diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Utils/MemorySSA.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Utils/MemorySSA.cpp | 1361 |
1 files changed, 1361 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Transforms/Utils/MemorySSA.cpp b/gnu/llvm/lib/Transforms/Utils/MemorySSA.cpp new file mode 100644 index 00000000000..8ba3cae43b1 --- /dev/null +++ b/gnu/llvm/lib/Transforms/Utils/MemorySSA.cpp @@ -0,0 +1,1361 @@ +//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------===// +// +// This file implements the MemorySSA class. +// +//===----------------------------------------------------------------===// +#include "llvm/Transforms/Utils/MemorySSA.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/IteratedDominanceFrontier.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/PHITransAddr.h" +#include "llvm/IR/AssemblyAnnotationWriter.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Transforms/Scalar.h" +#include <algorithm> + +#define DEBUG_TYPE "memoryssa" +using namespace llvm; +STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups"); +STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits"); +STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts"); + +INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, + true) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, + true) + +INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", + "Memory SSA Printer", false, false) +INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", + "Memory SSA Printer", false, false) + +static cl::opt<bool> + VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, + cl::desc("Verify MemorySSA in legacy printer pass.")); + +namespace llvm { +/// \brief An assembly annotator class to print Memory SSA information in +/// comments. +class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { + friend class MemorySSA; + const MemorySSA *MSSA; + +public: + MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} + + virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, + formatted_raw_ostream &OS) { + if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) + OS << "; " << *MA << "\n"; + } + + virtual void emitInstructionAnnot(const Instruction *I, + formatted_raw_ostream &OS) { + if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) + OS << "; " << *MA << "\n"; + } +}; + +/// \brief A MemorySSAWalker that does AA walks and caching of lookups to +/// disambiguate accesses. +/// +/// FIXME: The current implementation of this can take quadratic space in rare +/// cases. This can be fixed, but it is something to note until it is fixed. +/// +/// In order to trigger this behavior, you need to store to N distinct locations +/// (that AA can prove don't alias), perform M stores to other memory +/// locations that AA can prove don't alias any of the initial N locations, and +/// then load from all of the N locations. In this case, we insert M cache +/// entries for each of the N loads. +/// +/// For example: +/// define i32 @foo() { +/// %a = alloca i32, align 4 +/// %b = alloca i32, align 4 +/// store i32 0, i32* %a, align 4 +/// store i32 0, i32* %b, align 4 +/// +/// ; Insert M stores to other memory that doesn't alias %a or %b here +/// +/// %c = load i32, i32* %a, align 4 ; Caches M entries in +/// ; CachedUpwardsClobberingAccess for the +/// ; MemoryLocation %a +/// %d = load i32, i32* %b, align 4 ; Caches M entries in +/// ; CachedUpwardsClobberingAccess for the +/// ; MemoryLocation %b +/// +/// ; For completeness' sake, loading %a or %b again would not cache *another* +/// ; M entries. +/// %r = add i32 %c, %d +/// ret i32 %r +/// } +class MemorySSA::CachingWalker final : public MemorySSAWalker { +public: + CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); + ~CachingWalker() override; + + MemoryAccess *getClobberingMemoryAccess(const Instruction *) override; + MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, + MemoryLocation &) override; + void invalidateInfo(MemoryAccess *) override; + +protected: + struct UpwardsMemoryQuery; + MemoryAccess *doCacheLookup(const MemoryAccess *, const UpwardsMemoryQuery &, + const MemoryLocation &); + + void doCacheInsert(const MemoryAccess *, MemoryAccess *, + const UpwardsMemoryQuery &, const MemoryLocation &); + + void doCacheRemove(const MemoryAccess *, const UpwardsMemoryQuery &, + const MemoryLocation &); + +private: + MemoryAccessPair UpwardsDFSWalk(MemoryAccess *, const MemoryLocation &, + UpwardsMemoryQuery &, bool); + MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); + bool instructionClobbersQuery(const MemoryDef *, UpwardsMemoryQuery &, + const MemoryLocation &Loc) const; + void verifyRemoved(MemoryAccess *); + SmallDenseMap<ConstMemoryAccessPair, MemoryAccess *> + CachedUpwardsClobberingAccess; + DenseMap<const MemoryAccess *, MemoryAccess *> CachedUpwardsClobberingCall; + AliasAnalysis *AA; + DominatorTree *DT; +}; +} + +namespace { +struct RenamePassData { + DomTreeNode *DTN; + DomTreeNode::const_iterator ChildIt; + MemoryAccess *IncomingVal; + + RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, + MemoryAccess *M) + : DTN(D), ChildIt(It), IncomingVal(M) {} + void swap(RenamePassData &RHS) { + std::swap(DTN, RHS.DTN); + std::swap(ChildIt, RHS.ChildIt); + std::swap(IncomingVal, RHS.IncomingVal); + } +}; +} + +namespace llvm { +/// \brief Rename a single basic block into MemorySSA form. +/// Uses the standard SSA renaming algorithm. +/// \returns The new incoming value. +MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, + MemoryAccess *IncomingVal) { + auto It = PerBlockAccesses.find(BB); + // Skip most processing if the list is empty. + if (It != PerBlockAccesses.end()) { + AccessList *Accesses = It->second.get(); + for (MemoryAccess &L : *Accesses) { + switch (L.getValueID()) { + case Value::MemoryUseVal: + cast<MemoryUse>(&L)->setDefiningAccess(IncomingVal); + break; + case Value::MemoryDefVal: + // We can't legally optimize defs, because we only allow single + // memory phis/uses on operations, and if we optimize these, we can + // end up with multiple reaching defs. Uses do not have this + // problem, since they do not produce a value + cast<MemoryDef>(&L)->setDefiningAccess(IncomingVal); + IncomingVal = &L; + break; + case Value::MemoryPhiVal: + IncomingVal = &L; + break; + } + } + } + + // Pass through values to our successors + for (const BasicBlock *S : successors(BB)) { + auto It = PerBlockAccesses.find(S); + // Rename the phi nodes in our successor block + if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) + continue; + AccessList *Accesses = It->second.get(); + auto *Phi = cast<MemoryPhi>(&Accesses->front()); + Phi->addIncoming(IncomingVal, BB); + } + + return IncomingVal; +} + +/// \brief This is the standard SSA renaming algorithm. +/// +/// We walk the dominator tree in preorder, renaming accesses, and then filling +/// in phi nodes in our successors. +void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, + SmallPtrSet<BasicBlock *, 16> &Visited) { + SmallVector<RenamePassData, 32> WorkStack; + IncomingVal = renameBlock(Root->getBlock(), IncomingVal); + WorkStack.push_back({Root, Root->begin(), IncomingVal}); + Visited.insert(Root->getBlock()); + + while (!WorkStack.empty()) { + DomTreeNode *Node = WorkStack.back().DTN; + DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; + IncomingVal = WorkStack.back().IncomingVal; + + if (ChildIt == Node->end()) { + WorkStack.pop_back(); + } else { + DomTreeNode *Child = *ChildIt; + ++WorkStack.back().ChildIt; + BasicBlock *BB = Child->getBlock(); + Visited.insert(BB); + IncomingVal = renameBlock(BB, IncomingVal); + WorkStack.push_back({Child, Child->begin(), IncomingVal}); + } + } +} + +/// \brief Compute dominator levels, used by the phi insertion algorithm above. +void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) { + for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode()); + DFI != DFE; ++DFI) + DomLevels[*DFI] = DFI.getPathLength() - 1; +} + +/// \brief This handles unreachable block accesses by deleting phi nodes in +/// unreachable blocks, and marking all other unreachable MemoryAccess's as +/// being uses of the live on entry definition. +void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { + assert(!DT->isReachableFromEntry(BB) && + "Reachable block found while handling unreachable blocks"); + + // Make sure phi nodes in our reachable successors end up with a + // LiveOnEntryDef for our incoming edge, even though our block is forward + // unreachable. We could just disconnect these blocks from the CFG fully, + // but we do not right now. + for (const BasicBlock *S : successors(BB)) { + if (!DT->isReachableFromEntry(S)) + continue; + auto It = PerBlockAccesses.find(S); + // Rename the phi nodes in our successor block + if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) + continue; + AccessList *Accesses = It->second.get(); + auto *Phi = cast<MemoryPhi>(&Accesses->front()); + Phi->addIncoming(LiveOnEntryDef.get(), BB); + } + + auto It = PerBlockAccesses.find(BB); + if (It == PerBlockAccesses.end()) + return; + + auto &Accesses = It->second; + for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { + auto Next = std::next(AI); + // If we have a phi, just remove it. We are going to replace all + // users with live on entry. + if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) + UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); + else + Accesses->erase(AI); + AI = Next; + } +} + +MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) + : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), + NextID(0) { + buildMemorySSA(); +} + +MemorySSA::MemorySSA(MemorySSA &&MSSA) + : AA(MSSA.AA), DT(MSSA.DT), F(MSSA.F), + ValueToMemoryAccess(std::move(MSSA.ValueToMemoryAccess)), + PerBlockAccesses(std::move(MSSA.PerBlockAccesses)), + LiveOnEntryDef(std::move(MSSA.LiveOnEntryDef)), + Walker(std::move(MSSA.Walker)), NextID(MSSA.NextID) { + // Update the Walker MSSA pointer so it doesn't point to the moved-from MSSA + // object any more. + Walker->MSSA = this; +} + +MemorySSA::~MemorySSA() { + // Drop all our references + for (const auto &Pair : PerBlockAccesses) + for (MemoryAccess &MA : *Pair.second) + MA.dropAllReferences(); +} + +MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { + auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); + + if (Res.second) + Res.first->second = make_unique<AccessList>(); + return Res.first->second.get(); +} + +void MemorySSA::buildMemorySSA() { + // We create an access to represent "live on entry", for things like + // arguments or users of globals, where the memory they use is defined before + // the beginning of the function. We do not actually insert it into the IR. + // We do not define a live on exit for the immediate uses, and thus our + // semantics do *not* imply that something with no immediate uses can simply + // be removed. + BasicBlock &StartingPoint = F.getEntryBlock(); + LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, + &StartingPoint, NextID++); + + // We maintain lists of memory accesses per-block, trading memory for time. We + // could just look up the memory access for every possible instruction in the + // stream. + SmallPtrSet<BasicBlock *, 32> DefiningBlocks; + SmallPtrSet<BasicBlock *, 32> DefUseBlocks; + // Go through each block, figure out where defs occur, and chain together all + // the accesses. + for (BasicBlock &B : F) { + bool InsertIntoDef = false; + AccessList *Accesses = nullptr; + for (Instruction &I : B) { + MemoryUseOrDef *MUD = createNewAccess(&I); + if (!MUD) + continue; + InsertIntoDef |= isa<MemoryDef>(MUD); + + if (!Accesses) + Accesses = getOrCreateAccessList(&B); + Accesses->push_back(MUD); + } + if (InsertIntoDef) + DefiningBlocks.insert(&B); + if (Accesses) + DefUseBlocks.insert(&B); + } + + // Compute live-in. + // Live in is normally defined as "all the blocks on the path from each def to + // each of it's uses". + // MemoryDef's are implicit uses of previous state, so they are also uses. + // This means we don't really have def-only instructions. The only + // MemoryDef's that are not really uses are those that are of the LiveOnEntry + // variable (because LiveOnEntry can reach anywhere, and every def is a + // must-kill of LiveOnEntry). + // In theory, you could precisely compute live-in by using alias-analysis to + // disambiguate defs and uses to see which really pair up with which. + // In practice, this would be really expensive and difficult. So we simply + // assume all defs are also uses that need to be kept live. + // Because of this, the end result of this live-in computation will be "the + // entire set of basic blocks that reach any use". + + SmallPtrSet<BasicBlock *, 32> LiveInBlocks; + SmallVector<BasicBlock *, 64> LiveInBlockWorklist(DefUseBlocks.begin(), + DefUseBlocks.end()); + // Now that we have a set of blocks where a value is live-in, recursively add + // predecessors until we find the full region the value is live. + while (!LiveInBlockWorklist.empty()) { + BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); + + // The block really is live in here, insert it into the set. If already in + // the set, then it has already been processed. + if (!LiveInBlocks.insert(BB).second) + continue; + + // Since the value is live into BB, it is either defined in a predecessor or + // live into it to. + LiveInBlockWorklist.append(pred_begin(BB), pred_end(BB)); + } + + // Determine where our MemoryPhi's should go + ForwardIDFCalculator IDFs(*DT); + IDFs.setDefiningBlocks(DefiningBlocks); + IDFs.setLiveInBlocks(LiveInBlocks); + SmallVector<BasicBlock *, 32> IDFBlocks; + IDFs.calculate(IDFBlocks); + + // Now place MemoryPhi nodes. + for (auto &BB : IDFBlocks) { + // Insert phi node + AccessList *Accesses = getOrCreateAccessList(BB); + MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); + ValueToMemoryAccess.insert(std::make_pair(BB, Phi)); + // Phi's always are placed at the front of the block. + Accesses->push_front(Phi); + } + + // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get + // filled in with all blocks. + SmallPtrSet<BasicBlock *, 16> Visited; + renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); + + MemorySSAWalker *Walker = getWalker(); + + // Now optimize the MemoryUse's defining access to point to the nearest + // dominating clobbering def. + // This ensures that MemoryUse's that are killed by the same store are + // immediate users of that store, one of the invariants we guarantee. + for (auto DomNode : depth_first(DT)) { + BasicBlock *BB = DomNode->getBlock(); + auto AI = PerBlockAccesses.find(BB); + if (AI == PerBlockAccesses.end()) + continue; + AccessList *Accesses = AI->second.get(); + for (auto &MA : *Accesses) { + if (auto *MU = dyn_cast<MemoryUse>(&MA)) { + Instruction *Inst = MU->getMemoryInst(); + MU->setDefiningAccess(Walker->getClobberingMemoryAccess(Inst)); + } + } + } + + // Mark the uses in unreachable blocks as live on entry, so that they go + // somewhere. + for (auto &BB : F) + if (!Visited.count(&BB)) + markUnreachableAsLiveOnEntry(&BB); +} + +MemorySSAWalker *MemorySSA::getWalker() { + if (Walker) + return Walker.get(); + + Walker = make_unique<CachingWalker>(this, AA, DT); + return Walker.get(); +} + +MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { + assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); + AccessList *Accesses = getOrCreateAccessList(BB); + MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); + ValueToMemoryAccess.insert(std::make_pair(BB, Phi)); + // Phi's always are placed at the front of the block. + Accesses->push_front(Phi); + return Phi; +} + +MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, + MemoryAccess *Definition) { + assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); + MemoryUseOrDef *NewAccess = createNewAccess(I); + assert( + NewAccess != nullptr && + "Tried to create a memory access for a non-memory touching instruction"); + NewAccess->setDefiningAccess(Definition); + return NewAccess; +} + +MemoryAccess *MemorySSA::createMemoryAccessInBB(Instruction *I, + MemoryAccess *Definition, + const BasicBlock *BB, + InsertionPlace Point) { + MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); + auto *Accesses = getOrCreateAccessList(BB); + if (Point == Beginning) { + // It goes after any phi nodes + auto AI = std::find_if( + Accesses->begin(), Accesses->end(), + [](const MemoryAccess &MA) { return !isa<MemoryPhi>(MA); }); + + Accesses->insert(AI, NewAccess); + } else { + Accesses->push_back(NewAccess); + } + + return NewAccess; +} +MemoryAccess *MemorySSA::createMemoryAccessBefore(Instruction *I, + MemoryAccess *Definition, + MemoryAccess *InsertPt) { + assert(I->getParent() == InsertPt->getBlock() && + "New and old access must be in the same block"); + MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); + auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); + Accesses->insert(AccessList::iterator(InsertPt), NewAccess); + return NewAccess; +} + +MemoryAccess *MemorySSA::createMemoryAccessAfter(Instruction *I, + MemoryAccess *Definition, + MemoryAccess *InsertPt) { + assert(I->getParent() == InsertPt->getBlock() && + "New and old access must be in the same block"); + MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); + auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); + Accesses->insertAfter(AccessList::iterator(InsertPt), NewAccess); + return NewAccess; +} + +/// \brief Helper function to create new memory accesses +MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { + // The assume intrinsic has a control dependency which we model by claiming + // that it writes arbitrarily. Ignore that fake memory dependency here. + // FIXME: Replace this special casing with a more accurate modelling of + // assume's control dependency. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) + if (II->getIntrinsicID() == Intrinsic::assume) + return nullptr; + + // Find out what affect this instruction has on memory. + ModRefInfo ModRef = AA->getModRefInfo(I); + bool Def = bool(ModRef & MRI_Mod); + bool Use = bool(ModRef & MRI_Ref); + + // It's possible for an instruction to not modify memory at all. During + // construction, we ignore them. + if (!Def && !Use) + return nullptr; + + assert((Def || Use) && + "Trying to create a memory access with a non-memory instruction"); + + MemoryUseOrDef *MUD; + if (Def) + MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); + else + MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); + ValueToMemoryAccess.insert(std::make_pair(I, MUD)); + return MUD; +} + +MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock, + enum InsertionPlace Where) { + // Handle the initial case + if (Where == Beginning) + // The only thing that could define us at the beginning is a phi node + if (MemoryPhi *Phi = getMemoryAccess(UseBlock)) + return Phi; + + DomTreeNode *CurrNode = DT->getNode(UseBlock); + // Need to be defined by our dominator + if (Where == Beginning) + CurrNode = CurrNode->getIDom(); + Where = End; + while (CurrNode) { + auto It = PerBlockAccesses.find(CurrNode->getBlock()); + if (It != PerBlockAccesses.end()) { + auto &Accesses = It->second; + for (MemoryAccess &RA : reverse(*Accesses)) { + if (isa<MemoryDef>(RA) || isa<MemoryPhi>(RA)) + return &RA; + } + } + CurrNode = CurrNode->getIDom(); + } + return LiveOnEntryDef.get(); +} + +/// \brief Returns true if \p Replacer dominates \p Replacee . +bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, + const MemoryAccess *Replacee) const { + if (isa<MemoryUseOrDef>(Replacee)) + return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); + const auto *MP = cast<MemoryPhi>(Replacee); + // For a phi node, the use occurs in the predecessor block of the phi node. + // Since we may occur multiple times in the phi node, we have to check each + // operand to ensure Replacer dominates each operand where Replacee occurs. + for (const Use &Arg : MP->operands()) { + if (Arg.get() != Replacee && + !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) + return false; + } + return true; +} + +/// \brief If all arguments of a MemoryPHI are defined by the same incoming +/// argument, return that argument. +static MemoryAccess *onlySingleValue(MemoryPhi *MP) { + MemoryAccess *MA = nullptr; + + for (auto &Arg : MP->operands()) { + if (!MA) + MA = cast<MemoryAccess>(Arg); + else if (MA != Arg) + return nullptr; + } + return MA; +} + +/// \brief Properly remove \p MA from all of MemorySSA's lookup tables. +/// +/// Because of the way the intrusive list and use lists work, it is important to +/// do removal in the right order. +void MemorySSA::removeFromLookups(MemoryAccess *MA) { + assert(MA->use_empty() && + "Trying to remove memory access that still has uses"); + if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) + MUD->setDefiningAccess(nullptr); + // Invalidate our walker's cache if necessary + if (!isa<MemoryUse>(MA)) + Walker->invalidateInfo(MA); + // The call below to erase will destroy MA, so we can't change the order we + // are doing things here + Value *MemoryInst; + if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { + MemoryInst = MUD->getMemoryInst(); + } else { + MemoryInst = MA->getBlock(); + } + ValueToMemoryAccess.erase(MemoryInst); + + auto AccessIt = PerBlockAccesses.find(MA->getBlock()); + std::unique_ptr<AccessList> &Accesses = AccessIt->second; + Accesses->erase(MA); + if (Accesses->empty()) + PerBlockAccesses.erase(AccessIt); +} + +void MemorySSA::removeMemoryAccess(MemoryAccess *MA) { + assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def"); + // We can only delete phi nodes if they have no uses, or we can replace all + // uses with a single definition. + MemoryAccess *NewDefTarget = nullptr; + if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { + // Note that it is sufficient to know that all edges of the phi node have + // the same argument. If they do, by the definition of dominance frontiers + // (which we used to place this phi), that argument must dominate this phi, + // and thus, must dominate the phi's uses, and so we will not hit the assert + // below. + NewDefTarget = onlySingleValue(MP); + assert((NewDefTarget || MP->use_empty()) && + "We can't delete this memory phi"); + } else { + NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); + } + + // Re-point the uses at our defining access + if (!MA->use_empty()) + MA->replaceAllUsesWith(NewDefTarget); + + // The call below to erase will destroy MA, so we can't change the order we + // are doing things here + removeFromLookups(MA); +} + +void MemorySSA::print(raw_ostream &OS) const { + MemorySSAAnnotatedWriter Writer(this); + F.print(OS, &Writer); +} + +void MemorySSA::dump() const { + MemorySSAAnnotatedWriter Writer(this); + F.print(dbgs(), &Writer); +} + +void MemorySSA::verifyMemorySSA() const { + verifyDefUses(F); + verifyDomination(F); + verifyOrdering(F); +} + +/// \brief Verify that the order and existence of MemoryAccesses matches the +/// order and existence of memory affecting instructions. +void MemorySSA::verifyOrdering(Function &F) const { + // Walk all the blocks, comparing what the lookups think and what the access + // lists think, as well as the order in the blocks vs the order in the access + // lists. + SmallVector<MemoryAccess *, 32> ActualAccesses; + for (BasicBlock &B : F) { + const AccessList *AL = getBlockAccesses(&B); + MemoryAccess *Phi = getMemoryAccess(&B); + if (Phi) + ActualAccesses.push_back(Phi); + for (Instruction &I : B) { + MemoryAccess *MA = getMemoryAccess(&I); + assert((!MA || AL) && "We have memory affecting instructions " + "in this block but they are not in the " + "access list"); + if (MA) + ActualAccesses.push_back(MA); + } + // Either we hit the assert, really have no accesses, or we have both + // accesses and an access list + if (!AL) + continue; + assert(AL->size() == ActualAccesses.size() && + "We don't have the same number of accesses in the block as on the " + "access list"); + auto ALI = AL->begin(); + auto AAI = ActualAccesses.begin(); + while (ALI != AL->end() && AAI != ActualAccesses.end()) { + assert(&*ALI == *AAI && "Not the same accesses in the same order"); + ++ALI; + ++AAI; + } + ActualAccesses.clear(); + } +} + +/// \brief Verify the domination properties of MemorySSA by checking that each +/// definition dominates all of its uses. +void MemorySSA::verifyDomination(Function &F) const { + for (BasicBlock &B : F) { + // Phi nodes are attached to basic blocks + if (MemoryPhi *MP = getMemoryAccess(&B)) { + for (User *U : MP->users()) { + BasicBlock *UseBlock; + // Phi operands are used on edges, we simulate the right domination by + // acting as if the use occurred at the end of the predecessor block. + if (MemoryPhi *P = dyn_cast<MemoryPhi>(U)) { + for (const auto &Arg : P->operands()) { + if (Arg == MP) { + UseBlock = P->getIncomingBlock(Arg); + break; + } + } + } else { + UseBlock = cast<MemoryAccess>(U)->getBlock(); + } + (void)UseBlock; + assert(DT->dominates(MP->getBlock(), UseBlock) && + "Memory PHI does not dominate it's uses"); + } + } + + for (Instruction &I : B) { + MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); + if (!MD) + continue; + + for (User *U : MD->users()) { + BasicBlock *UseBlock; + (void)UseBlock; + // Things are allowed to flow to phi nodes over their predecessor edge. + if (auto *P = dyn_cast<MemoryPhi>(U)) { + for (const auto &Arg : P->operands()) { + if (Arg == MD) { + UseBlock = P->getIncomingBlock(Arg); + break; + } + } + } else { + UseBlock = cast<MemoryAccess>(U)->getBlock(); + } + assert(DT->dominates(MD->getBlock(), UseBlock) && + "Memory Def does not dominate it's uses"); + } + } + } +} + +/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use +/// appears in the use list of \p Def. +/// +/// llvm_unreachable is used instead of asserts because this may be called in +/// a build without asserts. In that case, we don't want this to turn into a +/// nop. +void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { + // The live on entry use may cause us to get a NULL def here + if (!Def) { + if (!isLiveOnEntryDef(Use)) + llvm_unreachable("Null def but use not point to live on entry def"); + } else if (std::find(Def->user_begin(), Def->user_end(), Use) == + Def->user_end()) { + llvm_unreachable("Did not find use in def's use list"); + } +} + +/// \brief Verify the immediate use information, by walking all the memory +/// accesses and verifying that, for each use, it appears in the +/// appropriate def's use list +void MemorySSA::verifyDefUses(Function &F) const { + for (BasicBlock &B : F) { + // Phi nodes are attached to basic blocks + if (MemoryPhi *Phi = getMemoryAccess(&B)) { + assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( + pred_begin(&B), pred_end(&B))) && + "Incomplete MemoryPhi Node"); + for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) + verifyUseInDefs(Phi->getIncomingValue(I), Phi); + } + + for (Instruction &I : B) { + if (MemoryAccess *MA = getMemoryAccess(&I)) { + assert(isa<MemoryUseOrDef>(MA) && + "Found a phi node not attached to a bb"); + verifyUseInDefs(cast<MemoryUseOrDef>(MA)->getDefiningAccess(), MA); + } + } + } +} + +MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const { + return ValueToMemoryAccess.lookup(I); +} + +MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { + return cast_or_null<MemoryPhi>(getMemoryAccess((const Value *)BB)); +} + +/// \brief Determine, for two memory accesses in the same block, +/// whether \p Dominator dominates \p Dominatee. +/// \returns True if \p Dominator dominates \p Dominatee. +bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, + const MemoryAccess *Dominatee) const { + + assert((Dominator->getBlock() == Dominatee->getBlock()) && + "Asking for local domination when accesses are in different blocks!"); + + // A node dominates itself. + if (Dominatee == Dominator) + return true; + + // When Dominatee is defined on function entry, it is not dominated by another + // memory access. + if (isLiveOnEntryDef(Dominatee)) + return false; + + // When Dominator is defined on function entry, it dominates the other memory + // access. + if (isLiveOnEntryDef(Dominator)) + return true; + + // Get the access list for the block + const AccessList *AccessList = getBlockAccesses(Dominator->getBlock()); + AccessList::const_reverse_iterator It(Dominator->getIterator()); + + // If we hit the beginning of the access list before we hit dominatee, we must + // dominate it + return std::none_of(It, AccessList->rend(), + [&](const MemoryAccess &MA) { return &MA == Dominatee; }); +} + +const static char LiveOnEntryStr[] = "liveOnEntry"; + +void MemoryDef::print(raw_ostream &OS) const { + MemoryAccess *UO = getDefiningAccess(); + + OS << getID() << " = MemoryDef("; + if (UO && UO->getID()) + OS << UO->getID(); + else + OS << LiveOnEntryStr; + OS << ')'; +} + +void MemoryPhi::print(raw_ostream &OS) const { + bool First = true; + OS << getID() << " = MemoryPhi("; + for (const auto &Op : operands()) { + BasicBlock *BB = getIncomingBlock(Op); + MemoryAccess *MA = cast<MemoryAccess>(Op); + if (!First) + OS << ','; + else + First = false; + + OS << '{'; + if (BB->hasName()) + OS << BB->getName(); + else + BB->printAsOperand(OS, false); + OS << ','; + if (unsigned ID = MA->getID()) + OS << ID; + else + OS << LiveOnEntryStr; + OS << '}'; + } + OS << ')'; +} + +MemoryAccess::~MemoryAccess() {} + +void MemoryUse::print(raw_ostream &OS) const { + MemoryAccess *UO = getDefiningAccess(); + OS << "MemoryUse("; + if (UO && UO->getID()) + OS << UO->getID(); + else + OS << LiveOnEntryStr; + OS << ')'; +} + +void MemoryAccess::dump() const { + print(dbgs()); + dbgs() << "\n"; +} + +char MemorySSAPrinterLegacyPass::ID = 0; + +MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { + initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); +} + +void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<MemorySSAWrapperPass>(); + AU.addPreserved<MemorySSAWrapperPass>(); +} + +bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { + auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); + MSSA.print(dbgs()); + if (VerifyMemorySSA) + MSSA.verifyMemorySSA(); + return false; +} + +char MemorySSAAnalysis::PassID; + +MemorySSA MemorySSAAnalysis::run(Function &F, AnalysisManager<Function> &AM) { + auto &DT = AM.getResult<DominatorTreeAnalysis>(F); + auto &AA = AM.getResult<AAManager>(F); + return MemorySSA(F, &AA, &DT); +} + +PreservedAnalyses MemorySSAPrinterPass::run(Function &F, + FunctionAnalysisManager &AM) { + OS << "MemorySSA for function: " << F.getName() << "\n"; + AM.getResult<MemorySSAAnalysis>(F).print(OS); + + return PreservedAnalyses::all(); +} + +PreservedAnalyses MemorySSAVerifierPass::run(Function &F, + FunctionAnalysisManager &AM) { + AM.getResult<MemorySSAAnalysis>(F).verifyMemorySSA(); + + return PreservedAnalyses::all(); +} + +char MemorySSAWrapperPass::ID = 0; + +MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { + initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } + +void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredTransitive<DominatorTreeWrapperPass>(); + AU.addRequiredTransitive<AAResultsWrapperPass>(); +} + +bool MemorySSAWrapperPass::runOnFunction(Function &F) { + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); + MSSA.reset(new MemorySSA(F, &AA, &DT)); + return false; +} + +void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } + +void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { + MSSA->print(OS); +} + +MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} + +MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, + DominatorTree *D) + : MemorySSAWalker(M), AA(A), DT(D) {} + +MemorySSA::CachingWalker::~CachingWalker() {} + +struct MemorySSA::CachingWalker::UpwardsMemoryQuery { + // True if we saw a phi whose predecessor was a backedge + bool SawBackedgePhi; + // True if our original query started off as a call + bool IsCall; + // The pointer location we started the query with. This will be empty if + // IsCall is true. + MemoryLocation StartingLoc; + // This is the instruction we were querying about. + const Instruction *Inst; + // Set of visited Instructions for this query. + DenseSet<MemoryAccessPair> Visited; + // Vector of visited call accesses for this query. This is separated out + // because you can always cache and lookup the result of call queries (IE when + // IsCall == true) for every call in the chain. The calls have no AA location + // associated with them with them, and thus, no context dependence. + SmallVector<const MemoryAccess *, 32> VisitedCalls; + // The MemoryAccess we actually got called with, used to test local domination + const MemoryAccess *OriginalAccess; + + UpwardsMemoryQuery() + : SawBackedgePhi(false), IsCall(false), Inst(nullptr), + OriginalAccess(nullptr) {} + + UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) + : SawBackedgePhi(false), IsCall(ImmutableCallSite(Inst)), Inst(Inst), + OriginalAccess(Access) {} +}; + +void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { + + // TODO: We can do much better cache invalidation with differently stored + // caches. For now, for MemoryUses, we simply remove them + // from the cache, and kill the entire call/non-call cache for everything + // else. The problem is for phis or defs, currently we'd need to follow use + // chains down and invalidate anything below us in the chain that currently + // terminates at this access. + + // See if this is a MemoryUse, if so, just remove the cached info. MemoryUse + // is by definition never a barrier, so nothing in the cache could point to + // this use. In that case, we only need invalidate the info for the use + // itself. + + if (MemoryUse *MU = dyn_cast<MemoryUse>(MA)) { + UpwardsMemoryQuery Q; + Instruction *I = MU->getMemoryInst(); + Q.IsCall = bool(ImmutableCallSite(I)); + Q.Inst = I; + if (!Q.IsCall) + Q.StartingLoc = MemoryLocation::get(I); + doCacheRemove(MA, Q, Q.StartingLoc); + } else { + // If it is not a use, the best we can do right now is destroy the cache. + CachedUpwardsClobberingCall.clear(); + CachedUpwardsClobberingAccess.clear(); + } + +#ifdef EXPENSIVE_CHECKS + // Run this only when expensive checks are enabled. + verifyRemoved(MA); +#endif +} + +void MemorySSA::CachingWalker::doCacheRemove(const MemoryAccess *M, + const UpwardsMemoryQuery &Q, + const MemoryLocation &Loc) { + if (Q.IsCall) + CachedUpwardsClobberingCall.erase(M); + else + CachedUpwardsClobberingAccess.erase({M, Loc}); +} + +void MemorySSA::CachingWalker::doCacheInsert(const MemoryAccess *M, + MemoryAccess *Result, + const UpwardsMemoryQuery &Q, + const MemoryLocation &Loc) { + // This is fine for Phis, since there are times where we can't optimize them. + // Making a def its own clobber is never correct, though. + assert((Result != M || isa<MemoryPhi>(M)) && + "Something can't clobber itself!"); + ++NumClobberCacheInserts; + if (Q.IsCall) + CachedUpwardsClobberingCall[M] = Result; + else + CachedUpwardsClobberingAccess[{M, Loc}] = Result; +} + +MemoryAccess * +MemorySSA::CachingWalker::doCacheLookup(const MemoryAccess *M, + const UpwardsMemoryQuery &Q, + const MemoryLocation &Loc) { + ++NumClobberCacheLookups; + MemoryAccess *Result; + + if (Q.IsCall) + Result = CachedUpwardsClobberingCall.lookup(M); + else + Result = CachedUpwardsClobberingAccess.lookup({M, Loc}); + + if (Result) + ++NumClobberCacheHits; + return Result; +} + +bool MemorySSA::CachingWalker::instructionClobbersQuery( + const MemoryDef *MD, UpwardsMemoryQuery &Q, + const MemoryLocation &Loc) const { + Instruction *DefMemoryInst = MD->getMemoryInst(); + assert(DefMemoryInst && "Defining instruction not actually an instruction"); + + if (!Q.IsCall) + return AA->getModRefInfo(DefMemoryInst, Loc) & MRI_Mod; + + // If this is a call, mark it for caching + if (ImmutableCallSite(DefMemoryInst)) + Q.VisitedCalls.push_back(MD); + ModRefInfo I = AA->getModRefInfo(DefMemoryInst, ImmutableCallSite(Q.Inst)); + return I != MRI_NoModRef; +} + +MemoryAccessPair MemorySSA::CachingWalker::UpwardsDFSWalk( + MemoryAccess *StartingAccess, const MemoryLocation &Loc, + UpwardsMemoryQuery &Q, bool FollowingBackedge) { + MemoryAccess *ModifyingAccess = nullptr; + + auto DFI = df_begin(StartingAccess); + for (auto DFE = df_end(StartingAccess); DFI != DFE;) { + MemoryAccess *CurrAccess = *DFI; + if (MSSA->isLiveOnEntryDef(CurrAccess)) + return {CurrAccess, Loc}; + // If this is a MemoryDef, check whether it clobbers our current query. This + // needs to be done before consulting the cache, because the cache reports + // the clobber for CurrAccess. If CurrAccess is a clobber for this query, + // and we ask the cache for information first, then we might skip this + // clobber, which is bad. + if (auto *MD = dyn_cast<MemoryDef>(CurrAccess)) { + // If we hit the top, stop following this path. + // While we can do lookups, we can't sanely do inserts here unless we were + // to track everything we saw along the way, since we don't know where we + // will stop. + if (instructionClobbersQuery(MD, Q, Loc)) { + ModifyingAccess = CurrAccess; + break; + } + } + if (auto CacheResult = doCacheLookup(CurrAccess, Q, Loc)) + return {CacheResult, Loc}; + + // We need to know whether it is a phi so we can track backedges. + // Otherwise, walk all upward defs. + if (!isa<MemoryPhi>(CurrAccess)) { + ++DFI; + continue; + } + +#ifndef NDEBUG + // The loop below visits the phi's children for us. Because phis are the + // only things with multiple edges, skipping the children should always lead + // us to the end of the loop. + // + // Use a copy of DFI because skipChildren would kill our search stack, which + // would make caching anything on the way back impossible. + auto DFICopy = DFI; + assert(DFICopy.skipChildren() == DFE && + "Skipping phi's children doesn't end the DFS?"); +#endif + + const MemoryAccessPair PHIPair(CurrAccess, Loc); + + // Don't try to optimize this phi again if we've already tried to do so. + if (!Q.Visited.insert(PHIPair).second) { + ModifyingAccess = CurrAccess; + break; + } + + std::size_t InitialVisitedCallSize = Q.VisitedCalls.size(); + + // Recurse on PHI nodes, since we need to change locations. + // TODO: Allow graphtraits on pairs, which would turn this whole function + // into a normal single depth first walk. + MemoryAccess *FirstDef = nullptr; + for (auto MPI = upward_defs_begin(PHIPair), MPE = upward_defs_end(); + MPI != MPE; ++MPI) { + bool Backedge = + !FollowingBackedge && + DT->dominates(CurrAccess->getBlock(), MPI.getPhiArgBlock()); + + MemoryAccessPair CurrentPair = + UpwardsDFSWalk(MPI->first, MPI->second, Q, Backedge); + // All the phi arguments should reach the same point if we can bypass + // this phi. The alternative is that they hit this phi node, which + // means we can skip this argument. + if (FirstDef && CurrentPair.first != PHIPair.first && + CurrentPair.first != FirstDef) { + ModifyingAccess = CurrAccess; + break; + } + + if (!FirstDef) + FirstDef = CurrentPair.first; + } + + // If we exited the loop early, go with the result it gave us. + if (!ModifyingAccess) { + assert(FirstDef && "Found a Phi with no upward defs?"); + ModifyingAccess = FirstDef; + } else { + // If we can't optimize this Phi, then we can't safely cache any of the + // calls we visited when trying to optimize it. Wipe them out now. + Q.VisitedCalls.resize(InitialVisitedCallSize); + } + break; + } + + if (!ModifyingAccess) + return {MSSA->getLiveOnEntryDef(), Q.StartingLoc}; + + const BasicBlock *OriginalBlock = StartingAccess->getBlock(); + assert(DFI.getPathLength() > 0 && "We dropped our path?"); + unsigned N = DFI.getPathLength(); + // If we found a clobbering def, the last element in the path will be our + // clobber, so we don't want to cache that to itself. OTOH, if we optimized a + // phi, we can add the last thing in the path to the cache, since that won't + // be the result. + if (DFI.getPath(N - 1) == ModifyingAccess) + --N; + for (; N > 1; --N) { + MemoryAccess *CacheAccess = DFI.getPath(N - 1); + BasicBlock *CurrBlock = CacheAccess->getBlock(); + if (!FollowingBackedge) + doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc); + if (DT->dominates(CurrBlock, OriginalBlock) && + (CurrBlock != OriginalBlock || !FollowingBackedge || + MSSA->locallyDominates(CacheAccess, StartingAccess))) + break; + } + + // Cache everything else on the way back. The caller should cache + // StartingAccess for us. + for (; N > 1; --N) { + MemoryAccess *CacheAccess = DFI.getPath(N - 1); + doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc); + } + + return {ModifyingAccess, Loc}; +} + +/// \brief Walk the use-def chains starting at \p MA and find +/// the MemoryAccess that actually clobbers Loc. +/// +/// \returns our clobbering memory access +MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( + MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { + return UpwardsDFSWalk(StartingAccess, Q.StartingLoc, Q, false).first; +} + +MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( + MemoryAccess *StartingAccess, MemoryLocation &Loc) { + if (isa<MemoryPhi>(StartingAccess)) + return StartingAccess; + + auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); + if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) + return StartingUseOrDef; + + Instruction *I = StartingUseOrDef->getMemoryInst(); + + // Conservatively, fences are always clobbers, so don't perform the walk if we + // hit a fence. + if (!ImmutableCallSite(I) && I->isFenceLike()) + return StartingUseOrDef; + + UpwardsMemoryQuery Q; + Q.OriginalAccess = StartingUseOrDef; + Q.StartingLoc = Loc; + Q.Inst = StartingUseOrDef->getMemoryInst(); + Q.IsCall = false; + + if (auto CacheResult = doCacheLookup(StartingUseOrDef, Q, Q.StartingLoc)) + return CacheResult; + + // Unlike the other function, do not walk to the def of a def, because we are + // handed something we already believe is the clobbering access. + MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) + ? StartingUseOrDef->getDefiningAccess() + : StartingUseOrDef; + + MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); + // Only cache this if it wouldn't make Clobber point to itself. + if (Clobber != StartingAccess) + doCacheInsert(Q.OriginalAccess, Clobber, Q, Q.StartingLoc); + DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *StartingUseOrDef << "\n"); + DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *Clobber << "\n"); + return Clobber; +} + +MemoryAccess * +MemorySSA::CachingWalker::getClobberingMemoryAccess(const Instruction *I) { + // There should be no way to lookup an instruction and get a phi as the + // access, since we only map BB's to PHI's. So, this must be a use or def. + auto *StartingAccess = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(I)); + + bool IsCall = bool(ImmutableCallSite(I)); + + // We can't sanely do anything with a fences, they conservatively + // clobber all memory, and have no locations to get pointers from to + // try to disambiguate. + if (!IsCall && I->isFenceLike()) + return StartingAccess; + + UpwardsMemoryQuery Q; + Q.OriginalAccess = StartingAccess; + Q.IsCall = IsCall; + if (!Q.IsCall) + Q.StartingLoc = MemoryLocation::get(I); + Q.Inst = I; + if (auto CacheResult = doCacheLookup(StartingAccess, Q, Q.StartingLoc)) + return CacheResult; + + // Start with the thing we already think clobbers this location + MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); + + // At this point, DefiningAccess may be the live on entry def. + // If it is, we will not get a better result. + if (MSSA->isLiveOnEntryDef(DefiningAccess)) + return DefiningAccess; + + MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); + // DFS won't cache a result for DefiningAccess. So, if DefiningAccess isn't + // our clobber, be sure that it gets a cache entry, too. + if (Result != DefiningAccess) + doCacheInsert(DefiningAccess, Result, Q, Q.StartingLoc); + doCacheInsert(Q.OriginalAccess, Result, Q, Q.StartingLoc); + // TODO: When this implementation is more mature, we may want to figure out + // what this additional caching buys us. It's most likely A Good Thing. + if (Q.IsCall) + for (const MemoryAccess *MA : Q.VisitedCalls) + if (MA != Result) + doCacheInsert(MA, Result, Q, Q.StartingLoc); + + DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *DefiningAccess << "\n"); + DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *Result << "\n"); + + return Result; +} + +// Verify that MA doesn't exist in any of the caches. +void MemorySSA::CachingWalker::verifyRemoved(MemoryAccess *MA) { +#ifndef NDEBUG + for (auto &P : CachedUpwardsClobberingAccess) + assert(P.first.first != MA && P.second != MA && + "Found removed MemoryAccess in cache."); + for (auto &P : CachedUpwardsClobberingCall) + assert(P.first != MA && P.second != MA && + "Found removed MemoryAccess in cache."); +#endif // !NDEBUG +} + +MemoryAccess * +DoNothingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) { + MemoryAccess *MA = MSSA->getMemoryAccess(I); + if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) + return Use->getDefiningAccess(); + return MA; +} + +MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( + MemoryAccess *StartingAccess, MemoryLocation &) { + if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) + return Use->getDefiningAccess(); + return StartingAccess; +} +} |
