diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Vectorize/BBVectorize.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Vectorize/BBVectorize.cpp | 3251 |
1 files changed, 3251 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Transforms/Vectorize/BBVectorize.cpp b/gnu/llvm/lib/Transforms/Vectorize/BBVectorize.cpp new file mode 100644 index 00000000000..8844d574a79 --- /dev/null +++ b/gnu/llvm/lib/Transforms/Vectorize/BBVectorize.cpp @@ -0,0 +1,3251 @@ +//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a basic-block vectorization pass. The algorithm was +// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral, +// et al. It works by looking for chains of pairable operations and then +// pairing them. +// +//===----------------------------------------------------------------------===// + +#define BBV_NAME "bb-vectorize" +#include "llvm/Transforms/Vectorize.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/Local.h" +#include <algorithm> +using namespace llvm; + +#define DEBUG_TYPE BBV_NAME + +static cl::opt<bool> +IgnoreTargetInfo("bb-vectorize-ignore-target-info", cl::init(false), + cl::Hidden, cl::desc("Ignore target information")); + +static cl::opt<unsigned> +ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden, + cl::desc("The required chain depth for vectorization")); + +static cl::opt<bool> +UseChainDepthWithTI("bb-vectorize-use-chain-depth", cl::init(false), + cl::Hidden, cl::desc("Use the chain depth requirement with" + " target information")); + +static cl::opt<unsigned> +SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden, + cl::desc("The maximum search distance for instruction pairs")); + +static cl::opt<bool> +SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden, + cl::desc("Replicating one element to a pair breaks the chain")); + +static cl::opt<unsigned> +VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden, + cl::desc("The size of the native vector registers")); + +static cl::opt<unsigned> +MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden, + cl::desc("The maximum number of pairing iterations")); + +static cl::opt<bool> +Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden, + cl::desc("Don't try to form non-2^n-length vectors")); + +static cl::opt<unsigned> +MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden, + cl::desc("The maximum number of pairable instructions per group")); + +static cl::opt<unsigned> +MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden, + cl::desc("The maximum number of candidate instruction pairs per group")); + +static cl::opt<unsigned> +MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200), + cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use" + " a full cycle check")); + +static cl::opt<bool> +NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize boolean (i1) values")); + +static cl::opt<bool> +NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize integer values")); + +static cl::opt<bool> +NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize floating-point values")); + +// FIXME: This should default to false once pointer vector support works. +static cl::opt<bool> +NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden, + cl::desc("Don't try to vectorize pointer values")); + +static cl::opt<bool> +NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize casting (conversion) operations")); + +static cl::opt<bool> +NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize floating-point math intrinsics")); + +static cl::opt<bool> + NoBitManipulation("bb-vectorize-no-bitmanip", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize BitManipulation intrinsics")); + +static cl::opt<bool> +NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize the fused-multiply-add intrinsic")); + +static cl::opt<bool> +NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize select instructions")); + +static cl::opt<bool> +NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize comparison instructions")); + +static cl::opt<bool> +NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize getelementptr instructions")); + +static cl::opt<bool> +NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden, + cl::desc("Don't try to vectorize loads and stores")); + +static cl::opt<bool> +AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden, + cl::desc("Only generate aligned loads and stores")); + +static cl::opt<bool> +NoMemOpBoost("bb-vectorize-no-mem-op-boost", + cl::init(false), cl::Hidden, + cl::desc("Don't boost the chain-depth contribution of loads and stores")); + +static cl::opt<bool> +FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden, + cl::desc("Use a fast instruction dependency analysis")); + +#ifndef NDEBUG +static cl::opt<bool> +DebugInstructionExamination("bb-vectorize-debug-instruction-examination", + cl::init(false), cl::Hidden, + cl::desc("When debugging is enabled, output information on the" + " instruction-examination process")); +static cl::opt<bool> +DebugCandidateSelection("bb-vectorize-debug-candidate-selection", + cl::init(false), cl::Hidden, + cl::desc("When debugging is enabled, output information on the" + " candidate-selection process")); +static cl::opt<bool> +DebugPairSelection("bb-vectorize-debug-pair-selection", + cl::init(false), cl::Hidden, + cl::desc("When debugging is enabled, output information on the" + " pair-selection process")); +static cl::opt<bool> +DebugCycleCheck("bb-vectorize-debug-cycle-check", + cl::init(false), cl::Hidden, + cl::desc("When debugging is enabled, output information on the" + " cycle-checking process")); + +static cl::opt<bool> +PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair", + cl::init(false), cl::Hidden, + cl::desc("When debugging is enabled, dump the basic block after" + " every pair is fused")); +#endif + +STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize"); + +namespace { + struct BBVectorize : public BasicBlockPass { + static char ID; // Pass identification, replacement for typeid + + const VectorizeConfig Config; + + BBVectorize(const VectorizeConfig &C = VectorizeConfig()) + : BasicBlockPass(ID), Config(C) { + initializeBBVectorizePass(*PassRegistry::getPassRegistry()); + } + + BBVectorize(Pass *P, Function &F, const VectorizeConfig &C) + : BasicBlockPass(ID), Config(C) { + AA = &P->getAnalysis<AAResultsWrapperPass>().getAAResults(); + DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + SE = &P->getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + TLI = &P->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + TTI = IgnoreTargetInfo + ? nullptr + : &P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + } + + typedef std::pair<Value *, Value *> ValuePair; + typedef std::pair<ValuePair, int> ValuePairWithCost; + typedef std::pair<ValuePair, size_t> ValuePairWithDepth; + typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair + typedef std::pair<VPPair, unsigned> VPPairWithType; + + AliasAnalysis *AA; + DominatorTree *DT; + ScalarEvolution *SE; + const TargetLibraryInfo *TLI; + const TargetTransformInfo *TTI; + + // FIXME: const correct? + + bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false); + + bool getCandidatePairs(BasicBlock &BB, + BasicBlock::iterator &Start, + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<ValuePair, int> &CandidatePairCostSavings, + std::vector<Value *> &PairableInsts, bool NonPow2Len); + + // FIXME: The current implementation does not account for pairs that + // are connected in multiple ways. For example: + // C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap) + enum PairConnectionType { + PairConnectionDirect, + PairConnectionSwap, + PairConnectionSplat + }; + + void computeConnectedPairs( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + std::vector<Value *> &PairableInsts, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes); + + void buildDepMap(BasicBlock &BB, + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &PairableInstUsers); + + void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + DenseMap<ValuePair, int> &CandidatePairCostSavings, + std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<Value *, Value *>& ChosenPairs); + + void fuseChosenPairs(BasicBlock &BB, + std::vector<Value *> &PairableInsts, + DenseMap<Value *, Value *>& ChosenPairs, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps); + + + bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore); + + bool areInstsCompatible(Instruction *I, Instruction *J, + bool IsSimpleLoadStore, bool NonPow2Len, + int &CostSavings, int &FixedOrder); + + bool trackUsesOfI(DenseSet<Value *> &Users, + AliasSetTracker &WriteSet, Instruction *I, + Instruction *J, bool UpdateUsers = true, + DenseSet<ValuePair> *LoadMoveSetPairs = nullptr); + + void computePairsConnectedTo( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + std::vector<Value *> &PairableInsts, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + ValuePair P); + + bool pairsConflict(ValuePair P, ValuePair Q, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<ValuePair, std::vector<ValuePair> > + *PairableInstUserMap = nullptr, + DenseSet<VPPair> *PairableInstUserPairSet = nullptr); + + bool pairWillFormCycle(ValuePair P, + DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers, + DenseSet<ValuePair> &CurrentPairs); + + void pruneDAGFor( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + std::vector<Value *> &PairableInsts, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, + DenseSet<VPPair> &PairableInstUserPairSet, + DenseMap<Value *, Value *> &ChosenPairs, + DenseMap<ValuePair, size_t> &DAG, + DenseSet<ValuePair> &PrunedDAG, ValuePair J, + bool UseCycleCheck); + + void buildInitialDAGFor( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + std::vector<Value *> &PairableInsts, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<Value *, Value *> &ChosenPairs, + DenseMap<ValuePair, size_t> &DAG, ValuePair J); + + void findBestDAGFor( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + DenseMap<ValuePair, int> &CandidatePairCostSavings, + std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, + DenseSet<VPPair> &PairableInstUserPairSet, + DenseMap<Value *, Value *> &ChosenPairs, + DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth, + int &BestEffSize, Value *II, std::vector<Value *>&JJ, + bool UseCycleCheck); + + Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I, + Instruction *J, unsigned o); + + void fillNewShuffleMask(LLVMContext& Context, Instruction *J, + unsigned MaskOffset, unsigned NumInElem, + unsigned NumInElem1, unsigned IdxOffset, + std::vector<Constant*> &Mask); + + Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I, + Instruction *J); + + bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J, + unsigned o, Value *&LOp, unsigned numElemL, + Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ, + unsigned IdxOff = 0); + + Value *getReplacementInput(LLVMContext& Context, Instruction *I, + Instruction *J, unsigned o, bool IBeforeJ); + + void getReplacementInputsForPair(LLVMContext& Context, Instruction *I, + Instruction *J, SmallVectorImpl<Value *> &ReplacedOperands, + bool IBeforeJ); + + void replaceOutputsOfPair(LLVMContext& Context, Instruction *I, + Instruction *J, Instruction *K, + Instruction *&InsertionPt, Instruction *&K1, + Instruction *&K2); + + void collectPairLoadMoveSet(BasicBlock &BB, + DenseMap<Value *, Value *> &ChosenPairs, + DenseMap<Value *, std::vector<Value *> > &LoadMoveSet, + DenseSet<ValuePair> &LoadMoveSetPairs, + Instruction *I); + + void collectLoadMoveSet(BasicBlock &BB, + std::vector<Value *> &PairableInsts, + DenseMap<Value *, Value *> &ChosenPairs, + DenseMap<Value *, std::vector<Value *> > &LoadMoveSet, + DenseSet<ValuePair> &LoadMoveSetPairs); + + bool canMoveUsesOfIAfterJ(BasicBlock &BB, + DenseSet<ValuePair> &LoadMoveSetPairs, + Instruction *I, Instruction *J); + + void moveUsesOfIAfterJ(BasicBlock &BB, + DenseSet<ValuePair> &LoadMoveSetPairs, + Instruction *&InsertionPt, + Instruction *I, Instruction *J); + + bool vectorizeBB(BasicBlock &BB) { + if (skipOptnoneFunction(BB)) + return false; + if (!DT->isReachableFromEntry(&BB)) { + DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() << + " in " << BB.getParent()->getName() << "\n"); + return false; + } + + DEBUG(if (TTI) dbgs() << "BBV: using target information\n"); + + bool changed = false; + // Iterate a sufficient number of times to merge types of size 1 bit, + // then 2 bits, then 4, etc. up to half of the target vector width of the + // target vector register. + unsigned n = 1; + for (unsigned v = 2; + (TTI || v <= Config.VectorBits) && + (!Config.MaxIter || n <= Config.MaxIter); + v *= 2, ++n) { + DEBUG(dbgs() << "BBV: fusing loop #" << n << + " for " << BB.getName() << " in " << + BB.getParent()->getName() << "...\n"); + if (vectorizePairs(BB)) + changed = true; + else + break; + } + + if (changed && !Pow2LenOnly) { + ++n; + for (; !Config.MaxIter || n <= Config.MaxIter; ++n) { + DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " << + n << " for " << BB.getName() << " in " << + BB.getParent()->getName() << "...\n"); + if (!vectorizePairs(BB, true)) break; + } + } + + DEBUG(dbgs() << "BBV: done!\n"); + return changed; + } + + bool runOnBasicBlock(BasicBlock &BB) override { + // OptimizeNone check deferred to vectorizeBB(). + + AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + TTI = IgnoreTargetInfo + ? nullptr + : &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( + *BB.getParent()); + + return vectorizeBB(BB); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + BasicBlockPass::getAnalysisUsage(AU); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.addPreserved<ScalarEvolutionWrapperPass>(); + AU.addPreserved<SCEVAAWrapperPass>(); + AU.setPreservesCFG(); + } + + static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) { + assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() && + "Cannot form vector from incompatible scalar types"); + Type *STy = ElemTy->getScalarType(); + + unsigned numElem; + if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) { + numElem = VTy->getNumElements(); + } else { + numElem = 1; + } + + if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) { + numElem += VTy->getNumElements(); + } else { + numElem += 1; + } + + return VectorType::get(STy, numElem); + } + + static inline void getInstructionTypes(Instruction *I, + Type *&T1, Type *&T2) { + if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + // For stores, it is the value type, not the pointer type that matters + // because the value is what will come from a vector register. + + Value *IVal = SI->getValueOperand(); + T1 = IVal->getType(); + } else { + T1 = I->getType(); + } + + if (CastInst *CI = dyn_cast<CastInst>(I)) + T2 = CI->getSrcTy(); + else + T2 = T1; + + if (SelectInst *SI = dyn_cast<SelectInst>(I)) { + T2 = SI->getCondition()->getType(); + } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { + T2 = SI->getOperand(0)->getType(); + } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) { + T2 = CI->getOperand(0)->getType(); + } + } + + // Returns the weight associated with the provided value. A chain of + // candidate pairs has a length given by the sum of the weights of its + // members (one weight per pair; the weight of each member of the pair + // is assumed to be the same). This length is then compared to the + // chain-length threshold to determine if a given chain is significant + // enough to be vectorized. The length is also used in comparing + // candidate chains where longer chains are considered to be better. + // Note: when this function returns 0, the resulting instructions are + // not actually fused. + inline size_t getDepthFactor(Value *V) { + // InsertElement and ExtractElement have a depth factor of zero. This is + // for two reasons: First, they cannot be usefully fused. Second, because + // the pass generates a lot of these, they can confuse the simple metric + // used to compare the dags in the next iteration. Thus, giving them a + // weight of zero allows the pass to essentially ignore them in + // subsequent iterations when looking for vectorization opportunities + // while still tracking dependency chains that flow through those + // instructions. + if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V)) + return 0; + + // Give a load or store half of the required depth so that load/store + // pairs will vectorize. + if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V))) + return Config.ReqChainDepth/2; + + return 1; + } + + // Returns the cost of the provided instruction using TTI. + // This does not handle loads and stores. + unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2, + TargetTransformInfo::OperandValueKind Op1VK = + TargetTransformInfo::OK_AnyValue, + TargetTransformInfo::OperandValueKind Op2VK = + TargetTransformInfo::OK_AnyValue) { + switch (Opcode) { + default: break; + case Instruction::GetElementPtr: + // We mark this instruction as zero-cost because scalar GEPs are usually + // lowered to the instruction addressing mode. At the moment we don't + // generate vector GEPs. + return 0; + case Instruction::Br: + return TTI->getCFInstrCost(Opcode); + case Instruction::PHI: + return 0; + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + return TTI->getArithmeticInstrCost(Opcode, T1, Op1VK, Op2VK); + case Instruction::Select: + case Instruction::ICmp: + case Instruction::FCmp: + return TTI->getCmpSelInstrCost(Opcode, T1, T2); + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: + case Instruction::ShuffleVector: + return TTI->getCastInstrCost(Opcode, T1, T2); + } + + return 1; + } + + // This determines the relative offset of two loads or stores, returning + // true if the offset could be determined to be some constant value. + // For example, if OffsetInElmts == 1, then J accesses the memory directly + // after I; if OffsetInElmts == -1 then I accesses the memory + // directly after J. + bool getPairPtrInfo(Instruction *I, Instruction *J, + Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment, + unsigned &IAddressSpace, unsigned &JAddressSpace, + int64_t &OffsetInElmts, bool ComputeOffset = true) { + OffsetInElmts = 0; + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + LoadInst *LJ = cast<LoadInst>(J); + IPtr = LI->getPointerOperand(); + JPtr = LJ->getPointerOperand(); + IAlignment = LI->getAlignment(); + JAlignment = LJ->getAlignment(); + IAddressSpace = LI->getPointerAddressSpace(); + JAddressSpace = LJ->getPointerAddressSpace(); + } else { + StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J); + IPtr = SI->getPointerOperand(); + JPtr = SJ->getPointerOperand(); + IAlignment = SI->getAlignment(); + JAlignment = SJ->getAlignment(); + IAddressSpace = SI->getPointerAddressSpace(); + JAddressSpace = SJ->getPointerAddressSpace(); + } + + if (!ComputeOffset) + return true; + + const SCEV *IPtrSCEV = SE->getSCEV(IPtr); + const SCEV *JPtrSCEV = SE->getSCEV(JPtr); + + // If this is a trivial offset, then we'll get something like + // 1*sizeof(type). With target data, which we need anyway, this will get + // constant folded into a number. + const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV); + if (const SCEVConstant *ConstOffSCEV = + dyn_cast<SCEVConstant>(OffsetSCEV)) { + ConstantInt *IntOff = ConstOffSCEV->getValue(); + int64_t Offset = IntOff->getSExtValue(); + const DataLayout &DL = I->getModule()->getDataLayout(); + Type *VTy = IPtr->getType()->getPointerElementType(); + int64_t VTyTSS = (int64_t)DL.getTypeStoreSize(VTy); + + Type *VTy2 = JPtr->getType()->getPointerElementType(); + if (VTy != VTy2 && Offset < 0) { + int64_t VTy2TSS = (int64_t)DL.getTypeStoreSize(VTy2); + OffsetInElmts = Offset/VTy2TSS; + return (std::abs(Offset) % VTy2TSS) == 0; + } + + OffsetInElmts = Offset/VTyTSS; + return (std::abs(Offset) % VTyTSS) == 0; + } + + return false; + } + + // Returns true if the provided CallInst represents an intrinsic that can + // be vectorized. + bool isVectorizableIntrinsic(CallInst* I) { + Function *F = I->getCalledFunction(); + if (!F) return false; + + Intrinsic::ID IID = F->getIntrinsicID(); + if (!IID) return false; + + switch(IID) { + default: + return false; + case Intrinsic::sqrt: + case Intrinsic::powi: + case Intrinsic::sin: + case Intrinsic::cos: + case Intrinsic::log: + case Intrinsic::log2: + case Intrinsic::log10: + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::pow: + case Intrinsic::round: + case Intrinsic::copysign: + case Intrinsic::ceil: + case Intrinsic::nearbyint: + case Intrinsic::rint: + case Intrinsic::trunc: + case Intrinsic::floor: + case Intrinsic::fabs: + case Intrinsic::minnum: + case Intrinsic::maxnum: + return Config.VectorizeMath; + case Intrinsic::bswap: + case Intrinsic::ctpop: + case Intrinsic::ctlz: + case Intrinsic::cttz: + return Config.VectorizeBitManipulations; + case Intrinsic::fma: + case Intrinsic::fmuladd: + return Config.VectorizeFMA; + } + } + + bool isPureIEChain(InsertElementInst *IE) { + InsertElementInst *IENext = IE; + do { + if (!isa<UndefValue>(IENext->getOperand(0)) && + !isa<InsertElementInst>(IENext->getOperand(0))) { + return false; + } + } while ((IENext = + dyn_cast<InsertElementInst>(IENext->getOperand(0)))); + + return true; + } + }; + + // This function implements one vectorization iteration on the provided + // basic block. It returns true if the block is changed. + bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) { + bool ShouldContinue; + BasicBlock::iterator Start = BB.getFirstInsertionPt(); + + std::vector<Value *> AllPairableInsts; + DenseMap<Value *, Value *> AllChosenPairs; + DenseSet<ValuePair> AllFixedOrderPairs; + DenseMap<VPPair, unsigned> AllPairConnectionTypes; + DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs, + AllConnectedPairDeps; + + do { + std::vector<Value *> PairableInsts; + DenseMap<Value *, std::vector<Value *> > CandidatePairs; + DenseSet<ValuePair> FixedOrderPairs; + DenseMap<ValuePair, int> CandidatePairCostSavings; + ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs, + FixedOrderPairs, + CandidatePairCostSavings, + PairableInsts, NonPow2Len); + if (PairableInsts.empty()) continue; + + // Build the candidate pair set for faster lookups. + DenseSet<ValuePair> CandidatePairsSet; + for (DenseMap<Value *, std::vector<Value *> >::iterator I = + CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I) + for (std::vector<Value *>::iterator J = I->second.begin(), + JE = I->second.end(); J != JE; ++J) + CandidatePairsSet.insert(ValuePair(I->first, *J)); + + // Now we have a map of all of the pairable instructions and we need to + // select the best possible pairing. A good pairing is one such that the + // users of the pair are also paired. This defines a (directed) forest + // over the pairs such that two pairs are connected iff the second pair + // uses the first. + + // Note that it only matters that both members of the second pair use some + // element of the first pair (to allow for splatting). + + DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs, + ConnectedPairDeps; + DenseMap<VPPair, unsigned> PairConnectionTypes; + computeConnectedPairs(CandidatePairs, CandidatePairsSet, + PairableInsts, ConnectedPairs, PairConnectionTypes); + if (ConnectedPairs.empty()) continue; + + for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator + I = ConnectedPairs.begin(), IE = ConnectedPairs.end(); + I != IE; ++I) + for (std::vector<ValuePair>::iterator J = I->second.begin(), + JE = I->second.end(); J != JE; ++J) + ConnectedPairDeps[*J].push_back(I->first); + + // Build the pairable-instruction dependency map + DenseSet<ValuePair> PairableInstUsers; + buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers); + + // There is now a graph of the connected pairs. For each variable, pick + // the pairing with the largest dag meeting the depth requirement on at + // least one branch. Then select all pairings that are part of that dag + // and remove them from the list of available pairings and pairable + // variables. + + DenseMap<Value *, Value *> ChosenPairs; + choosePairs(CandidatePairs, CandidatePairsSet, + CandidatePairCostSavings, + PairableInsts, FixedOrderPairs, PairConnectionTypes, + ConnectedPairs, ConnectedPairDeps, + PairableInstUsers, ChosenPairs); + + if (ChosenPairs.empty()) continue; + AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(), + PairableInsts.end()); + AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end()); + + // Only for the chosen pairs, propagate information on fixed-order pairs, + // pair connections, and their types to the data structures used by the + // pair fusion procedures. + for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(), + IE = ChosenPairs.end(); I != IE; ++I) { + if (FixedOrderPairs.count(*I)) + AllFixedOrderPairs.insert(*I); + else if (FixedOrderPairs.count(ValuePair(I->second, I->first))) + AllFixedOrderPairs.insert(ValuePair(I->second, I->first)); + + for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin(); + J != IE; ++J) { + DenseMap<VPPair, unsigned>::iterator K = + PairConnectionTypes.find(VPPair(*I, *J)); + if (K != PairConnectionTypes.end()) { + AllPairConnectionTypes.insert(*K); + } else { + K = PairConnectionTypes.find(VPPair(*J, *I)); + if (K != PairConnectionTypes.end()) + AllPairConnectionTypes.insert(*K); + } + } + } + + for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator + I = ConnectedPairs.begin(), IE = ConnectedPairs.end(); + I != IE; ++I) + for (std::vector<ValuePair>::iterator J = I->second.begin(), + JE = I->second.end(); J != JE; ++J) + if (AllPairConnectionTypes.count(VPPair(I->first, *J))) { + AllConnectedPairs[I->first].push_back(*J); + AllConnectedPairDeps[*J].push_back(I->first); + } + } while (ShouldContinue); + + if (AllChosenPairs.empty()) return false; + NumFusedOps += AllChosenPairs.size(); + + // A set of pairs has now been selected. It is now necessary to replace the + // paired instructions with vector instructions. For this procedure each + // operand must be replaced with a vector operand. This vector is formed + // by using build_vector on the old operands. The replaced values are then + // replaced with a vector_extract on the result. Subsequent optimization + // passes should coalesce the build/extract combinations. + + fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs, + AllPairConnectionTypes, + AllConnectedPairs, AllConnectedPairDeps); + + // It is important to cleanup here so that future iterations of this + // function have less work to do. + (void)SimplifyInstructionsInBlock(&BB, TLI); + return true; + } + + // This function returns true if the provided instruction is capable of being + // fused into a vector instruction. This determination is based only on the + // type and other attributes of the instruction. + bool BBVectorize::isInstVectorizable(Instruction *I, + bool &IsSimpleLoadStore) { + IsSimpleLoadStore = false; + + if (CallInst *C = dyn_cast<CallInst>(I)) { + if (!isVectorizableIntrinsic(C)) + return false; + } else if (LoadInst *L = dyn_cast<LoadInst>(I)) { + // Vectorize simple loads if possbile: + IsSimpleLoadStore = L->isSimple(); + if (!IsSimpleLoadStore || !Config.VectorizeMemOps) + return false; + } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { + // Vectorize simple stores if possbile: + IsSimpleLoadStore = S->isSimple(); + if (!IsSimpleLoadStore || !Config.VectorizeMemOps) + return false; + } else if (CastInst *C = dyn_cast<CastInst>(I)) { + // We can vectorize casts, but not casts of pointer types, etc. + if (!Config.VectorizeCasts) + return false; + + Type *SrcTy = C->getSrcTy(); + if (!SrcTy->isSingleValueType()) + return false; + + Type *DestTy = C->getDestTy(); + if (!DestTy->isSingleValueType()) + return false; + } else if (isa<SelectInst>(I)) { + if (!Config.VectorizeSelect) + return false; + } else if (isa<CmpInst>(I)) { + if (!Config.VectorizeCmp) + return false; + } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) { + if (!Config.VectorizeGEP) + return false; + + // Currently, vector GEPs exist only with one index. + if (G->getNumIndices() != 1) + return false; + } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) || + isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) { + return false; + } + + Type *T1, *T2; + getInstructionTypes(I, T1, T2); + + // Not every type can be vectorized... + if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) || + !(VectorType::isValidElementType(T2) || T2->isVectorTy())) + return false; + + if (T1->getScalarSizeInBits() == 1) { + if (!Config.VectorizeBools) + return false; + } else { + if (!Config.VectorizeInts && T1->isIntOrIntVectorTy()) + return false; + } + + if (T2->getScalarSizeInBits() == 1) { + if (!Config.VectorizeBools) + return false; + } else { + if (!Config.VectorizeInts && T2->isIntOrIntVectorTy()) + return false; + } + + if (!Config.VectorizeFloats + && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy())) + return false; + + // Don't vectorize target-specific types. + if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy()) + return false; + if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy()) + return false; + + if (!Config.VectorizePointers && (T1->getScalarType()->isPointerTy() || + T2->getScalarType()->isPointerTy())) + return false; + + if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits || + T2->getPrimitiveSizeInBits() >= Config.VectorBits)) + return false; + + return true; + } + + // This function returns true if the two provided instructions are compatible + // (meaning that they can be fused into a vector instruction). This assumes + // that I has already been determined to be vectorizable and that J is not + // in the use dag of I. + bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J, + bool IsSimpleLoadStore, bool NonPow2Len, + int &CostSavings, int &FixedOrder) { + DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I << + " <-> " << *J << "\n"); + + CostSavings = 0; + FixedOrder = 0; + + // Loads and stores can be merged if they have different alignments, + // but are otherwise the same. + if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment | + (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0))) + return false; + + Type *IT1, *IT2, *JT1, *JT2; + getInstructionTypes(I, IT1, IT2); + getInstructionTypes(J, JT1, JT2); + unsigned MaxTypeBits = std::max( + IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(), + IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits()); + if (!TTI && MaxTypeBits > Config.VectorBits) + return false; + + // FIXME: handle addsub-type operations! + + if (IsSimpleLoadStore) { + Value *IPtr, *JPtr; + unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace; + int64_t OffsetInElmts = 0; + if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, + IAddressSpace, JAddressSpace, OffsetInElmts) && + std::abs(OffsetInElmts) == 1) { + FixedOrder = (int) OffsetInElmts; + unsigned BottomAlignment = IAlignment; + if (OffsetInElmts < 0) BottomAlignment = JAlignment; + + Type *aTypeI = isa<StoreInst>(I) ? + cast<StoreInst>(I)->getValueOperand()->getType() : I->getType(); + Type *aTypeJ = isa<StoreInst>(J) ? + cast<StoreInst>(J)->getValueOperand()->getType() : J->getType(); + Type *VType = getVecTypeForPair(aTypeI, aTypeJ); + + if (Config.AlignedOnly) { + // An aligned load or store is possible only if the instruction + // with the lower offset has an alignment suitable for the + // vector type. + const DataLayout &DL = I->getModule()->getDataLayout(); + unsigned VecAlignment = DL.getPrefTypeAlignment(VType); + if (BottomAlignment < VecAlignment) + return false; + } + + if (TTI) { + unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI, + IAlignment, IAddressSpace); + unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ, + JAlignment, JAddressSpace); + unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType, + BottomAlignment, + IAddressSpace); + + ICost += TTI->getAddressComputationCost(aTypeI); + JCost += TTI->getAddressComputationCost(aTypeJ); + VCost += TTI->getAddressComputationCost(VType); + + if (VCost > ICost + JCost) + return false; + + // We don't want to fuse to a type that will be split, even + // if the two input types will also be split and there is no other + // associated cost. + unsigned VParts = TTI->getNumberOfParts(VType); + if (VParts > 1) + return false; + else if (!VParts && VCost == ICost + JCost) + return false; + + CostSavings = ICost + JCost - VCost; + } + } else { + return false; + } + } else if (TTI) { + unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2); + unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2); + Type *VT1 = getVecTypeForPair(IT1, JT1), + *VT2 = getVecTypeForPair(IT2, JT2); + TargetTransformInfo::OperandValueKind Op1VK = + TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueKind Op2VK = + TargetTransformInfo::OK_AnyValue; + + // On some targets (example X86) the cost of a vector shift may vary + // depending on whether the second operand is a Uniform or + // NonUniform Constant. + switch (I->getOpcode()) { + default : break; + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + + // If both I and J are scalar shifts by constant, then the + // merged vector shift count would be either a constant splat value + // or a non-uniform vector of constants. + if (ConstantInt *CII = dyn_cast<ConstantInt>(I->getOperand(1))) { + if (ConstantInt *CIJ = dyn_cast<ConstantInt>(J->getOperand(1))) + Op2VK = CII == CIJ ? TargetTransformInfo::OK_UniformConstantValue : + TargetTransformInfo::OK_NonUniformConstantValue; + } else { + // Check for a splat of a constant or for a non uniform vector + // of constants. + Value *IOp = I->getOperand(1); + Value *JOp = J->getOperand(1); + if ((isa<ConstantVector>(IOp) || isa<ConstantDataVector>(IOp)) && + (isa<ConstantVector>(JOp) || isa<ConstantDataVector>(JOp))) { + Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; + Constant *SplatValue = cast<Constant>(IOp)->getSplatValue(); + if (SplatValue != nullptr && + SplatValue == cast<Constant>(JOp)->getSplatValue()) + Op2VK = TargetTransformInfo::OK_UniformConstantValue; + } + } + } + + // Note that this procedure is incorrect for insert and extract element + // instructions (because combining these often results in a shuffle), + // but this cost is ignored (because insert and extract element + // instructions are assigned a zero depth factor and are not really + // fused in general). + unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2, Op1VK, Op2VK); + + if (VCost > ICost + JCost) + return false; + + // We don't want to fuse to a type that will be split, even + // if the two input types will also be split and there is no other + // associated cost. + unsigned VParts1 = TTI->getNumberOfParts(VT1), + VParts2 = TTI->getNumberOfParts(VT2); + if (VParts1 > 1 || VParts2 > 1) + return false; + else if ((!VParts1 || !VParts2) && VCost == ICost + JCost) + return false; + + CostSavings = ICost + JCost - VCost; + } + + // The powi,ctlz,cttz intrinsics are special because only the first + // argument is vectorized, the second arguments must be equal. + CallInst *CI = dyn_cast<CallInst>(I); + Function *FI; + if (CI && (FI = CI->getCalledFunction())) { + Intrinsic::ID IID = FI->getIntrinsicID(); + if (IID == Intrinsic::powi || IID == Intrinsic::ctlz || + IID == Intrinsic::cttz) { + Value *A1I = CI->getArgOperand(1), + *A1J = cast<CallInst>(J)->getArgOperand(1); + const SCEV *A1ISCEV = SE->getSCEV(A1I), + *A1JSCEV = SE->getSCEV(A1J); + return (A1ISCEV == A1JSCEV); + } + + if (IID && TTI) { + SmallVector<Type*, 4> Tys; + for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) + Tys.push_back(CI->getArgOperand(i)->getType()); + unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys); + + Tys.clear(); + CallInst *CJ = cast<CallInst>(J); + for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i) + Tys.push_back(CJ->getArgOperand(i)->getType()); + unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys); + + Tys.clear(); + assert(CI->getNumArgOperands() == CJ->getNumArgOperands() && + "Intrinsic argument counts differ"); + for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { + if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz || + IID == Intrinsic::cttz) && i == 1) + Tys.push_back(CI->getArgOperand(i)->getType()); + else + Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(), + CJ->getArgOperand(i)->getType())); + } + + Type *RetTy = getVecTypeForPair(IT1, JT1); + unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys); + + if (VCost > ICost + JCost) + return false; + + // We don't want to fuse to a type that will be split, even + // if the two input types will also be split and there is no other + // associated cost. + unsigned RetParts = TTI->getNumberOfParts(RetTy); + if (RetParts > 1) + return false; + else if (!RetParts && VCost == ICost + JCost) + return false; + + for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { + if (!Tys[i]->isVectorTy()) + continue; + + unsigned NumParts = TTI->getNumberOfParts(Tys[i]); + if (NumParts > 1) + return false; + else if (!NumParts && VCost == ICost + JCost) + return false; + } + + CostSavings = ICost + JCost - VCost; + } + } + + return true; + } + + // Figure out whether or not J uses I and update the users and write-set + // structures associated with I. Specifically, Users represents the set of + // instructions that depend on I. WriteSet represents the set + // of memory locations that are dependent on I. If UpdateUsers is true, + // and J uses I, then Users is updated to contain J and WriteSet is updated + // to contain any memory locations to which J writes. The function returns + // true if J uses I. By default, alias analysis is used to determine + // whether J reads from memory that overlaps with a location in WriteSet. + // If LoadMoveSet is not null, then it is a previously-computed map + // where the key is the memory-based user instruction and the value is + // the instruction to be compared with I. So, if LoadMoveSet is provided, + // then the alias analysis is not used. This is necessary because this + // function is called during the process of moving instructions during + // vectorization and the results of the alias analysis are not stable during + // that process. + bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users, + AliasSetTracker &WriteSet, Instruction *I, + Instruction *J, bool UpdateUsers, + DenseSet<ValuePair> *LoadMoveSetPairs) { + bool UsesI = false; + + // This instruction may already be marked as a user due, for example, to + // being a member of a selected pair. + if (Users.count(J)) + UsesI = true; + + if (!UsesI) + for (User::op_iterator JU = J->op_begin(), JE = J->op_end(); + JU != JE; ++JU) { + Value *V = *JU; + if (I == V || Users.count(V)) { + UsesI = true; + break; + } + } + if (!UsesI && J->mayReadFromMemory()) { + if (LoadMoveSetPairs) { + UsesI = LoadMoveSetPairs->count(ValuePair(J, I)); + } else { + for (AliasSetTracker::iterator W = WriteSet.begin(), + WE = WriteSet.end(); W != WE; ++W) { + if (W->aliasesUnknownInst(J, *AA)) { + UsesI = true; + break; + } + } + } + } + + if (UsesI && UpdateUsers) { + if (J->mayWriteToMemory()) WriteSet.add(J); + Users.insert(J); + } + + return UsesI; + } + + // This function iterates over all instruction pairs in the provided + // basic block and collects all candidate pairs for vectorization. + bool BBVectorize::getCandidatePairs(BasicBlock &BB, + BasicBlock::iterator &Start, + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<ValuePair, int> &CandidatePairCostSavings, + std::vector<Value *> &PairableInsts, bool NonPow2Len) { + size_t TotalPairs = 0; + BasicBlock::iterator E = BB.end(); + if (Start == E) return false; + + bool ShouldContinue = false, IAfterStart = false; + for (BasicBlock::iterator I = Start++; I != E; ++I) { + if (I == Start) IAfterStart = true; + + bool IsSimpleLoadStore; + if (!isInstVectorizable(&*I, IsSimpleLoadStore)) + continue; + + // Look for an instruction with which to pair instruction *I... + DenseSet<Value *> Users; + AliasSetTracker WriteSet(*AA); + if (I->mayWriteToMemory()) + WriteSet.add(&*I); + + bool JAfterStart = IAfterStart; + BasicBlock::iterator J = std::next(I); + for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) { + if (&*J == Start) + JAfterStart = true; + + // Determine if J uses I, if so, exit the loop. + bool UsesI = trackUsesOfI(Users, WriteSet, &*I, &*J, !Config.FastDep); + if (Config.FastDep) { + // Note: For this heuristic to be effective, independent operations + // must tend to be intermixed. This is likely to be true from some + // kinds of grouped loop unrolling (but not the generic LLVM pass), + // but otherwise may require some kind of reordering pass. + + // When using fast dependency analysis, + // stop searching after first use: + if (UsesI) break; + } else { + if (UsesI) continue; + } + + // J does not use I, and comes before the first use of I, so it can be + // merged with I if the instructions are compatible. + int CostSavings, FixedOrder; + if (!areInstsCompatible(&*I, &*J, IsSimpleLoadStore, NonPow2Len, + CostSavings, FixedOrder)) + continue; + + // J is a candidate for merging with I. + if (PairableInsts.empty() || + PairableInsts[PairableInsts.size() - 1] != &*I) { + PairableInsts.push_back(&*I); + } + + CandidatePairs[&*I].push_back(&*J); + ++TotalPairs; + if (TTI) + CandidatePairCostSavings.insert( + ValuePairWithCost(ValuePair(&*I, &*J), CostSavings)); + + if (FixedOrder == 1) + FixedOrderPairs.insert(ValuePair(&*I, &*J)); + else if (FixedOrder == -1) + FixedOrderPairs.insert(ValuePair(&*J, &*I)); + + // The next call to this function must start after the last instruction + // selected during this invocation. + if (JAfterStart) { + Start = std::next(J); + IAfterStart = JAfterStart = false; + } + + DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair " + << *I << " <-> " << *J << " (cost savings: " << + CostSavings << ")\n"); + + // If we have already found too many pairs, break here and this function + // will be called again starting after the last instruction selected + // during this invocation. + if (PairableInsts.size() >= Config.MaxInsts || + TotalPairs >= Config.MaxPairs) { + ShouldContinue = true; + break; + } + } + + if (ShouldContinue) + break; + } + + DEBUG(dbgs() << "BBV: found " << PairableInsts.size() + << " instructions with candidate pairs\n"); + + return ShouldContinue; + } + + // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that + // it looks for pairs such that both members have an input which is an + // output of PI or PJ. + void BBVectorize::computePairsConnectedTo( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + std::vector<Value *> &PairableInsts, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + ValuePair P) { + StoreInst *SI, *SJ; + + // For each possible pairing for this variable, look at the uses of + // the first value... + for (Value::user_iterator I = P.first->user_begin(), + E = P.first->user_end(); + I != E; ++I) { + User *UI = *I; + if (isa<LoadInst>(UI)) { + // A pair cannot be connected to a load because the load only takes one + // operand (the address) and it is a scalar even after vectorization. + continue; + } else if ((SI = dyn_cast<StoreInst>(UI)) && + P.first == SI->getPointerOperand()) { + // Similarly, a pair cannot be connected to a store through its + // pointer operand. + continue; + } + + // For each use of the first variable, look for uses of the second + // variable... + for (User *UJ : P.second->users()) { + if ((SJ = dyn_cast<StoreInst>(UJ)) && + P.second == SJ->getPointerOperand()) + continue; + + // Look for <I, J>: + if (CandidatePairsSet.count(ValuePair(UI, UJ))) { + VPPair VP(P, ValuePair(UI, UJ)); + ConnectedPairs[VP.first].push_back(VP.second); + PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect)); + } + + // Look for <J, I>: + if (CandidatePairsSet.count(ValuePair(UJ, UI))) { + VPPair VP(P, ValuePair(UJ, UI)); + ConnectedPairs[VP.first].push_back(VP.second); + PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap)); + } + } + + if (Config.SplatBreaksChain) continue; + // Look for cases where just the first value in the pair is used by + // both members of another pair (splatting). + for (Value::user_iterator J = P.first->user_begin(); J != E; ++J) { + User *UJ = *J; + if ((SJ = dyn_cast<StoreInst>(UJ)) && + P.first == SJ->getPointerOperand()) + continue; + + if (CandidatePairsSet.count(ValuePair(UI, UJ))) { + VPPair VP(P, ValuePair(UI, UJ)); + ConnectedPairs[VP.first].push_back(VP.second); + PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat)); + } + } + } + + if (Config.SplatBreaksChain) return; + // Look for cases where just the second value in the pair is used by + // both members of another pair (splatting). + for (Value::user_iterator I = P.second->user_begin(), + E = P.second->user_end(); + I != E; ++I) { + User *UI = *I; + if (isa<LoadInst>(UI)) + continue; + else if ((SI = dyn_cast<StoreInst>(UI)) && + P.second == SI->getPointerOperand()) + continue; + + for (Value::user_iterator J = P.second->user_begin(); J != E; ++J) { + User *UJ = *J; + if ((SJ = dyn_cast<StoreInst>(UJ)) && + P.second == SJ->getPointerOperand()) + continue; + + if (CandidatePairsSet.count(ValuePair(UI, UJ))) { + VPPair VP(P, ValuePair(UI, UJ)); + ConnectedPairs[VP.first].push_back(VP.second); + PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat)); + } + } + } + } + + // This function figures out which pairs are connected. Two pairs are + // connected if some output of the first pair forms an input to both members + // of the second pair. + void BBVectorize::computeConnectedPairs( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + std::vector<Value *> &PairableInsts, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes) { + for (std::vector<Value *>::iterator PI = PairableInsts.begin(), + PE = PairableInsts.end(); PI != PE; ++PI) { + DenseMap<Value *, std::vector<Value *> >::iterator PP = + CandidatePairs.find(*PI); + if (PP == CandidatePairs.end()) + continue; + + for (std::vector<Value *>::iterator P = PP->second.begin(), + E = PP->second.end(); P != E; ++P) + computePairsConnectedTo(CandidatePairs, CandidatePairsSet, + PairableInsts, ConnectedPairs, + PairConnectionTypes, ValuePair(*PI, *P)); + } + + DEBUG(size_t TotalPairs = 0; + for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I = + ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I) + TotalPairs += I->second.size(); + dbgs() << "BBV: found " << TotalPairs + << " pair connections.\n"); + } + + // This function builds a set of use tuples such that <A, B> is in the set + // if B is in the use dag of A. If B is in the use dag of A, then B + // depends on the output of A. + void BBVectorize::buildDepMap( + BasicBlock &BB, + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &PairableInstUsers) { + DenseSet<Value *> IsInPair; + for (DenseMap<Value *, std::vector<Value *> >::iterator C = + CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) { + IsInPair.insert(C->first); + IsInPair.insert(C->second.begin(), C->second.end()); + } + + // Iterate through the basic block, recording all users of each + // pairable instruction. + + BasicBlock::iterator E = BB.end(), EL = + BasicBlock::iterator(cast<Instruction>(PairableInsts.back())); + for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) { + if (IsInPair.find(&*I) == IsInPair.end()) + continue; + + DenseSet<Value *> Users; + AliasSetTracker WriteSet(*AA); + if (I->mayWriteToMemory()) + WriteSet.add(&*I); + + for (BasicBlock::iterator J = std::next(I); J != E; ++J) { + (void)trackUsesOfI(Users, WriteSet, &*I, &*J); + + if (J == EL) + break; + } + + for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end(); + U != E; ++U) { + if (IsInPair.find(*U) == IsInPair.end()) continue; + PairableInstUsers.insert(ValuePair(&*I, *U)); + } + + if (I == EL) + break; + } + } + + // Returns true if an input to pair P is an output of pair Q and also an + // input of pair Q is an output of pair P. If this is the case, then these + // two pairs cannot be simultaneously fused. + bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap, + DenseSet<VPPair> *PairableInstUserPairSet) { + // Two pairs are in conflict if they are mutual Users of eachother. + bool QUsesP = PairableInstUsers.count(ValuePair(P.first, Q.first)) || + PairableInstUsers.count(ValuePair(P.first, Q.second)) || + PairableInstUsers.count(ValuePair(P.second, Q.first)) || + PairableInstUsers.count(ValuePair(P.second, Q.second)); + bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first, P.first)) || + PairableInstUsers.count(ValuePair(Q.first, P.second)) || + PairableInstUsers.count(ValuePair(Q.second, P.first)) || + PairableInstUsers.count(ValuePair(Q.second, P.second)); + if (PairableInstUserMap) { + // FIXME: The expensive part of the cycle check is not so much the cycle + // check itself but this edge insertion procedure. This needs some + // profiling and probably a different data structure. + if (PUsesQ) { + if (PairableInstUserPairSet->insert(VPPair(Q, P)).second) + (*PairableInstUserMap)[Q].push_back(P); + } + if (QUsesP) { + if (PairableInstUserPairSet->insert(VPPair(P, Q)).second) + (*PairableInstUserMap)[P].push_back(Q); + } + } + + return (QUsesP && PUsesQ); + } + + // This function walks the use graph of current pairs to see if, starting + // from P, the walk returns to P. + bool BBVectorize::pairWillFormCycle(ValuePair P, + DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, + DenseSet<ValuePair> &CurrentPairs) { + DEBUG(if (DebugCycleCheck) + dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> " + << *P.second << "\n"); + // A lookup table of visisted pairs is kept because the PairableInstUserMap + // contains non-direct associations. + DenseSet<ValuePair> Visited; + SmallVector<ValuePair, 32> Q; + // General depth-first post-order traversal: + Q.push_back(P); + do { + ValuePair QTop = Q.pop_back_val(); + Visited.insert(QTop); + + DEBUG(if (DebugCycleCheck) + dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> " + << *QTop.second << "\n"); + DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ = + PairableInstUserMap.find(QTop); + if (QQ == PairableInstUserMap.end()) + continue; + + for (std::vector<ValuePair>::iterator C = QQ->second.begin(), + CE = QQ->second.end(); C != CE; ++C) { + if (*C == P) { + DEBUG(dbgs() + << "BBV: rejected to prevent non-trivial cycle formation: " + << QTop.first << " <-> " << C->second << "\n"); + return true; + } + + if (CurrentPairs.count(*C) && !Visited.count(*C)) + Q.push_back(*C); + } + } while (!Q.empty()); + + return false; + } + + // This function builds the initial dag of connected pairs with the + // pair J at the root. + void BBVectorize::buildInitialDAGFor( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + std::vector<Value *> &PairableInsts, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<Value *, Value *> &ChosenPairs, + DenseMap<ValuePair, size_t> &DAG, ValuePair J) { + // Each of these pairs is viewed as the root node of a DAG. The DAG + // is then walked (depth-first). As this happens, we keep track of + // the pairs that compose the DAG and the maximum depth of the DAG. + SmallVector<ValuePairWithDepth, 32> Q; + // General depth-first post-order traversal: + Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); + do { + ValuePairWithDepth QTop = Q.back(); + + // Push each child onto the queue: + bool MoreChildren = false; + size_t MaxChildDepth = QTop.second; + DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ = + ConnectedPairs.find(QTop.first); + if (QQ != ConnectedPairs.end()) + for (std::vector<ValuePair>::iterator k = QQ->second.begin(), + ke = QQ->second.end(); k != ke; ++k) { + // Make sure that this child pair is still a candidate: + if (CandidatePairsSet.count(*k)) { + DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k); + if (C == DAG.end()) { + size_t d = getDepthFactor(k->first); + Q.push_back(ValuePairWithDepth(*k, QTop.second+d)); + MoreChildren = true; + } else { + MaxChildDepth = std::max(MaxChildDepth, C->second); + } + } + } + + if (!MoreChildren) { + // Record the current pair as part of the DAG: + DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth)); + Q.pop_back(); + } + } while (!Q.empty()); + } + + // Given some initial dag, prune it by removing conflicting pairs (pairs + // that cannot be simultaneously chosen for vectorization). + void BBVectorize::pruneDAGFor( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + std::vector<Value *> &PairableInsts, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, + DenseSet<VPPair> &PairableInstUserPairSet, + DenseMap<Value *, Value *> &ChosenPairs, + DenseMap<ValuePair, size_t> &DAG, + DenseSet<ValuePair> &PrunedDAG, ValuePair J, + bool UseCycleCheck) { + SmallVector<ValuePairWithDepth, 32> Q; + // General depth-first post-order traversal: + Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first))); + do { + ValuePairWithDepth QTop = Q.pop_back_val(); + PrunedDAG.insert(QTop.first); + + // Visit each child, pruning as necessary... + SmallVector<ValuePairWithDepth, 8> BestChildren; + DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ = + ConnectedPairs.find(QTop.first); + if (QQ == ConnectedPairs.end()) + continue; + + for (std::vector<ValuePair>::iterator K = QQ->second.begin(), + KE = QQ->second.end(); K != KE; ++K) { + DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K); + if (C == DAG.end()) continue; + + // This child is in the DAG, now we need to make sure it is the + // best of any conflicting children. There could be multiple + // conflicting children, so first, determine if we're keeping + // this child, then delete conflicting children as necessary. + + // It is also necessary to guard against pairing-induced + // dependencies. Consider instructions a .. x .. y .. b + // such that (a,b) are to be fused and (x,y) are to be fused + // but a is an input to x and b is an output from y. This + // means that y cannot be moved after b but x must be moved + // after b for (a,b) to be fused. In other words, after + // fusing (a,b) we have y .. a/b .. x where y is an input + // to a/b and x is an output to a/b: x and y can no longer + // be legally fused. To prevent this condition, we must + // make sure that a child pair added to the DAG is not + // both an input and output of an already-selected pair. + + // Pairing-induced dependencies can also form from more complicated + // cycles. The pair vs. pair conflicts are easy to check, and so + // that is done explicitly for "fast rejection", and because for + // child vs. child conflicts, we may prefer to keep the current + // pair in preference to the already-selected child. + DenseSet<ValuePair> CurrentPairs; + + bool CanAdd = true; + for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 + = BestChildren.begin(), E2 = BestChildren.end(); + C2 != E2; ++C2) { + if (C2->first.first == C->first.first || + C2->first.first == C->first.second || + C2->first.second == C->first.first || + C2->first.second == C->first.second || + pairsConflict(C2->first, C->first, PairableInstUsers, + UseCycleCheck ? &PairableInstUserMap : nullptr, + UseCycleCheck ? &PairableInstUserPairSet + : nullptr)) { + if (C2->second >= C->second) { + CanAdd = false; + break; + } + + CurrentPairs.insert(C2->first); + } + } + if (!CanAdd) continue; + + // Even worse, this child could conflict with another node already + // selected for the DAG. If that is the case, ignore this child. + for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(), + E2 = PrunedDAG.end(); T != E2; ++T) { + if (T->first == C->first.first || + T->first == C->first.second || + T->second == C->first.first || + T->second == C->first.second || + pairsConflict(*T, C->first, PairableInstUsers, + UseCycleCheck ? &PairableInstUserMap : nullptr, + UseCycleCheck ? &PairableInstUserPairSet + : nullptr)) { + CanAdd = false; + break; + } + + CurrentPairs.insert(*T); + } + if (!CanAdd) continue; + + // And check the queue too... + for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 = Q.begin(), + E2 = Q.end(); C2 != E2; ++C2) { + if (C2->first.first == C->first.first || + C2->first.first == C->first.second || + C2->first.second == C->first.first || + C2->first.second == C->first.second || + pairsConflict(C2->first, C->first, PairableInstUsers, + UseCycleCheck ? &PairableInstUserMap : nullptr, + UseCycleCheck ? &PairableInstUserPairSet + : nullptr)) { + CanAdd = false; + break; + } + + CurrentPairs.insert(C2->first); + } + if (!CanAdd) continue; + + // Last but not least, check for a conflict with any of the + // already-chosen pairs. + for (DenseMap<Value *, Value *>::iterator C2 = + ChosenPairs.begin(), E2 = ChosenPairs.end(); + C2 != E2; ++C2) { + if (pairsConflict(*C2, C->first, PairableInstUsers, + UseCycleCheck ? &PairableInstUserMap : nullptr, + UseCycleCheck ? &PairableInstUserPairSet + : nullptr)) { + CanAdd = false; + break; + } + + CurrentPairs.insert(*C2); + } + if (!CanAdd) continue; + + // To check for non-trivial cycles formed by the addition of the + // current pair we've formed a list of all relevant pairs, now use a + // graph walk to check for a cycle. We start from the current pair and + // walk the use dag to see if we again reach the current pair. If we + // do, then the current pair is rejected. + + // FIXME: It may be more efficient to use a topological-ordering + // algorithm to improve the cycle check. This should be investigated. + if (UseCycleCheck && + pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs)) + continue; + + // This child can be added, but we may have chosen it in preference + // to an already-selected child. Check for this here, and if a + // conflict is found, then remove the previously-selected child + // before adding this one in its place. + for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 + = BestChildren.begin(); C2 != BestChildren.end();) { + if (C2->first.first == C->first.first || + C2->first.first == C->first.second || + C2->first.second == C->first.first || + C2->first.second == C->first.second || + pairsConflict(C2->first, C->first, PairableInstUsers)) + C2 = BestChildren.erase(C2); + else + ++C2; + } + + BestChildren.push_back(ValuePairWithDepth(C->first, C->second)); + } + + for (SmallVectorImpl<ValuePairWithDepth>::iterator C + = BestChildren.begin(), E2 = BestChildren.end(); + C != E2; ++C) { + size_t DepthF = getDepthFactor(C->first.first); + Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF)); + } + } while (!Q.empty()); + } + + // This function finds the best dag of mututally-compatible connected + // pairs, given the choice of root pairs as an iterator range. + void BBVectorize::findBestDAGFor( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + DenseMap<ValuePair, int> &CandidatePairCostSavings, + std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap, + DenseSet<VPPair> &PairableInstUserPairSet, + DenseMap<Value *, Value *> &ChosenPairs, + DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth, + int &BestEffSize, Value *II, std::vector<Value *>&JJ, + bool UseCycleCheck) { + for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end(); + J != JE; ++J) { + ValuePair IJ(II, *J); + if (!CandidatePairsSet.count(IJ)) + continue; + + // Before going any further, make sure that this pair does not + // conflict with any already-selected pairs (see comment below + // near the DAG pruning for more details). + DenseSet<ValuePair> ChosenPairSet; + bool DoesConflict = false; + for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(), + E = ChosenPairs.end(); C != E; ++C) { + if (pairsConflict(*C, IJ, PairableInstUsers, + UseCycleCheck ? &PairableInstUserMap : nullptr, + UseCycleCheck ? &PairableInstUserPairSet : nullptr)) { + DoesConflict = true; + break; + } + + ChosenPairSet.insert(*C); + } + if (DoesConflict) continue; + + if (UseCycleCheck && + pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet)) + continue; + + DenseMap<ValuePair, size_t> DAG; + buildInitialDAGFor(CandidatePairs, CandidatePairsSet, + PairableInsts, ConnectedPairs, + PairableInstUsers, ChosenPairs, DAG, IJ); + + // Because we'll keep the child with the largest depth, the largest + // depth is still the same in the unpruned DAG. + size_t MaxDepth = DAG.lookup(IJ); + + DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {" + << *IJ.first << " <-> " << *IJ.second << "} of depth " << + MaxDepth << " and size " << DAG.size() << "\n"); + + // At this point the DAG has been constructed, but, may contain + // contradictory children (meaning that different children of + // some dag node may be attempting to fuse the same instruction). + // So now we walk the dag again, in the case of a conflict, + // keep only the child with the largest depth. To break a tie, + // favor the first child. + + DenseSet<ValuePair> PrunedDAG; + pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs, + PairableInstUsers, PairableInstUserMap, + PairableInstUserPairSet, + ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck); + + int EffSize = 0; + if (TTI) { + DenseSet<Value *> PrunedDAGInstrs; + for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(), + E = PrunedDAG.end(); S != E; ++S) { + PrunedDAGInstrs.insert(S->first); + PrunedDAGInstrs.insert(S->second); + } + + // The set of pairs that have already contributed to the total cost. + DenseSet<ValuePair> IncomingPairs; + + // If the cost model were perfect, this might not be necessary; but we + // need to make sure that we don't get stuck vectorizing our own + // shuffle chains. + bool HasNontrivialInsts = false; + + // The node weights represent the cost savings associated with + // fusing the pair of instructions. + for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(), + E = PrunedDAG.end(); S != E; ++S) { + if (!isa<ShuffleVectorInst>(S->first) && + !isa<InsertElementInst>(S->first) && + !isa<ExtractElementInst>(S->first)) + HasNontrivialInsts = true; + + bool FlipOrder = false; + + if (getDepthFactor(S->first)) { + int ESContrib = CandidatePairCostSavings.find(*S)->second; + DEBUG(if (DebugPairSelection) dbgs() << "\tweight {" + << *S->first << " <-> " << *S->second << "} = " << + ESContrib << "\n"); + EffSize += ESContrib; + } + + // The edge weights contribute in a negative sense: they represent + // the cost of shuffles. + DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS = + ConnectedPairDeps.find(*S); + if (SS != ConnectedPairDeps.end()) { + unsigned NumDepsDirect = 0, NumDepsSwap = 0; + for (std::vector<ValuePair>::iterator T = SS->second.begin(), + TE = SS->second.end(); T != TE; ++T) { + VPPair Q(*S, *T); + if (!PrunedDAG.count(Q.second)) + continue; + DenseMap<VPPair, unsigned>::iterator R = + PairConnectionTypes.find(VPPair(Q.second, Q.first)); + assert(R != PairConnectionTypes.end() && + "Cannot find pair connection type"); + if (R->second == PairConnectionDirect) + ++NumDepsDirect; + else if (R->second == PairConnectionSwap) + ++NumDepsSwap; + } + + // If there are more swaps than direct connections, then + // the pair order will be flipped during fusion. So the real + // number of swaps is the minimum number. + FlipOrder = !FixedOrderPairs.count(*S) && + ((NumDepsSwap > NumDepsDirect) || + FixedOrderPairs.count(ValuePair(S->second, S->first))); + + for (std::vector<ValuePair>::iterator T = SS->second.begin(), + TE = SS->second.end(); T != TE; ++T) { + VPPair Q(*S, *T); + if (!PrunedDAG.count(Q.second)) + continue; + DenseMap<VPPair, unsigned>::iterator R = + PairConnectionTypes.find(VPPair(Q.second, Q.first)); + assert(R != PairConnectionTypes.end() && + "Cannot find pair connection type"); + Type *Ty1 = Q.second.first->getType(), + *Ty2 = Q.second.second->getType(); + Type *VTy = getVecTypeForPair(Ty1, Ty2); + if ((R->second == PairConnectionDirect && FlipOrder) || + (R->second == PairConnectionSwap && !FlipOrder) || + R->second == PairConnectionSplat) { + int ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + VTy, VTy); + + if (VTy->getVectorNumElements() == 2) { + if (R->second == PairConnectionSplat) + ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( + TargetTransformInfo::SK_Broadcast, VTy)); + else + ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( + TargetTransformInfo::SK_Reverse, VTy)); + } + + DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << + *Q.second.first << " <-> " << *Q.second.second << + "} -> {" << + *S->first << " <-> " << *S->second << "} = " << + ESContrib << "\n"); + EffSize -= ESContrib; + } + } + } + + // Compute the cost of outgoing edges. We assume that edges outgoing + // to shuffles, inserts or extracts can be merged, and so contribute + // no additional cost. + if (!S->first->getType()->isVoidTy()) { + Type *Ty1 = S->first->getType(), + *Ty2 = S->second->getType(); + Type *VTy = getVecTypeForPair(Ty1, Ty2); + + bool NeedsExtraction = false; + for (User *U : S->first->users()) { + if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) { + // Shuffle can be folded if it has no other input + if (isa<UndefValue>(SI->getOperand(1))) + continue; + } + if (isa<ExtractElementInst>(U)) + continue; + if (PrunedDAGInstrs.count(U)) + continue; + NeedsExtraction = true; + break; + } + + if (NeedsExtraction) { + int ESContrib; + if (Ty1->isVectorTy()) { + ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + Ty1, VTy); + ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( + TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1)); + } else + ESContrib = (int) TTI->getVectorInstrCost( + Instruction::ExtractElement, VTy, 0); + + DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << + *S->first << "} = " << ESContrib << "\n"); + EffSize -= ESContrib; + } + + NeedsExtraction = false; + for (User *U : S->second->users()) { + if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) { + // Shuffle can be folded if it has no other input + if (isa<UndefValue>(SI->getOperand(1))) + continue; + } + if (isa<ExtractElementInst>(U)) + continue; + if (PrunedDAGInstrs.count(U)) + continue; + NeedsExtraction = true; + break; + } + + if (NeedsExtraction) { + int ESContrib; + if (Ty2->isVectorTy()) { + ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + Ty2, VTy); + ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( + TargetTransformInfo::SK_ExtractSubvector, VTy, + Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2)); + } else + ESContrib = (int) TTI->getVectorInstrCost( + Instruction::ExtractElement, VTy, 1); + DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" << + *S->second << "} = " << ESContrib << "\n"); + EffSize -= ESContrib; + } + } + + // Compute the cost of incoming edges. + if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) { + Instruction *S1 = cast<Instruction>(S->first), + *S2 = cast<Instruction>(S->second); + for (unsigned o = 0; o < S1->getNumOperands(); ++o) { + Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o); + + // Combining constants into vector constants (or small vector + // constants into larger ones are assumed free). + if (isa<Constant>(O1) && isa<Constant>(O2)) + continue; + + if (FlipOrder) + std::swap(O1, O2); + + ValuePair VP = ValuePair(O1, O2); + ValuePair VPR = ValuePair(O2, O1); + + // Internal edges are not handled here. + if (PrunedDAG.count(VP) || PrunedDAG.count(VPR)) + continue; + + Type *Ty1 = O1->getType(), + *Ty2 = O2->getType(); + Type *VTy = getVecTypeForPair(Ty1, Ty2); + + // Combining vector operations of the same type is also assumed + // folded with other operations. + if (Ty1 == Ty2) { + // If both are insert elements, then both can be widened. + InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1), + *IEO2 = dyn_cast<InsertElementInst>(O2); + if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2)) + continue; + // If both are extract elements, and both have the same input + // type, then they can be replaced with a shuffle + ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1), + *EIO2 = dyn_cast<ExtractElementInst>(O2); + if (EIO1 && EIO2 && + EIO1->getOperand(0)->getType() == + EIO2->getOperand(0)->getType()) + continue; + // If both are a shuffle with equal operand types and only two + // unqiue operands, then they can be replaced with a single + // shuffle + ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1), + *SIO2 = dyn_cast<ShuffleVectorInst>(O2); + if (SIO1 && SIO2 && + SIO1->getOperand(0)->getType() == + SIO2->getOperand(0)->getType()) { + SmallSet<Value *, 4> SIOps; + SIOps.insert(SIO1->getOperand(0)); + SIOps.insert(SIO1->getOperand(1)); + SIOps.insert(SIO2->getOperand(0)); + SIOps.insert(SIO2->getOperand(1)); + if (SIOps.size() <= 2) + continue; + } + } + + int ESContrib; + // This pair has already been formed. + if (IncomingPairs.count(VP)) { + continue; + } else if (IncomingPairs.count(VPR)) { + ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + VTy, VTy); + + if (VTy->getVectorNumElements() == 2) + ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost( + TargetTransformInfo::SK_Reverse, VTy)); + } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) { + ESContrib = (int) TTI->getVectorInstrCost( + Instruction::InsertElement, VTy, 0); + ESContrib += (int) TTI->getVectorInstrCost( + Instruction::InsertElement, VTy, 1); + } else if (!Ty1->isVectorTy()) { + // O1 needs to be inserted into a vector of size O2, and then + // both need to be shuffled together. + ESContrib = (int) TTI->getVectorInstrCost( + Instruction::InsertElement, Ty2, 0); + ESContrib += (int) getInstrCost(Instruction::ShuffleVector, + VTy, Ty2); + } else if (!Ty2->isVectorTy()) { + // O2 needs to be inserted into a vector of size O1, and then + // both need to be shuffled together. + ESContrib = (int) TTI->getVectorInstrCost( + Instruction::InsertElement, Ty1, 0); + ESContrib += (int) getInstrCost(Instruction::ShuffleVector, + VTy, Ty1); + } else { + Type *TyBig = Ty1, *TySmall = Ty2; + if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements()) + std::swap(TyBig, TySmall); + + ESContrib = (int) getInstrCost(Instruction::ShuffleVector, + VTy, TyBig); + if (TyBig != TySmall) + ESContrib += (int) getInstrCost(Instruction::ShuffleVector, + TyBig, TySmall); + } + + DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" + << *O1 << " <-> " << *O2 << "} = " << + ESContrib << "\n"); + EffSize -= ESContrib; + IncomingPairs.insert(VP); + } + } + } + + if (!HasNontrivialInsts) { + DEBUG(if (DebugPairSelection) dbgs() << + "\tNo non-trivial instructions in DAG;" + " override to zero effective size\n"); + EffSize = 0; + } + } else { + for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(), + E = PrunedDAG.end(); S != E; ++S) + EffSize += (int) getDepthFactor(S->first); + } + + DEBUG(if (DebugPairSelection) + dbgs() << "BBV: found pruned DAG for pair {" + << *IJ.first << " <-> " << *IJ.second << "} of depth " << + MaxDepth << " and size " << PrunedDAG.size() << + " (effective size: " << EffSize << ")\n"); + if (((TTI && !UseChainDepthWithTI) || + MaxDepth >= Config.ReqChainDepth) && + EffSize > 0 && EffSize > BestEffSize) { + BestMaxDepth = MaxDepth; + BestEffSize = EffSize; + BestDAG = PrunedDAG; + } + } + } + + // Given the list of candidate pairs, this function selects those + // that will be fused into vector instructions. + void BBVectorize::choosePairs( + DenseMap<Value *, std::vector<Value *> > &CandidatePairs, + DenseSet<ValuePair> &CandidatePairsSet, + DenseMap<ValuePair, int> &CandidatePairCostSavings, + std::vector<Value *> &PairableInsts, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps, + DenseSet<ValuePair> &PairableInstUsers, + DenseMap<Value *, Value *>& ChosenPairs) { + bool UseCycleCheck = + CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck; + + DenseMap<Value *, std::vector<Value *> > CandidatePairs2; + for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(), + E = CandidatePairsSet.end(); I != E; ++I) { + std::vector<Value *> &JJ = CandidatePairs2[I->second]; + if (JJ.empty()) JJ.reserve(32); + JJ.push_back(I->first); + } + + DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap; + DenseSet<VPPair> PairableInstUserPairSet; + for (std::vector<Value *>::iterator I = PairableInsts.begin(), + E = PairableInsts.end(); I != E; ++I) { + // The number of possible pairings for this variable: + size_t NumChoices = CandidatePairs.lookup(*I).size(); + if (!NumChoices) continue; + + std::vector<Value *> &JJ = CandidatePairs[*I]; + + // The best pair to choose and its dag: + size_t BestMaxDepth = 0; + int BestEffSize = 0; + DenseSet<ValuePair> BestDAG; + findBestDAGFor(CandidatePairs, CandidatePairsSet, + CandidatePairCostSavings, + PairableInsts, FixedOrderPairs, PairConnectionTypes, + ConnectedPairs, ConnectedPairDeps, + PairableInstUsers, PairableInstUserMap, + PairableInstUserPairSet, ChosenPairs, + BestDAG, BestMaxDepth, BestEffSize, *I, JJ, + UseCycleCheck); + + if (BestDAG.empty()) + continue; + + // A dag has been chosen (or not) at this point. If no dag was + // chosen, then this instruction, I, cannot be paired (and is no longer + // considered). + + DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: " + << *cast<Instruction>(*I) << "\n"); + + for (DenseSet<ValuePair>::iterator S = BestDAG.begin(), + SE2 = BestDAG.end(); S != SE2; ++S) { + // Insert the members of this dag into the list of chosen pairs. + ChosenPairs.insert(ValuePair(S->first, S->second)); + DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " << + *S->second << "\n"); + + // Remove all candidate pairs that have values in the chosen dag. + std::vector<Value *> &KK = CandidatePairs[S->first]; + for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end(); + K != KE; ++K) { + if (*K == S->second) + continue; + + CandidatePairsSet.erase(ValuePair(S->first, *K)); + } + + std::vector<Value *> &LL = CandidatePairs2[S->second]; + for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end(); + L != LE; ++L) { + if (*L == S->first) + continue; + + CandidatePairsSet.erase(ValuePair(*L, S->second)); + } + + std::vector<Value *> &MM = CandidatePairs[S->second]; + for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end(); + M != ME; ++M) { + assert(*M != S->first && "Flipped pair in candidate list?"); + CandidatePairsSet.erase(ValuePair(S->second, *M)); + } + + std::vector<Value *> &NN = CandidatePairs2[S->first]; + for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end(); + N != NE; ++N) { + assert(*N != S->second && "Flipped pair in candidate list?"); + CandidatePairsSet.erase(ValuePair(*N, S->first)); + } + } + } + + DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n"); + } + + std::string getReplacementName(Instruction *I, bool IsInput, unsigned o, + unsigned n = 0) { + if (!I->hasName()) + return ""; + + return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) + + (n > 0 ? "." + utostr(n) : "")).str(); + } + + // Returns the value that is to be used as the pointer input to the vector + // instruction that fuses I with J. + Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context, + Instruction *I, Instruction *J, unsigned o) { + Value *IPtr, *JPtr; + unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace; + int64_t OffsetInElmts; + + // Note: the analysis might fail here, that is why the pair order has + // been precomputed (OffsetInElmts must be unused here). + (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment, + IAddressSpace, JAddressSpace, + OffsetInElmts, false); + + // The pointer value is taken to be the one with the lowest offset. + Value *VPtr = IPtr; + + Type *ArgTypeI = IPtr->getType()->getPointerElementType(); + Type *ArgTypeJ = JPtr->getType()->getPointerElementType(); + Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); + Type *VArgPtrType + = PointerType::get(VArgType, + IPtr->getType()->getPointerAddressSpace()); + return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o), + /* insert before */ I); + } + + void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J, + unsigned MaskOffset, unsigned NumInElem, + unsigned NumInElem1, unsigned IdxOffset, + std::vector<Constant*> &Mask) { + unsigned NumElem1 = J->getType()->getVectorNumElements(); + for (unsigned v = 0; v < NumElem1; ++v) { + int m = cast<ShuffleVectorInst>(J)->getMaskValue(v); + if (m < 0) { + Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context)); + } else { + unsigned mm = m + (int) IdxOffset; + if (m >= (int) NumInElem1) + mm += (int) NumInElem; + + Mask[v+MaskOffset] = + ConstantInt::get(Type::getInt32Ty(Context), mm); + } + } + } + + // Returns the value that is to be used as the vector-shuffle mask to the + // vector instruction that fuses I with J. + Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context, + Instruction *I, Instruction *J) { + // This is the shuffle mask. We need to append the second + // mask to the first, and the numbers need to be adjusted. + + Type *ArgTypeI = I->getType(); + Type *ArgTypeJ = J->getType(); + Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); + + unsigned NumElemI = ArgTypeI->getVectorNumElements(); + + // Get the total number of elements in the fused vector type. + // By definition, this must equal the number of elements in + // the final mask. + unsigned NumElem = VArgType->getVectorNumElements(); + std::vector<Constant*> Mask(NumElem); + + Type *OpTypeI = I->getOperand(0)->getType(); + unsigned NumInElemI = OpTypeI->getVectorNumElements(); + Type *OpTypeJ = J->getOperand(0)->getType(); + unsigned NumInElemJ = OpTypeJ->getVectorNumElements(); + + // The fused vector will be: + // ----------------------------------------------------- + // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ | + // ----------------------------------------------------- + // from which we'll extract NumElem total elements (where the first NumElemI + // of them come from the mask in I and the remainder come from the mask + // in J. + + // For the mask from the first pair... + fillNewShuffleMask(Context, I, 0, NumInElemJ, NumInElemI, + 0, Mask); + + // For the mask from the second pair... + fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ, + NumInElemI, Mask); + + return ConstantVector::get(Mask); + } + + bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I, + Instruction *J, unsigned o, Value *&LOp, + unsigned numElemL, + Type *ArgTypeL, Type *ArgTypeH, + bool IBeforeJ, unsigned IdxOff) { + bool ExpandedIEChain = false; + if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) { + // If we have a pure insertelement chain, then this can be rewritten + // into a chain that directly builds the larger type. + if (isPureIEChain(LIE)) { + SmallVector<Value *, 8> VectElemts(numElemL, + UndefValue::get(ArgTypeL->getScalarType())); + InsertElementInst *LIENext = LIE; + do { + unsigned Idx = + cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue(); + VectElemts[Idx] = LIENext->getOperand(1); + } while ((LIENext = + dyn_cast<InsertElementInst>(LIENext->getOperand(0)))); + + LIENext = nullptr; + Value *LIEPrev = UndefValue::get(ArgTypeH); + for (unsigned i = 0; i < numElemL; ++i) { + if (isa<UndefValue>(VectElemts[i])) continue; + LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i], + ConstantInt::get(Type::getInt32Ty(Context), + i + IdxOff), + getReplacementName(IBeforeJ ? I : J, + true, o, i+1)); + LIENext->insertBefore(IBeforeJ ? J : I); + LIEPrev = LIENext; + } + + LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH); + ExpandedIEChain = true; + } + } + + return ExpandedIEChain; + } + + static unsigned getNumScalarElements(Type *Ty) { + if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) + return VecTy->getNumElements(); + return 1; + } + + // Returns the value to be used as the specified operand of the vector + // instruction that fuses I with J. + Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I, + Instruction *J, unsigned o, bool IBeforeJ) { + Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); + Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1); + + // Compute the fused vector type for this operand + Type *ArgTypeI = I->getOperand(o)->getType(); + Type *ArgTypeJ = J->getOperand(o)->getType(); + VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); + + Instruction *L = I, *H = J; + Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ; + + unsigned numElemL = getNumScalarElements(ArgTypeL); + unsigned numElemH = getNumScalarElements(ArgTypeH); + + Value *LOp = L->getOperand(o); + Value *HOp = H->getOperand(o); + unsigned numElem = VArgType->getNumElements(); + + // First, we check if we can reuse the "original" vector outputs (if these + // exist). We might need a shuffle. + ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp); + ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp); + ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp); + ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp); + + // FIXME: If we're fusing shuffle instructions, then we can't apply this + // optimization. The input vectors to the shuffle might be a different + // length from the shuffle outputs. Unfortunately, the replacement + // shuffle mask has already been formed, and the mask entries are sensitive + // to the sizes of the inputs. + bool IsSizeChangeShuffle = + isa<ShuffleVectorInst>(L) && + (LOp->getType() != L->getType() || HOp->getType() != H->getType()); + + if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) { + // We can have at most two unique vector inputs. + bool CanUseInputs = true; + Value *I1, *I2 = nullptr; + if (LEE) { + I1 = LEE->getOperand(0); + } else { + I1 = LSV->getOperand(0); + I2 = LSV->getOperand(1); + if (I2 == I1 || isa<UndefValue>(I2)) + I2 = nullptr; + } + + if (HEE) { + Value *I3 = HEE->getOperand(0); + if (!I2 && I3 != I1) + I2 = I3; + else if (I3 != I1 && I3 != I2) + CanUseInputs = false; + } else { + Value *I3 = HSV->getOperand(0); + if (!I2 && I3 != I1) + I2 = I3; + else if (I3 != I1 && I3 != I2) + CanUseInputs = false; + + if (CanUseInputs) { + Value *I4 = HSV->getOperand(1); + if (!isa<UndefValue>(I4)) { + if (!I2 && I4 != I1) + I2 = I4; + else if (I4 != I1 && I4 != I2) + CanUseInputs = false; + } + } + } + + if (CanUseInputs) { + unsigned LOpElem = + cast<Instruction>(LOp)->getOperand(0)->getType() + ->getVectorNumElements(); + + unsigned HOpElem = + cast<Instruction>(HOp)->getOperand(0)->getType() + ->getVectorNumElements(); + + // We have one or two input vectors. We need to map each index of the + // operands to the index of the original vector. + SmallVector<std::pair<int, int>, 8> II(numElem); + for (unsigned i = 0; i < numElemL; ++i) { + int Idx, INum; + if (LEE) { + Idx = + cast<ConstantInt>(LEE->getOperand(1))->getSExtValue(); + INum = LEE->getOperand(0) == I1 ? 0 : 1; + } else { + Idx = LSV->getMaskValue(i); + if (Idx < (int) LOpElem) { + INum = LSV->getOperand(0) == I1 ? 0 : 1; + } else { + Idx -= LOpElem; + INum = LSV->getOperand(1) == I1 ? 0 : 1; + } + } + + II[i] = std::pair<int, int>(Idx, INum); + } + for (unsigned i = 0; i < numElemH; ++i) { + int Idx, INum; + if (HEE) { + Idx = + cast<ConstantInt>(HEE->getOperand(1))->getSExtValue(); + INum = HEE->getOperand(0) == I1 ? 0 : 1; + } else { + Idx = HSV->getMaskValue(i); + if (Idx < (int) HOpElem) { + INum = HSV->getOperand(0) == I1 ? 0 : 1; + } else { + Idx -= HOpElem; + INum = HSV->getOperand(1) == I1 ? 0 : 1; + } + } + + II[i + numElemL] = std::pair<int, int>(Idx, INum); + } + + // We now have an array which tells us from which index of which + // input vector each element of the operand comes. + VectorType *I1T = cast<VectorType>(I1->getType()); + unsigned I1Elem = I1T->getNumElements(); + + if (!I2) { + // In this case there is only one underlying vector input. Check for + // the trivial case where we can use the input directly. + if (I1Elem == numElem) { + bool ElemInOrder = true; + for (unsigned i = 0; i < numElem; ++i) { + if (II[i].first != (int) i && II[i].first != -1) { + ElemInOrder = false; + break; + } + } + + if (ElemInOrder) + return I1; + } + + // A shuffle is needed. + std::vector<Constant *> Mask(numElem); + for (unsigned i = 0; i < numElem; ++i) { + int Idx = II[i].first; + if (Idx == -1) + Mask[i] = UndefValue::get(Type::getInt32Ty(Context)); + else + Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx); + } + + Instruction *S = + new ShuffleVectorInst(I1, UndefValue::get(I1T), + ConstantVector::get(Mask), + getReplacementName(IBeforeJ ? I : J, + true, o)); + S->insertBefore(IBeforeJ ? J : I); + return S; + } + + VectorType *I2T = cast<VectorType>(I2->getType()); + unsigned I2Elem = I2T->getNumElements(); + + // This input comes from two distinct vectors. The first step is to + // make sure that both vectors are the same length. If not, the + // smaller one will need to grow before they can be shuffled together. + if (I1Elem < I2Elem) { + std::vector<Constant *> Mask(I2Elem); + unsigned v = 0; + for (; v < I1Elem; ++v) + Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); + for (; v < I2Elem; ++v) + Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); + + Instruction *NewI1 = + new ShuffleVectorInst(I1, UndefValue::get(I1T), + ConstantVector::get(Mask), + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + NewI1->insertBefore(IBeforeJ ? J : I); + I1 = NewI1; + I1Elem = I2Elem; + } else if (I1Elem > I2Elem) { + std::vector<Constant *> Mask(I1Elem); + unsigned v = 0; + for (; v < I2Elem; ++v) + Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); + for (; v < I1Elem; ++v) + Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); + + Instruction *NewI2 = + new ShuffleVectorInst(I2, UndefValue::get(I2T), + ConstantVector::get(Mask), + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + NewI2->insertBefore(IBeforeJ ? J : I); + I2 = NewI2; + } + + // Now that both I1 and I2 are the same length we can shuffle them + // together (and use the result). + std::vector<Constant *> Mask(numElem); + for (unsigned v = 0; v < numElem; ++v) { + if (II[v].first == -1) { + Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); + } else { + int Idx = II[v].first + II[v].second * I1Elem; + Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx); + } + } + + Instruction *NewOp = + new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask), + getReplacementName(IBeforeJ ? I : J, true, o)); + NewOp->insertBefore(IBeforeJ ? J : I); + return NewOp; + } + } + + Type *ArgType = ArgTypeL; + if (numElemL < numElemH) { + if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH, + ArgTypeL, VArgType, IBeforeJ, 1)) { + // This is another short-circuit case: we're combining a scalar into + // a vector that is formed by an IE chain. We've just expanded the IE + // chain, now insert the scalar and we're done. + + Instruction *S = InsertElementInst::Create(HOp, LOp, CV0, + getReplacementName(IBeforeJ ? I : J, true, o)); + S->insertBefore(IBeforeJ ? J : I); + return S; + } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL, + ArgTypeH, IBeforeJ)) { + // The two vector inputs to the shuffle must be the same length, + // so extend the smaller vector to be the same length as the larger one. + Instruction *NLOp; + if (numElemL > 1) { + + std::vector<Constant *> Mask(numElemH); + unsigned v = 0; + for (; v < numElemL; ++v) + Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); + for (; v < numElemH; ++v) + Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); + + NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL), + ConstantVector::get(Mask), + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + } else { + NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0, + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + } + + NLOp->insertBefore(IBeforeJ ? J : I); + LOp = NLOp; + } + + ArgType = ArgTypeH; + } else if (numElemL > numElemH) { + if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL, + ArgTypeH, VArgType, IBeforeJ)) { + Instruction *S = + InsertElementInst::Create(LOp, HOp, + ConstantInt::get(Type::getInt32Ty(Context), + numElemL), + getReplacementName(IBeforeJ ? I : J, + true, o)); + S->insertBefore(IBeforeJ ? J : I); + return S; + } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH, + ArgTypeL, IBeforeJ)) { + Instruction *NHOp; + if (numElemH > 1) { + std::vector<Constant *> Mask(numElemL); + unsigned v = 0; + for (; v < numElemH; ++v) + Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v); + for (; v < numElemL; ++v) + Mask[v] = UndefValue::get(Type::getInt32Ty(Context)); + + NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH), + ConstantVector::get(Mask), + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + } else { + NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0, + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + } + + NHOp->insertBefore(IBeforeJ ? J : I); + HOp = NHOp; + } + } + + if (ArgType->isVectorTy()) { + unsigned numElem = VArgType->getVectorNumElements(); + std::vector<Constant*> Mask(numElem); + for (unsigned v = 0; v < numElem; ++v) { + unsigned Idx = v; + // If the low vector was expanded, we need to skip the extra + // undefined entries. + if (v >= numElemL && numElemH > numElemL) + Idx += (numElemH - numElemL); + Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx); + } + + Instruction *BV = new ShuffleVectorInst(LOp, HOp, + ConstantVector::get(Mask), + getReplacementName(IBeforeJ ? I : J, true, o)); + BV->insertBefore(IBeforeJ ? J : I); + return BV; + } + + Instruction *BV1 = InsertElementInst::Create( + UndefValue::get(VArgType), LOp, CV0, + getReplacementName(IBeforeJ ? I : J, + true, o, 1)); + BV1->insertBefore(IBeforeJ ? J : I); + Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1, + getReplacementName(IBeforeJ ? I : J, + true, o, 2)); + BV2->insertBefore(IBeforeJ ? J : I); + return BV2; + } + + // This function creates an array of values that will be used as the inputs + // to the vector instruction that fuses I with J. + void BBVectorize::getReplacementInputsForPair(LLVMContext& Context, + Instruction *I, Instruction *J, + SmallVectorImpl<Value *> &ReplacedOperands, + bool IBeforeJ) { + unsigned NumOperands = I->getNumOperands(); + + for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) { + // Iterate backward so that we look at the store pointer + // first and know whether or not we need to flip the inputs. + + if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) { + // This is the pointer for a load/store instruction. + ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o); + continue; + } else if (isa<CallInst>(I)) { + Function *F = cast<CallInst>(I)->getCalledFunction(); + Intrinsic::ID IID = F->getIntrinsicID(); + if (o == NumOperands-1) { + BasicBlock &BB = *I->getParent(); + + Module *M = BB.getParent()->getParent(); + Type *ArgTypeI = I->getType(); + Type *ArgTypeJ = J->getType(); + Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ); + + ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType); + continue; + } else if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz || + IID == Intrinsic::cttz) && o == 1) { + // The second argument of powi/ctlz/cttz is a single integer/constant + // and we've already checked that both arguments are equal. + // As a result, we just keep I's second argument. + ReplacedOperands[o] = I->getOperand(o); + continue; + } + } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) { + ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J); + continue; + } + + ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ); + } + } + + // This function creates two values that represent the outputs of the + // original I and J instructions. These are generally vector shuffles + // or extracts. In many cases, these will end up being unused and, thus, + // eliminated by later passes. + void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I, + Instruction *J, Instruction *K, + Instruction *&InsertionPt, + Instruction *&K1, Instruction *&K2) { + if (isa<StoreInst>(I)) + return; + + Type *IType = I->getType(); + Type *JType = J->getType(); + + VectorType *VType = getVecTypeForPair(IType, JType); + unsigned numElem = VType->getNumElements(); + + unsigned numElemI = getNumScalarElements(IType); + unsigned numElemJ = getNumScalarElements(JType); + + if (IType->isVectorTy()) { + std::vector<Constant *> Mask1(numElemI), Mask2(numElemI); + for (unsigned v = 0; v < numElemI; ++v) { + Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v); + Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ + v); + } + + K1 = new ShuffleVectorInst(K, UndefValue::get(VType), + ConstantVector::get(Mask1), + getReplacementName(K, false, 1)); + } else { + Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0); + K1 = ExtractElementInst::Create(K, CV0, getReplacementName(K, false, 1)); + } + + if (JType->isVectorTy()) { + std::vector<Constant *> Mask1(numElemJ), Mask2(numElemJ); + for (unsigned v = 0; v < numElemJ; ++v) { + Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v); + Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI + v); + } + + K2 = new ShuffleVectorInst(K, UndefValue::get(VType), + ConstantVector::get(Mask2), + getReplacementName(K, false, 2)); + } else { + Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem - 1); + K2 = ExtractElementInst::Create(K, CV1, getReplacementName(K, false, 2)); + } + + K1->insertAfter(K); + K2->insertAfter(K1); + InsertionPt = K2; + } + + // Move all uses of the function I (including pairing-induced uses) after J. + bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB, + DenseSet<ValuePair> &LoadMoveSetPairs, + Instruction *I, Instruction *J) { + // Skip to the first instruction past I. + BasicBlock::iterator L = std::next(BasicBlock::iterator(I)); + + DenseSet<Value *> Users; + AliasSetTracker WriteSet(*AA); + if (I->mayWriteToMemory()) WriteSet.add(I); + + for (; cast<Instruction>(L) != J; ++L) + (void)trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs); + + assert(cast<Instruction>(L) == J && + "Tracking has not proceeded far enough to check for dependencies"); + // If J is now in the use set of I, then trackUsesOfI will return true + // and we have a dependency cycle (and the fusing operation must abort). + return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs); + } + + // Move all uses of the function I (including pairing-induced uses) after J. + void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB, + DenseSet<ValuePair> &LoadMoveSetPairs, + Instruction *&InsertionPt, + Instruction *I, Instruction *J) { + // Skip to the first instruction past I. + BasicBlock::iterator L = std::next(BasicBlock::iterator(I)); + + DenseSet<Value *> Users; + AliasSetTracker WriteSet(*AA); + if (I->mayWriteToMemory()) WriteSet.add(I); + + for (; cast<Instruction>(L) != J;) { + if (trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs)) { + // Move this instruction + Instruction *InstToMove = &*L++; + + DEBUG(dbgs() << "BBV: moving: " << *InstToMove << + " to after " << *InsertionPt << "\n"); + InstToMove->removeFromParent(); + InstToMove->insertAfter(InsertionPt); + InsertionPt = InstToMove; + } else { + ++L; + } + } + } + + // Collect all load instruction that are in the move set of a given first + // pair member. These loads depend on the first instruction, I, and so need + // to be moved after J (the second instruction) when the pair is fused. + void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB, + DenseMap<Value *, Value *> &ChosenPairs, + DenseMap<Value *, std::vector<Value *> > &LoadMoveSet, + DenseSet<ValuePair> &LoadMoveSetPairs, + Instruction *I) { + // Skip to the first instruction past I. + BasicBlock::iterator L = std::next(BasicBlock::iterator(I)); + + DenseSet<Value *> Users; + AliasSetTracker WriteSet(*AA); + if (I->mayWriteToMemory()) WriteSet.add(I); + + // Note: We cannot end the loop when we reach J because J could be moved + // farther down the use chain by another instruction pairing. Also, J + // could be before I if this is an inverted input. + for (BasicBlock::iterator E = BB.end(); L != E; ++L) { + if (trackUsesOfI(Users, WriteSet, I, &*L)) { + if (L->mayReadFromMemory()) { + LoadMoveSet[&*L].push_back(I); + LoadMoveSetPairs.insert(ValuePair(&*L, I)); + } + } + } + } + + // In cases where both load/stores and the computation of their pointers + // are chosen for vectorization, we can end up in a situation where the + // aliasing analysis starts returning different query results as the + // process of fusing instruction pairs continues. Because the algorithm + // relies on finding the same use dags here as were found earlier, we'll + // need to precompute the necessary aliasing information here and then + // manually update it during the fusion process. + void BBVectorize::collectLoadMoveSet(BasicBlock &BB, + std::vector<Value *> &PairableInsts, + DenseMap<Value *, Value *> &ChosenPairs, + DenseMap<Value *, std::vector<Value *> > &LoadMoveSet, + DenseSet<ValuePair> &LoadMoveSetPairs) { + for (std::vector<Value *>::iterator PI = PairableInsts.begin(), + PIE = PairableInsts.end(); PI != PIE; ++PI) { + DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI); + if (P == ChosenPairs.end()) continue; + + Instruction *I = cast<Instruction>(P->first); + collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, + LoadMoveSetPairs, I); + } + } + + // This function fuses the chosen instruction pairs into vector instructions, + // taking care preserve any needed scalar outputs and, then, it reorders the + // remaining instructions as needed (users of the first member of the pair + // need to be moved to after the location of the second member of the pair + // because the vector instruction is inserted in the location of the pair's + // second member). + void BBVectorize::fuseChosenPairs(BasicBlock &BB, + std::vector<Value *> &PairableInsts, + DenseMap<Value *, Value *> &ChosenPairs, + DenseSet<ValuePair> &FixedOrderPairs, + DenseMap<VPPair, unsigned> &PairConnectionTypes, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs, + DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) { + LLVMContext& Context = BB.getContext(); + + // During the vectorization process, the order of the pairs to be fused + // could be flipped. So we'll add each pair, flipped, into the ChosenPairs + // list. After a pair is fused, the flipped pair is removed from the list. + DenseSet<ValuePair> FlippedPairs; + for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(), + E = ChosenPairs.end(); P != E; ++P) + FlippedPairs.insert(ValuePair(P->second, P->first)); + for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(), + E = FlippedPairs.end(); P != E; ++P) + ChosenPairs.insert(*P); + + DenseMap<Value *, std::vector<Value *> > LoadMoveSet; + DenseSet<ValuePair> LoadMoveSetPairs; + collectLoadMoveSet(BB, PairableInsts, ChosenPairs, + LoadMoveSet, LoadMoveSetPairs); + + DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n"); + + for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) { + DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(&*PI); + if (P == ChosenPairs.end()) { + ++PI; + continue; + } + + if (getDepthFactor(P->first) == 0) { + // These instructions are not really fused, but are tracked as though + // they are. Any case in which it would be interesting to fuse them + // will be taken care of by InstCombine. + --NumFusedOps; + ++PI; + continue; + } + + Instruction *I = cast<Instruction>(P->first), + *J = cast<Instruction>(P->second); + + DEBUG(dbgs() << "BBV: fusing: " << *I << + " <-> " << *J << "\n"); + + // Remove the pair and flipped pair from the list. + DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second); + assert(FP != ChosenPairs.end() && "Flipped pair not found in list"); + ChosenPairs.erase(FP); + ChosenPairs.erase(P); + + if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) { + DEBUG(dbgs() << "BBV: fusion of: " << *I << + " <-> " << *J << + " aborted because of non-trivial dependency cycle\n"); + --NumFusedOps; + ++PI; + continue; + } + + // If the pair must have the other order, then flip it. + bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I)); + if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) { + // This pair does not have a fixed order, and so we might want to + // flip it if that will yield fewer shuffles. We count the number + // of dependencies connected via swaps, and those directly connected, + // and flip the order if the number of swaps is greater. + bool OrigOrder = true; + DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ = + ConnectedPairDeps.find(ValuePair(I, J)); + if (IJ == ConnectedPairDeps.end()) { + IJ = ConnectedPairDeps.find(ValuePair(J, I)); + OrigOrder = false; + } + + if (IJ != ConnectedPairDeps.end()) { + unsigned NumDepsDirect = 0, NumDepsSwap = 0; + for (std::vector<ValuePair>::iterator T = IJ->second.begin(), + TE = IJ->second.end(); T != TE; ++T) { + VPPair Q(IJ->first, *T); + DenseMap<VPPair, unsigned>::iterator R = + PairConnectionTypes.find(VPPair(Q.second, Q.first)); + assert(R != PairConnectionTypes.end() && + "Cannot find pair connection type"); + if (R->second == PairConnectionDirect) + ++NumDepsDirect; + else if (R->second == PairConnectionSwap) + ++NumDepsSwap; + } + + if (!OrigOrder) + std::swap(NumDepsDirect, NumDepsSwap); + + if (NumDepsSwap > NumDepsDirect) { + FlipPairOrder = true; + DEBUG(dbgs() << "BBV: reordering pair: " << *I << + " <-> " << *J << "\n"); + } + } + } + + Instruction *L = I, *H = J; + if (FlipPairOrder) + std::swap(H, L); + + // If the pair being fused uses the opposite order from that in the pair + // connection map, then we need to flip the types. + DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL = + ConnectedPairs.find(ValuePair(H, L)); + if (HL != ConnectedPairs.end()) + for (std::vector<ValuePair>::iterator T = HL->second.begin(), + TE = HL->second.end(); T != TE; ++T) { + VPPair Q(HL->first, *T); + DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q); + assert(R != PairConnectionTypes.end() && + "Cannot find pair connection type"); + if (R->second == PairConnectionDirect) + R->second = PairConnectionSwap; + else if (R->second == PairConnectionSwap) + R->second = PairConnectionDirect; + } + + bool LBeforeH = !FlipPairOrder; + unsigned NumOperands = I->getNumOperands(); + SmallVector<Value *, 3> ReplacedOperands(NumOperands); + getReplacementInputsForPair(Context, L, H, ReplacedOperands, + LBeforeH); + + // Make a copy of the original operation, change its type to the vector + // type and replace its operands with the vector operands. + Instruction *K = L->clone(); + if (L->hasName()) + K->takeName(L); + else if (H->hasName()) + K->takeName(H); + + if (auto CS = CallSite(K)) { + SmallVector<Type *, 3> Tys; + FunctionType *Old = CS.getFunctionType(); + unsigned NumOld = Old->getNumParams(); + assert(NumOld <= ReplacedOperands.size()); + for (unsigned i = 0; i != NumOld; ++i) + Tys.push_back(ReplacedOperands[i]->getType()); + CS.mutateFunctionType( + FunctionType::get(getVecTypeForPair(L->getType(), H->getType()), + Tys, Old->isVarArg())); + } else if (!isa<StoreInst>(K)) + K->mutateType(getVecTypeForPair(L->getType(), H->getType())); + + unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, + LLVMContext::MD_noalias, LLVMContext::MD_fpmath, + LLVMContext::MD_invariant_group}; + combineMetadata(K, H, KnownIDs); + K->intersectOptionalDataWith(H); + + for (unsigned o = 0; o < NumOperands; ++o) + K->setOperand(o, ReplacedOperands[o]); + + K->insertAfter(J); + + // Instruction insertion point: + Instruction *InsertionPt = K; + Instruction *K1 = nullptr, *K2 = nullptr; + replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2); + + // The use dag of the first original instruction must be moved to after + // the location of the second instruction. The entire use dag of the + // first instruction is disjoint from the input dag of the second + // (by definition), and so commutes with it. + + moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J); + + if (!isa<StoreInst>(I)) { + L->replaceAllUsesWith(K1); + H->replaceAllUsesWith(K2); + } + + // Instructions that may read from memory may be in the load move set. + // Once an instruction is fused, we no longer need its move set, and so + // the values of the map never need to be updated. However, when a load + // is fused, we need to merge the entries from both instructions in the + // pair in case those instructions were in the move set of some other + // yet-to-be-fused pair. The loads in question are the keys of the map. + if (I->mayReadFromMemory()) { + std::vector<ValuePair> NewSetMembers; + DenseMap<Value *, std::vector<Value *> >::iterator II = + LoadMoveSet.find(I); + if (II != LoadMoveSet.end()) + for (std::vector<Value *>::iterator N = II->second.begin(), + NE = II->second.end(); N != NE; ++N) + NewSetMembers.push_back(ValuePair(K, *N)); + DenseMap<Value *, std::vector<Value *> >::iterator JJ = + LoadMoveSet.find(J); + if (JJ != LoadMoveSet.end()) + for (std::vector<Value *>::iterator N = JJ->second.begin(), + NE = JJ->second.end(); N != NE; ++N) + NewSetMembers.push_back(ValuePair(K, *N)); + for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(), + AE = NewSetMembers.end(); A != AE; ++A) { + LoadMoveSet[A->first].push_back(A->second); + LoadMoveSetPairs.insert(*A); + } + } + + // Before removing I, set the iterator to the next instruction. + PI = std::next(BasicBlock::iterator(I)); + if (cast<Instruction>(PI) == J) + ++PI; + + SE->forgetValue(I); + SE->forgetValue(J); + I->eraseFromParent(); + J->eraseFromParent(); + + DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" << + BB << "\n"); + } + + DEBUG(dbgs() << "BBV: final: \n" << BB << "\n"); + } +} + +char BBVectorize::ID = 0; +static const char bb_vectorize_name[] = "Basic-Block Vectorization"; +INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) +INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false) + +BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) { + return new BBVectorize(C); +} + +bool +llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) { + BBVectorize BBVectorizer(P, *BB.getParent(), C); + return BBVectorizer.vectorizeBB(BB); +} + +//===----------------------------------------------------------------------===// +VectorizeConfig::VectorizeConfig() { + VectorBits = ::VectorBits; + VectorizeBools = !::NoBools; + VectorizeInts = !::NoInts; + VectorizeFloats = !::NoFloats; + VectorizePointers = !::NoPointers; + VectorizeCasts = !::NoCasts; + VectorizeMath = !::NoMath; + VectorizeBitManipulations = !::NoBitManipulation; + VectorizeFMA = !::NoFMA; + VectorizeSelect = !::NoSelect; + VectorizeCmp = !::NoCmp; + VectorizeGEP = !::NoGEP; + VectorizeMemOps = !::NoMemOps; + AlignedOnly = ::AlignedOnly; + ReqChainDepth= ::ReqChainDepth; + SearchLimit = ::SearchLimit; + MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck; + SplatBreaksChain = ::SplatBreaksChain; + MaxInsts = ::MaxInsts; + MaxPairs = ::MaxPairs; + MaxIter = ::MaxIter; + Pow2LenOnly = ::Pow2LenOnly; + NoMemOpBoost = ::NoMemOpBoost; + FastDep = ::FastDep; +} |
