
- }
-
- Base::visitIntrinsicInst(II);
- }
-
- Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
- // We consider any PHI or select that results in a direct load or store of
- // the same offset to be a viable use for slicing purposes. These uses
- // are considered unsplittable and the size is the maximum loaded or stored
- // size.
- SmallPtrSet<Instruction *, 4> Visited;
- SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
- Visited.insert(Root);
- Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
- const DataLayout &DL = Root->getModule()->getDataLayout();
- // If there are no loads or stores, the access is dead. We mark that as
- // a size zero access.
- Size = 0;
- do {
- Instruction *I, *UsedI;
- std::tie(UsedI, I) = Uses.pop_back_val();
-
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
- continue;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- Value *Op = SI->getOperand(0);
- if (Op == UsedI)
- return SI;
- Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
- continue;
- }
-
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
- if (!GEP->hasAllZeroIndices())
- return GEP;
- } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
- !isa<SelectInst>(I)) {
- return I;
- }
-
- for (User *U : I->users())
- if (Visited.insert(cast<Instruction>(U)).second)
- Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
- } while (!Uses.empty());
-
- return nullptr;
- }
-
- void visitPHINodeOrSelectInst(Instruction &I) {
- assert(isa<PHINode>(I) || isa<SelectInst>(I));
- if (I.use_empty())
- return markAsDead(I);
-
- // TODO: We could use SimplifyInstruction here to fold PHINodes and
- // SelectInsts. However, doing so requires to change the current
- // dead-operand-tracking mechanism. For instance, suppose neither loading
- // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
- // trap either. However, if we simply replace %U with undef using the
- // current dead-operand-tracking mechanism, "load (select undef, undef,
- // %other)" may trap because the select may return the first operand
- // "undef".
- if (Value *Result = foldPHINodeOrSelectInst(I)) {
- if (Result == *U)
- // If the result of the constant fold will be the pointer, recurse
- // through the PHI/select as if we had RAUW'ed it.
- enqueueUsers(I);
- else
- // Otherwise the operand to the PHI/select is dead, and we can replace
- // it with undef.
- AS.DeadOperands.push_back(U);
-
- return;
- }
-
- if (!IsOffsetKnown)
- return PI.setAborted(&I);
-
- // See if we already have computed info on this node.
- uint64_t &Size = PHIOrSelectSizes[&I];
- if (!Size) {
- // This is a new PHI/Select, check for an unsafe use of it.
- if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
- return PI.setAborted(UnsafeI);
- }
-
- // For PHI and select operands outside the alloca, we can't nuke the entire
- // phi or select -- the other side might still be relevant, so we special
- // case them here and use a separate structure to track the operands
- // themselves which should be replaced with undef.
- // FIXME: This should instead be escaped in the event we're instrumenting
- // for address sanitization.
- if (Offset.uge(AllocSize)) {
- AS.DeadOperands.push_back(U);
- return;
- }
-
- insertUse(I, Offset, Size);
- }
-
- void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
-
- void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
-
- /// Disable SROA entirely if there are unhandled users of the alloca.
- void visitInstruction(Instruction &I) { PI.setAborted(&I); }
-};
-
-AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
- :
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- AI(AI),
-#endif
- PointerEscapingInstr(nullptr) {
- SliceBuilder PB(DL, AI, *this);
- SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
- if (PtrI.isEscaped() || PtrI.isAborted()) {
- // FIXME: We should sink the escape vs. abort info into the caller nicely,
- // possibly by just storing the PtrInfo in the AllocaSlices.
- PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
- : PtrI.getAbortingInst();
- assert(PointerEscapingInstr && "Did not track a bad instruction");
- return;
- }
-
- Slices.erase(
- llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }),
- Slices.end());
-
-#ifndef NDEBUG
- if (SROARandomShuffleSlices) {
- std::mt19937 MT(static_cast<unsigned>(
- std::chrono::system_clock::now().time_since_epoch().count()));
- std::shuffle(Slices.begin(), Slices.end(), MT);
- }
-#endif
-
- // Sort the uses. This arranges for the offsets to be in ascending order,
- // and the sizes to be in descending order.
- llvm::sort(Slices);
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-
-void AllocaSlices::print(raw_ostream &OS, const_iterator I,
- StringRef Indent) const {
- printSlice(OS, I, Indent);
- OS << "\n";
- printUse(OS, I, Indent);
-}
-
-void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
- StringRef Indent) const {
- OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
- << " slice #" << (I - begin())
- << (I->isSplittable() ? " (splittable)" : "");
-}
-
-void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
- StringRef Indent) const {
- OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
-}
-
-void AllocaSlices::print(raw_ostream &OS) const {
- if (PointerEscapingInstr) {
- OS << "Can't analyze slices for alloca: " << AI << "\n"
- << " A pointer to this alloca escaped by:\n"
- << " " << *PointerEscapingInstr << "\n";
- return;
- }
-
- OS << "Slices of alloca: " << AI << "\n";
- for (const_iterator I = begin(), E = end(); I != E; ++I)
- print(OS, I);
-}
-
-LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
- print(dbgs(), I);
-}
-LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
-
-#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-
-/// Walk the range of a partitioning looking for a common type to cover this
-/// sequence of slices.
-static Type *findCommonType(AllocaSlices::const_iterator B,
- AllocaSlices::const_iterator E,
- uint64_t EndOffset) {
- Type *Ty = nullptr;
- bool TyIsCommon = true;
- IntegerType *ITy = nullptr;
-
- // Note that we need to look at *every* alloca slice's Use to ensure we
- // always get consistent results regardless of the order of slices.
- for (AllocaSlices::const_iterator I = B; I != E; ++I) {
- Use *U = I->getUse();
- if (isa<IntrinsicInst>(*U->getUser()))
- continue;
- if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
- continue;
-
- Type *UserTy = nullptr;
- if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
- UserTy = LI->getType();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
- UserTy = SI->getValueOperand()->getType();
- }
-
- if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
- // If the type is larger than the partition, skip it. We only encounter
- // this for split integer operations where we want to use the type of the
- // entity causing the split. Also skip if the type is not a byte width
- // multiple.
- if (UserITy->getBitWidth() % 8 != 0 ||
- UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
- continue;
-
- // Track the largest bitwidth integer type used in this way in case there
- // is no common type.
- if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
- ITy = UserITy;
- }
-
- // To avoid depending on the order of slices, Ty and TyIsCommon must not
- // depend on types skipped above.
- if (!UserTy || (Ty && Ty != UserTy))
- TyIsCommon = false; // Give up on anything but an iN type.
- else
- Ty = UserTy;
- }
-
- return TyIsCommon ? Ty : ITy;
-}
-
-/// PHI instructions that use an alloca and are subsequently loaded can be
-/// rewritten to load both input pointers in the pred blocks and then PHI the
-/// results, allowing the load of the alloca to be promoted.
-/// From this:
-/// %P2 = phi [i32* %Alloca, i32* %Other]
-/// %V = load i32* %P2
-/// to:
-/// %V1 = load i32* %Alloca -> will be mem2reg'd
-/// ...
-/// %V2 = load i32* %Other
-/// ...
-/// %V = phi [i32 %V1, i32 %V2]
-///
-/// We can do this to a select if its only uses are loads and if the operands
-/// to the select can be loaded unconditionally.
-///
-/// FIXME: This should be hoisted into a generic utility, likely in
-/// Transforms/Util/Local.h
-static bool isSafePHIToSpeculate(PHINode &PN) {
- // For now, we can only do this promotion if the load is in the same block
- // as the PHI, and if there are no stores between the phi and load.
- // TODO: Allow recursive phi users.
- // TODO: Allow stores.
- BasicBlock *BB = PN.getParent();
- unsigned MaxAlign = 0;
- bool HaveLoad = false;
- for (User *U : PN.users()) {
- LoadInst *LI = dyn_cast<LoadInst>(U);
- if (!LI || !LI->isSimple())
- return false;
-
- // For now we only allow loads in the same block as the PHI. This is
- // a common case that happens when instcombine merges two loads through
- // a PHI.
- if (LI->getParent() != BB)
- return false;
-
- // Ensure that there are no instructions between the PHI and the load that
- // could store.
- for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
- if (BBI->mayWriteToMemory())
- return false;
-
- MaxAlign = std::max(MaxAlign, LI->getAlignment());
- HaveLoad = true;
- }
-
- if (!HaveLoad)
- return false;
-
- const DataLayout &DL = PN.getModule()->getDataLayout();
-
- // We can only transform this if it is safe to push the loads into the
- // predecessor blocks. The only thing to watch out for is that we can't put
- // a possibly trapping load in the predecessor if it is a critical edge.
- for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
- Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
- Value *InVal = PN.getIncomingValue(Idx);
-
- // If the value is produced by the terminator of the predecessor (an
- // invoke) or it has side-effects, there is no valid place to put a load
- // in the predecessor.
- if (TI == InVal || TI->mayHaveSideEffects())
- return false;
-
- // If the predecessor has a single successor, then the edge isn't
- // critical.
- if (TI->getNumSuccessors() == 1)
- continue;
-
- // If this pointer is always safe to load, or if we can prove that there
- // is already a load in the block, then we can move the load to the pred
- // block.
- if (isSafeToLoadUnconditionally(InVal, MaxAlign, DL, TI))
- continue;
-
- return false;
- }
-
- return true;
-}
-
-static void speculatePHINodeLoads(PHINode &PN) {
- LLVM_DEBUG(dbgs() << " original: " << PN << "\n");
-
- Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
- IRBuilderTy PHIBuilder(&PN);
- PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
- PN.getName() + ".sroa.speculated");
-
- // Get the AA tags and alignment to use from one of the loads. It doesn't
- // matter which one we get and if any differ.
- LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
-
- AAMDNodes AATags;
- SomeLoad->getAAMetadata(AATags);
- unsigned Align = SomeLoad->getAlignment();
-
- // Rewrite all loads of the PN to use the new PHI.
- while (!PN.use_empty()) {
- LoadInst *LI = cast<LoadInst>(PN.user_back());
- LI->replaceAllUsesWith(NewPN);
- LI->eraseFromParent();
- }
-
- // Inject loads into all of the pred blocks.
- DenseMap<BasicBlock*, Value*> InjectedLoads;
- for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
- BasicBlock *Pred = PN.getIncomingBlock(Idx);
- Value *InVal = PN.getIncomingValue(Idx);
-
- // A PHI node is allowed to have multiple (duplicated) entries for the same
- // basic block, as long as the value is the same. So if we already injected
- // a load in the predecessor, then we should reuse the same load for all
- // duplicated entries.
- if (Value* V = InjectedLoads.lookup(Pred)) {
- NewPN->addIncoming(V, Pred);
- continue;
- }
-
- Instruction *TI = Pred->getTerminator();
- IRBuilderTy PredBuilder(TI);
-
- LoadInst *Load = PredBuilder.CreateLoad(
- InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
- ++NumLoadsSpeculated;
- Load->setAlignment(Align);
- if (AATags)
- Load->setAAMetadata(AATags);
- NewPN->addIncoming(Load, Pred);
- InjectedLoads[Pred] = Load;
- }
-
- LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
- PN.eraseFromParent();
-}
-
-/// Select instructions that use an alloca and are subsequently loaded can be
-/// rewritten to load both input pointers and then select between the result,
-/// allowing the load of the alloca to be promoted.
-/// From this:
-/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
-/// %V = load i32* %P2
-/// to:
-/// %V1 = load i32* %Alloca -> will be mem2reg'd
-/// %V2 = load i32* %Other
-/// %V = select i1 %cond, i32 %V1, i32 %V2
-///
-/// We can do this to a select if its only uses are loads and if the operand
-/// to the select can be loaded unconditionally.
-static bool isSafeSelectToSpeculate(SelectInst &SI) {
- Value *TValue = SI.getTrueValue();
- Value *FValue = SI.getFalseValue();
- const DataLayout &DL = SI.getModule()->getDataLayout();
-
- for (User *U : SI.users()) {
- LoadInst *LI = dyn_cast<LoadInst>(U);
- if (!LI || !LI->isSimple())
- return false;
-
- // Both operands to the select need to be dereferenceable, either
- // absolutely (e.g. allocas) or at this point because we can see other
- // accesses to it.
- if (!isSafeToLoadUnconditionally(TValue, LI->getAlignment(), DL, LI))
- return false;
- if (!isSafeToLoadUnconditionally(FValue, LI->getAlignment(), DL, LI))
- return false;
- }
-
- return true;
-}
-
-static void speculateSelectInstLoads(SelectInst &SI) {
- LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
-
- IRBuilderTy IRB(&SI);
- Value *TV = SI.getTrueValue();
- Value *FV = SI.getFalseValue();
- // Replace the loads of the select with a select of two loads.
- while (!SI.use_empty()) {
- LoadInst *LI = cast<LoadInst>(SI.user_back());
- assert(LI->isSimple() && "We only speculate simple loads");
-
- IRB.SetInsertPoint(LI);
- LoadInst *TL =
- IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
- LoadInst *FL =
- IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
- NumLoadsSpeculated += 2;
-
- // Transfer alignment and AA info if present.
- TL->setAlignment(LI->getAlignment());
- FL->setAlignment(LI->getAlignment());
-
- AAMDNodes Tags;
- LI->getAAMetadata(Tags);
- if (Tags) {
- TL->setAAMetadata(Tags);
- FL->setAAMetadata(Tags);
- }
-
- Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
- LI->getName() + ".sroa.speculated");
-
- LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n");
- LI->replaceAllUsesWith(V);
- LI->eraseFromParent();
- }
- SI.eraseFromParent();
-}
-
-/// Build a GEP out of a base pointer and indices.
-///
-/// This will return the BasePtr if that is valid, or build a new GEP
-/// instruction using the IRBuilder if GEP-ing is needed.
-static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
- SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
- if (Indices.empty())
- return BasePtr;
-
- // A single zero index is a no-op, so check for this and avoid building a GEP
- // in that case.
- if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
- return BasePtr;
-
- return IRB.CreateInBoundsGEP(nullptr, BasePtr, Indices,
- NamePrefix + "sroa_idx");
-}
-
-/// Get a natural GEP off of the BasePtr walking through Ty toward
-/// TargetTy without changing the offset of the pointer.
-///
-/// This routine assumes we've already established a properly offset GEP with
-/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
-/// zero-indices down through type layers until we find one the same as
-/// TargetTy. If we can't find one with the same type, we at least try to use
-/// one with the same size. If none of that works, we just produce the GEP as
-/// indicated by Indices to have the correct offset.
-static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
- Value *BasePtr, Type *Ty, Type *TargetTy,
- SmallVectorImpl<Value *> &Indices,
- Twine NamePrefix) {
- if (Ty == TargetTy)
- return buildGEP(IRB, BasePtr, Indices, NamePrefix);
-
- // Offset size to use for the indices.
- unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
-
- // See if we can descend into a struct and locate a field with the correct
- // type.
- unsigned NumLayers = 0;
- Type *ElementTy = Ty;
- do {
- if (ElementTy->isPointerTy())
- break;
-
- if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
- ElementTy = ArrayTy->getElementType();
- Indices.push_back(IRB.getIntN(OffsetSize, 0));
- } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
- ElementTy = VectorTy->getElementType();
- Indices.push_back(IRB.getInt32(0));
- } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
- if (STy->element_begin() == STy->element_end())
- break; // Nothing left to descend into.
- ElementTy = *STy->element_begin();
- Indices.push_back(IRB.getInt32(0));
- } else {
- break;
- }
- ++NumLayers;
- } while (ElementTy != TargetTy);
- if (ElementTy != TargetTy)
- Indices.erase(Indices.end() - NumLayers, Indices.end());
-
- return buildGEP(IRB, BasePtr, Indices, NamePrefix);
-}
-
-/// Recursively compute indices for a natural GEP.
-///
-/// This is the recursive step for getNaturalGEPWithOffset that walks down the
-/// element types adding appropriate indices for the GEP.
-static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
- Value *Ptr, Type *Ty, APInt &Offset,
- Type *TargetTy,
- SmallVectorImpl<Value *> &Indices,
- Twine NamePrefix) {
- if (Offset == 0)
- return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
- NamePrefix);
-
- // We can't recurse through pointer types.
- if (Ty->isPointerTy())
- return nullptr;
-
- // We try to analyze GEPs over vectors here, but note that these GEPs are
- // extremely poorly defined currently. The long-term goal is to remove GEPing
- // over a vector from the IR completely.
- if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
- unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
- if (ElementSizeInBits % 8 != 0) {
- // GEPs over non-multiple of 8 size vector elements are invalid.
- return nullptr;
- }
- APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
- APInt NumSkippedElements = Offset.sdiv(ElementSize);
- if (NumSkippedElements.ugt(VecTy->getNumElements()))
- return nullptr;
- Offset -= NumSkippedElements * ElementSize;
- Indices.push_back(IRB.getInt(NumSkippedElements));
- return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
- Offset, TargetTy, Indices, NamePrefix);
- }
-
- if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
- Type *ElementTy = ArrTy->getElementType();
- APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
- APInt NumSkippedElements = Offset.sdiv(ElementSize);
- if (NumSkippedElements.ugt(ArrTy->getNumElements()))
- return nullptr;
-
- Offset -= NumSkippedElements * ElementSize;
- Indices.push_back(IRB.getInt(NumSkippedElements));
- return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
- Indices, NamePrefix);
- }
-
- StructType *STy = dyn_cast<StructType>(Ty);
- if (!STy)
- return nullptr;
-
- const StructLayout *SL = DL.getStructLayout(STy);
- uint64_t StructOffset = Offset.getZExtValue();
- if (StructOffset >= SL->getSizeInBytes())
- return nullptr;
- unsigned Index = SL->getElementContainingOffset(StructOffset);
- Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
- Type *ElementTy = STy->getElementType(Index);
- if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
- return nullptr; // The offset points into alignment padding.
-
- Indices.push_back(IRB.getInt32(Index));
- return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
- Indices, NamePrefix);
-}
-
-/// Get a natural GEP from a base pointer to a particular offset and
-/// resulting in a particular type.
-///
-/// The goal is to produce a "natural" looking GEP that works with the existing
-/// composite types to arrive at the appropriate offset and element type for
-/// a pointer. TargetTy is the element type the returned GEP should point-to if
-/// possible. We recurse by decreasing Offset, adding the appropriate index to
-/// Indices, and setting Ty to the result subtype.
-///
-/// If no natural GEP can be constructed, this function returns null.
-static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
- Value *Ptr, APInt Offset, Type *TargetTy,
- SmallVectorImpl<Value *> &Indices,
- Twine NamePrefix) {
- PointerType *Ty = cast<PointerType>(Ptr->getType());
-
- // Don't consider any GEPs through an i8* as natural unless the TargetTy is
- // an i8.
- if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
- return nullptr;
-
- Type *ElementTy = Ty->getElementType();
- if (!ElementTy->isSized())
- return nullptr; // We can't GEP through an unsized element.
- APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
- if (ElementSize == 0)
- return nullptr; // Zero-length arrays can't help us build a natural GEP.
- APInt NumSkippedElements = Offset.sdiv(ElementSize);
-
- Offset -= NumSkippedElements * ElementSize;
- Indices.push_back(IRB.getInt(NumSkippedElements));
- return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
- Indices, NamePrefix);
-}
-
-/// Compute an adjusted pointer from Ptr by Offset bytes where the
-/// resulting pointer has PointerTy.
-///
-/// This tries very hard to compute a "natural" GEP which arrives at the offset
-/// and produces the pointer type desired. Where it cannot, it will try to use
-/// the natural GEP to arrive at the offset and bitcast to the type. Where that
-/// fails, it will try to use an existing i8* and GEP to the byte offset and
-/// bitcast to the type.
-///
-/// The strategy for finding the more natural GEPs is to peel off layers of the
-/// pointer, walking back through bit casts and GEPs, searching for a base
-/// pointer from which we can compute a natural GEP with the desired
-/// properties. The algorithm tries to fold as many constant indices into
-/// a single GEP as possible, thus making each GEP more independent of the
-/// surrounding code.
-static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
- APInt Offset, Type *PointerTy, Twine NamePrefix) {
- // Even though we don't look through PHI nodes, we could be called on an
- // instruction in an unreachable block, which may be on a cycle.
- SmallPtrSet<Value *, 4> Visited;
- Visited.insert(Ptr);
- SmallVector<Value *, 4> Indices;
-
- // We may end up computing an offset pointer that has the wrong type. If we
- // never are able to compute one directly that has the correct type, we'll
- // fall back to it, so keep it and the base it was computed from around here.
- Value *OffsetPtr = nullptr;
- Value *OffsetBasePtr;
-
- // Remember any i8 pointer we come across to re-use if we need to do a raw
- // byte offset.
- Value *Int8Ptr = nullptr;
- APInt Int8PtrOffset(Offset.getBitWidth(), 0);
-
- Type *TargetTy = PointerTy->getPointerElementType();
-
- do {
- // First fold any existing GEPs into the offset.
- while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- APInt GEPOffset(Offset.getBitWidth(), 0);
- if (!GEP->accumulateConstantOffset(DL, GEPOffset))
- break;
- Offset += GEPOffset;
- Ptr = GEP->getPointerOperand();
- if (!Visited.insert(Ptr).second)
- break;
- }
-
- // See if we can perform a natural GEP here.
- Indices.clear();
- if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
- Indices, NamePrefix)) {
- // If we have a new natural pointer at the offset, clear out any old
- // offset pointer we computed. Unless it is the base pointer or
- // a non-instruction, we built a GEP we don't need. Zap it.
- if (OffsetPtr && OffsetPtr != OffsetBasePtr)
- if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
- assert(I->use_empty() && "Built a GEP with uses some how!");
- I->eraseFromParent();
- }
- OffsetPtr = P;
- OffsetBasePtr = Ptr;
- // If we also found a pointer of the right type, we're done.
- if (P->getType() == PointerTy)
- return P;
- }
-
- // Stash this pointer if we've found an i8*.
- if (Ptr->getType()->isIntegerTy(8)) {
- Int8Ptr = Ptr;
- Int8PtrOffset = Offset;
- }
-
- // Peel off a layer of the pointer and update the offset appropriately.
- if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
- Ptr = cast<Operator>(Ptr)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
- if (GA->isInterposable())
- break;
- Ptr = GA->getAliasee();
- } else {
- break;
- }
- assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
- } while (Visited.insert(Ptr).second);
-
- if (!OffsetPtr) {
- if (!Int8Ptr) {
- Int8Ptr = IRB.CreateBitCast(
- Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
- NamePrefix + "sroa_raw_cast");
- Int8PtrOffset = Offset;
- }
-
- OffsetPtr = Int8PtrOffset == 0
- ? Int8Ptr
- : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
- IRB.getInt(Int8PtrOffset),
- NamePrefix + "sroa_raw_idx");
- }
- Ptr = OffsetPtr;
-
- // On the off chance we were targeting i8*, guard the bitcast here.
- if (Ptr->getType() != PointerTy)
- Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
-
- return Ptr;
-}
-
-/// Compute the adjusted alignment for a load or store from an offset.
-static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
- const DataLayout &DL) {
- unsigned Alignment;
- Type *Ty;
- if (auto *LI = dyn_cast<LoadInst>(I)) {
- Alignment = LI->getAlignment();
- Ty = LI->getType();
- } else if (auto *SI = dyn_cast<StoreInst>(I)) {
- Alignment = SI->getAlignment();
- Ty = SI->getValueOperand()->getType();
- } else {
- llvm_unreachable("Only loads and stores are allowed!");
- }
-
- if (!Alignment)
- Alignment = DL.getABITypeAlignment(Ty);
-
- return MinAlign(Alignment, Offset);
-}
-
-/// Test whether we can convert a value from the old to the new type.
-///
-/// This predicate should be used to guard calls to convertValue in order to
-/// ensure that we only try to convert viable values. The strategy is that we
-/// will peel off single element struct and array wrappings to get to an
-/// underlying value, and convert that value.
-static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
- if (OldTy == NewTy)
- return true;
-
- // For integer types, we can't handle any bit-width differences. This would
- // break both vector conversions with extension and introduce endianness
- // issues when in conjunction with loads and stores.
- if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
- assert(cast<IntegerType>(OldTy)->getBitWidth() !=
- cast<IntegerType>(NewTy)->getBitWidth() &&
- "We can't have the same bitwidth for different int types");
- return false;
- }
-
- if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
- return false;
- if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
- return false;
-
- // We can convert pointers to integers and vice-versa. Same for vectors
- // of pointers and integers.
- OldTy = OldTy->getScalarType();
- NewTy = NewTy->getScalarType();
- if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
- if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
- return cast<PointerType>(NewTy)->getPointerAddressSpace() ==
- cast<PointerType>(OldTy)->getPointerAddressSpace();
- }
-
- // We can convert integers to integral pointers, but not to non-integral
- // pointers.
- if (OldTy->isIntegerTy())
- return !DL.isNonIntegralPointerType(NewTy);
-
- // We can convert integral pointers to integers, but non-integral pointers
- // need to remain pointers.
- if (!DL.isNonIntegralPointerType(OldTy))
- return NewTy->isIntegerTy();
-
- return false;
- }
-
- return true;
-}
-
-/// Generic routine to convert an SSA value to a value of a different
-/// type.
-///
-/// This will try various different casting techniques, such as bitcasts,
-/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
-/// two types for viability with this routine.
-static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
- Type *NewTy) {
- Type *OldTy = V->getType();
- assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
-
- if (OldTy == NewTy)
- return V;
-
- assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
- "Integer types must be the exact same to convert.");
-
- // See if we need inttoptr for this type pair. A cast involving both scalars
- // and vectors requires and additional bitcast.
- if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
- // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
- if (OldTy->isVectorTy() && !NewTy->isVectorTy())
- return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
- NewTy);
-
- // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
- if (!OldTy->isVectorTy() && NewTy->isVectorTy())
- return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
- NewTy);
-
- return IRB.CreateIntToPtr(V, NewTy);
- }
-
- // See if we need ptrtoint for this type pair. A cast involving both scalars
- // and vectors requires and additional bitcast.
- if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
- // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
- if (OldTy->isVectorTy() && !NewTy->isVectorTy())
- return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
- NewTy);
-
- // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
- if (!OldTy->isVectorTy() && NewTy->isVectorTy())
- return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
- NewTy);
-
- return IRB.CreatePtrToInt(V, NewTy);
- }
-
- return IRB.CreateBitCast(V, NewTy);
-}
-
-/// Test whether the given slice use can be promoted to a vector.
-///
-/// This function is called to test each entry in a partition which is slated
-/// for a single slice.
-static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
- VectorType *Ty,
- uint64_t ElementSize,
- const DataLayout &DL) {
- // First validate the slice offsets.
- uint64_t BeginOffset =
- std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
- uint64_t BeginIndex = BeginOffset / ElementSize;
- if (BeginIndex * ElementSize != BeginOffset ||
- BeginIndex >= Ty->getNumElements())
- return false;
- uint64_t EndOffset =
- std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
- uint64_t EndIndex = EndOffset / ElementSize;
- if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
- return false;
-
- assert(EndIndex > BeginIndex && "Empty vector!");
- uint64_t NumElements = EndIndex - BeginIndex;
- Type *SliceTy = (NumElements == 1)
- ? Ty->getElementType()
- : VectorType::get(Ty->getElementType(), NumElements);
-
- Type *SplitIntTy =
- Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
-
- Use *U = S.getUse();
-
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
- if (MI->isVolatile())
- return false;
- if (!S.isSplittable())
- return false; // Skip any unsplittable intrinsics.
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
- if (!II->isLifetimeStartOrEnd())
- return false;
- } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
- // Disable vector promotion when there are loads or stores of an FCA.
- return false;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
- if (LI->isVolatile())
- return false;
- Type *LTy = LI->getType();
- if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
- assert(LTy->isIntegerTy());
- LTy = SplitIntTy;
- }
- if (!canConvertValue(DL, SliceTy, LTy))
- return false;
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
- if (SI->isVolatile())
- return false;
- Type *STy = SI->getValueOperand()->getType();
- if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
- assert(STy->isIntegerTy());
- STy = SplitIntTy;
- }
- if (!canConvertValue(DL, STy, SliceTy))
- return false;
- } else {
- return false;
- }
-
- return true;
-}
-
-/// Test whether the given alloca partitioning and range of slices can be
-/// promoted to a vector.
-///
-/// This is a quick test to check whether we can rewrite a particular alloca
-/// partition (and its newly formed alloca) into a vector alloca with only
-/// whole-vector loads and stores such that it could be promoted to a vector
-/// SSA value. We only can ensure this for a limited set of operations, and we
-/// don't want to do the rewrites unless we are confident that the result will
-/// be promotable, so we have an early test here.
-static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
- // Collect the candidate types for vector-based promotion. Also track whether
- // we have different element types.
- SmallVector<VectorType *, 4> CandidateTys;
- Type *CommonEltTy = nullptr;
- bool HaveCommonEltTy = true;
- auto CheckCandidateType = [&](Type *Ty) {
- if (auto *VTy = dyn_cast<VectorType>(Ty)) {
- CandidateTys.push_back(VTy);
- if (!CommonEltTy)
- CommonEltTy = VTy->getElementType();
- else if (CommonEltTy != VTy->getElementType())
- HaveCommonEltTy = false;
- }
- };
- // Consider any loads or stores that are the exact size of the slice.
- for (const Slice &S : P)
- if (S.beginOffset() == P.beginOffset() &&
- S.endOffset() == P.endOffset()) {
- if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
- CheckCandidateType(LI->getType());
- else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
- CheckCandidateType(SI->getValueOperand()->getType());
- }
-
- // If we didn't find a vector type, nothing to do here.
- if (CandidateTys.empty())
- return nullptr;
-
- // Remove non-integer vector types if we had multiple common element types.
- // FIXME: It'd be nice to replace them with integer vector types, but we can't
- // do that until all the backends are known to produce good code for all
- // integer vector types.
- if (!HaveCommonEltTy) {
- CandidateTys.erase(
- llvm::remove_if(CandidateTys,
- [](VectorType *VTy) {
- return !VTy->getElementType()->isIntegerTy();
- }),
- CandidateTys.end());
-
- // If there were no integer vector types, give up.
- if (CandidateTys.empty())
- return nullptr;
-
- // Rank the remaining candidate vector types. This is easy because we know
- // they're all integer vectors. We sort by ascending number of elements.
- auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
- (void)DL;
- assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
- "Cannot have vector types of different sizes!");
- assert(RHSTy->getElementType()->isIntegerTy() &&
- "All non-integer types eliminated!");
- assert(LHSTy->getElementType()->isIntegerTy() &&
- "All non-integer types eliminated!");
- return RHSTy->getNumElements() < LHSTy->getNumElements();
- };
- llvm::sort(CandidateTys, RankVectorTypes);
- CandidateTys.erase(
- std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
- CandidateTys.end());
- } else {
-// The only way to have the same element type in every vector type is to
-// have the same vector type. Check that and remove all but one.
-#ifndef NDEBUG
- for (VectorType *VTy : CandidateTys) {
- assert(VTy->getElementType() == CommonEltTy &&
- "Unaccounted for element type!");
- assert(VTy == CandidateTys[0] &&
- "Different vector types with the same element type!");
- }
-#endif
- CandidateTys.resize(1);
- }
-
- // Try each vector type, and return the one which works.
- auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
- uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
-
- // While the definition of LLVM vectors is bitpacked, we don't support sizes
- // that aren't byte sized.
- if (ElementSize % 8)
- return false;
- assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
- "vector size not a multiple of element size?");
- ElementSize /= 8;
-
- for (const Slice &S : P)
- if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
- return false;
-
- for (const Slice *S : P.splitSliceTails())
- if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
- return false;
-
- return true;
- };
- for (VectorType *VTy : CandidateTys)
- if (CheckVectorTypeForPromotion(VTy))
- return VTy;
-
- return nullptr;
-}
-
-/// Test whether a slice of an alloca is valid for integer widening.
-///
-/// This implements the necessary checking for the \c isIntegerWideningViable
-/// test below on a single slice of the alloca.
-static bool isIntegerWideningViableForSlice(const Slice &S,
- uint64_t AllocBeginOffset,
- Type *AllocaTy,
- const DataLayout &DL,
- bool &WholeAllocaOp) {
- uint64_t Size = DL.getTypeStoreSize(AllocaTy);
-
- uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
- uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
-
- // We can't reasonably handle cases where the load or store extends past
- // the end of the alloca's type and into its padding.
- if (RelEnd > Size)
- return false;
-
- Use *U = S.getUse();
-
- if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
- if (LI->isVolatile())
- return false;
- // We can't handle loads that extend past the allocated memory.
- if (DL.getTypeStoreSize(LI->getType()) > Size)
- return false;
- // So far, AllocaSliceRewriter does not support widening split slice tails
- // in rewriteIntegerLoad.
- if (S.beginOffset() < AllocBeginOffset)
- return false;
- // Note that we don't count vector loads or stores as whole-alloca
- // operations which enable integer widening because we would prefer to use
- // vector widening instead.
- if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
- WholeAllocaOp = true;
- if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
- if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
- return false;
- } else if (RelBegin != 0 || RelEnd != Size ||
- !canConvertValue(DL, AllocaTy, LI->getType())) {
- // Non-integer loads need to be convertible from the alloca type so that
- // they are promotable.
- return false;
- }
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
- Type *ValueTy = SI->getValueOperand()->getType();
- if (SI->isVolatile())
- return false;
- // We can't handle stores that extend past the allocated memory.
- if (DL.getTypeStoreSize(ValueTy) > Size)
- return false;
- // So far, AllocaSliceRewriter does not support widening split slice tails
- // in rewriteIntegerStore.
- if (S.beginOffset() < AllocBeginOffset)
- return false;
- // Note that we don't count vector loads or stores as whole-alloca
- // operations which enable integer widening because we would prefer to use
- // vector widening instead.
- if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
- WholeAllocaOp = true;
- if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
- if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
- return false;
- } else if (RelBegin != 0 || RelEnd != Size ||
- !canConvertValue(DL, ValueTy, AllocaTy)) {
- // Non-integer stores need to be convertible to the alloca type so that
- // they are promotable.
- return false;
- }
- } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
- if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
- return false;
- if (!S.isSplittable())
- return false; // Skip any unsplittable intrinsics.
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
- if (!II->isLifetimeStartOrEnd())
- return false;
- } else {
- return false;
- }
-
- return true;
-}
-
-/// Test whether the given alloca partition's integer operations can be
-/// widened to promotable ones.
-///
-/// This is a quick test to check whether we can rewrite the integer loads and
-/// stores to a particular alloca into wider loads and stores and be able to
-/// promote the resulting alloca.
-static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
- const DataLayout &DL) {
- uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
- // Don't create integer types larger than the maximum bitwidth.
- if (SizeInBits > IntegerType::MAX_INT_BITS)
- return false;
-
- // Don't try to handle allocas with bit-padding.
- if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
- return false;
-
- // We need to ensure that an integer type with the appropriate bitwidth can
- // be converted to the alloca type, whatever that is. We don't want to force
- // the alloca itself to have an integer type if there is a more suitable one.
- Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
- if (!canConvertValue(DL, AllocaTy, IntTy) ||
- !canConvertValue(DL, IntTy, AllocaTy))
- return false;
-
- // While examining uses, we ensure that the alloca has a covering load or
- // store. We don't want to widen the integer operations only to fail to
- // promote due to some other unsplittable entry (which we may make splittable
- // later). However, if there are only splittable uses, go ahead and assume
- // that we cover the alloca.
- // FIXME: We shouldn't consider split slices that happen to start in the
- // partition here...
- bool WholeAllocaOp =
- P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
-
- for (const Slice &S : P)
- if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
- WholeAllocaOp))
- return false;
-
- for (const Slice *S : P.splitSliceTails())
- if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
- WholeAllocaOp))
- return false;
-
- return WholeAllocaOp;
-}
-
-static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
- IntegerType *Ty, uint64_t Offset,
- const Twine &Name) {
- LLVM_DEBUG(dbgs() << " start: " << *V << "\n");
- IntegerType *IntTy = cast<IntegerType>(V->getType());
- assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
- "Element extends past full value");
- uint64_t ShAmt = 8 * Offset;
- if (DL.isBigEndian())
- ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
- if (ShAmt) {
- V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
- LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n");
- }
- assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
- "Cannot extract to a larger integer!");
- if (Ty != IntTy) {
- V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
- LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n");
- }
- return V;
-}
-
-static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
- Value *V, uint64_t Offset, const Twine &Name) {
- IntegerType *IntTy = cast<IntegerType>(Old->getType());
- IntegerType *Ty = cast<IntegerType>(V->getType());
- assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
- "Cannot insert a larger integer!");
- LLVM_DEBUG(dbgs() << " start: " << *V << "\n");
- if (Ty != IntTy) {
- V = IRB.CreateZExt(V, IntTy, Name + ".ext");
- LLVM_DEBUG(dbgs() << " extended: " << *V << "\n");
- }
- assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
- "Element store outside of alloca store");
- uint64_t ShAmt = 8 * Offset;
- if (DL.isBigEndian())
- ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
- if (ShAmt) {
- V = IRB.CreateShl(V, ShAmt, Name + ".shift");
- LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n");
- }
-
- if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
- APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
- Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
- LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n");
- V = IRB.CreateOr(Old, V, Name + ".insert");
- LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n");
- }
- return V;
-}
-
-static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
- unsigned EndIndex, const Twine &Name) {
- VectorType *VecTy = cast<VectorType>(V->getType());
- unsigned NumElements = EndIndex - BeginIndex;
- assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
-
- if (NumElements == VecTy->getNumElements())
- return V;
-
- if (NumElements == 1) {
- V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
- Name + ".extract");
- LLVM_DEBUG(dbgs() << " extract: " << *V << "\n");
- return V;
- }
-
- SmallVector<Constant *, 8> Mask;
- Mask.reserve(NumElements);
- for (unsigned i = BeginIndex; i != EndIndex; ++i)
- Mask.push_back(IRB.getInt32(i));
- V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask), Name + ".extract");
- LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n");
- return V;
-}
-
-static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
- unsigned BeginIndex, const Twine &Name) {
- VectorType *VecTy = cast<VectorType>(Old->getType());
- assert(VecTy && "Can only insert a vector into a vector");
-
- VectorType *Ty = dyn_cast<VectorType>(V->getType());
- if (!Ty) {
- // Single element to insert.
- V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
- Name + ".insert");
- LLVM_DEBUG(dbgs() << " insert: " << *V << "\n");
- return V;
- }
-
- assert(Ty->getNumElements() <= VecTy->getNumElements() &&
- "Too many elements!");
- if (Ty->getNumElements() == VecTy->getNumElements()) {
- assert(V->getType() == VecTy && "Vector type mismatch");
- return V;
- }
- unsigned EndIndex = BeginIndex + Ty->getNumElements();
-
- // When inserting a smaller vector into the larger to store, we first
- // use a shuffle vector to widen it with undef elements, and then
- // a second shuffle vector to select between the loaded vector and the
- // incoming vector.
- SmallVector<Constant *, 8> Mask;
- Mask.reserve(VecTy->getNumElements());
- for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
- if (i >= BeginIndex && i < EndIndex)
- Mask.push_back(IRB.getInt32(i - BeginIndex));
- else
- Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
- V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask), Name + ".expand");
- LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n");
-
- Mask.clear();
- for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
- Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
-
- V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
-
- LLVM_DEBUG(dbgs() << " blend: " << *V << "\n");
- return V;
-}
-
-/// Visitor to rewrite instructions using p particular slice of an alloca
-/// to use a new alloca.
-///
-/// Also implements the rewriting to vector-based accesses when the partition
-/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
-/// lives here.
-class llvm::sroa::AllocaSliceRewriter
- : public InstVisitor<AllocaSliceRewriter, bool> {
- // Befriend the base class so it can delegate to private visit methods.
- friend class InstVisitor<AllocaSliceRewriter, bool>;
-
- using Base = InstVisitor<AllocaSliceRewriter, bool>;
-
- const DataLayout &DL;
- AllocaSlices &AS;
- SROA &Pass;
- AllocaInst &OldAI, &NewAI;
- const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
- Type *NewAllocaTy;
-
- // This is a convenience and flag variable that will be null unless the new
- // alloca's integer operations should be widened to this integer type due to
- // passing isIntegerWideningViable above. If it is non-null, the desired
- // integer type will be stored here for easy access during rewriting.
- IntegerType *IntTy;
-
- // If we are rewriting an alloca partition which can be written as pure
- // vector operations, we stash extra information here. When VecTy is
- // non-null, we have some strict guarantees about the rewritten alloca:
- // - The new alloca is exactly the size of the vector type here.
- // - The accesses all either map to the entire vector or to a single
- // element.
- // - The set of accessing instructions is only one of those handled above
- // in isVectorPromotionViable. Generally these are the same access kinds
- // which are promotable via mem2reg.
- VectorType *VecTy;
- Type *ElementTy;
- uint64_t ElementSize;
-
- // The original offset of the slice currently being rewritten relative to
- // the original alloca.
- uint64_t BeginOffset = 0;
- uint64_t EndOffset = 0;
-
- // The new offsets of the slice currently being rewritten relative to the
- // original alloca.
- uint64_t NewBeginOffset, NewEndOffset;
-
- uint64_t SliceSize;
- bool IsSplittable = false;
- bool IsSplit = false;
- Use *OldUse = nullptr;
- Instruction *OldPtr = nullptr;
-
- // Track post-rewrite users which are PHI nodes and Selects.
- SmallSetVector<PHINode *, 8> &PHIUsers;
- SmallSetVector<SelectInst *, 8> &SelectUsers;
-
- // Utility IR builder, whose name prefix is setup for each visited use, and
- // the insertion point is set to point to the user.
- IRBuilderTy IRB;
-
-public:
- AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
- AllocaInst &OldAI, AllocaInst &NewAI,
- uint64_t NewAllocaBeginOffset,
- uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
- VectorType *PromotableVecTy,
- SmallSetVector<PHINode *, 8> &PHIUsers,
- SmallSetVector<SelectInst *, 8> &SelectUsers)
- : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
- NewAllocaBeginOffset(NewAllocaBeginOffset),
- NewAllocaEndOffset(NewAllocaEndOffset),
- NewAllocaTy(NewAI.getAllocatedType()),
- IntTy(IsIntegerPromotable
- ? Type::getIntNTy(
- NewAI.getContext(),
- DL.getTypeSizeInBits(NewAI.getAllocatedType()))
- : nullptr),
- VecTy(PromotableVecTy),
- ElementTy(VecTy ? VecTy->getElementType() : nullptr),
- ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
- PHIUsers(PHIUsers), SelectUsers(SelectUsers),
- IRB(NewAI.getContext(), ConstantFolder()) {
- if (VecTy) {
- assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
- "Only multiple-of-8 sized vector elements are viable");
- ++NumVectorized;
- }
- assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
- }
-
- bool visit(AllocaSlices::const_iterator I) {
- bool CanSROA = true;
- BeginOffset = I->beginOffset();
- EndOffset = I->endOffset();
- IsSplittable = I->isSplittable();
- IsSplit =
- BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
- LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : ""));
- LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
- LLVM_DEBUG(dbgs() << "\n");
-
- // Compute the intersecting offset range.
- assert(BeginOffset < NewAllocaEndOffset);
- assert(EndOffset > NewAllocaBeginOffset);
- NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
- NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
-
- SliceSize = NewEndOffset - NewBeginOffset;
-
- OldUse = I->getUse();
- OldPtr = cast<Instruction>(OldUse->get());
-
- Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
- IRB.SetInsertPoint(OldUserI);
- IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
- IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
-
- CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
- if (VecTy || IntTy)
- assert(CanSROA);
- return CanSROA;
- }
-
-private:
- // Make sure the other visit overloads are visible.
- using Base::visit;
-
- // Every instruction which can end up as a user must have a rewrite rule.
- bool visitInstruction(Instruction &I) {
- LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
- llvm_unreachable("No rewrite rule for this instruction!");
- }
-
- Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
- // Note that the offset computation can use BeginOffset or NewBeginOffset
- // interchangeably for unsplit slices.
- assert(IsSplit || BeginOffset == NewBeginOffset);
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
-
-#ifndef NDEBUG
- StringRef OldName = OldPtr->getName();
- // Skip through the last '.sroa.' component of the name.
- size_t LastSROAPrefix = OldName.rfind(".sroa.");
- if (LastSROAPrefix != StringRef::npos) {
- OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
- // Look for an SROA slice index.
- size_t IndexEnd = OldName.find_first_not_of("0123456789");
- if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
- // Strip the index and look for the offset.
- OldName = OldName.substr(IndexEnd + 1);
- size_t OffsetEnd = OldName.find_first_not_of("0123456789");
- if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
- // Strip the offset.
- OldName = OldName.substr(OffsetEnd + 1);
- }
- }
- // Strip any SROA suffixes as well.
- OldName = OldName.substr(0, OldName.find(".sroa_"));
-#endif
-
- return getAdjustedPtr(IRB, DL, &NewAI,
- APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
- PointerTy,
-#ifndef NDEBUG
- Twine(OldName) + "."
-#else
- Twine()
-#endif
- );
- }
-
- /// Compute suitable alignment to access this slice of the *new*
- /// alloca.
- ///
- /// You can optionally pass a type to this routine and if that type's ABI
- /// alignment is itself suitable, this will return zero.
- unsigned getSliceAlign(Type *Ty = nullptr) {
- unsigned NewAIAlign = NewAI.getAlignment();
- if (!NewAIAlign)
- NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
- unsigned Align =
- MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
- return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
- }
-
- unsigned getIndex(uint64_t Offset) {
- assert(VecTy && "Can only call getIndex when rewriting a vector");
- uint64_t RelOffset = Offset - NewAllocaBeginOffset;
- assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
- uint32_t Index = RelOffset / ElementSize;
- assert(Index * ElementSize == RelOffset);
- return Index;
- }
-
- void deleteIfTriviallyDead(Value *V) {
- Instruction *I = cast<Instruction>(V);
- if (isInstructionTriviallyDead(I))
- Pass.DeadInsts.insert(I);
- }
-
- Value *rewriteVectorizedLoadInst() {
- unsigned BeginIndex = getIndex(NewBeginOffset);
- unsigned EndIndex = getIndex(NewEndOffset);
- assert(EndIndex > BeginIndex && "Empty vector!");
-
- Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
- }
-
- Value *rewriteIntegerLoad(LoadInst &LI) {
- assert(IntTy && "We cannot insert an integer to the alloca");
- assert(!LI.isVolatile());
- Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- V = convertValue(DL, IRB, V, IntTy);
- assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
- IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
- V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
- }
- // It is possible that the extracted type is not the load type. This
- // happens if there is a load past the end of the alloca, and as
- // a consequence the slice is narrower but still a candidate for integer
- // lowering. To handle this case, we just zero extend the extracted
- // integer.
- assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
- "Can only handle an extract for an overly wide load");
- if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
- V = IRB.CreateZExt(V, LI.getType());
- return V;
- }
-
- bool visitLoadInst(LoadInst &LI) {
- LLVM_DEBUG(dbgs() << " original: " << LI << "\n");
- Value *OldOp = LI.getOperand(0);
- assert(OldOp == OldPtr);
-
- AAMDNodes AATags;
- LI.getAAMetadata(AATags);
-
- unsigned AS = LI.getPointerAddressSpace();
-
- Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
- : LI.getType();
- const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
- bool IsPtrAdjusted = false;
- Value *V;
- if (VecTy) {
- V = rewriteVectorizedLoadInst();
- } else if (IntTy && LI.getType()->isIntegerTy()) {
- V = rewriteIntegerLoad(LI);
- } else if (NewBeginOffset == NewAllocaBeginOffset &&
- NewEndOffset == NewAllocaEndOffset &&
- (canConvertValue(DL, NewAllocaTy, TargetTy) ||
- (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
- TargetTy->isIntegerTy()))) {
- LoadInst *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- LI.isVolatile(), LI.getName());
- if (AATags)
- NewLI->setAAMetadata(AATags);
- if (LI.isVolatile())
- NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
-
- // Any !nonnull metadata or !range metadata on the old load is also valid
- // on the new load. This is even true in some cases even when the loads
- // are different types, for example by mapping !nonnull metadata to
- // !range metadata by modeling the null pointer constant converted to the
- // integer type.
- // FIXME: Add support for range metadata here. Currently the utilities
- // for this don't propagate range metadata in trivial cases from one
- // integer load to another, don't handle non-addrspace-0 null pointers
- // correctly, and don't have any support for mapping ranges as the
- // integer type becomes winder or narrower.
- if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
- copyNonnullMetadata(LI, N, *NewLI);
-
- // Try to preserve nonnull metadata
- V = NewLI;
-
- // If this is an integer load past the end of the slice (which means the
- // bytes outside the slice are undef or this load is dead) just forcibly
- // fix the integer size with correct handling of endianness.
- if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
- if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
- if (AITy->getBitWidth() < TITy->getBitWidth()) {
- V = IRB.CreateZExt(V, TITy, "load.ext");
- if (DL.isBigEndian())
- V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
- "endian_shift");
- }
- } else {
- Type *LTy = TargetTy->getPointerTo(AS);
- LoadInst *NewLI = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
- getSliceAlign(TargetTy),
- LI.isVolatile(), LI.getName());
- if (AATags)
- NewLI->setAAMetadata(AATags);
- if (LI.isVolatile())
- NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
-
- V = NewLI;
- IsPtrAdjusted = true;
- }
- V = convertValue(DL, IRB, V, TargetTy);
-
- if (IsSplit) {
- assert(!LI.isVolatile());
- assert(LI.getType()->isIntegerTy() &&
- "Only integer type loads and stores are split");
- assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
- "Split load isn't smaller than original load");
- assert(LI.getType()->getIntegerBitWidth() ==
- DL.getTypeStoreSizeInBits(LI.getType()) &&
- "Non-byte-multiple bit width");
- // Move the insertion point just past the load so that we can refer to it.
- IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
- // Create a placeholder value with the same type as LI to use as the
- // basis for the new value. This allows us to replace the uses of LI with
- // the computed value, and then replace the placeholder with LI, leaving
- // LI only used for this computation.
- Value *Placeholder =
- new LoadInst(UndefValue::get(LI.getType()->getPointerTo(AS)));
- V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
- "insert");
- LI.replaceAllUsesWith(V);
- Placeholder->replaceAllUsesWith(&LI);
- Placeholder->deleteValue();
- } else {
- LI.replaceAllUsesWith(V);
- }
-
- Pass.DeadInsts.insert(&LI);
- deleteIfTriviallyDead(OldOp);
- LLVM_DEBUG(dbgs() << " to: " << *V << "\n");
- return !LI.isVolatile() && !IsPtrAdjusted;
- }
-
- bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
- AAMDNodes AATags) {
- if (V->getType() != VecTy) {
- unsigned BeginIndex = getIndex(NewBeginOffset);
- unsigned EndIndex = getIndex(NewEndOffset);
- assert(EndIndex > BeginIndex && "Empty vector!");
- unsigned NumElements = EndIndex - BeginIndex;
- assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
- Type *SliceTy = (NumElements == 1)
- ? ElementTy
- : VectorType::get(ElementTy, NumElements);
- if (V->getType() != SliceTy)
- V = convertValue(DL, IRB, V, SliceTy);
-
- // Mix in the existing elements.
- Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- V = insertVector(IRB, Old, V, BeginIndex, "vec");
- }
- StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
- if (AATags)
- Store->setAAMetadata(AATags);
- Pass.DeadInsts.insert(&SI);
-
- LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
- return true;
- }
-
- bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
- assert(IntTy && "We cannot extract an integer from the alloca");
- assert(!SI.isVolatile());
- if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- Old = convertValue(DL, IRB, Old, IntTy);
- assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
- uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
- V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
- }
- V = convertValue(DL, IRB, V, NewAllocaTy);
- StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
- Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
- LLVMContext::MD_access_group});
- if (AATags)
- Store->setAAMetadata(AATags);
- Pass.DeadInsts.insert(&SI);
- LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
- return true;
- }
-
- bool visitStoreInst(StoreInst &SI) {
- LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
- Value *OldOp = SI.getOperand(1);
- assert(OldOp == OldPtr);
-
- AAMDNodes AATags;
- SI.getAAMetadata(AATags);
-
- Value *V = SI.getValueOperand();
-
- // Strip all inbounds GEPs and pointer casts to try to dig out any root
- // alloca that should be re-examined after promoting this alloca.
- if (V->getType()->isPointerTy())
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
- Pass.PostPromotionWorklist.insert(AI);
-
- if (SliceSize < DL.getTypeStoreSize(V->getType())) {
- assert(!SI.isVolatile());
- assert(V->getType()->isIntegerTy() &&
- "Only integer type loads and stores are split");
- assert(V->getType()->getIntegerBitWidth() ==
- DL.getTypeStoreSizeInBits(V->getType()) &&
- "Non-byte-multiple bit width");
- IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
- V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
- "extract");
- }
-
- if (VecTy)
- return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
- if (IntTy && V->getType()->isIntegerTy())
- return rewriteIntegerStore(V, SI, AATags);
-
- const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
- StoreInst *NewSI;
- if (NewBeginOffset == NewAllocaBeginOffset &&
- NewEndOffset == NewAllocaEndOffset &&
- (canConvertValue(DL, V->getType(), NewAllocaTy) ||
- (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
- V->getType()->isIntegerTy()))) {
- // If this is an integer store past the end of slice (and thus the bytes
- // past that point are irrelevant or this is unreachable), truncate the
- // value prior to storing.
- if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
- if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
- if (VITy->getBitWidth() > AITy->getBitWidth()) {
- if (DL.isBigEndian())
- V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
- "endian_shift");
- V = IRB.CreateTrunc(V, AITy, "load.trunc");
- }
-
- V = convertValue(DL, IRB, V, NewAllocaTy);
- NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
- SI.isVolatile());
- } else {
- unsigned AS = SI.getPointerAddressSpace();
- Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
- NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
- SI.isVolatile());
- }
- NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
- LLVMContext::MD_access_group});
- if (AATags)
- NewSI->setAAMetadata(AATags);
- if (SI.isVolatile())
- NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
- Pass.DeadInsts.insert(&SI);
- deleteIfTriviallyDead(OldOp);
-
- LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n");
- return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
- }
-
- /// Compute an integer value from splatting an i8 across the given
- /// number of bytes.
- ///
- /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
- /// call this routine.
- /// FIXME: Heed the advice above.
- ///
- /// \param V The i8 value to splat.
- /// \param Size The number of bytes in the output (assuming i8 is one byte)
- Value *getIntegerSplat(Value *V, unsigned Size) {
- assert(Size > 0 && "Expected a positive number of bytes.");
- IntegerType *VTy = cast<IntegerType>(V->getType());
- assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
- if (Size == 1)
- return V;
-
- Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
- V = IRB.CreateMul(
- IRB.CreateZExt(V, SplatIntTy, "zext"),
- ConstantExpr::getUDiv(
- Constant::getAllOnesValue(SplatIntTy),
- ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
- SplatIntTy)),
- "isplat");
- return V;
- }
-
- /// Compute a vector splat for a given element value.
- Value *getVectorSplat(Value *V, unsigned NumElements) {
- V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
- LLVM_DEBUG(dbgs() << " splat: " << *V << "\n");
- return V;
- }
-
- bool visitMemSetInst(MemSetInst &II) {
- LLVM_DEBUG(dbgs() << " original: " << II << "\n");
- assert(II.getRawDest() == OldPtr);
-
- AAMDNodes AATags;
- II.getAAMetadata(AATags);
-
- // If the memset has a variable size, it cannot be split, just adjust the
- // pointer to the new alloca.
- if (!isa<Constant>(II.getLength())) {
- assert(!IsSplit);
- assert(NewBeginOffset == BeginOffset);
- II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
- II.setDestAlignment(getSliceAlign());
-
- deleteIfTriviallyDead(OldPtr);
- return false;
- }
-
- // Record this instruction for deletion.
- Pass.DeadInsts.insert(&II);
-
- Type *AllocaTy = NewAI.getAllocatedType();
- Type *ScalarTy = AllocaTy->getScalarType();
-
- // If this doesn't map cleanly onto the alloca type, and that type isn't
- // a single value type, just emit a memset.
- if (!VecTy && !IntTy &&
- (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
- SliceSize != DL.getTypeStoreSize(AllocaTy) ||
- !AllocaTy->isSingleValueType() ||
- !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
- DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) {
- Type *SizeTy = II.getLength()->getType();
- Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
- CallInst *New = IRB.CreateMemSet(
- getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
- getSliceAlign(), II.isVolatile());
- if (AATags)
- New->setAAMetadata(AATags);
- LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
- return false;
- }
-
- // If we can represent this as a simple value, we have to build the actual
- // value to store, which requires expanding the byte present in memset to
- // a sensible representation for the alloca type. This is essentially
- // splatting the byte to a sufficiently wide integer, splatting it across
- // any desired vector width, and bitcasting to the final type.
- Value *V;
-
- if (VecTy) {
- // If this is a memset of a vectorized alloca, insert it.
- assert(ElementTy == ScalarTy);
-
- unsigned BeginIndex = getIndex(NewBeginOffset);
- unsigned EndIndex = getIndex(NewEndOffset);
- assert(EndIndex > BeginIndex && "Empty vector!");
- unsigned NumElements = EndIndex - BeginIndex;
- assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
-
- Value *Splat =
- getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
- Splat = convertValue(DL, IRB, Splat, ElementTy);
- if (NumElements > 1)
- Splat = getVectorSplat(Splat, NumElements);
-
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
- } else if (IntTy) {
- // If this is a memset on an alloca where we can widen stores, insert the
- // set integer.
- assert(!II.isVolatile());
-
- uint64_t Size = NewEndOffset - NewBeginOffset;
- V = getIntegerSplat(II.getValue(), Size);
-
- if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
- EndOffset != NewAllocaBeginOffset)) {
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- Old = convertValue(DL, IRB, Old, IntTy);
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- V = insertInteger(DL, IRB, Old, V, Offset, "insert");
- } else {
- assert(V->getType() == IntTy &&
- "Wrong type for an alloca wide integer!");
- }
- V = convertValue(DL, IRB, V, AllocaTy);
- } else {
- // Established these invariants above.
- assert(NewBeginOffset == NewAllocaBeginOffset);
- assert(NewEndOffset == NewAllocaEndOffset);
-
- V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
- if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
- V = getVectorSplat(V, AllocaVecTy->getNumElements());
-
- V = convertValue(DL, IRB, V, AllocaTy);
- }
-
- StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
- II.isVolatile());
- if (AATags)
- New->setAAMetadata(AATags);
- LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
- return !II.isVolatile();
- }
-
- bool visitMemTransferInst(MemTransferInst &II) {
- // Rewriting of memory transfer instructions can be a bit tricky. We break
- // them into two categories: split intrinsics and unsplit intrinsics.
-
- LLVM_DEBUG(dbgs() << " original: " << II << "\n");
-
- AAMDNodes AATags;
- II.getAAMetadata(AATags);
-
- bool IsDest = &II.getRawDestUse() == OldUse;
- assert((IsDest && II.getRawDest() == OldPtr) ||
- (!IsDest && II.getRawSource() == OldPtr));
-
- unsigned SliceAlign = getSliceAlign();
-
- // For unsplit intrinsics, we simply modify the source and destination
- // pointers in place. This isn't just an optimization, it is a matter of
- // correctness. With unsplit intrinsics we may be dealing with transfers
- // within a single alloca before SROA ran, or with transfers that have
- // a variable length. We may also be dealing with memmove instead of
- // memcpy, and so simply updating the pointers is the necessary for us to
- // update both source and dest of a single call.
- if (!IsSplittable) {
- Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
- if (IsDest) {
- II.setDest(AdjustedPtr);
- II.setDestAlignment(SliceAlign);
- }
- else {
- II.setSource(AdjustedPtr);
- II.setSourceAlignment(SliceAlign);
- }
-
- LLVM_DEBUG(dbgs() << " to: " << II << "\n");
- deleteIfTriviallyDead(OldPtr);
- return false;
- }
- // For split transfer intrinsics we have an incredibly useful assurance:
- // the source and destination do not reside within the same alloca, and at
- // least one of them does not escape. This means that we can replace
- // memmove with memcpy, and we don't need to worry about all manner of
- // downsides to splitting and transforming the operations.
-
- // If this doesn't map cleanly onto the alloca type, and that type isn't
- // a single value type, just emit a memcpy.
- bool EmitMemCpy =
- !VecTy && !IntTy &&
- (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
- SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
- !NewAI.getAllocatedType()->isSingleValueType());
-
- // If we're just going to emit a memcpy, the alloca hasn't changed, and the
- // size hasn't been shrunk based on analysis of the viable range, this is
- // a no-op.
- if (EmitMemCpy && &OldAI == &NewAI) {
- // Ensure the start lines up.
- assert(NewBeginOffset == BeginOffset);
-
- // Rewrite the size as needed.
- if (NewEndOffset != EndOffset)
- II.setLength(ConstantInt::get(II.getLength()->getType(),
- NewEndOffset - NewBeginOffset));
- return false;
- }
- // Record this instruction for deletion.
- Pass.DeadInsts.insert(&II);
-
- // Strip all inbounds GEPs and pointer casts to try to dig out any root
- // alloca that should be re-examined after rewriting this instruction.
- Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
- if (AllocaInst *AI =
- dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
- assert(AI != &OldAI && AI != &NewAI &&
- "Splittable transfers cannot reach the same alloca on both ends.");
- Pass.Worklist.insert(AI);
- }
-
- Type *OtherPtrTy = OtherPtr->getType();
- unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
-
- // Compute the relative offset for the other pointer within the transfer.
- unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
- APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
- unsigned OtherAlign =
- IsDest ? II.getSourceAlignment() : II.getDestAlignment();
- OtherAlign = MinAlign(OtherAlign ? OtherAlign : 1,
- OtherOffset.zextOrTrunc(64).getZExtValue());
-
- if (EmitMemCpy) {
- // Compute the other pointer, folding as much as possible to produce
- // a single, simple GEP in most cases.
- OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
- OtherPtr->getName() + ".");
-
- Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
- Type *SizeTy = II.getLength()->getType();
- Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
-
- Value *DestPtr, *SrcPtr;
- unsigned DestAlign, SrcAlign;
- // Note: IsDest is true iff we're copying into the new alloca slice
- if (IsDest) {
- DestPtr = OurPtr;
- DestAlign = SliceAlign;
- SrcPtr = OtherPtr;
- SrcAlign = OtherAlign;
- } else {
- DestPtr = OtherPtr;
- DestAlign = OtherAlign;
- SrcPtr = OurPtr;
- SrcAlign = SliceAlign;
- }
- CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
- Size, II.isVolatile());
- if (AATags)
- New->setAAMetadata(AATags);
- LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
- return false;
- }
-
- bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
- NewEndOffset == NewAllocaEndOffset;
- uint64_t Size = NewEndOffset - NewBeginOffset;
- unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
- unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
- unsigned NumElements = EndIndex - BeginIndex;
- IntegerType *SubIntTy =
- IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
-
- // Reset the other pointer type to match the register type we're going to
- // use, but using the address space of the original other pointer.
- if (VecTy && !IsWholeAlloca) {
- if (NumElements == 1)
- OtherPtrTy = VecTy->getElementType();
- else
- OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
-
- OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
- } else if (IntTy && !IsWholeAlloca) {
- OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
- } else {
- OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
- }
-
- Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
- OtherPtr->getName() + ".");
- unsigned SrcAlign = OtherAlign;
- Value *DstPtr = &NewAI;
- unsigned DstAlign = SliceAlign;
- if (!IsDest) {
- std::swap(SrcPtr, DstPtr);
- std::swap(SrcAlign, DstAlign);
- }
-
- Value *Src;
- if (VecTy && !IsWholeAlloca && !IsDest) {
- Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
- } else if (IntTy && !IsWholeAlloca && !IsDest) {
- Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- Src = convertValue(DL, IRB, Src, IntTy);
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
- } else {
- LoadInst *Load = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(),
- "copyload");
- if (AATags)
- Load->setAAMetadata(AATags);
- Src = Load;
- }
-
- if (VecTy && !IsWholeAlloca && IsDest) {
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
- } else if (IntTy && !IsWholeAlloca && IsDest) {
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- Old = convertValue(DL, IRB, Old, IntTy);
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
- Src = convertValue(DL, IRB, Src, NewAllocaTy);
- }
-
- StoreInst *Store = cast<StoreInst>(
- IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
- if (AATags)
- Store->setAAMetadata(AATags);
- LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
- return !II.isVolatile();
- }
-
- bool visitIntrinsicInst(IntrinsicInst &II) {
- assert(II.isLifetimeStartOrEnd());
- LLVM_DEBUG(dbgs() << " original: " << II << "\n");
- assert(II.getArgOperand(1) == OldPtr);
-
- // Record this instruction for deletion.
- Pass.DeadInsts.insert(&II);
-
- // Lifetime intrinsics are only promotable if they cover the whole alloca.
- // Therefore, we drop lifetime intrinsics which don't cover the whole
- // alloca.
- // (In theory, intrinsics which partially cover an alloca could be
- // promoted, but PromoteMemToReg doesn't handle that case.)
- // FIXME: Check whether the alloca is promotable before dropping the
- // lifetime intrinsics?
- if (NewBeginOffset != NewAllocaBeginOffset ||
- NewEndOffset != NewAllocaEndOffset)
- return true;
-
- ConstantInt *Size =
- ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
- NewEndOffset - NewBeginOffset);
- // Lifetime intrinsics always expect an i8* so directly get such a pointer
- // for the new alloca slice.
- Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
- Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
- Value *New;
- if (II.getIntrinsicID() == Intrinsic::lifetime_start)
- New = IRB.CreateLifetimeStart(Ptr, Size);
- else
- New = IRB.CreateLifetimeEnd(Ptr, Size);
-
- (void)New;
- LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
-
- return true;
- }
-
- void fixLoadStoreAlign(Instruction &Root) {
- // This algorithm implements the same visitor loop as
- // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
- // or store found.
- SmallPtrSet<Instruction *, 4> Visited;
- SmallVector<Instruction *, 4> Uses;
- Visited.insert(&Root);
- Uses.push_back(&Root);
- do {
- Instruction *I = Uses.pop_back_val();
-
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- unsigned LoadAlign = LI->getAlignment();
- if (!LoadAlign)
- LoadAlign = DL.getABITypeAlignment(LI->getType());
- LI->setAlignment(std::min(LoadAlign, getSliceAlign()));
- continue;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- unsigned StoreAlign = SI->getAlignment();
- if (!StoreAlign) {
- Value *Op = SI->getOperand(0);
- StoreAlign = DL.getABITypeAlignment(Op->getType());
- }
- SI->setAlignment(std::min(StoreAlign, getSliceAlign()));
- continue;
- }
-
- assert(isa<BitCastInst>(I) || isa<PHINode>(I) ||
- isa<SelectInst>(I) || isa<GetElementPtrInst>(I));
- for (User *U : I->users())
- if (Visited.insert(cast<Instruction>(U)).second)
- Uses.push_back(cast<Instruction>(U));
- } while (!Uses.empty());
- }
-
- bool visitPHINode(PHINode &PN) {
- LLVM_DEBUG(dbgs() << " original: " << PN << "\n");
- assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
- assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
-
- // We would like to compute a new pointer in only one place, but have it be
- // as local as possible to the PHI. To do that, we re-use the location of
- // the old pointer, which necessarily must be in the right position to
- // dominate the PHI.
- IRBuilderTy PtrBuilder(IRB);
- if (isa<PHINode>(OldPtr))
- PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
- else
- PtrBuilder.SetInsertPoint(OldPtr);
- PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
-
- Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
- // Replace the operands which were using the old pointer.
- std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
-
- LLVM_DEBUG(dbgs() << " to: " << PN << "\n");
- deleteIfTriviallyDead(OldPtr);
-
- // Fix the alignment of any loads or stores using this PHI node.
- fixLoadStoreAlign(PN);
-
- // PHIs can't be promoted on their own, but often can be speculated. We
- // check the speculation outside of the rewriter so that we see the
- // fully-rewritten alloca.
- PHIUsers.insert(&PN);
- return true;
- }
-
- bool visitSelectInst(SelectInst &SI) {
- LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
- assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
- "Pointer isn't an operand!");
- assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
- assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
-
- Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
- // Replace the operands which were using the old pointer.
- if (SI.getOperand(1) == OldPtr)
- SI.setOperand(1, NewPtr);
- if (SI.getOperand(2) == OldPtr)
- SI.setOperand(2, NewPtr);
-
- LLVM_DEBUG(dbgs() << " to: " << SI << "\n");
- deleteIfTriviallyDead(OldPtr);
-
- // Fix the alignment of any loads or stores using this select.
- fixLoadStoreAlign(SI);
-
- // Selects can't be promoted on their own, but often can be speculated. We
- // check the speculation outside of the rewriter so that we see the
- // fully-rewritten alloca.
- SelectUsers.insert(&SI);
- return true;
- }
-};
-
-namespace {
-
-/// Visitor to rewrite aggregate loads and stores as scalar.
-///
-/// This pass aggressively rewrites all aggregate loads and stores on
-/// a particular pointer (or any pointer derived from it which we can identify)
-/// with scalar loads and stores.
-class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
- // Befriend the base class so it can delegate to private visit methods.
- friend class InstVisitor<AggLoadStoreRewriter, bool>;
-
- /// Queue of pointer uses to analyze and potentially rewrite.
- SmallVector<Use *, 8> Queue;
-
- /// Set to prevent us from cycling with phi nodes and loops.
- SmallPtrSet<User *, 8> Visited;
-
- /// The current pointer use being rewritten. This is used to dig up the used
- /// value (as opposed to the user).
- Use *U;
-
- /// Used to calculate offsets, and hence alignment, of subobjects.
- const DataLayout &DL;
-
-public:
- AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
-
- /// Rewrite loads and stores through a pointer and all pointers derived from
- /// it.
- bool rewrite(Instruction &I) {
- LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
- enqueueUsers(I);
- bool Changed = false;
- while (!Queue.empty()) {
- U = Queue.pop_back_val();
- Changed |= visit(cast<Instruction>(U->getUser()));
- }
- return Changed;
- }
-
-private:
- /// Enqueue all the users of the given instruction for further processing.
- /// This uses a set to de-duplicate users.
- void enqueueUsers(Instruction &I) {
- for (Use &U : I.uses())
- if (Visited.insert(U.getUser()).second)
- Queue.push_back(&U);
- }
-
- // Conservative default is to not rewrite anything.
- bool visitInstruction(Instruction &I) { return false; }
-
- /// Generic recursive split emission class.
- template <typename Derived> class OpSplitter {
- protected:
- /// The builder used to form new instructions.
- IRBuilderTy IRB;
-
- /// The indices which to be used with insert- or extractvalue to select the
- /// appropriate value within the aggregate.
- SmallVector<unsigned, 4> Indices;
-
- /// The indices to a GEP instruction which will move Ptr to the correct slot
- /// within the aggregate.
- SmallVector<Value *, 4> GEPIndices;
-
- /// The base pointer of the original op, used as a base for GEPing the
- /// split operations.
- Value *Ptr;
-
- /// The base pointee type being GEPed into.
- Type *BaseTy;
-
- /// Known alignment of the base pointer.
- unsigned BaseAlign;
-
- /// To calculate offset of each component so we can correctly deduce
- /// alignments.
- const DataLayout &DL;
-
- /// Initialize the splitter with an insertion point, Ptr and start with a
- /// single zero GEP index.
- OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
- unsigned BaseAlign, const DataLayout &DL)
- : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
- BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
-
- public:
- /// Generic recursive split emission routine.
- ///
- /// This method recursively splits an aggregate op (load or store) into
- /// scalar or vector ops. It splits recursively until it hits a single value
- /// and emits that single value operation via the template argument.
- ///
- /// The logic of this routine relies on GEPs and insertvalue and
- /// extractvalue all operating with the same fundamental index list, merely
- /// formatted differently (GEPs need actual values).
- ///
- /// \param Ty The type being split recursively into smaller ops.
- /// \param Agg The aggregate value being built up or stored, depending on
- /// whether this is splitting a load or a store respectively.
- void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
- if (Ty->isSingleValueType()) {
- unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
- return static_cast<Derived *>(this)->emitFunc(
- Ty, Agg, MinAlign(BaseAlign, Offset), Name);
- }
-
- if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- unsigned OldSize = Indices.size();
- (void)OldSize;
- for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
- ++Idx) {
- assert(Indices.size() == OldSize && "Did not return to the old size");
- Indices.push_back(Idx);
- GEPIndices.push_back(IRB.getInt32(Idx));
- emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
- GEPIndices.pop_back();
- Indices.pop_back();
- }
- return;
- }
-
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- unsigned OldSize = Indices.size();
- (void)OldSize;
- for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
- ++Idx) {
- assert(Indices.size() == OldSize && "Did not return to the old size");
- Indices.push_back(Idx);
- GEPIndices.push_back(IRB.getInt32(Idx));
- emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
- GEPIndices.pop_back();
- Indices.pop_back();
- }
- return;
- }
-
- llvm_unreachable("Only arrays and structs are aggregate loadable types");
- }
- };
-
- struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
- AAMDNodes AATags;
-
- LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
- AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL)
- : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
- DL), AATags(AATags) {}
-
- /// Emit a leaf load of a single value. This is called at the leaves of the
- /// recursive emission to actually load values.
- void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) {
- assert(Ty->isSingleValueType());
- // Load the single value and insert it using the indices.
- Value *GEP =
- IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep");
- LoadInst *Load = IRB.CreateAlignedLoad(GEP, Align, Name + ".load");
- if (AATags)
- Load->setAAMetadata(AATags);
- Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
- LLVM_DEBUG(dbgs() << " to: " << *Load << "\n");
- }
- };
-
- bool visitLoadInst(LoadInst &LI) {
- assert(LI.getPointerOperand() == *U);
- if (!LI.isSimple() || LI.getType()->isSingleValueType())
- return false;
-
- // We have an aggregate being loaded, split it apart.
- LLVM_DEBUG(dbgs() << " original: " << LI << "\n");
- AAMDNodes AATags;
- LI.getAAMetadata(AATags);
- LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
- getAdjustedAlignment(&LI, 0, DL), DL);
- Value *V = UndefValue::get(LI.getType());
- Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
- LI.replaceAllUsesWith(V);
- LI.eraseFromParent();
- return true;
- }
-
- struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
- StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
- AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL)
- : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
- DL),
- AATags(AATags) {}
- AAMDNodes AATags;
- /// Emit a leaf store of a single value. This is called at the leaves of the
- /// recursive emission to actually produce stores.
- void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) {
- assert(Ty->isSingleValueType());
- // Extract the single value and store it using the indices.
- //
- // The gep and extractvalue values are factored out of the CreateStore
- // call to make the output independent of the argument evaluation order.
- Value *ExtractValue =
- IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
- Value *InBoundsGEP =
- IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep");
- StoreInst *Store =
- IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Align);
- if (AATags)
- Store->setAAMetadata(AATags);
- LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
- }
- };
-
- bool visitStoreInst(StoreInst &SI) {
- if (!SI.isSimple() || SI.getPointerOperand() != *U)
- return false;
- Value *V = SI.getValueOperand();
- if (V->getType()->isSingleValueType())
- return false;
-
- // We have an aggregate being stored, split it apart.
- LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
- AAMDNodes AATags;
- SI.getAAMetadata(AATags);
- StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
- getAdjustedAlignment(&SI, 0, DL), DL);
- Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
- SI.eraseFromParent();
- return true;
- }
-
- bool visitBitCastInst(BitCastInst &BC) {
- enqueueUsers(BC);
- return false;
- }
-
- bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
- enqueueUsers(GEPI);
- return false;
- }
-
- bool visitPHINode(PHINode &PN) {
- enqueueUsers(PN);
- return false;
- }
-
- bool visitSelectInst(SelectInst &SI) {
- enqueueUsers(SI);
- return false;
- }
-};
-
-} // end anonymous namespace
-
-/// Strip aggregate type wrapping.
-///
-/// This removes no-op aggregate types wrapping an underlying type. It will
-/// strip as many layers of types as it can without changing either the type
-/// size or the allocated size.
-static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
- if (Ty->isSingleValueType())
- return Ty;
-
- uint64_t AllocSize = DL.getTypeAllocSize(Ty);
- uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
-
- Type *InnerTy;
- if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
- InnerTy = ArrTy->getElementType();
- } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = DL.getStructLayout(STy);
- unsigned Index = SL->getElementContainingOffset(0);
- InnerTy = STy->getElementType(Index);
- } else {
- return Ty;
- }
-
- if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
- TypeSize > DL.getTypeSizeInBits(InnerTy))
- return Ty;
-
- return stripAggregateTypeWrapping(DL, InnerTy);
-}
-
-/// Try to find a partition of the aggregate type passed in for a given
-/// offset and size.
-///
-/// This recurses through the aggregate type and tries to compute a subtype
-/// based on the offset and size. When the offset and size span a sub-section
-/// of an array, it will even compute a new array type for that sub-section,
-/// and the same for structs.
-///
-/// Note that this routine is very strict and tries to find a partition of the
-/// type which produces the *exact* right offset and size. It is not forgiving
-/// when the size or offset cause either end of type-based partition to be off.
-/// Also, this is a best-effort routine. It is reasonable to give up and not
-/// return a type if necessary.
-static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
- uint64_t Size) {
- if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
- return stripAggregateTypeWrapping(DL, Ty);
- if (Offset > DL.getTypeAllocSize(Ty) ||
- (DL.getTypeAllocSize(Ty) - Offset) < Size)
- return nullptr;
-
- if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
- Type *ElementTy = SeqTy->getElementType();
- uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
- uint64_t NumSkippedElements = Offset / ElementSize;
- if (NumSkippedElements >= SeqTy->getNumElements())
- return nullptr;
- Offset -= NumSkippedElements * ElementSize;
-
- // First check if we need to recurse.
- if (Offset > 0 || Size < ElementSize) {
- // Bail if the partition ends in a different array element.
- if ((Offset + Size) > ElementSize)
- return nullptr;
- // Recurse through the element type trying to peel off offset bytes.
- return getTypePartition(DL, ElementTy, Offset, Size);
- }
- assert(Offset == 0);
-
- if (Size == ElementSize)
- return stripAggregateTypeWrapping(DL, ElementTy);
- assert(Size > ElementSize);
- uint64_t NumElements = Size / ElementSize;
- if (NumElements * ElementSize != Size)
- return nullptr;
- return ArrayType::get(ElementTy, NumElements);
- }
-
- StructType *STy = dyn_cast<StructType>(Ty);
- if (!STy)
- return nullptr;
-
- const StructLayout *SL = DL.getStructLayout(STy);
- if (Offset >= SL->getSizeInBytes())
- return nullptr;
- uint64_t EndOffset = Offset + Size;
- if (EndOffset > SL->getSizeInBytes())
- return nullptr;
-
- unsigned Index = SL->getElementContainingOffset(Offset);
- Offset -= SL->getElementOffset(Index);
-
- Type *ElementTy = STy->getElementType(Index);
- uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
- if (Offset >= ElementSize)
- return nullptr; // The offset points into alignment padding.
-
- // See if any partition must be contained by the element.
- if (Offset > 0 || Size < ElementSize) {
- if ((Offset + Size) > ElementSize)
- return nullptr;
- return getTypePartition(DL, ElementTy, Offset, Size);
- }
- assert(Offset == 0);
-
- if (Size == ElementSize)
- return stripAggregateTypeWrapping(DL, ElementTy);
-
- StructType::element_iterator EI = STy->element_begin() + Index,
- EE = STy->element_end();
- if (EndOffset < SL->getSizeInBytes()) {
- unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
- if (Index == EndIndex)
- return nullptr; // Within a single element and its padding.
-
- // Don't try to form "natural" types if the elements don't line up with the
- // expected size.
- // FIXME: We could potentially recurse down through the last element in the
- // sub-struct to find a natural end point.
- if (SL->getElementOffset(EndIndex) != EndOffset)
- return nullptr;
-
- assert(Index < EndIndex);
- EE = STy->element_begin() + EndIndex;
- }
-
- // Try to build up a sub-structure.
- StructType *SubTy =
- StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
- const StructLayout *SubSL = DL.getStructLayout(SubTy);
- if (Size != SubSL->getSizeInBytes())
- return nullptr; // The sub-struct doesn't have quite the size needed.
-
- return SubTy;
-}
-
-/// Pre-split loads and stores to simplify rewriting.
-///
-/// We want to break up the splittable load+store pairs as much as
-/// possible. This is important to do as a preprocessing step, as once we
-/// start rewriting the accesses to partitions of the alloca we lose the
-/// necessary information to correctly split apart paired loads and stores
-/// which both point into this alloca. The case to consider is something like
-/// the following:
-///
-/// %a = alloca [12 x i8]
-/// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
-/// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
-/// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
-/// %iptr1 = bitcast i8* %gep1 to i64*
-/// %iptr2 = bitcast i8* %gep2 to i64*
-/// %fptr1 = bitcast i8* %gep1 to float*
-/// %fptr2 = bitcast i8* %gep2 to float*
-/// %fptr3 = bitcast i8* %gep3 to float*
-/// store float 0.0, float* %fptr1
-/// store float 1.0, float* %fptr2
-/// %v = load i64* %iptr1
-/// store i64 %v, i64* %iptr2
-/// %f1 = load float* %fptr2
-/// %f2 = load float* %fptr3
-///
-/// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
-/// promote everything so we recover the 2 SSA values that should have been
-/// there all along.
-///
-/// \returns true if any changes are made.
-bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
- LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
-
- // Track the loads and stores which are candidates for pre-splitting here, in
- // the order they first appear during the partition scan. These give stable
- // iteration order and a basis for tracking which loads and stores we
- // actually split.
- SmallVector<LoadInst *, 4> Loads;
- SmallVector<StoreInst *, 4> Stores;
-
- // We need to accumulate the splits required of each load or store where we
- // can find them via a direct lookup. This is important to cross-check loads
- // and stores against each other. We also track the slice so that we can kill
- // all the slices that end up split.
- struct SplitOffsets {
- Slice *S;
- std::vector<uint64_t> Splits;
- };
- SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
-
- // Track loads out of this alloca which cannot, for any reason, be pre-split.
- // This is important as we also cannot pre-split stores of those loads!
- // FIXME: This is all pretty gross. It means that we can be more aggressive
- // in pre-splitting when the load feeding the store happens to come from
- // a separate alloca. Put another way, the effectiveness of SROA would be
- // decreased by a frontend which just concatenated all of its local allocas
- // into one big flat alloca. But defeating such patterns is exactly the job
- // SROA is tasked with! Sadly, to not have this discrepancy we would have
- // change store pre-splitting to actually force pre-splitting of the load
- // that feeds it *and all stores*. That makes pre-splitting much harder, but
- // maybe it would make it more principled?
- SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
-
- LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n");
- for (auto &P : AS.partitions()) {
- for (Slice &S : P) {
- Instruction *I = cast<Instruction>(S.getUse()->getUser());
- if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
- // If this is a load we have to track that it can't participate in any
- // pre-splitting. If this is a store of a load we have to track that
- // that load also can't participate in any pre-splitting.
- if (auto *LI = dyn_cast<LoadInst>(I))
- UnsplittableLoads.insert(LI);
- else if (auto *SI = dyn_cast<StoreInst>(I))
- if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
- UnsplittableLoads.insert(LI);
- continue;
- }
- assert(P.endOffset() > S.beginOffset() &&
- "Empty or backwards partition!");
-
- // Determine if this is a pre-splittable slice.
- if (auto *LI = dyn_cast<LoadInst>(I)) {
- assert(!LI->isVolatile() && "Cannot split volatile loads!");
-
- // The load must be used exclusively to store into other pointers for
- // us to be able to arbitrarily pre-split it. The stores must also be
- // simple to avoid changing semantics.
- auto IsLoadSimplyStored = [](LoadInst *LI) {
- for (User *LU : LI->users()) {
- auto *SI = dyn_cast<StoreInst>(LU);
- if (!SI || !SI->isSimple())
- return false;
- }
- return true;
- };
- if (!IsLoadSimplyStored(LI)) {
- UnsplittableLoads.insert(LI);
- continue;
- }
-
- Loads.push_back(LI);
- } else if (auto *SI = dyn_cast<StoreInst>(I)) {
- if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
- // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
- continue;
- auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
- if (!StoredLoad || !StoredLoad->isSimple())
- continue;
- assert(!SI->isVolatile() && "Cannot split volatile stores!");
-
- Stores.push_back(SI);
- } else {
- // Other uses cannot be pre-split.
- continue;
- }
-
- // Record the initial split.
- LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n");
- auto &Offsets = SplitOffsetsMap[I];
- assert(Offsets.Splits.empty() &&
- "Should not have splits the first time we see an instruction!");
- Offsets.S = &S;
- Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
- }
-
- // Now scan the already split slices, and add a split for any of them which
- // we're going to pre-split.
- for (Slice *S : P.splitSliceTails()) {
- auto SplitOffsetsMapI =
- SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
- if (SplitOffsetsMapI == SplitOffsetsMap.end())
- continue;
- auto &Offsets = SplitOffsetsMapI->second;
-
- assert(Offsets.S == S && "Found a mismatched slice!");
- assert(!Offsets.Splits.empty() &&
- "Cannot have an empty set of splits on the second partition!");
- assert(Offsets.Splits.back() ==
- P.beginOffset() - Offsets.S->beginOffset() &&
- "Previous split does not end where this one begins!");
-
- // Record each split. The last partition's end isn't needed as the size
- // of the slice dictates that.
- if (S->endOffset() > P.endOffset())
- Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
- }
- }
-
- // We may have split loads where some of their stores are split stores. For
- // such loads and stores, we can only pre-split them if their splits exactly
- // match relative to their starting offset. We have to verify this prior to
- // any rewriting.
- Stores.erase(
- llvm::remove_if(Stores,
- [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
- // Lookup the load we are storing in our map of split
- // offsets.
- auto *LI = cast<LoadInst>(SI->getValueOperand());
- // If it was completely unsplittable, then we're done,
- // and this store can't be pre-split.
- if (UnsplittableLoads.count(LI))
- return true;
-
- auto LoadOffsetsI = SplitOffsetsMap.find(LI);
- if (LoadOffsetsI == SplitOffsetsMap.end())
- return false; // Unrelated loads are definitely safe.
- auto &LoadOffsets = LoadOffsetsI->second;
-
- // Now lookup the store's offsets.
- auto &StoreOffsets = SplitOffsetsMap[SI];
-
- // If the relative offsets of each split in the load and
- // store match exactly, then we can split them and we
- // don't need to remove them here.
- if (LoadOffsets.Splits == StoreOffsets.Splits)
- return false;
-
- LLVM_DEBUG(
- dbgs()
- << " Mismatched splits for load and store:\n"
- << " " << *LI << "\n"
- << " " << *SI << "\n");
-
- // We've found a store and load that we need to split
- // with mismatched relative splits. Just give up on them
- // and remove both instructions from our list of
- // candidates.
- UnsplittableLoads.insert(LI);
- return true;
- }),
- Stores.end());
- // Now we have to go *back* through all the stores, because a later store may
- // have caused an earlier store's load to become unsplittable and if it is
- // unsplittable for the later store, then we can't rely on it being split in
- // the earlier store either.
- Stores.erase(llvm::remove_if(Stores,
- [&UnsplittableLoads](StoreInst *SI) {
- auto *LI =
- cast<LoadInst>(SI->getValueOperand());
- return UnsplittableLoads.count(LI);
- }),
- Stores.end());
- // Once we've established all the loads that can't be split for some reason,
- // filter any that made it into our list out.
- Loads.erase(llvm::remove_if(Loads,
- [&UnsplittableLoads](LoadInst *LI) {
- return UnsplittableLoads.count(LI);
- }),
- Loads.end());
-
- // If no loads or stores are left, there is no pre-splitting to be done for
- // this alloca.
- if (Loads.empty() && Stores.empty())
- return false;
-
- // From here on, we can't fail and will be building new accesses, so rig up
- // an IR builder.
- IRBuilderTy IRB(&AI);
-
- // Collect the new slices which we will merge into the alloca slices.
- SmallVector<Slice, 4> NewSlices;
-
- // Track any allocas we end up splitting loads and stores for so we iterate
- // on them.
- SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
-
- // At this point, we have collected all of the loads and stores we can
- // pre-split, and the specific splits needed for them. We actually do the
- // splitting in a specific order in order to handle when one of the loads in
- // the value operand to one of the stores.
- //
- // First, we rewrite all of the split loads, and just accumulate each split
- // load in a parallel structure. We also build the slices for them and append
- // them to the alloca slices.
- SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
- std::vector<LoadInst *> SplitLoads;
- const DataLayout &DL = AI.getModule()->getDataLayout();
- for (LoadInst *LI : Loads) {
- SplitLoads.clear();
-
- IntegerType *Ty = cast<IntegerType>(LI->getType());
- uint64_t LoadSize = Ty->getBitWidth() / 8;
- assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
-
- auto &Offsets = SplitOffsetsMap[LI];
- assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
- "Slice size should always match load size exactly!");
- uint64_t BaseOffset = Offsets.S->beginOffset();
- assert(BaseOffset + LoadSize > BaseOffset &&
- "Cannot represent alloca access size using 64-bit integers!");
-
- Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
- IRB.SetInsertPoint(LI);
-
- LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n");
-
- uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
- int Idx = 0, Size = Offsets.Splits.size();
- for (;;) {
- auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
- auto AS = LI->getPointerAddressSpace();
- auto *PartPtrTy = PartTy->getPointerTo(AS);
- LoadInst *PLoad = IRB.CreateAlignedLoad(
- getAdjustedPtr(IRB, DL, BasePtr,
- APInt(DL.getIndexSizeInBits(AS), PartOffset),
- PartPtrTy, BasePtr->getName() + "."),
- getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
- LI->getName());
- PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
- LLVMContext::MD_access_group});
-
- // Append this load onto the list of split loads so we can find it later
- // to rewrite the stores.
- SplitLoads.push_back(PLoad);
-
- // Now build a new slice for the alloca.
- NewSlices.push_back(
- Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
- &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
- /*IsSplittable*/ false));
- LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
- << ", " << NewSlices.back().endOffset()
- << "): " << *PLoad << "\n");
-
- // See if we've handled all the splits.
- if (Idx >= Size)
- break;
-
- // Setup the next partition.
- PartOffset = Offsets.Splits[Idx];
- ++Idx;
- PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
- }
-
- // Now that we have the split loads, do the slow walk over all uses of the
- // load and rewrite them as split stores, or save the split loads to use
- // below if the store is going to be split there anyways.
- bool DeferredStores = false;
- for (User *LU : LI->users()) {
- StoreInst *SI = cast<StoreInst>(LU);
- if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
- DeferredStores = true;
- LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI
- << "\n");
- continue;
- }
-
- Value *StoreBasePtr = SI->getPointerOperand();
- IRB.SetInsertPoint(SI);
-
- LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n");
-
- for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
- LoadInst *PLoad = SplitLoads[Idx];
- uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
- auto *PartPtrTy =
- PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
-
- auto AS = SI->getPointerAddressSpace();
- StoreInst *PStore = IRB.CreateAlignedStore(
- PLoad,
- getAdjustedPtr(IRB, DL, StoreBasePtr,
- APInt(DL.getIndexSizeInBits(AS), PartOffset),
- PartPtrTy, StoreBasePtr->getName() + "."),
- getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
- PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
- LLVMContext::MD_access_group});
- LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n");
- }
-
- // We want to immediately iterate on any allocas impacted by splitting
- // this store, and we have to track any promotable alloca (indicated by
- // a direct store) as needing to be resplit because it is no longer
- // promotable.
- if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
- ResplitPromotableAllocas.insert(OtherAI);
- Worklist.insert(OtherAI);
- } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
- StoreBasePtr->stripInBoundsOffsets())) {
- Worklist.insert(OtherAI);
- }
-
- // Mark the original store as dead.
- DeadInsts.insert(SI);
- }
-
- // Save the split loads if there are deferred stores among the users.
- if (DeferredStores)
- SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
-
- // Mark the original load as dead and kill the original slice.
- DeadInsts.insert(LI);
- Offsets.S->kill();
- }
-
- // Second, we rewrite all of the split stores. At this point, we know that
- // all loads from this alloca have been split already. For stores of such
- // loads, we can simply look up the pre-existing split loads. For stores of
- // other loads, we split those loads first and then write split stores of
- // them.
- for (StoreInst *SI : Stores) {
- auto *LI = cast<LoadInst>(SI->getValueOperand());
- IntegerType *Ty = cast<IntegerType>(LI->getType());
- uint64_t StoreSize = Ty->getBitWidth() / 8;
- assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
-
- auto &Offsets = SplitOffsetsMap[SI];
- assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
- "Slice size should always match load size exactly!");
- uint64_t BaseOffset = Offsets.S->beginOffset();
- assert(BaseOffset + StoreSize > BaseOffset &&
- "Cannot represent alloca access size using 64-bit integers!");
-
- Value *LoadBasePtr = LI->getPointerOperand();
- Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
-
- LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n");
-
- // Check whether we have an already split load.
- auto SplitLoadsMapI = SplitLoadsMap.find(LI);
- std::vector<LoadInst *> *SplitLoads = nullptr;
- if (SplitLoadsMapI != SplitLoadsMap.end()) {
- SplitLoads = &SplitLoadsMapI->second;
- assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
- "Too few split loads for the number of splits in the store!");
- } else {
- LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n");
- }
-
- uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
- int Idx = 0, Size = Offsets.Splits.size();
- for (;;) {
- auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
- auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
- auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
-
- // Either lookup a split load or create one.
- LoadInst *PLoad;
- if (SplitLoads) {
- PLoad = (*SplitLoads)[Idx];
- } else {
- IRB.SetInsertPoint(LI);
- auto AS = LI->getPointerAddressSpace();
- PLoad = IRB.CreateAlignedLoad(
- getAdjustedPtr(IRB, DL, LoadBasePtr,
- APInt(DL.getIndexSizeInBits(AS), PartOffset),
- LoadPartPtrTy, LoadBasePtr->getName() + "."),
- getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
- LI->getName());
- }
-
- // And store this partition.
- IRB.SetInsertPoint(SI);
- auto AS = SI->getPointerAddressSpace();
- StoreInst *PStore = IRB.CreateAlignedStore(
- PLoad,
- getAdjustedPtr(IRB, DL, StoreBasePtr,
- APInt(DL.getIndexSizeInBits(AS), PartOffset),
- StorePartPtrTy, StoreBasePtr->getName() + "."),
- getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
-
- // Now build a new slice for the alloca.
- NewSlices.push_back(
- Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
- &PStore->getOperandUse(PStore->getPointerOperandIndex()),
- /*IsSplittable*/ false));
- LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
- << ", " << NewSlices.back().endOffset()
- << "): " << *PStore << "\n");
- if (!SplitLoads) {
- LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n");
- }
-
- // See if we've finished all the splits.
- if (Idx >= Size)
- break;
-
- // Setup the next partition.
- PartOffset = Offsets.Splits[Idx];
- ++Idx;
- PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
- }
-
- // We want to immediately iterate on any allocas impacted by splitting
- // this load, which is only relevant if it isn't a load of this alloca and
- // thus we didn't already split the loads above. We also have to keep track
- // of any promotable allocas we split loads on as they can no longer be
- // promoted.
- if (!SplitLoads) {
- if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
- assert(OtherAI != &AI && "We can't re-split our own alloca!");
- ResplitPromotableAllocas.insert(OtherAI);
- Worklist.insert(OtherAI);
- } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
- LoadBasePtr->stripInBoundsOffsets())) {
- assert(OtherAI != &AI && "We can't re-split our own alloca!");
- Worklist.insert(OtherAI);
- }
- }
-
- // Mark the original store as dead now that we've split it up and kill its
- // slice. Note that we leave the original load in place unless this store
- // was its only use. It may in turn be split up if it is an alloca load
- // for some other alloca, but it may be a normal load. This may introduce
- // redundant loads, but where those can be merged the rest of the optimizer
- // should handle the merging, and this uncovers SSA splits which is more
- // important. In practice, the original loads will almost always be fully
- // split and removed eventually, and the splits will be merged by any
- // trivial CSE, including instcombine.
- if (LI->hasOneUse()) {
- assert(*LI->user_begin() == SI && "Single use isn't this store!");
- DeadInsts.insert(LI);
- }
- DeadInsts.insert(SI);
- Offsets.S->kill();
- }
-
- // Remove the killed slices that have ben pre-split.
- AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }),
- AS.end());
-
- // Insert our new slices. This will sort and merge them into the sorted
- // sequence.
- AS.insert(NewSlices);
-
- LLVM_DEBUG(dbgs() << " Pre-split slices:\n");
-#ifndef NDEBUG
- for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
- LLVM_DEBUG(AS.print(dbgs(), I, " "));
-#endif
-
- // Finally, don't try to promote any allocas that new require re-splitting.
- // They have already been added to the worklist above.
- PromotableAllocas.erase(
- llvm::remove_if(
- PromotableAllocas,
- [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
- PromotableAllocas.end());
-
- return true;
-}
-
-/// Rewrite an alloca partition's users.
-///
-/// This routine drives both of the rewriting goals of the SROA pass. It tries
-/// to rewrite uses of an alloca partition to be conducive for SSA value
-/// promotion. If the partition needs a new, more refined alloca, this will
-/// build that new alloca, preserving as much type information as possible, and
-/// rewrite the uses of the old alloca to point at the new one and have the
-/// appropriate new offsets. It also evaluates how successful the rewrite was
-/// at enabling promotion and if it was successful queues the alloca to be
-/// promoted.
-AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
- Partition &P) {
- // Try to compute a friendly type for this partition of the alloca. This
- // won't always succeed, in which case we fall back to a legal integer type
- // or an i8 array of an appropriate size.
- Type *SliceTy = nullptr;
- const DataLayout &DL = AI.getModule()->getDataLayout();
- if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
- if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
- SliceTy = CommonUseTy;
- if (!SliceTy)
- if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
- P.beginOffset(), P.size()))
- SliceTy = TypePartitionTy;
- if ((!SliceTy || (SliceTy->isArrayTy() &&
- SliceTy->getArrayElementType()->isIntegerTy())) &&
- DL.isLegalInteger(P.size() * 8))
- SliceTy = Type::getIntNTy(*C, P.size() * 8);
- if (!SliceTy)
- SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
- assert(DL.getTypeAllocSize(SliceTy) >= P.size());
-
- bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
-
- VectorType *VecTy =
- IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
- if (VecTy)
- SliceTy = VecTy;
-
- // Check for the case where we're going to rewrite to a new alloca of the
- // exact same type as the original, and with the same access offsets. In that
- // case, re-use the existing alloca, but still run through the rewriter to
- // perform phi and select speculation.
- // P.beginOffset() can be non-zero even with the same type in a case with
- // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
- AllocaInst *NewAI;
- if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
- NewAI = &AI;
- // FIXME: We should be able to bail at this point with "nothing changed".
- // FIXME: We might want to defer PHI speculation until after here.
- // FIXME: return nullptr;
- } else {
- unsigned Alignment = AI.getAlignment();
- if (!Alignment) {
- // The minimum alignment which users can rely on when the explicit
- // alignment is omitted or zero is that required by the ABI for this
- // type.
- Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
- }
- Alignment = MinAlign(Alignment, P.beginOffset());
- // If we will get at least this much alignment from the type alone, leave
- // the alloca's alignment unconstrained.
- if (Alignment <= DL.getABITypeAlignment(SliceTy))
- Alignment = 0;
- NewAI = new AllocaInst(
- SliceTy, AI.getType()->getAddressSpace(), nullptr, Alignment,
- AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
- // Copy the old AI debug location over to the new one.
- NewAI->setDebugLoc(AI.getDebugLoc());
- ++NumNewAllocas;
- }
-
- LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
- << "[" << P.beginOffset() << "," << P.endOffset()
- << ") to: " << *NewAI << "\n");
-
- // Track the high watermark on the worklist as it is only relevant for
- // promoted allocas. We will reset it to this point if the alloca is not in
- // fact scheduled for promotion.
- unsigned PPWOldSize = PostPromotionWorklist.size();
- unsigned NumUses = 0;
- SmallSetVector<PHINode *, 8> PHIUsers;
- SmallSetVector<SelectInst *, 8> SelectUsers;
-
- AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
- P.endOffset(), IsIntegerPromotable, VecTy,
- PHIUsers, SelectUsers);
- bool Promotable = true;
- for (Slice *S : P.splitSliceTails()) {
- Promotable &= Rewriter.visit(S);
- ++NumUses;
- }
- for (Slice &S : P) {
- Promotable &= Rewriter.visit(&S);
- ++NumUses;
- }
-
- NumAllocaPartitionUses += NumUses;
- MaxUsesPerAllocaPartition.updateMax(NumUses);
-
- // Now that we've processed all the slices in the new partition, check if any
- // PHIs or Selects would block promotion.
- for (PHINode *PHI : PHIUsers)
- if (!isSafePHIToSpeculate(*PHI)) {
- Promotable = false;
- PHIUsers.clear();
- SelectUsers.clear();
- break;
- }
-
- for (SelectInst *Sel : SelectUsers)
- if (!isSafeSelectToSpeculate(*Sel)) {
- Promotable = false;
- PHIUsers.clear();
- SelectUsers.clear();
- break;
- }
-
- if (Promotable) {
- if (PHIUsers.empty() && SelectUsers.empty()) {
- // Promote the alloca.
- PromotableAllocas.push_back(NewAI);
- } else {
- // If we have either PHIs or Selects to speculate, add them to those
- // worklists and re-queue the new alloca so that we promote in on the
- // next iteration.
- for (PHINode *PHIUser : PHIUsers)
- SpeculatablePHIs.insert(PHIUser);
- for (SelectInst *SelectUser : SelectUsers)
- SpeculatableSelects.insert(SelectUser);
- Worklist.insert(NewAI);
- }
- } else {
- // Drop any post-promotion work items if promotion didn't happen.
- while (PostPromotionWorklist.size() > PPWOldSize)
- PostPromotionWorklist.pop_back();
-
- // We couldn't promote and we didn't create a new partition, nothing
- // happened.
- if (NewAI == &AI)
- return nullptr;
-
- // If we can't promote the alloca, iterate on it to check for new
- // refinements exposed by splitting the current alloca. Don't iterate on an
- // alloca which didn't actually change and didn't get promoted.
- Worklist.insert(NewAI);
- }
-
- return NewAI;
-}
-
-/// Walks the slices of an alloca and form partitions based on them,
-/// rewriting each of their uses.
-bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
- if (AS.begin() == AS.end())
- return false;
-
- unsigned NumPartitions = 0;
- bool Changed = false;
- const DataLayout &DL = AI.getModule()->getDataLayout();
-
- // First try to pre-split loads and stores.
- Changed |= presplitLoadsAndStores(AI, AS);
-
- // Now that we have identified any pre-splitting opportunities,
- // mark loads and stores unsplittable except for the following case.
- // We leave a slice splittable if all other slices are disjoint or fully
- // included in the slice, such as whole-alloca loads and stores.
- // If we fail to split these during pre-splitting, we want to force them
- // to be rewritten into a partition.
- bool IsSorted = true;
-
- uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType());
- const uint64_t MaxBitVectorSize = 1024;
- if (AllocaSize <= MaxBitVectorSize) {
- // If a byte boundary is included in any load or store, a slice starting or
- // ending at the boundary is not splittable.
- SmallBitVector SplittableOffset(AllocaSize + 1, true);
- for (Slice &S : AS)
- for (unsigned O = S.beginOffset() + 1;
- O < S.endOffset() && O < AllocaSize; O++)
- SplittableOffset.reset(O);
-
- for (Slice &S : AS) {
- if (!S.isSplittable())
- continue;
-
- if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
- (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
- continue;
-
- if (isa<LoadInst>(S.getUse()->getUser()) ||
- isa<StoreInst>(S.getUse()->getUser())) {
- S.makeUnsplittable();
- IsSorted = false;
- }
- }
- }
- else {
- // We only allow whole-alloca splittable loads and stores
- // for a large alloca to avoid creating too large BitVector.
- for (Slice &S : AS) {
- if (!S.isSplittable())
- continue;
-
- if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
- continue;
-
- if (isa<LoadInst>(S.getUse()->getUser()) ||
- isa<StoreInst>(S.getUse()->getUser())) {
- S.makeUnsplittable();
- IsSorted = false;
- }
- }
- }
-
- if (!IsSorted)
- llvm::sort(AS);
-
- /// Describes the allocas introduced by rewritePartition in order to migrate
- /// the debug info.
- struct Fragment {
- AllocaInst *Alloca;
- uint64_t Offset;
- uint64_t Size;
- Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
- : Alloca(AI), Offset(O), Size(S) {}
- };
- SmallVector<Fragment, 4> Fragments;
-
- // Rewrite each partition.
- for (auto &P : AS.partitions()) {
- if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
- Changed = true;
- if (NewAI != &AI) {
- uint64_t SizeOfByte = 8;
- uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
- // Don't include any padding.
- uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
- Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
- }
- }
- ++NumPartitions;
- }
-
- NumAllocaPartitions += NumPartitions;
- MaxPartitionsPerAlloca.updateMax(NumPartitions);
-
- // Migrate debug information from the old alloca to the new alloca(s)
- // and the individual partitions.
- TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
- if (!DbgDeclares.empty()) {
- auto *Var = DbgDeclares.front()->getVariable();
- auto *Expr = DbgDeclares.front()->getExpression();
- auto VarSize = Var->getSizeInBits();
- DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
- uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType());
- for (auto Fragment : Fragments) {
- // Create a fragment expression describing the new partition or reuse AI's
- // expression if there is only one partition.
- auto *FragmentExpr = Expr;
- if (Fragment.Size < AllocaSize || Expr->isFragment()) {
- // If this alloca is already a scalar replacement of a larger aggregate,
- // Fragment.Offset describes the offset inside the scalar.
- auto ExprFragment = Expr->getFragmentInfo();
- uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
- uint64_t Start = Offset + Fragment.Offset;
- uint64_t Size = Fragment.Size;
- if (ExprFragment) {
- uint64_t AbsEnd =
- ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
- if (Start >= AbsEnd)
- // No need to describe a SROAed padding.
- continue;
- Size = std::min(Size, AbsEnd - Start);
- }
- // The new, smaller fragment is stenciled out from the old fragment.
- if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
- assert(Start >= OrigFragment->OffsetInBits &&
- "new fragment is outside of original fragment");
- Start -= OrigFragment->OffsetInBits;
- }
-
- // The alloca may be larger than the variable.
- if (VarSize) {
- if (Size > *VarSize)
- Size = *VarSize;
- if (Size == 0 || Start + Size > *VarSize)
- continue;
- }
-
- // Avoid creating a fragment expression that covers the entire variable.
- if (!VarSize || *VarSize != Size) {
- if (auto E =
- DIExpression::createFragmentExpression(Expr, Start, Size))
- FragmentExpr = *E;
- else
- continue;
- }
- }
-
- // Remove any existing intrinsics describing the same alloca.
- for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca))
- OldDII->eraseFromParent();
-
- DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr,
- DbgDeclares.front()->getDebugLoc(), &AI);
- }
- }
- return Changed;
-}
-
-/// Clobber a use with undef, deleting the used value if it becomes dead.
-void SROA::clobberUse(Use &U) {
- Value *OldV = U;
- // Replace the use with an undef value.
- U = UndefValue::get(OldV->getType());
-
- // Check for this making an instruction dead. We have to garbage collect
- // all the dead instructions to ensure the uses of any alloca end up being
- // minimal.
- if (Instruction *OldI = dyn_cast<Instruction>(OldV))
- if (isInstructionTriviallyDead(OldI)) {
- DeadInsts.insert(OldI);
- }
-}
-
-/// Analyze an alloca for SROA.
-///
-/// This analyzes the alloca to ensure we can reason about it, builds
-/// the slices of the alloca, and then hands it off to be split and
-/// rewritten as needed.
-bool SROA::runOnAlloca(AllocaInst &AI) {
- LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
- ++NumAllocasAnalyzed;
-
- // Special case dead allocas, as they're trivial.
- if (AI.use_empty()) {
- AI.eraseFromParent();
- return true;
- }
- const DataLayout &DL = AI.getModule()->getDataLayout();
-
- // Skip alloca forms that this analysis can't handle.
- if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
- DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
- return false;
-
- bool Changed = false;
-
- // First, split any FCA loads and stores touching this alloca to promote
- // better splitting and promotion opportunities.
- AggLoadStoreRewriter AggRewriter(DL);
- Changed |= AggRewriter.rewrite(AI);
-
- // Build the slices using a recursive instruction-visiting builder.
- AllocaSlices AS(DL, AI);
- LLVM_DEBUG(AS.print(dbgs()));
- if (AS.isEscaped())
- return Changed;
-
- // Delete all the dead users of this alloca before splitting and rewriting it.
- for (Instruction *DeadUser : AS.getDeadUsers()) {
- // Free up everything used by this instruction.
- for (Use &DeadOp : DeadUser->operands())
- clobberUse(DeadOp);
-
- // Now replace the uses of this instruction.
- DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
-
- // And mark it for deletion.
- DeadInsts.insert(DeadUser);
- Changed = true;
- }
- for (Use *DeadOp : AS.getDeadOperands()) {
- clobberUse(*DeadOp);
- Changed = true;
- }
-
- // No slices to split. Leave the dead alloca for a later pass to clean up.
- if (AS.begin() == AS.end())
- return Changed;
-
- Changed |= splitAlloca(AI, AS);
-
- LLVM_DEBUG(dbgs() << " Speculating PHIs\n");
- while (!SpeculatablePHIs.empty())
- speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
-
- LLVM_DEBUG(dbgs() << " Speculating Selects\n");
- while (!SpeculatableSelects.empty())
- speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
-
- return Changed;
-}
-
-/// Delete the dead instructions accumulated in this run.
-///
-/// Recursively deletes the dead instructions we've accumulated. This is done
-/// at the very end to maximize locality of the recursive delete and to
-/// minimize the problems of invalidated instruction pointers as such pointers
-/// are used heavily in the intermediate stages of the algorithm.
-///
-/// We also record the alloca instructions deleted here so that they aren't
-/// subsequently handed to mem2reg to promote.
-bool SROA::deleteDeadInstructions(
- SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
- bool Changed = false;
- while (!DeadInsts.empty()) {
- Instruction *I = DeadInsts.pop_back_val();
- LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
-
- // If the instruction is an alloca, find the possible dbg.declare connected
- // to it, and remove it too. We must do this before calling RAUW or we will
- // not be able to find it.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
- DeletedAllocas.insert(AI);
- for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
- OldDII->eraseFromParent();
- }
-
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
-
- for (Use &Operand : I->operands())
- if (Instruction *U = dyn_cast<Instruction>(Operand)) {
- // Zero out the operand and see if it becomes trivially dead.
- Operand = nullptr;
- if (isInstructionTriviallyDead(U))
- DeadInsts.insert(U);
- }
-
- ++NumDeleted;
- I->eraseFromParent();
- Changed = true;
- }
- return Changed;
-}
-
-/// Promote the allocas, using the best available technique.
-///
-/// This attempts to promote whatever allocas have been identified as viable in
-/// the PromotableAllocas list. If that list is empty, there is nothing to do.
-/// This function returns whether any promotion occurred.
-bool SROA::promoteAllocas(Function &F) {
- if (PromotableAllocas.empty())
- return false;
-
- NumPromoted += PromotableAllocas.size();
-
- LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
- PromoteMemToReg(PromotableAllocas, *DT, AC);
- PromotableAllocas.clear();
- return true;
-}
-
-PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
- AssumptionCache &RunAC) {
- LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
- C = &F.getContext();
- DT = &RunDT;
- AC = &RunAC;
-
- BasicBlock &EntryBB = F.getEntryBlock();
- for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
- I != E; ++I) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
- Worklist.insert(AI);
- }
-
- bool Changed = false;
- // A set of deleted alloca instruction pointers which should be removed from
- // the list of promotable allocas.
- SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
-
- do {
- while (!Worklist.empty()) {
- Changed |= runOnAlloca(*Worklist.pop_back_val());
- Changed |= deleteDeadInstructions(DeletedAllocas);
-
- // Remove the deleted allocas from various lists so that we don't try to
- // continue processing them.
- if (!DeletedAllocas.empty()) {
- auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
- Worklist.remove_if(IsInSet);
- PostPromotionWorklist.remove_if(IsInSet);
- PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet),
- PromotableAllocas.end());
- DeletedAllocas.clear();
- }
- }
-
- Changed |= promoteAllocas(F);
-
- Worklist = PostPromotionWorklist;
- PostPromotionWorklist.clear();
- } while (!Worklist.empty());
-
- if (!Changed)
- return PreservedAnalyses::all();
-
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<GlobalsAA>();
- return PA;
-}
-
-PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
- return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
- AM.getResult<AssumptionAnalysis>(F));
-}
-
-/// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
-///
-/// This is in the llvm namespace purely to allow it to be a friend of the \c
-/// SROA pass.
-class llvm::sroa::SROALegacyPass : public FunctionPass {
- /// The SROA implementation.
- SROA Impl;
-
-public:
- static char ID;
-
- SROALegacyPass() : FunctionPass(ID) {
- initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
-
- auto PA = Impl.runImpl(
- F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
- return !PA.areAllPreserved();
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.setPreservesCFG();
- }
-
- StringRef getPassName() const override { return "SROA"; }
-};
-
-char SROALegacyPass::ID = 0;
-
-FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
-
-INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
- "Scalar Replacement Of Aggregates", false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
- false, false)