diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp | 738 |
1 files changed, 0 insertions, 738 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp b/gnu/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp deleted file mode 100644 index b5089b006bd..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp +++ /dev/null @@ -1,738 +0,0 @@ -//===- StraightLineStrengthReduce.cpp - -----------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements straight-line strength reduction (SLSR). Unlike loop -// strength reduction, this algorithm is designed to reduce arithmetic -// redundancy in straight-line code instead of loops. It has proven to be -// effective in simplifying arithmetic statements derived from an unrolled loop. -// It can also simplify the logic of SeparateConstOffsetFromGEP. -// -// There are many optimizations we can perform in the domain of SLSR. This file -// for now contains only an initial step. Specifically, we look for strength -// reduction candidates in the following forms: -// -// Form 1: B + i * S -// Form 2: (B + i) * S -// Form 3: &B[i * S] -// -// where S is an integer variable, and i is a constant integer. If we found two -// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 -// in a simpler way with respect to S1. For example, -// -// S1: X = B + i * S -// S2: Y = B + i' * S => X + (i' - i) * S -// -// S1: X = (B + i) * S -// S2: Y = (B + i') * S => X + (i' - i) * S -// -// S1: X = &B[i * S] -// S2: Y = &B[i' * S] => &X[(i' - i) * S] -// -// Note: (i' - i) * S is folded to the extent possible. -// -// This rewriting is in general a good idea. The code patterns we focus on -// usually come from loop unrolling, so (i' - i) * S is likely the same -// across iterations and can be reused. When that happens, the optimized form -// takes only one add starting from the second iteration. -// -// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has -// multiple bases, we choose to rewrite S2 with respect to its "immediate" -// basis, the basis that is the closest ancestor in the dominator tree. -// -// TODO: -// -// - Floating point arithmetics when fast math is enabled. -// -// - SLSR may decrease ILP at the architecture level. Targets that are very -// sensitive to ILP may want to disable it. Having SLSR to consider ILP is -// left as future work. -// -// - When (i' - i) is constant but i and i' are not, we could still perform -// SLSR. - -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Transforms/Scalar.h" -#include <cassert> -#include <cstdint> -#include <limits> -#include <list> -#include <vector> - -using namespace llvm; -using namespace PatternMatch; - -static const unsigned UnknownAddressSpace = - std::numeric_limits<unsigned>::max(); - -namespace { - -class StraightLineStrengthReduce : public FunctionPass { -public: - // SLSR candidate. Such a candidate must be in one of the forms described in - // the header comments. - struct Candidate { - enum Kind { - Invalid, // reserved for the default constructor - Add, // B + i * S - Mul, // (B + i) * S - GEP, // &B[..][i * S][..] - }; - - Candidate() = default; - Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, - Instruction *I) - : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {} - - Kind CandidateKind = Invalid; - - const SCEV *Base = nullptr; - - // Note that Index and Stride of a GEP candidate do not necessarily have the - // same integer type. In that case, during rewriting, Stride will be - // sign-extended or truncated to Index's type. - ConstantInt *Index = nullptr; - - Value *Stride = nullptr; - - // The instruction this candidate corresponds to. It helps us to rewrite a - // candidate with respect to its immediate basis. Note that one instruction - // can correspond to multiple candidates depending on how you associate the - // expression. For instance, - // - // (a + 1) * (b + 2) - // - // can be treated as - // - // <Base: a, Index: 1, Stride: b + 2> - // - // or - // - // <Base: b, Index: 2, Stride: a + 1> - Instruction *Ins = nullptr; - - // Points to the immediate basis of this candidate, or nullptr if we cannot - // find any basis for this candidate. - Candidate *Basis = nullptr; - }; - - static char ID; - - StraightLineStrengthReduce() : FunctionPass(ID) { - initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<ScalarEvolutionWrapperPass>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - // We do not modify the shape of the CFG. - AU.setPreservesCFG(); - } - - bool doInitialization(Module &M) override { - DL = &M.getDataLayout(); - return false; - } - - bool runOnFunction(Function &F) override; - -private: - // Returns true if Basis is a basis for C, i.e., Basis dominates C and they - // share the same base and stride. - bool isBasisFor(const Candidate &Basis, const Candidate &C); - - // Returns whether the candidate can be folded into an addressing mode. - bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, - const DataLayout *DL); - - // Returns true if C is already in a simplest form and not worth being - // rewritten. - bool isSimplestForm(const Candidate &C); - - // Checks whether I is in a candidate form. If so, adds all the matching forms - // to Candidates, and tries to find the immediate basis for each of them. - void allocateCandidatesAndFindBasis(Instruction *I); - - // Allocate candidates and find bases for Add instructions. - void allocateCandidatesAndFindBasisForAdd(Instruction *I); - - // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a - // candidate. - void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, - Instruction *I); - // Allocate candidates and find bases for Mul instructions. - void allocateCandidatesAndFindBasisForMul(Instruction *I); - - // Splits LHS into Base + Index and, if succeeds, calls - // allocateCandidatesAndFindBasis. - void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, - Instruction *I); - - // Allocate candidates and find bases for GetElementPtr instructions. - void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); - - // A helper function that scales Idx with ElementSize before invoking - // allocateCandidatesAndFindBasis. - void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, - Value *S, uint64_t ElementSize, - Instruction *I); - - // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate - // basis. - void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, - ConstantInt *Idx, Value *S, - Instruction *I); - - // Rewrites candidate C with respect to Basis. - void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); - - // A helper function that factors ArrayIdx to a product of a stride and a - // constant index, and invokes allocateCandidatesAndFindBasis with the - // factorings. - void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, - GetElementPtrInst *GEP); - - // Emit code that computes the "bump" from Basis to C. If the candidate is a - // GEP and the bump is not divisible by the element size of the GEP, this - // function sets the BumpWithUglyGEP flag to notify its caller to bump the - // basis using an ugly GEP. - static Value *emitBump(const Candidate &Basis, const Candidate &C, - IRBuilder<> &Builder, const DataLayout *DL, - bool &BumpWithUglyGEP); - - const DataLayout *DL = nullptr; - DominatorTree *DT = nullptr; - ScalarEvolution *SE; - TargetTransformInfo *TTI = nullptr; - std::list<Candidate> Candidates; - - // Temporarily holds all instructions that are unlinked (but not deleted) by - // rewriteCandidateWithBasis. These instructions will be actually removed - // after all rewriting finishes. - std::vector<Instruction *> UnlinkedInstructions; -}; - -} // end anonymous namespace - -char StraightLineStrengthReduce::ID = 0; - -INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", - "Straight line strength reduction", false, false) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", - "Straight line strength reduction", false, false) - -FunctionPass *llvm::createStraightLineStrengthReducePass() { - return new StraightLineStrengthReduce(); -} - -bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, - const Candidate &C) { - return (Basis.Ins != C.Ins && // skip the same instruction - // They must have the same type too. Basis.Base == C.Base doesn't - // guarantee their types are the same (PR23975). - Basis.Ins->getType() == C.Ins->getType() && - // Basis must dominate C in order to rewrite C with respect to Basis. - DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && - // They share the same base, stride, and candidate kind. - Basis.Base == C.Base && Basis.Stride == C.Stride && - Basis.CandidateKind == C.CandidateKind); -} - -static bool isGEPFoldable(GetElementPtrInst *GEP, - const TargetTransformInfo *TTI) { - SmallVector<const Value*, 4> Indices; - for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) - Indices.push_back(*I); - return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), - Indices) == TargetTransformInfo::TCC_Free; -} - -// Returns whether (Base + Index * Stride) can be folded to an addressing mode. -static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, - TargetTransformInfo *TTI) { - // Index->getSExtValue() may crash if Index is wider than 64-bit. - return Index->getBitWidth() <= 64 && - TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, - Index->getSExtValue(), UnknownAddressSpace); -} - -bool StraightLineStrengthReduce::isFoldable(const Candidate &C, - TargetTransformInfo *TTI, - const DataLayout *DL) { - if (C.CandidateKind == Candidate::Add) - return isAddFoldable(C.Base, C.Index, C.Stride, TTI); - if (C.CandidateKind == Candidate::GEP) - return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI); - return false; -} - -// Returns true if GEP has zero or one non-zero index. -static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { - unsigned NumNonZeroIndices = 0; - for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { - ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); - if (ConstIdx == nullptr || !ConstIdx->isZero()) - ++NumNonZeroIndices; - } - return NumNonZeroIndices <= 1; -} - -bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { - if (C.CandidateKind == Candidate::Add) { - // B + 1 * S or B + (-1) * S - return C.Index->isOne() || C.Index->isMinusOne(); - } - if (C.CandidateKind == Candidate::Mul) { - // (B + 0) * S - return C.Index->isZero(); - } - if (C.CandidateKind == Candidate::GEP) { - // (char*)B + S or (char*)B - S - return ((C.Index->isOne() || C.Index->isMinusOne()) && - hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); - } - return false; -} - -// TODO: We currently implement an algorithm whose time complexity is linear in -// the number of existing candidates. However, we could do better by using -// ScopedHashTable. Specifically, while traversing the dominator tree, we could -// maintain all the candidates that dominate the basic block being traversed in -// a ScopedHashTable. This hash table is indexed by the base and the stride of -// a candidate. Therefore, finding the immediate basis of a candidate boils down -// to one hash-table look up. -void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( - Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, - Instruction *I) { - Candidate C(CT, B, Idx, S, I); - // SLSR can complicate an instruction in two cases: - // - // 1. If we can fold I into an addressing mode, computing I is likely free or - // takes only one instruction. - // - // 2. I is already in a simplest form. For example, when - // X = B + 8 * S - // Y = B + S, - // rewriting Y to X - 7 * S is probably a bad idea. - // - // In the above cases, we still add I to the candidate list so that I can be - // the basis of other candidates, but we leave I's basis blank so that I - // won't be rewritten. - if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { - // Try to compute the immediate basis of C. - unsigned NumIterations = 0; - // Limit the scan radius to avoid running in quadratice time. - static const unsigned MaxNumIterations = 50; - for (auto Basis = Candidates.rbegin(); - Basis != Candidates.rend() && NumIterations < MaxNumIterations; - ++Basis, ++NumIterations) { - if (isBasisFor(*Basis, C)) { - C.Basis = &(*Basis); - break; - } - } - } - // Regardless of whether we find a basis for C, we need to push C to the - // candidate list so that it can be the basis of other candidates. - Candidates.push_back(C); -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( - Instruction *I) { - switch (I->getOpcode()) { - case Instruction::Add: - allocateCandidatesAndFindBasisForAdd(I); - break; - case Instruction::Mul: - allocateCandidatesAndFindBasisForMul(I); - break; - case Instruction::GetElementPtr: - allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); - break; - } -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( - Instruction *I) { - // Try matching B + i * S. - if (!isa<IntegerType>(I->getType())) - return; - - assert(I->getNumOperands() == 2 && "isn't I an add?"); - Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); - allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); - if (LHS != RHS) - allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( - Value *LHS, Value *RHS, Instruction *I) { - Value *S = nullptr; - ConstantInt *Idx = nullptr; - if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { - // I = LHS + RHS = LHS + Idx * S - allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); - } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { - // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) - APInt One(Idx->getBitWidth(), 1); - Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); - allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); - } else { - // At least, I = LHS + 1 * RHS - ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); - allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, - I); - } -} - -// Returns true if A matches B + C where C is constant. -static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { - return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) || - match(A, m_Add(m_ConstantInt(C), m_Value(B)))); -} - -// Returns true if A matches B | C where C is constant. -static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { - return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) || - match(A, m_Or(m_ConstantInt(C), m_Value(B)))); -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( - Value *LHS, Value *RHS, Instruction *I) { - Value *B = nullptr; - ConstantInt *Idx = nullptr; - if (matchesAdd(LHS, B, Idx)) { - // If LHS is in the form of "Base + Index", then I is in the form of - // "(Base + Index) * RHS". - allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); - } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { - // If LHS is in the form of "Base | Index" and Base and Index have no common - // bits set, then - // Base | Index = Base + Index - // and I is thus in the form of "(Base + Index) * RHS". - allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); - } else { - // Otherwise, at least try the form (LHS + 0) * RHS. - ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); - allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, - I); - } -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( - Instruction *I) { - // Try matching (B + i) * S. - // TODO: we could extend SLSR to float and vector types. - if (!isa<IntegerType>(I->getType())) - return; - - assert(I->getNumOperands() == 2 && "isn't I a mul?"); - Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); - allocateCandidatesAndFindBasisForMul(LHS, RHS, I); - if (LHS != RHS) { - // Symmetrically, try to split RHS to Base + Index. - allocateCandidatesAndFindBasisForMul(RHS, LHS, I); - } -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( - const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, - Instruction *I) { - // I = B + sext(Idx *nsw S) * ElementSize - // = B + (sext(Idx) * sext(S)) * ElementSize - // = B + (sext(Idx) * ElementSize) * sext(S) - // Casting to IntegerType is safe because we skipped vector GEPs. - IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType())); - ConstantInt *ScaledIdx = ConstantInt::get( - IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); - allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); -} - -void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, - const SCEV *Base, - uint64_t ElementSize, - GetElementPtrInst *GEP) { - // At least, ArrayIdx = ArrayIdx *nsw 1. - allocateCandidatesAndFindBasisForGEP( - Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), - ArrayIdx, ElementSize, GEP); - Value *LHS = nullptr; - ConstantInt *RHS = nullptr; - // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx - // itself. This would allow us to handle the shl case for free. However, - // matching SCEVs has two issues: - // - // 1. this would complicate rewriting because the rewriting procedure - // would have to translate SCEVs back to IR instructions. This translation - // is difficult when LHS is further evaluated to a composite SCEV. - // - // 2. ScalarEvolution is designed to be control-flow oblivious. It tends - // to strip nsw/nuw flags which are critical for SLSR to trace into - // sext'ed multiplication. - if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { - // SLSR is currently unsafe if i * S may overflow. - // GEP = Base + sext(LHS *nsw RHS) * ElementSize - allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); - } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { - // GEP = Base + sext(LHS <<nsw RHS) * ElementSize - // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize - APInt One(RHS->getBitWidth(), 1); - ConstantInt *PowerOf2 = - ConstantInt::get(RHS->getContext(), One << RHS->getValue()); - allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); - } -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( - GetElementPtrInst *GEP) { - // TODO: handle vector GEPs - if (GEP->getType()->isVectorTy()) - return; - - SmallVector<const SCEV *, 4> IndexExprs; - for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) - IndexExprs.push_back(SE->getSCEV(*I)); - - gep_type_iterator GTI = gep_type_begin(GEP); - for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { - if (GTI.isStruct()) - continue; - - const SCEV *OrigIndexExpr = IndexExprs[I - 1]; - IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType()); - - // The base of this candidate is GEP's base plus the offsets of all - // indices except this current one. - const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs); - Value *ArrayIdx = GEP->getOperand(I); - uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); - if (ArrayIdx->getType()->getIntegerBitWidth() <= - DL->getPointerSizeInBits(GEP->getAddressSpace())) { - // Skip factoring if ArrayIdx is wider than the pointer size, because - // ArrayIdx is implicitly truncated to the pointer size. - factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP); - } - // When ArrayIdx is the sext of a value, we try to factor that value as - // well. Handling this case is important because array indices are - // typically sign-extended to the pointer size. - Value *TruncatedArrayIdx = nullptr; - if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) && - TruncatedArrayIdx->getType()->getIntegerBitWidth() <= - DL->getPointerSizeInBits(GEP->getAddressSpace())) { - // Skip factoring if TruncatedArrayIdx is wider than the pointer size, - // because TruncatedArrayIdx is implicitly truncated to the pointer size. - factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP); - } - - IndexExprs[I - 1] = OrigIndexExpr; - } -} - -// A helper function that unifies the bitwidth of A and B. -static void unifyBitWidth(APInt &A, APInt &B) { - if (A.getBitWidth() < B.getBitWidth()) - A = A.sext(B.getBitWidth()); - else if (A.getBitWidth() > B.getBitWidth()) - B = B.sext(A.getBitWidth()); -} - -Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, - const Candidate &C, - IRBuilder<> &Builder, - const DataLayout *DL, - bool &BumpWithUglyGEP) { - APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); - unifyBitWidth(Idx, BasisIdx); - APInt IndexOffset = Idx - BasisIdx; - - BumpWithUglyGEP = false; - if (Basis.CandidateKind == Candidate::GEP) { - APInt ElementSize( - IndexOffset.getBitWidth(), - DL->getTypeAllocSize( - cast<GetElementPtrInst>(Basis.Ins)->getResultElementType())); - APInt Q, R; - APInt::sdivrem(IndexOffset, ElementSize, Q, R); - if (R == 0) - IndexOffset = Q; - else - BumpWithUglyGEP = true; - } - - // Compute Bump = C - Basis = (i' - i) * S. - // Common case 1: if (i' - i) is 1, Bump = S. - if (IndexOffset == 1) - return C.Stride; - // Common case 2: if (i' - i) is -1, Bump = -S. - if (IndexOffset.isAllOnesValue()) - return Builder.CreateNeg(C.Stride); - - // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may - // have different bit widths. - IntegerType *DeltaType = - IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); - Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); - if (IndexOffset.isPowerOf2()) { - // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). - ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); - return Builder.CreateShl(ExtendedStride, Exponent); - } - if ((-IndexOffset).isPowerOf2()) { - // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). - ConstantInt *Exponent = - ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); - return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); - } - Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); - return Builder.CreateMul(ExtendedStride, Delta); -} - -void StraightLineStrengthReduce::rewriteCandidateWithBasis( - const Candidate &C, const Candidate &Basis) { - assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && - C.Stride == Basis.Stride); - // We run rewriteCandidateWithBasis on all candidates in a post-order, so the - // basis of a candidate cannot be unlinked before the candidate. - assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); - - // An instruction can correspond to multiple candidates. Therefore, instead of - // simply deleting an instruction when we rewrite it, we mark its parent as - // nullptr (i.e. unlink it) so that we can skip the candidates whose - // instruction is already rewritten. - if (!C.Ins->getParent()) - return; - - IRBuilder<> Builder(C.Ins); - bool BumpWithUglyGEP; - Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); - Value *Reduced = nullptr; // equivalent to but weaker than C.Ins - switch (C.CandidateKind) { - case Candidate::Add: - case Candidate::Mul: { - // C = Basis + Bump - Value *NegBump; - if (match(Bump, m_Neg(m_Value(NegBump)))) { - // If Bump is a neg instruction, emit C = Basis - (-Bump). - Reduced = Builder.CreateSub(Basis.Ins, NegBump); - // We only use the negative argument of Bump, and Bump itself may be - // trivially dead. - RecursivelyDeleteTriviallyDeadInstructions(Bump); - } else { - // It's tempting to preserve nsw on Bump and/or Reduced. However, it's - // usually unsound, e.g., - // - // X = (-2 +nsw 1) *nsw INT_MAX - // Y = (-2 +nsw 3) *nsw INT_MAX - // => - // Y = X + 2 * INT_MAX - // - // Neither + and * in the resultant expression are nsw. - Reduced = Builder.CreateAdd(Basis.Ins, Bump); - } - break; - } - case Candidate::GEP: - { - Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); - bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); - if (BumpWithUglyGEP) { - // C = (char *)Basis + Bump - unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); - Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); - Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); - if (InBounds) - Reduced = - Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump); - else - Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump); - Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); - } else { - // C = gep Basis, Bump - // Canonicalize bump to pointer size. - Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); - if (InBounds) - Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump); - else - Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump); - } - break; - } - default: - llvm_unreachable("C.CandidateKind is invalid"); - }; - Reduced->takeName(C.Ins); - C.Ins->replaceAllUsesWith(Reduced); - // Unlink C.Ins so that we can skip other candidates also corresponding to - // C.Ins. The actual deletion is postponed to the end of runOnFunction. - C.Ins->removeFromParent(); - UnlinkedInstructions.push_back(C.Ins); -} - -bool StraightLineStrengthReduce::runOnFunction(Function &F) { - if (skipFunction(F)) - return false; - - TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - // Traverse the dominator tree in the depth-first order. This order makes sure - // all bases of a candidate are in Candidates when we process it. - for (const auto Node : depth_first(DT)) - for (auto &I : *(Node->getBlock())) - allocateCandidatesAndFindBasis(&I); - - // Rewrite candidates in the reverse depth-first order. This order makes sure - // a candidate being rewritten is not a basis for any other candidate. - while (!Candidates.empty()) { - const Candidate &C = Candidates.back(); - if (C.Basis != nullptr) { - rewriteCandidateWithBasis(C, *C.Basis); - } - Candidates.pop_back(); - } - - // Delete all unlink instructions. - for (auto *UnlinkedInst : UnlinkedInstructions) { - for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { - Value *Op = UnlinkedInst->getOperand(I); - UnlinkedInst->setOperand(I, nullptr); - RecursivelyDeleteTriviallyDeadInstructions(Op); - } - UnlinkedInst->deleteValue(); - } - bool Ret = !UnlinkedInstructions.empty(); - UnlinkedInstructions.clear(); - return Ret; -} |
