diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp | 883 |
1 files changed, 0 insertions, 883 deletions
diff --git a/gnu/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp b/gnu/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp deleted file mode 100644 index 0f6db21f73b..00000000000 --- a/gnu/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp +++ /dev/null @@ -1,883 +0,0 @@ -//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file transforms calls of the current function (self recursion) followed -// by a return instruction with a branch to the entry of the function, creating -// a loop. This pass also implements the following extensions to the basic -// algorithm: -// -// 1. Trivial instructions between the call and return do not prevent the -// transformation from taking place, though currently the analysis cannot -// support moving any really useful instructions (only dead ones). -// 2. This pass transforms functions that are prevented from being tail -// recursive by an associative and commutative expression to use an -// accumulator variable, thus compiling the typical naive factorial or -// 'fib' implementation into efficient code. -// 3. TRE is performed if the function returns void, if the return -// returns the result returned by the call, or if the function returns a -// run-time constant on all exits from the function. It is possible, though -// unlikely, that the return returns something else (like constant 0), and -// can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in -// the function return the exact same value. -// 4. If it can prove that callees do not access their caller stack frame, -// they are marked as eligible for tail call elimination (by the code -// generator). -// -// There are several improvements that could be made: -// -// 1. If the function has any alloca instructions, these instructions will be -// moved out of the entry block of the function, causing them to be -// evaluated each time through the tail recursion. Safely keeping allocas -// in the entry block requires analysis to proves that the tail-called -// function does not read or write the stack object. -// 2. Tail recursion is only performed if the call immediately precedes the -// return instruction. It's possible that there could be a jump between -// the call and the return. -// 3. There can be intervening operations between the call and the return that -// prevent the TRE from occurring. For example, there could be GEP's and -// stores to memory that will not be read or written by the call. This -// requires some substantial analysis (such as with DSA) to prove safe to -// move ahead of the call, but doing so could allow many more TREs to be -// performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. -// 4. The algorithm we use to detect if callees access their caller stack -// frames is very primitive. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/TailRecursionElimination.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/CFG.h" -#include "llvm/Analysis/CaptureTracking.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/InlineCost.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/Loads.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/PostDominators.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/DiagnosticInfo.h" -#include "llvm/IR/DomTreeUpdater.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Pass.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -using namespace llvm; - -#define DEBUG_TYPE "tailcallelim" - -STATISTIC(NumEliminated, "Number of tail calls removed"); -STATISTIC(NumRetDuped, "Number of return duplicated"); -STATISTIC(NumAccumAdded, "Number of accumulators introduced"); - -/// Scan the specified function for alloca instructions. -/// If it contains any dynamic allocas, returns false. -static bool canTRE(Function &F) { - // Because of PR962, we don't TRE dynamic allocas. - return llvm::all_of(instructions(F), [](Instruction &I) { - auto *AI = dyn_cast<AllocaInst>(&I); - return !AI || AI->isStaticAlloca(); - }); -} - -namespace { -struct AllocaDerivedValueTracker { - // Start at a root value and walk its use-def chain to mark calls that use the - // value or a derived value in AllocaUsers, and places where it may escape in - // EscapePoints. - void walk(Value *Root) { - SmallVector<Use *, 32> Worklist; - SmallPtrSet<Use *, 32> Visited; - - auto AddUsesToWorklist = [&](Value *V) { - for (auto &U : V->uses()) { - if (!Visited.insert(&U).second) - continue; - Worklist.push_back(&U); - } - }; - - AddUsesToWorklist(Root); - - while (!Worklist.empty()) { - Use *U = Worklist.pop_back_val(); - Instruction *I = cast<Instruction>(U->getUser()); - - switch (I->getOpcode()) { - case Instruction::Call: - case Instruction::Invoke: { - CallSite CS(I); - // If the alloca-derived argument is passed byval it is not an escape - // point, or a use of an alloca. Calling with byval copies the contents - // of the alloca into argument registers or stack slots, which exist - // beyond the lifetime of the current frame. - if (CS.isArgOperand(U) && CS.isByValArgument(CS.getArgumentNo(U))) - continue; - bool IsNocapture = - CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U)); - callUsesLocalStack(CS, IsNocapture); - if (IsNocapture) { - // If the alloca-derived argument is passed in as nocapture, then it - // can't propagate to the call's return. That would be capturing. - continue; - } - break; - } - case Instruction::Load: { - // The result of a load is not alloca-derived (unless an alloca has - // otherwise escaped, but this is a local analysis). - continue; - } - case Instruction::Store: { - if (U->getOperandNo() == 0) - EscapePoints.insert(I); - continue; // Stores have no users to analyze. - } - case Instruction::BitCast: - case Instruction::GetElementPtr: - case Instruction::PHI: - case Instruction::Select: - case Instruction::AddrSpaceCast: - break; - default: - EscapePoints.insert(I); - break; - } - - AddUsesToWorklist(I); - } - } - - void callUsesLocalStack(CallSite CS, bool IsNocapture) { - // Add it to the list of alloca users. - AllocaUsers.insert(CS.getInstruction()); - - // If it's nocapture then it can't capture this alloca. - if (IsNocapture) - return; - - // If it can write to memory, it can leak the alloca value. - if (!CS.onlyReadsMemory()) - EscapePoints.insert(CS.getInstruction()); - } - - SmallPtrSet<Instruction *, 32> AllocaUsers; - SmallPtrSet<Instruction *, 32> EscapePoints; -}; -} - -static bool markTails(Function &F, bool &AllCallsAreTailCalls, - OptimizationRemarkEmitter *ORE) { - if (F.callsFunctionThatReturnsTwice()) - return false; - AllCallsAreTailCalls = true; - - // The local stack holds all alloca instructions and all byval arguments. - AllocaDerivedValueTracker Tracker; - for (Argument &Arg : F.args()) { - if (Arg.hasByValAttr()) - Tracker.walk(&Arg); - } - for (auto &BB : F) { - for (auto &I : BB) - if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) - Tracker.walk(AI); - } - - bool Modified = false; - - // Track whether a block is reachable after an alloca has escaped. Blocks that - // contain the escaping instruction will be marked as being visited without an - // escaped alloca, since that is how the block began. - enum VisitType { - UNVISITED, - UNESCAPED, - ESCAPED - }; - DenseMap<BasicBlock *, VisitType> Visited; - - // We propagate the fact that an alloca has escaped from block to successor. - // Visit the blocks that are propagating the escapedness first. To do this, we - // maintain two worklists. - SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; - - // We may enter a block and visit it thinking that no alloca has escaped yet, - // then see an escape point and go back around a loop edge and come back to - // the same block twice. Because of this, we defer setting tail on calls when - // we first encounter them in a block. Every entry in this list does not - // statically use an alloca via use-def chain analysis, but may find an alloca - // through other means if the block turns out to be reachable after an escape - // point. - SmallVector<CallInst *, 32> DeferredTails; - - BasicBlock *BB = &F.getEntryBlock(); - VisitType Escaped = UNESCAPED; - do { - for (auto &I : *BB) { - if (Tracker.EscapePoints.count(&I)) - Escaped = ESCAPED; - - CallInst *CI = dyn_cast<CallInst>(&I); - if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I)) - continue; - - bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles(); - - if (!IsNoTail && CI->doesNotAccessMemory()) { - // A call to a readnone function whose arguments are all things computed - // outside this function can be marked tail. Even if you stored the - // alloca address into a global, a readnone function can't load the - // global anyhow. - // - // Note that this runs whether we know an alloca has escaped or not. If - // it has, then we can't trust Tracker.AllocaUsers to be accurate. - bool SafeToTail = true; - for (auto &Arg : CI->arg_operands()) { - if (isa<Constant>(Arg.getUser())) - continue; - if (Argument *A = dyn_cast<Argument>(Arg.getUser())) - if (!A->hasByValAttr()) - continue; - SafeToTail = false; - break; - } - if (SafeToTail) { - using namespace ore; - ORE->emit([&]() { - return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) - << "marked as tail call candidate (readnone)"; - }); - CI->setTailCall(); - Modified = true; - continue; - } - } - - if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { - DeferredTails.push_back(CI); - } else { - AllCallsAreTailCalls = false; - } - } - - for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { - auto &State = Visited[SuccBB]; - if (State < Escaped) { - State = Escaped; - if (State == ESCAPED) - WorklistEscaped.push_back(SuccBB); - else - WorklistUnescaped.push_back(SuccBB); - } - } - - if (!WorklistEscaped.empty()) { - BB = WorklistEscaped.pop_back_val(); - Escaped = ESCAPED; - } else { - BB = nullptr; - while (!WorklistUnescaped.empty()) { - auto *NextBB = WorklistUnescaped.pop_back_val(); - if (Visited[NextBB] == UNESCAPED) { - BB = NextBB; - Escaped = UNESCAPED; - break; - } - } - } - } while (BB); - - for (CallInst *CI : DeferredTails) { - if (Visited[CI->getParent()] != ESCAPED) { - // If the escape point was part way through the block, calls after the - // escape point wouldn't have been put into DeferredTails. - LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); - CI->setTailCall(); - Modified = true; - } else { - AllCallsAreTailCalls = false; - } - } - - return Modified; -} - -/// Return true if it is safe to move the specified -/// instruction from after the call to before the call, assuming that all -/// instructions between the call and this instruction are movable. -/// -static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { - // FIXME: We can move load/store/call/free instructions above the call if the - // call does not mod/ref the memory location being processed. - if (I->mayHaveSideEffects()) // This also handles volatile loads. - return false; - - if (LoadInst *L = dyn_cast<LoadInst>(I)) { - // Loads may always be moved above calls without side effects. - if (CI->mayHaveSideEffects()) { - // Non-volatile loads may be moved above a call with side effects if it - // does not write to memory and the load provably won't trap. - // Writes to memory only matter if they may alias the pointer - // being loaded from. - const DataLayout &DL = L->getModule()->getDataLayout(); - if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || - !isSafeToLoadUnconditionally(L->getPointerOperand(), - L->getAlignment(), DL, L)) - return false; - } - } - - // Otherwise, if this is a side-effect free instruction, check to make sure - // that it does not use the return value of the call. If it doesn't use the - // return value of the call, it must only use things that are defined before - // the call, or movable instructions between the call and the instruction - // itself. - return !is_contained(I->operands(), CI); -} - -/// Return true if the specified value is the same when the return would exit -/// as it was when the initial iteration of the recursive function was executed. -/// -/// We currently handle static constants and arguments that are not modified as -/// part of the recursion. -static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { - if (isa<Constant>(V)) return true; // Static constants are always dyn consts - - // Check to see if this is an immutable argument, if so, the value - // will be available to initialize the accumulator. - if (Argument *Arg = dyn_cast<Argument>(V)) { - // Figure out which argument number this is... - unsigned ArgNo = 0; - Function *F = CI->getParent()->getParent(); - for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) - ++ArgNo; - - // If we are passing this argument into call as the corresponding - // argument operand, then the argument is dynamically constant. - // Otherwise, we cannot transform this function safely. - if (CI->getArgOperand(ArgNo) == Arg) - return true; - } - - // Switch cases are always constant integers. If the value is being switched - // on and the return is only reachable from one of its cases, it's - // effectively constant. - if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) - if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) - if (SI->getCondition() == V) - return SI->getDefaultDest() != RI->getParent(); - - // Not a constant or immutable argument, we can't safely transform. - return false; -} - -/// Check to see if the function containing the specified tail call consistently -/// returns the same runtime-constant value at all exit points except for -/// IgnoreRI. If so, return the returned value. -static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { - Function *F = CI->getParent()->getParent(); - Value *ReturnedValue = nullptr; - - for (BasicBlock &BBI : *F) { - ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()); - if (RI == nullptr || RI == IgnoreRI) continue; - - // We can only perform this transformation if the value returned is - // evaluatable at the start of the initial invocation of the function, - // instead of at the end of the evaluation. - // - Value *RetOp = RI->getOperand(0); - if (!isDynamicConstant(RetOp, CI, RI)) - return nullptr; - - if (ReturnedValue && RetOp != ReturnedValue) - return nullptr; // Cannot transform if differing values are returned. - ReturnedValue = RetOp; - } - return ReturnedValue; -} - -/// If the specified instruction can be transformed using accumulator recursion -/// elimination, return the constant which is the start of the accumulator -/// value. Otherwise return null. -static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { - if (!I->isAssociative() || !I->isCommutative()) return nullptr; - assert(I->getNumOperands() == 2 && - "Associative/commutative operations should have 2 args!"); - - // Exactly one operand should be the result of the call instruction. - if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || - (I->getOperand(0) != CI && I->getOperand(1) != CI)) - return nullptr; - - // The only user of this instruction we allow is a single return instruction. - if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) - return nullptr; - - // Ok, now we have to check all of the other return instructions in this - // function. If they return non-constants or differing values, then we cannot - // transform the function safely. - return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI); -} - -static Instruction *firstNonDbg(BasicBlock::iterator I) { - while (isa<DbgInfoIntrinsic>(I)) - ++I; - return &*I; -} - -static CallInst *findTRECandidate(Instruction *TI, - bool CannotTailCallElimCallsMarkedTail, - const TargetTransformInfo *TTI) { - BasicBlock *BB = TI->getParent(); - Function *F = BB->getParent(); - - if (&BB->front() == TI) // Make sure there is something before the terminator. - return nullptr; - - // Scan backwards from the return, checking to see if there is a tail call in - // this block. If so, set CI to it. - CallInst *CI = nullptr; - BasicBlock::iterator BBI(TI); - while (true) { - CI = dyn_cast<CallInst>(BBI); - if (CI && CI->getCalledFunction() == F) - break; - - if (BBI == BB->begin()) - return nullptr; // Didn't find a potential tail call. - --BBI; - } - - // If this call is marked as a tail call, and if there are dynamic allocas in - // the function, we cannot perform this optimization. - if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) - return nullptr; - - // As a special case, detect code like this: - // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call - // and disable this xform in this case, because the code generator will - // lower the call to fabs into inline code. - if (BB == &F->getEntryBlock() && - firstNonDbg(BB->front().getIterator()) == CI && - firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && - !TTI->isLoweredToCall(CI->getCalledFunction())) { - // A single-block function with just a call and a return. Check that - // the arguments match. - CallSite::arg_iterator I = CallSite(CI).arg_begin(), - E = CallSite(CI).arg_end(); - Function::arg_iterator FI = F->arg_begin(), - FE = F->arg_end(); - for (; I != E && FI != FE; ++I, ++FI) - if (*I != &*FI) break; - if (I == E && FI == FE) - return nullptr; - } - - return CI; -} - -static bool eliminateRecursiveTailCall( - CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry, - bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs, - AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { - // If we are introducing accumulator recursion to eliminate operations after - // the call instruction that are both associative and commutative, the initial - // value for the accumulator is placed in this variable. If this value is set - // then we actually perform accumulator recursion elimination instead of - // simple tail recursion elimination. If the operation is an LLVM instruction - // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then - // we are handling the case when the return instruction returns a constant C - // which is different to the constant returned by other return instructions - // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a - // special case of accumulator recursion, the operation being "return C". - Value *AccumulatorRecursionEliminationInitVal = nullptr; - Instruction *AccumulatorRecursionInstr = nullptr; - - // Ok, we found a potential tail call. We can currently only transform the - // tail call if all of the instructions between the call and the return are - // movable to above the call itself, leaving the call next to the return. - // Check that this is the case now. - BasicBlock::iterator BBI(CI); - for (++BBI; &*BBI != Ret; ++BBI) { - if (canMoveAboveCall(&*BBI, CI, AA)) - continue; - - // If we can't move the instruction above the call, it might be because it - // is an associative and commutative operation that could be transformed - // using accumulator recursion elimination. Check to see if this is the - // case, and if so, remember the initial accumulator value for later. - if ((AccumulatorRecursionEliminationInitVal = - canTransformAccumulatorRecursion(&*BBI, CI))) { - // Yes, this is accumulator recursion. Remember which instruction - // accumulates. - AccumulatorRecursionInstr = &*BBI; - } else { - return false; // Otherwise, we cannot eliminate the tail recursion! - } - } - - // We can only transform call/return pairs that either ignore the return value - // of the call and return void, ignore the value of the call and return a - // constant, return the value returned by the tail call, or that are being - // accumulator recursion variable eliminated. - if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && - !isa<UndefValue>(Ret->getReturnValue()) && - AccumulatorRecursionEliminationInitVal == nullptr && - !getCommonReturnValue(nullptr, CI)) { - // One case remains that we are able to handle: the current return - // instruction returns a constant, and all other return instructions - // return a different constant. - if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) - return false; // Current return instruction does not return a constant. - // Check that all other return instructions return a common constant. If - // so, record it in AccumulatorRecursionEliminationInitVal. - AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); - if (!AccumulatorRecursionEliminationInitVal) - return false; - } - - BasicBlock *BB = Ret->getParent(); - Function *F = BB->getParent(); - - using namespace ore; - ORE->emit([&]() { - return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) - << "transforming tail recursion into loop"; - }); - - // OK! We can transform this tail call. If this is the first one found, - // create the new entry block, allowing us to branch back to the old entry. - if (!OldEntry) { - OldEntry = &F->getEntryBlock(); - BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); - NewEntry->takeName(OldEntry); - OldEntry->setName("tailrecurse"); - BranchInst *BI = BranchInst::Create(OldEntry, NewEntry); - BI->setDebugLoc(CI->getDebugLoc()); - - // If this tail call is marked 'tail' and if there are any allocas in the - // entry block, move them up to the new entry block. - TailCallsAreMarkedTail = CI->isTailCall(); - if (TailCallsAreMarkedTail) - // Move all fixed sized allocas from OldEntry to NewEntry. - for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), - NEBI = NewEntry->begin(); OEBI != E; ) - if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) - if (isa<ConstantInt>(AI->getArraySize())) - AI->moveBefore(&*NEBI); - - // Now that we have created a new block, which jumps to the entry - // block, insert a PHI node for each argument of the function. - // For now, we initialize each PHI to only have the real arguments - // which are passed in. - Instruction *InsertPos = &OldEntry->front(); - for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); - I != E; ++I) { - PHINode *PN = PHINode::Create(I->getType(), 2, - I->getName() + ".tr", InsertPos); - I->replaceAllUsesWith(PN); // Everyone use the PHI node now! - PN->addIncoming(&*I, NewEntry); - ArgumentPHIs.push_back(PN); - } - // The entry block was changed from OldEntry to NewEntry. - // The forward DominatorTree needs to be recalculated when the EntryBB is - // changed. In this corner-case we recalculate the entire tree. - DTU.recalculate(*NewEntry->getParent()); - } - - // If this function has self recursive calls in the tail position where some - // are marked tail and some are not, only transform one flavor or another. We - // have to choose whether we move allocas in the entry block to the new entry - // block or not, so we can't make a good choice for both. NOTE: We could do - // slightly better here in the case that the function has no entry block - // allocas. - if (TailCallsAreMarkedTail && !CI->isTailCall()) - return false; - - // Ok, now that we know we have a pseudo-entry block WITH all of the - // required PHI nodes, add entries into the PHI node for the actual - // parameters passed into the tail-recursive call. - for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) - ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); - - // If we are introducing an accumulator variable to eliminate the recursion, - // do so now. Note that we _know_ that no subsequent tail recursion - // eliminations will happen on this function because of the way the - // accumulator recursion predicate is set up. - // - if (AccumulatorRecursionEliminationInitVal) { - Instruction *AccRecInstr = AccumulatorRecursionInstr; - // Start by inserting a new PHI node for the accumulator. - pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); - PHINode *AccPN = PHINode::Create( - AccumulatorRecursionEliminationInitVal->getType(), - std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front()); - - // Loop over all of the predecessors of the tail recursion block. For the - // real entry into the function we seed the PHI with the initial value, - // computed earlier. For any other existing branches to this block (due to - // other tail recursions eliminated) the accumulator is not modified. - // Because we haven't added the branch in the current block to OldEntry yet, - // it will not show up as a predecessor. - for (pred_iterator PI = PB; PI != PE; ++PI) { - BasicBlock *P = *PI; - if (P == &F->getEntryBlock()) - AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); - else - AccPN->addIncoming(AccPN, P); - } - - if (AccRecInstr) { - // Add an incoming argument for the current block, which is computed by - // our associative and commutative accumulator instruction. - AccPN->addIncoming(AccRecInstr, BB); - - // Next, rewrite the accumulator recursion instruction so that it does not - // use the result of the call anymore, instead, use the PHI node we just - // inserted. - AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); - } else { - // Add an incoming argument for the current block, which is just the - // constant returned by the current return instruction. - AccPN->addIncoming(Ret->getReturnValue(), BB); - } - - // Finally, rewrite any return instructions in the program to return the PHI - // node instead of the "initval" that they do currently. This loop will - // actually rewrite the return value we are destroying, but that's ok. - for (BasicBlock &BBI : *F) - if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator())) - RI->setOperand(0, AccPN); - ++NumAccumAdded; - } - - // Now that all of the PHI nodes are in place, remove the call and - // ret instructions, replacing them with an unconditional branch. - BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); - NewBI->setDebugLoc(CI->getDebugLoc()); - - BB->getInstList().erase(Ret); // Remove return. - BB->getInstList().erase(CI); // Remove call. - DTU.insertEdge(BB, OldEntry); - ++NumEliminated; - return true; -} - -static bool foldReturnAndProcessPred( - BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry, - bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs, - bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI, - AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { - bool Change = false; - - // Make sure this block is a trivial return block. - assert(BB->getFirstNonPHIOrDbg() == Ret && - "Trying to fold non-trivial return block"); - - // If the return block contains nothing but the return and PHI's, - // there might be an opportunity to duplicate the return in its - // predecessors and perform TRE there. Look for predecessors that end - // in unconditional branch and recursive call(s). - SmallVector<BranchInst*, 8> UncondBranchPreds; - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { - BasicBlock *Pred = *PI; - Instruction *PTI = Pred->getTerminator(); - if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) - if (BI->isUnconditional()) - UncondBranchPreds.push_back(BI); - } - - while (!UncondBranchPreds.empty()) { - BranchInst *BI = UncondBranchPreds.pop_back_val(); - BasicBlock *Pred = BI->getParent(); - if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){ - LLVM_DEBUG(dbgs() << "FOLDING: " << *BB - << "INTO UNCOND BRANCH PRED: " << *Pred); - ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU); - - // Cleanup: if all predecessors of BB have been eliminated by - // FoldReturnIntoUncondBranch, delete it. It is important to empty it, - // because the ret instruction in there is still using a value which - // eliminateRecursiveTailCall will attempt to remove. - if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) - DTU.deleteBB(BB); - - eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail, - ArgumentPHIs, AA, ORE, DTU); - ++NumRetDuped; - Change = true; - } - } - - return Change; -} - -static bool processReturningBlock( - ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail, - SmallVectorImpl<PHINode *> &ArgumentPHIs, - bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI, - AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { - CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI); - if (!CI) - return false; - - return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, - ArgumentPHIs, AA, ORE, DTU); -} - -static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI, - AliasAnalysis *AA, - OptimizationRemarkEmitter *ORE, - DomTreeUpdater &DTU) { - if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") - return false; - - bool MadeChange = false; - bool AllCallsAreTailCalls = false; - MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); - if (!AllCallsAreTailCalls) - return MadeChange; - - // If this function is a varargs function, we won't be able to PHI the args - // right, so don't even try to convert it... - if (F.getFunctionType()->isVarArg()) - return false; - - BasicBlock *OldEntry = nullptr; - bool TailCallsAreMarkedTail = false; - SmallVector<PHINode*, 8> ArgumentPHIs; - - // If false, we cannot perform TRE on tail calls marked with the 'tail' - // attribute, because doing so would cause the stack size to increase (real - // TRE would deallocate variable sized allocas, TRE doesn't). - bool CanTRETailMarkedCall = canTRE(F); - - // Change any tail recursive calls to loops. - // - // FIXME: The code generator produces really bad code when an 'escaping - // alloca' is changed from being a static alloca to being a dynamic alloca. - // Until this is resolved, disable this transformation if that would ever - // happen. This bug is PR962. - for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) { - BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB. - if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { - bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, - ArgumentPHIs, !CanTRETailMarkedCall, - TTI, AA, ORE, DTU); - if (!Change && BB->getFirstNonPHIOrDbg() == Ret) - Change = foldReturnAndProcessPred( - BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, - !CanTRETailMarkedCall, TTI, AA, ORE, DTU); - MadeChange |= Change; - } - } - - // If we eliminated any tail recursions, it's possible that we inserted some - // silly PHI nodes which just merge an initial value (the incoming operand) - // with themselves. Check to see if we did and clean up our mess if so. This - // occurs when a function passes an argument straight through to its tail - // call. - for (PHINode *PN : ArgumentPHIs) { - // If the PHI Node is a dynamic constant, replace it with the value it is. - if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { - PN->replaceAllUsesWith(PNV); - PN->eraseFromParent(); - } - } - - return MadeChange; -} - -namespace { -struct TailCallElim : public FunctionPass { - static char ID; // Pass identification, replacement for typeid - TailCallElim() : FunctionPass(ID) { - initializeTailCallElimPass(*PassRegistry::getPassRegistry()); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.addRequired<AAResultsWrapperPass>(); - AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addPreserved<PostDominatorTreeWrapperPass>(); - } - - bool runOnFunction(Function &F) override { - if (skipFunction(F)) - return false; - - auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); - auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; - auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); - auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; - // There is no noticable performance difference here between Lazy and Eager - // UpdateStrategy based on some test results. It is feasible to switch the - // UpdateStrategy to Lazy if we find it profitable later. - DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); - - return eliminateTailRecursion( - F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), - &getAnalysis<AAResultsWrapperPass>().getAAResults(), - &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); - } -}; -} - -char TailCallElim::ID = 0; -INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", - false, false) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) -INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", - false, false) - -// Public interface to the TailCallElimination pass -FunctionPass *llvm::createTailCallEliminationPass() { - return new TailCallElim(); -} - -PreservedAnalyses TailCallElimPass::run(Function &F, - FunctionAnalysisManager &AM) { - - TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); - AliasAnalysis &AA = AM.getResult<AAManager>(F); - auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); - auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); - auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); - // There is no noticable performance difference here between Lazy and Eager - // UpdateStrategy based on some test results. It is feasible to switch the - // UpdateStrategy to Lazy if we find it profitable later. - DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); - bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU); - - if (!Changed) - return PreservedAnalyses::all(); - PreservedAnalyses PA; - PA.preserve<GlobalsAA>(); - PA.preserve<DominatorTreeAnalysis>(); - PA.preserve<PostDominatorTreeAnalysis>(); - return PA; -} |
