diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp | 5758 |
1 files changed, 5758 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp new file mode 100644 index 00000000000..17c25dfffc1 --- /dev/null +++ b/gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -0,0 +1,5758 @@ +//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops +// and generates target-independent LLVM-IR. +// The vectorizer uses the TargetTransformInfo analysis to estimate the costs +// of instructions in order to estimate the profitability of vectorization. +// +// The loop vectorizer combines consecutive loop iterations into a single +// 'wide' iteration. After this transformation the index is incremented +// by the SIMD vector width, and not by one. +// +// This pass has three parts: +// 1. The main loop pass that drives the different parts. +// 2. LoopVectorizationLegality - A unit that checks for the legality +// of the vectorization. +// 3. InnerLoopVectorizer - A unit that performs the actual +// widening of instructions. +// 4. LoopVectorizationCostModel - A unit that checks for the profitability +// of vectorization. It decides on the optimal vector width, which +// can be one, if vectorization is not profitable. +// +//===----------------------------------------------------------------------===// +// +// The reduction-variable vectorization is based on the paper: +// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. +// +// Variable uniformity checks are inspired by: +// Karrenberg, R. and Hack, S. Whole Function Vectorization. +// +// The interleaved access vectorization is based on the paper: +// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved +// Data for SIMD +// +// Other ideas/concepts are from: +// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. +// +// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of +// Vectorizing Compilers. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Vectorize.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/DemandedBits.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/LoopAccessAnalysis.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/Verifier.h" +#include "llvm/Pass.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include <algorithm> +#include <functional> +#include <map> +#include <tuple> + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define LV_NAME "loop-vectorize" +#define DEBUG_TYPE LV_NAME + +STATISTIC(LoopsVectorized, "Number of loops vectorized"); +STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); + +static cl::opt<bool> +EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, + cl::desc("Enable if-conversion during vectorization.")); + +/// We don't vectorize loops with a known constant trip count below this number. +static cl::opt<unsigned> +TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), + cl::Hidden, + cl::desc("Don't vectorize loops with a constant " + "trip count that is smaller than this " + "value.")); + +static cl::opt<bool> MaximizeBandwidth( + "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, + cl::desc("Maximize bandwidth when selecting vectorization factor which " + "will be determined by the smallest type in loop.")); + +/// This enables versioning on the strides of symbolically striding memory +/// accesses in code like the following. +/// for (i = 0; i < N; ++i) +/// A[i * Stride1] += B[i * Stride2] ... +/// +/// Will be roughly translated to +/// if (Stride1 == 1 && Stride2 == 1) { +/// for (i = 0; i < N; i+=4) +/// A[i:i+3] += ... +/// } else +/// ... +static cl::opt<bool> EnableMemAccessVersioning( + "enable-mem-access-versioning", cl::init(true), cl::Hidden, + cl::desc("Enable symbolic stride memory access versioning")); + +static cl::opt<bool> EnableInterleavedMemAccesses( + "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, + cl::desc("Enable vectorization on interleaved memory accesses in a loop")); + +/// Maximum factor for an interleaved memory access. +static cl::opt<unsigned> MaxInterleaveGroupFactor( + "max-interleave-group-factor", cl::Hidden, + cl::desc("Maximum factor for an interleaved access group (default = 8)"), + cl::init(8)); + +/// We don't interleave loops with a known constant trip count below this +/// number. +static const unsigned TinyTripCountInterleaveThreshold = 128; + +static cl::opt<unsigned> ForceTargetNumScalarRegs( + "force-target-num-scalar-regs", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's number of scalar registers.")); + +static cl::opt<unsigned> ForceTargetNumVectorRegs( + "force-target-num-vector-regs", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's number of vector registers.")); + +/// Maximum vectorization interleave count. +static const unsigned MaxInterleaveFactor = 16; + +static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( + "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's max interleave factor for " + "scalar loops.")); + +static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( + "force-target-max-vector-interleave", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's max interleave factor for " + "vectorized loops.")); + +static cl::opt<unsigned> ForceTargetInstructionCost( + "force-target-instruction-cost", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's expected cost for " + "an instruction to a single constant value. Mostly " + "useful for getting consistent testing.")); + +static cl::opt<unsigned> SmallLoopCost( + "small-loop-cost", cl::init(20), cl::Hidden, + cl::desc( + "The cost of a loop that is considered 'small' by the interleaver.")); + +static cl::opt<bool> LoopVectorizeWithBlockFrequency( + "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, + cl::desc("Enable the use of the block frequency analysis to access PGO " + "heuristics minimizing code growth in cold regions and being more " + "aggressive in hot regions.")); + +// Runtime interleave loops for load/store throughput. +static cl::opt<bool> EnableLoadStoreRuntimeInterleave( + "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, + cl::desc( + "Enable runtime interleaving until load/store ports are saturated")); + +/// The number of stores in a loop that are allowed to need predication. +static cl::opt<unsigned> NumberOfStoresToPredicate( + "vectorize-num-stores-pred", cl::init(1), cl::Hidden, + cl::desc("Max number of stores to be predicated behind an if.")); + +static cl::opt<bool> EnableIndVarRegisterHeur( + "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, + cl::desc("Count the induction variable only once when interleaving")); + +static cl::opt<bool> EnableCondStoresVectorization( + "enable-cond-stores-vec", cl::init(false), cl::Hidden, + cl::desc("Enable if predication of stores during vectorization.")); + +static cl::opt<unsigned> MaxNestedScalarReductionIC( + "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, + cl::desc("The maximum interleave count to use when interleaving a scalar " + "reduction in a nested loop.")); + +static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( + "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, + cl::desc("The maximum allowed number of runtime memory checks with a " + "vectorize(enable) pragma.")); + +static cl::opt<unsigned> VectorizeSCEVCheckThreshold( + "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, + cl::desc("The maximum number of SCEV checks allowed.")); + +static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( + "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, + cl::desc("The maximum number of SCEV checks allowed with a " + "vectorize(enable) pragma")); + +namespace { + +// Forward declarations. +class LoopVectorizeHints; +class LoopVectorizationLegality; +class LoopVectorizationCostModel; +class LoopVectorizationRequirements; + +/// \brief This modifies LoopAccessReport to initialize message with +/// loop-vectorizer-specific part. +class VectorizationReport : public LoopAccessReport { +public: + VectorizationReport(Instruction *I = nullptr) + : LoopAccessReport("loop not vectorized: ", I) {} + + /// \brief This allows promotion of the loop-access analysis report into the + /// loop-vectorizer report. It modifies the message to add the + /// loop-vectorizer-specific part of the message. + explicit VectorizationReport(const LoopAccessReport &R) + : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), + R.getInstr()) {} +}; + +/// A helper function for converting Scalar types to vector types. +/// If the incoming type is void, we return void. If the VF is 1, we return +/// the scalar type. +static Type* ToVectorTy(Type *Scalar, unsigned VF) { + if (Scalar->isVoidTy() || VF == 1) + return Scalar; + return VectorType::get(Scalar, VF); +} + +/// A helper function that returns GEP instruction and knows to skip a +/// 'bitcast'. The 'bitcast' may be skipped if the source and the destination +/// pointee types of the 'bitcast' have the same size. +/// For example: +/// bitcast double** %var to i64* - can be skipped +/// bitcast double** %var to i8* - can not +static GetElementPtrInst *getGEPInstruction(Value *Ptr) { + + if (isa<GetElementPtrInst>(Ptr)) + return cast<GetElementPtrInst>(Ptr); + + if (isa<BitCastInst>(Ptr) && + isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { + Type *BitcastTy = Ptr->getType(); + Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); + if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) + return nullptr; + Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); + Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); + const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); + if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) + return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); + } + return nullptr; +} + +/// InnerLoopVectorizer vectorizes loops which contain only one basic +/// block to a specified vectorization factor (VF). +/// This class performs the widening of scalars into vectors, or multiple +/// scalars. This class also implements the following features: +/// * It inserts an epilogue loop for handling loops that don't have iteration +/// counts that are known to be a multiple of the vectorization factor. +/// * It handles the code generation for reduction variables. +/// * Scalarization (implementation using scalars) of un-vectorizable +/// instructions. +/// InnerLoopVectorizer does not perform any vectorization-legality +/// checks, and relies on the caller to check for the different legality +/// aspects. The InnerLoopVectorizer relies on the +/// LoopVectorizationLegality class to provide information about the induction +/// and reduction variables that were found to a given vectorization factor. +class InnerLoopVectorizer { +public: + InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, + LoopInfo *LI, DominatorTree *DT, + const TargetLibraryInfo *TLI, + const TargetTransformInfo *TTI, unsigned VecWidth, + unsigned UnrollFactor) + : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), + VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()), + Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), + TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr), + AddedSafetyChecks(false) {} + + // Perform the actual loop widening (vectorization). + // MinimumBitWidths maps scalar integer values to the smallest bitwidth they + // can be validly truncated to. The cost model has assumed this truncation + // will happen when vectorizing. + void vectorize(LoopVectorizationLegality *L, + MapVector<Instruction*,uint64_t> MinimumBitWidths) { + MinBWs = MinimumBitWidths; + Legal = L; + // Create a new empty loop. Unlink the old loop and connect the new one. + createEmptyLoop(); + // Widen each instruction in the old loop to a new one in the new loop. + // Use the Legality module to find the induction and reduction variables. + vectorizeLoop(); + } + + // Return true if any runtime check is added. + bool IsSafetyChecksAdded() { + return AddedSafetyChecks; + } + + virtual ~InnerLoopVectorizer() {} + +protected: + /// A small list of PHINodes. + typedef SmallVector<PHINode*, 4> PhiVector; + /// When we unroll loops we have multiple vector values for each scalar. + /// This data structure holds the unrolled and vectorized values that + /// originated from one scalar instruction. + typedef SmallVector<Value*, 2> VectorParts; + + // When we if-convert we need to create edge masks. We have to cache values + // so that we don't end up with exponential recursion/IR. + typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, + VectorParts> EdgeMaskCache; + + /// Create an empty loop, based on the loop ranges of the old loop. + void createEmptyLoop(); + /// Create a new induction variable inside L. + PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, + Value *Step, Instruction *DL); + /// Copy and widen the instructions from the old loop. + virtual void vectorizeLoop(); + + /// \brief The Loop exit block may have single value PHI nodes where the + /// incoming value is 'Undef'. While vectorizing we only handled real values + /// that were defined inside the loop. Here we fix the 'undef case'. + /// See PR14725. + void fixLCSSAPHIs(); + + /// Shrinks vector element sizes based on information in "MinBWs". + void truncateToMinimalBitwidths(); + + /// A helper function that computes the predicate of the block BB, assuming + /// that the header block of the loop is set to True. It returns the *entry* + /// mask for the block BB. + VectorParts createBlockInMask(BasicBlock *BB); + /// A helper function that computes the predicate of the edge between SRC + /// and DST. + VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); + + /// A helper function to vectorize a single BB within the innermost loop. + void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); + + /// Vectorize a single PHINode in a block. This method handles the induction + /// variable canonicalization. It supports both VF = 1 for unrolled loops and + /// arbitrary length vectors. + void widenPHIInstruction(Instruction *PN, VectorParts &Entry, + unsigned UF, unsigned VF, PhiVector *PV); + + /// Insert the new loop to the loop hierarchy and pass manager + /// and update the analysis passes. + void updateAnalysis(); + + /// This instruction is un-vectorizable. Implement it as a sequence + /// of scalars. If \p IfPredicateStore is true we need to 'hide' each + /// scalarized instruction behind an if block predicated on the control + /// dependence of the instruction. + virtual void scalarizeInstruction(Instruction *Instr, + bool IfPredicateStore=false); + + /// Vectorize Load and Store instructions, + virtual void vectorizeMemoryInstruction(Instruction *Instr); + + /// Create a broadcast instruction. This method generates a broadcast + /// instruction (shuffle) for loop invariant values and for the induction + /// value. If this is the induction variable then we extend it to N, N+1, ... + /// this is needed because each iteration in the loop corresponds to a SIMD + /// element. + virtual Value *getBroadcastInstrs(Value *V); + + /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) + /// to each vector element of Val. The sequence starts at StartIndex. + virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); + + /// When we go over instructions in the basic block we rely on previous + /// values within the current basic block or on loop invariant values. + /// When we widen (vectorize) values we place them in the map. If the values + /// are not within the map, they have to be loop invariant, so we simply + /// broadcast them into a vector. + VectorParts &getVectorValue(Value *V); + + /// Try to vectorize the interleaved access group that \p Instr belongs to. + void vectorizeInterleaveGroup(Instruction *Instr); + + /// Generate a shuffle sequence that will reverse the vector Vec. + virtual Value *reverseVector(Value *Vec); + + /// Returns (and creates if needed) the original loop trip count. + Value *getOrCreateTripCount(Loop *NewLoop); + + /// Returns (and creates if needed) the trip count of the widened loop. + Value *getOrCreateVectorTripCount(Loop *NewLoop); + + /// Emit a bypass check to see if the trip count would overflow, or we + /// wouldn't have enough iterations to execute one vector loop. + void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); + /// Emit a bypass check to see if the vector trip count is nonzero. + void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); + /// Emit a bypass check to see if all of the SCEV assumptions we've + /// had to make are correct. + void emitSCEVChecks(Loop *L, BasicBlock *Bypass); + /// Emit bypass checks to check any memory assumptions we may have made. + void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); + + /// This is a helper class that holds the vectorizer state. It maps scalar + /// instructions to vector instructions. When the code is 'unrolled' then + /// then a single scalar value is mapped to multiple vector parts. The parts + /// are stored in the VectorPart type. + struct ValueMap { + /// C'tor. UnrollFactor controls the number of vectors ('parts') that + /// are mapped. + ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} + + /// \return True if 'Key' is saved in the Value Map. + bool has(Value *Key) const { return MapStorage.count(Key); } + + /// Initializes a new entry in the map. Sets all of the vector parts to the + /// save value in 'Val'. + /// \return A reference to a vector with splat values. + VectorParts &splat(Value *Key, Value *Val) { + VectorParts &Entry = MapStorage[Key]; + Entry.assign(UF, Val); + return Entry; + } + + ///\return A reference to the value that is stored at 'Key'. + VectorParts &get(Value *Key) { + VectorParts &Entry = MapStorage[Key]; + if (Entry.empty()) + Entry.resize(UF); + assert(Entry.size() == UF); + return Entry; + } + + private: + /// The unroll factor. Each entry in the map stores this number of vector + /// elements. + unsigned UF; + + /// Map storage. We use std::map and not DenseMap because insertions to a + /// dense map invalidates its iterators. + std::map<Value *, VectorParts> MapStorage; + }; + + /// The original loop. + Loop *OrigLoop; + /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies + /// dynamic knowledge to simplify SCEV expressions and converts them to a + /// more usable form. + PredicatedScalarEvolution &PSE; + /// Loop Info. + LoopInfo *LI; + /// Dominator Tree. + DominatorTree *DT; + /// Alias Analysis. + AliasAnalysis *AA; + /// Target Library Info. + const TargetLibraryInfo *TLI; + /// Target Transform Info. + const TargetTransformInfo *TTI; + + /// The vectorization SIMD factor to use. Each vector will have this many + /// vector elements. + unsigned VF; + +protected: + /// The vectorization unroll factor to use. Each scalar is vectorized to this + /// many different vector instructions. + unsigned UF; + + /// The builder that we use + IRBuilder<> Builder; + + // --- Vectorization state --- + + /// The vector-loop preheader. + BasicBlock *LoopVectorPreHeader; + /// The scalar-loop preheader. + BasicBlock *LoopScalarPreHeader; + /// Middle Block between the vector and the scalar. + BasicBlock *LoopMiddleBlock; + ///The ExitBlock of the scalar loop. + BasicBlock *LoopExitBlock; + ///The vector loop body. + SmallVector<BasicBlock *, 4> LoopVectorBody; + ///The scalar loop body. + BasicBlock *LoopScalarBody; + /// A list of all bypass blocks. The first block is the entry of the loop. + SmallVector<BasicBlock *, 4> LoopBypassBlocks; + + /// The new Induction variable which was added to the new block. + PHINode *Induction; + /// The induction variable of the old basic block. + PHINode *OldInduction; + /// Maps scalars to widened vectors. + ValueMap WidenMap; + /// Store instructions that should be predicated, as a pair + /// <StoreInst, Predicate> + SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores; + EdgeMaskCache MaskCache; + /// Trip count of the original loop. + Value *TripCount; + /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) + Value *VectorTripCount; + + /// Map of scalar integer values to the smallest bitwidth they can be legally + /// represented as. The vector equivalents of these values should be truncated + /// to this type. + MapVector<Instruction*,uint64_t> MinBWs; + LoopVectorizationLegality *Legal; + + // Record whether runtime check is added. + bool AddedSafetyChecks; +}; + +class InnerLoopUnroller : public InnerLoopVectorizer { +public: + InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, + LoopInfo *LI, DominatorTree *DT, + const TargetLibraryInfo *TLI, + const TargetTransformInfo *TTI, unsigned UnrollFactor) + : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, 1, UnrollFactor) {} + +private: + void scalarizeInstruction(Instruction *Instr, + bool IfPredicateStore = false) override; + void vectorizeMemoryInstruction(Instruction *Instr) override; + Value *getBroadcastInstrs(Value *V) override; + Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; + Value *reverseVector(Value *Vec) override; +}; + +/// \brief Look for a meaningful debug location on the instruction or it's +/// operands. +static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { + if (!I) + return I; + + DebugLoc Empty; + if (I->getDebugLoc() != Empty) + return I; + + for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { + if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) + if (OpInst->getDebugLoc() != Empty) + return OpInst; + } + + return I; +} + +/// \brief Set the debug location in the builder using the debug location in the +/// instruction. +static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { + if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) + B.SetCurrentDebugLocation(Inst->getDebugLoc()); + else + B.SetCurrentDebugLocation(DebugLoc()); +} + +#ifndef NDEBUG +/// \return string containing a file name and a line # for the given loop. +static std::string getDebugLocString(const Loop *L) { + std::string Result; + if (L) { + raw_string_ostream OS(Result); + if (const DebugLoc LoopDbgLoc = L->getStartLoc()) + LoopDbgLoc.print(OS); + else + // Just print the module name. + OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); + OS.flush(); + } + return Result; +} +#endif + +/// \brief Propagate known metadata from one instruction to another. +static void propagateMetadata(Instruction *To, const Instruction *From) { + SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; + From->getAllMetadataOtherThanDebugLoc(Metadata); + + for (auto M : Metadata) { + unsigned Kind = M.first; + + // These are safe to transfer (this is safe for TBAA, even when we + // if-convert, because should that metadata have had a control dependency + // on the condition, and thus actually aliased with some other + // non-speculated memory access when the condition was false, this would be + // caught by the runtime overlap checks). + if (Kind != LLVMContext::MD_tbaa && + Kind != LLVMContext::MD_alias_scope && + Kind != LLVMContext::MD_noalias && + Kind != LLVMContext::MD_fpmath && + Kind != LLVMContext::MD_nontemporal) + continue; + + To->setMetadata(Kind, M.second); + } +} + +/// \brief Propagate known metadata from one instruction to a vector of others. +static void propagateMetadata(SmallVectorImpl<Value *> &To, + const Instruction *From) { + for (Value *V : To) + if (Instruction *I = dyn_cast<Instruction>(V)) + propagateMetadata(I, From); +} + +/// \brief The group of interleaved loads/stores sharing the same stride and +/// close to each other. +/// +/// Each member in this group has an index starting from 0, and the largest +/// index should be less than interleaved factor, which is equal to the absolute +/// value of the access's stride. +/// +/// E.g. An interleaved load group of factor 4: +/// for (unsigned i = 0; i < 1024; i+=4) { +/// a = A[i]; // Member of index 0 +/// b = A[i+1]; // Member of index 1 +/// d = A[i+3]; // Member of index 3 +/// ... +/// } +/// +/// An interleaved store group of factor 4: +/// for (unsigned i = 0; i < 1024; i+=4) { +/// ... +/// A[i] = a; // Member of index 0 +/// A[i+1] = b; // Member of index 1 +/// A[i+2] = c; // Member of index 2 +/// A[i+3] = d; // Member of index 3 +/// } +/// +/// Note: the interleaved load group could have gaps (missing members), but +/// the interleaved store group doesn't allow gaps. +class InterleaveGroup { +public: + InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) + : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { + assert(Align && "The alignment should be non-zero"); + + Factor = std::abs(Stride); + assert(Factor > 1 && "Invalid interleave factor"); + + Reverse = Stride < 0; + Members[0] = Instr; + } + + bool isReverse() const { return Reverse; } + unsigned getFactor() const { return Factor; } + unsigned getAlignment() const { return Align; } + unsigned getNumMembers() const { return Members.size(); } + + /// \brief Try to insert a new member \p Instr with index \p Index and + /// alignment \p NewAlign. The index is related to the leader and it could be + /// negative if it is the new leader. + /// + /// \returns false if the instruction doesn't belong to the group. + bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { + assert(NewAlign && "The new member's alignment should be non-zero"); + + int Key = Index + SmallestKey; + + // Skip if there is already a member with the same index. + if (Members.count(Key)) + return false; + + if (Key > LargestKey) { + // The largest index is always less than the interleave factor. + if (Index >= static_cast<int>(Factor)) + return false; + + LargestKey = Key; + } else if (Key < SmallestKey) { + // The largest index is always less than the interleave factor. + if (LargestKey - Key >= static_cast<int>(Factor)) + return false; + + SmallestKey = Key; + } + + // It's always safe to select the minimum alignment. + Align = std::min(Align, NewAlign); + Members[Key] = Instr; + return true; + } + + /// \brief Get the member with the given index \p Index + /// + /// \returns nullptr if contains no such member. + Instruction *getMember(unsigned Index) const { + int Key = SmallestKey + Index; + if (!Members.count(Key)) + return nullptr; + + return Members.find(Key)->second; + } + + /// \brief Get the index for the given member. Unlike the key in the member + /// map, the index starts from 0. + unsigned getIndex(Instruction *Instr) const { + for (auto I : Members) + if (I.second == Instr) + return I.first - SmallestKey; + + llvm_unreachable("InterleaveGroup contains no such member"); + } + + Instruction *getInsertPos() const { return InsertPos; } + void setInsertPos(Instruction *Inst) { InsertPos = Inst; } + +private: + unsigned Factor; // Interleave Factor. + bool Reverse; + unsigned Align; + DenseMap<int, Instruction *> Members; + int SmallestKey; + int LargestKey; + + // To avoid breaking dependences, vectorized instructions of an interleave + // group should be inserted at either the first load or the last store in + // program order. + // + // E.g. %even = load i32 // Insert Position + // %add = add i32 %even // Use of %even + // %odd = load i32 + // + // store i32 %even + // %odd = add i32 // Def of %odd + // store i32 %odd // Insert Position + Instruction *InsertPos; +}; + +/// \brief Drive the analysis of interleaved memory accesses in the loop. +/// +/// Use this class to analyze interleaved accesses only when we can vectorize +/// a loop. Otherwise it's meaningless to do analysis as the vectorization +/// on interleaved accesses is unsafe. +/// +/// The analysis collects interleave groups and records the relationships +/// between the member and the group in a map. +class InterleavedAccessInfo { +public: + InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, + DominatorTree *DT) + : PSE(PSE), TheLoop(L), DT(DT) {} + + ~InterleavedAccessInfo() { + SmallSet<InterleaveGroup *, 4> DelSet; + // Avoid releasing a pointer twice. + for (auto &I : InterleaveGroupMap) + DelSet.insert(I.second); + for (auto *Ptr : DelSet) + delete Ptr; + } + + /// \brief Analyze the interleaved accesses and collect them in interleave + /// groups. Substitute symbolic strides using \p Strides. + void analyzeInterleaving(const ValueToValueMap &Strides); + + /// \brief Check if \p Instr belongs to any interleave group. + bool isInterleaved(Instruction *Instr) const { + return InterleaveGroupMap.count(Instr); + } + + /// \brief Get the interleave group that \p Instr belongs to. + /// + /// \returns nullptr if doesn't have such group. + InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { + if (InterleaveGroupMap.count(Instr)) + return InterleaveGroupMap.find(Instr)->second; + return nullptr; + } + +private: + /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. + /// Simplifies SCEV expressions in the context of existing SCEV assumptions. + /// The interleaved access analysis can also add new predicates (for example + /// by versioning strides of pointers). + PredicatedScalarEvolution &PSE; + Loop *TheLoop; + DominatorTree *DT; + + /// Holds the relationships between the members and the interleave group. + DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; + + /// \brief The descriptor for a strided memory access. + struct StrideDescriptor { + StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, + unsigned Align) + : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} + + StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} + + int Stride; // The access's stride. It is negative for a reverse access. + const SCEV *Scev; // The scalar expression of this access + unsigned Size; // The size of the memory object. + unsigned Align; // The alignment of this access. + }; + + /// \brief Create a new interleave group with the given instruction \p Instr, + /// stride \p Stride and alignment \p Align. + /// + /// \returns the newly created interleave group. + InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, + unsigned Align) { + assert(!InterleaveGroupMap.count(Instr) && + "Already in an interleaved access group"); + InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); + return InterleaveGroupMap[Instr]; + } + + /// \brief Release the group and remove all the relationships. + void releaseGroup(InterleaveGroup *Group) { + for (unsigned i = 0; i < Group->getFactor(); i++) + if (Instruction *Member = Group->getMember(i)) + InterleaveGroupMap.erase(Member); + + delete Group; + } + + /// \brief Collect all the accesses with a constant stride in program order. + void collectConstStridedAccesses( + MapVector<Instruction *, StrideDescriptor> &StrideAccesses, + const ValueToValueMap &Strides); +}; + +/// Utility class for getting and setting loop vectorizer hints in the form +/// of loop metadata. +/// This class keeps a number of loop annotations locally (as member variables) +/// and can, upon request, write them back as metadata on the loop. It will +/// initially scan the loop for existing metadata, and will update the local +/// values based on information in the loop. +/// We cannot write all values to metadata, as the mere presence of some info, +/// for example 'force', means a decision has been made. So, we need to be +/// careful NOT to add them if the user hasn't specifically asked so. +class LoopVectorizeHints { + enum HintKind { + HK_WIDTH, + HK_UNROLL, + HK_FORCE + }; + + /// Hint - associates name and validation with the hint value. + struct Hint { + const char * Name; + unsigned Value; // This may have to change for non-numeric values. + HintKind Kind; + + Hint(const char * Name, unsigned Value, HintKind Kind) + : Name(Name), Value(Value), Kind(Kind) { } + + bool validate(unsigned Val) { + switch (Kind) { + case HK_WIDTH: + return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; + case HK_UNROLL: + return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; + case HK_FORCE: + return (Val <= 1); + } + return false; + } + }; + + /// Vectorization width. + Hint Width; + /// Vectorization interleave factor. + Hint Interleave; + /// Vectorization forced + Hint Force; + + /// Return the loop metadata prefix. + static StringRef Prefix() { return "llvm.loop."; } + +public: + enum ForceKind { + FK_Undefined = -1, ///< Not selected. + FK_Disabled = 0, ///< Forcing disabled. + FK_Enabled = 1, ///< Forcing enabled. + }; + + LoopVectorizeHints(const Loop *L, bool DisableInterleaving) + : Width("vectorize.width", VectorizerParams::VectorizationFactor, + HK_WIDTH), + Interleave("interleave.count", DisableInterleaving, HK_UNROLL), + Force("vectorize.enable", FK_Undefined, HK_FORCE), + TheLoop(L) { + // Populate values with existing loop metadata. + getHintsFromMetadata(); + + // force-vector-interleave overrides DisableInterleaving. + if (VectorizerParams::isInterleaveForced()) + Interleave.Value = VectorizerParams::VectorizationInterleave; + + DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() + << "LV: Interleaving disabled by the pass manager\n"); + } + + /// Mark the loop L as already vectorized by setting the width to 1. + void setAlreadyVectorized() { + Width.Value = Interleave.Value = 1; + Hint Hints[] = {Width, Interleave}; + writeHintsToMetadata(Hints); + } + + bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { + if (getForce() == LoopVectorizeHints::FK_Disabled) { + DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); + emitOptimizationRemarkAnalysis(F->getContext(), + vectorizeAnalysisPassName(), *F, + L->getStartLoc(), emitRemark()); + return false; + } + + if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { + DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); + emitOptimizationRemarkAnalysis(F->getContext(), + vectorizeAnalysisPassName(), *F, + L->getStartLoc(), emitRemark()); + return false; + } + + if (getWidth() == 1 && getInterleave() == 1) { + // FIXME: Add a separate metadata to indicate when the loop has already + // been vectorized instead of setting width and count to 1. + DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); + // FIXME: Add interleave.disable metadata. This will allow + // vectorize.disable to be used without disabling the pass and errors + // to differentiate between disabled vectorization and a width of 1. + emitOptimizationRemarkAnalysis( + F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), + "loop not vectorized: vectorization and interleaving are explicitly " + "disabled, or vectorize width and interleave count are both set to " + "1"); + return false; + } + + return true; + } + + /// Dumps all the hint information. + std::string emitRemark() const { + VectorizationReport R; + if (Force.Value == LoopVectorizeHints::FK_Disabled) + R << "vectorization is explicitly disabled"; + else { + R << "use -Rpass-analysis=loop-vectorize for more info"; + if (Force.Value == LoopVectorizeHints::FK_Enabled) { + R << " (Force=true"; + if (Width.Value != 0) + R << ", Vector Width=" << Width.Value; + if (Interleave.Value != 0) + R << ", Interleave Count=" << Interleave.Value; + R << ")"; + } + } + + return R.str(); + } + + unsigned getWidth() const { return Width.Value; } + unsigned getInterleave() const { return Interleave.Value; } + enum ForceKind getForce() const { return (ForceKind)Force.Value; } + const char *vectorizeAnalysisPassName() const { + // If hints are provided that don't disable vectorization use the + // AlwaysPrint pass name to force the frontend to print the diagnostic. + if (getWidth() == 1) + return LV_NAME; + if (getForce() == LoopVectorizeHints::FK_Disabled) + return LV_NAME; + if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) + return LV_NAME; + return DiagnosticInfo::AlwaysPrint; + } + + bool allowReordering() const { + // When enabling loop hints are provided we allow the vectorizer to change + // the order of operations that is given by the scalar loop. This is not + // enabled by default because can be unsafe or inefficient. For example, + // reordering floating-point operations will change the way round-off + // error accumulates in the loop. + return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; + } + +private: + /// Find hints specified in the loop metadata and update local values. + void getHintsFromMetadata() { + MDNode *LoopID = TheLoop->getLoopID(); + if (!LoopID) + return; + + // First operand should refer to the loop id itself. + assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); + assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); + + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + const MDString *S = nullptr; + SmallVector<Metadata *, 4> Args; + + // The expected hint is either a MDString or a MDNode with the first + // operand a MDString. + if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { + if (!MD || MD->getNumOperands() == 0) + continue; + S = dyn_cast<MDString>(MD->getOperand(0)); + for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) + Args.push_back(MD->getOperand(i)); + } else { + S = dyn_cast<MDString>(LoopID->getOperand(i)); + assert(Args.size() == 0 && "too many arguments for MDString"); + } + + if (!S) + continue; + + // Check if the hint starts with the loop metadata prefix. + StringRef Name = S->getString(); + if (Args.size() == 1) + setHint(Name, Args[0]); + } + } + + /// Checks string hint with one operand and set value if valid. + void setHint(StringRef Name, Metadata *Arg) { + if (!Name.startswith(Prefix())) + return; + Name = Name.substr(Prefix().size(), StringRef::npos); + + const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); + if (!C) return; + unsigned Val = C->getZExtValue(); + + Hint *Hints[] = {&Width, &Interleave, &Force}; + for (auto H : Hints) { + if (Name == H->Name) { + if (H->validate(Val)) + H->Value = Val; + else + DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); + break; + } + } + } + + /// Create a new hint from name / value pair. + MDNode *createHintMetadata(StringRef Name, unsigned V) const { + LLVMContext &Context = TheLoop->getHeader()->getContext(); + Metadata *MDs[] = {MDString::get(Context, Name), + ConstantAsMetadata::get( + ConstantInt::get(Type::getInt32Ty(Context), V))}; + return MDNode::get(Context, MDs); + } + + /// Matches metadata with hint name. + bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { + MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); + if (!Name) + return false; + + for (auto H : HintTypes) + if (Name->getString().endswith(H.Name)) + return true; + return false; + } + + /// Sets current hints into loop metadata, keeping other values intact. + void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { + if (HintTypes.size() == 0) + return; + + // Reserve the first element to LoopID (see below). + SmallVector<Metadata *, 4> MDs(1); + // If the loop already has metadata, then ignore the existing operands. + MDNode *LoopID = TheLoop->getLoopID(); + if (LoopID) { + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); + // If node in update list, ignore old value. + if (!matchesHintMetadataName(Node, HintTypes)) + MDs.push_back(Node); + } + } + + // Now, add the missing hints. + for (auto H : HintTypes) + MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); + + // Replace current metadata node with new one. + LLVMContext &Context = TheLoop->getHeader()->getContext(); + MDNode *NewLoopID = MDNode::get(Context, MDs); + // Set operand 0 to refer to the loop id itself. + NewLoopID->replaceOperandWith(0, NewLoopID); + + TheLoop->setLoopID(NewLoopID); + } + + /// The loop these hints belong to. + const Loop *TheLoop; +}; + +static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, + const LoopVectorizeHints &Hints, + const LoopAccessReport &Message) { + const char *Name = Hints.vectorizeAnalysisPassName(); + LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); +} + +static void emitMissedWarning(Function *F, Loop *L, + const LoopVectorizeHints &LH) { + emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), + LH.emitRemark()); + + if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { + if (LH.getWidth() != 1) + emitLoopVectorizeWarning( + F->getContext(), *F, L->getStartLoc(), + "failed explicitly specified loop vectorization"); + else if (LH.getInterleave() != 1) + emitLoopInterleaveWarning( + F->getContext(), *F, L->getStartLoc(), + "failed explicitly specified loop interleaving"); + } +} + +/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and +/// to what vectorization factor. +/// This class does not look at the profitability of vectorization, only the +/// legality. This class has two main kinds of checks: +/// * Memory checks - The code in canVectorizeMemory checks if vectorization +/// will change the order of memory accesses in a way that will change the +/// correctness of the program. +/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory +/// checks for a number of different conditions, such as the availability of a +/// single induction variable, that all types are supported and vectorize-able, +/// etc. This code reflects the capabilities of InnerLoopVectorizer. +/// This class is also used by InnerLoopVectorizer for identifying +/// induction variable and the different reduction variables. +class LoopVectorizationLegality { +public: + LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, + DominatorTree *DT, TargetLibraryInfo *TLI, + AliasAnalysis *AA, Function *F, + const TargetTransformInfo *TTI, + LoopAccessAnalysis *LAA, + LoopVectorizationRequirements *R, + const LoopVectorizeHints *H) + : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), + TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), + Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), + Requirements(R), Hints(H) {} + + /// ReductionList contains the reduction descriptors for all + /// of the reductions that were found in the loop. + typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; + + /// InductionList saves induction variables and maps them to the + /// induction descriptor. + typedef MapVector<PHINode*, InductionDescriptor> InductionList; + + /// Returns true if it is legal to vectorize this loop. + /// This does not mean that it is profitable to vectorize this + /// loop, only that it is legal to do so. + bool canVectorize(); + + /// Returns the Induction variable. + PHINode *getInduction() { return Induction; } + + /// Returns the reduction variables found in the loop. + ReductionList *getReductionVars() { return &Reductions; } + + /// Returns the induction variables found in the loop. + InductionList *getInductionVars() { return &Inductions; } + + /// Returns the widest induction type. + Type *getWidestInductionType() { return WidestIndTy; } + + /// Returns True if V is an induction variable in this loop. + bool isInductionVariable(const Value *V); + + /// Returns True if PN is a reduction variable in this loop. + bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } + + /// Return true if the block BB needs to be predicated in order for the loop + /// to be vectorized. + bool blockNeedsPredication(BasicBlock *BB); + + /// Check if this pointer is consecutive when vectorizing. This happens + /// when the last index of the GEP is the induction variable, or that the + /// pointer itself is an induction variable. + /// This check allows us to vectorize A[idx] into a wide load/store. + /// Returns: + /// 0 - Stride is unknown or non-consecutive. + /// 1 - Address is consecutive. + /// -1 - Address is consecutive, and decreasing. + int isConsecutivePtr(Value *Ptr); + + /// Returns true if the value V is uniform within the loop. + bool isUniform(Value *V); + + /// Returns true if this instruction will remain scalar after vectorization. + bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } + + /// Returns the information that we collected about runtime memory check. + const RuntimePointerChecking *getRuntimePointerChecking() const { + return LAI->getRuntimePointerChecking(); + } + + const LoopAccessInfo *getLAI() const { + return LAI; + } + + /// \brief Check if \p Instr belongs to any interleaved access group. + bool isAccessInterleaved(Instruction *Instr) { + return InterleaveInfo.isInterleaved(Instr); + } + + /// \brief Get the interleaved access group that \p Instr belongs to. + const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { + return InterleaveInfo.getInterleaveGroup(Instr); + } + + unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } + + bool hasStride(Value *V) { return StrideSet.count(V); } + bool mustCheckStrides() { return !StrideSet.empty(); } + SmallPtrSet<Value *, 8>::iterator strides_begin() { + return StrideSet.begin(); + } + SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } + + /// Returns true if the target machine supports masked store operation + /// for the given \p DataType and kind of access to \p Ptr. + bool isLegalMaskedStore(Type *DataType, Value *Ptr) { + return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); + } + /// Returns true if the target machine supports masked load operation + /// for the given \p DataType and kind of access to \p Ptr. + bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { + return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); + } + /// Returns true if vector representation of the instruction \p I + /// requires mask. + bool isMaskRequired(const Instruction* I) { + return (MaskedOp.count(I) != 0); + } + unsigned getNumStores() const { + return LAI->getNumStores(); + } + unsigned getNumLoads() const { + return LAI->getNumLoads(); + } + unsigned getNumPredStores() const { + return NumPredStores; + } +private: + /// Check if a single basic block loop is vectorizable. + /// At this point we know that this is a loop with a constant trip count + /// and we only need to check individual instructions. + bool canVectorizeInstrs(); + + /// When we vectorize loops we may change the order in which + /// we read and write from memory. This method checks if it is + /// legal to vectorize the code, considering only memory constrains. + /// Returns true if the loop is vectorizable + bool canVectorizeMemory(); + + /// Return true if we can vectorize this loop using the IF-conversion + /// transformation. + bool canVectorizeWithIfConvert(); + + /// Collect the variables that need to stay uniform after vectorization. + void collectLoopUniforms(); + + /// Return true if all of the instructions in the block can be speculatively + /// executed. \p SafePtrs is a list of addresses that are known to be legal + /// and we know that we can read from them without segfault. + bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); + + /// \brief Collect memory access with loop invariant strides. + /// + /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop + /// invariant. + void collectStridedAccess(Value *LoadOrStoreInst); + + /// Report an analysis message to assist the user in diagnosing loops that are + /// not vectorized. These are handled as LoopAccessReport rather than + /// VectorizationReport because the << operator of VectorizationReport returns + /// LoopAccessReport. + void emitAnalysis(const LoopAccessReport &Message) const { + emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); + } + + unsigned NumPredStores; + + /// The loop that we evaluate. + Loop *TheLoop; + /// A wrapper around ScalarEvolution used to add runtime SCEV checks. + /// Applies dynamic knowledge to simplify SCEV expressions in the context + /// of existing SCEV assumptions. The analysis will also add a minimal set + /// of new predicates if this is required to enable vectorization and + /// unrolling. + PredicatedScalarEvolution &PSE; + /// Target Library Info. + TargetLibraryInfo *TLI; + /// Parent function + Function *TheFunction; + /// Target Transform Info + const TargetTransformInfo *TTI; + /// Dominator Tree. + DominatorTree *DT; + // LoopAccess analysis. + LoopAccessAnalysis *LAA; + // And the loop-accesses info corresponding to this loop. This pointer is + // null until canVectorizeMemory sets it up. + const LoopAccessInfo *LAI; + + /// The interleave access information contains groups of interleaved accesses + /// with the same stride and close to each other. + InterleavedAccessInfo InterleaveInfo; + + // --- vectorization state --- // + + /// Holds the integer induction variable. This is the counter of the + /// loop. + PHINode *Induction; + /// Holds the reduction variables. + ReductionList Reductions; + /// Holds all of the induction variables that we found in the loop. + /// Notice that inductions don't need to start at zero and that induction + /// variables can be pointers. + InductionList Inductions; + /// Holds the widest induction type encountered. + Type *WidestIndTy; + + /// Allowed outside users. This holds the reduction + /// vars which can be accessed from outside the loop. + SmallPtrSet<Value*, 4> AllowedExit; + /// This set holds the variables which are known to be uniform after + /// vectorization. + SmallPtrSet<Instruction*, 4> Uniforms; + + /// Can we assume the absence of NaNs. + bool HasFunNoNaNAttr; + + /// Vectorization requirements that will go through late-evaluation. + LoopVectorizationRequirements *Requirements; + + /// Used to emit an analysis of any legality issues. + const LoopVectorizeHints *Hints; + + ValueToValueMap Strides; + SmallPtrSet<Value *, 8> StrideSet; + + /// While vectorizing these instructions we have to generate a + /// call to the appropriate masked intrinsic + SmallPtrSet<const Instruction *, 8> MaskedOp; +}; + +/// LoopVectorizationCostModel - estimates the expected speedups due to +/// vectorization. +/// In many cases vectorization is not profitable. This can happen because of +/// a number of reasons. In this class we mainly attempt to predict the +/// expected speedup/slowdowns due to the supported instruction set. We use the +/// TargetTransformInfo to query the different backends for the cost of +/// different operations. +class LoopVectorizationCostModel { +public: + LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, + LoopVectorizationLegality *Legal, + const TargetTransformInfo &TTI, + const TargetLibraryInfo *TLI, DemandedBits *DB, + AssumptionCache *AC, const Function *F, + const LoopVectorizeHints *Hints, + SmallPtrSetImpl<const Value *> &ValuesToIgnore) + : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), + TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {} + + /// Information about vectorization costs + struct VectorizationFactor { + unsigned Width; // Vector width with best cost + unsigned Cost; // Cost of the loop with that width + }; + /// \return The most profitable vectorization factor and the cost of that VF. + /// This method checks every power of two up to VF. If UserVF is not ZERO + /// then this vectorization factor will be selected if vectorization is + /// possible. + VectorizationFactor selectVectorizationFactor(bool OptForSize); + + /// \return The size (in bits) of the smallest and widest types in the code + /// that needs to be vectorized. We ignore values that remain scalar such as + /// 64 bit loop indices. + std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); + + /// \return The desired interleave count. + /// If interleave count has been specified by metadata it will be returned. + /// Otherwise, the interleave count is computed and returned. VF and LoopCost + /// are the selected vectorization factor and the cost of the selected VF. + unsigned selectInterleaveCount(bool OptForSize, unsigned VF, + unsigned LoopCost); + + /// \return The most profitable unroll factor. + /// This method finds the best unroll-factor based on register pressure and + /// other parameters. VF and LoopCost are the selected vectorization factor + /// and the cost of the selected VF. + unsigned computeInterleaveCount(bool OptForSize, unsigned VF, + unsigned LoopCost); + + /// \brief A struct that represents some properties of the register usage + /// of a loop. + struct RegisterUsage { + /// Holds the number of loop invariant values that are used in the loop. + unsigned LoopInvariantRegs; + /// Holds the maximum number of concurrent live intervals in the loop. + unsigned MaxLocalUsers; + /// Holds the number of instructions in the loop. + unsigned NumInstructions; + }; + + /// \return Returns information about the register usages of the loop for the + /// given vectorization factors. + SmallVector<RegisterUsage, 8> + calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs); + +private: + /// Returns the expected execution cost. The unit of the cost does + /// not matter because we use the 'cost' units to compare different + /// vector widths. The cost that is returned is *not* normalized by + /// the factor width. + unsigned expectedCost(unsigned VF); + + /// Returns the execution time cost of an instruction for a given vector + /// width. Vector width of one means scalar. + unsigned getInstructionCost(Instruction *I, unsigned VF); + + /// Returns whether the instruction is a load or store and will be a emitted + /// as a vector operation. + bool isConsecutiveLoadOrStore(Instruction *I); + + /// Report an analysis message to assist the user in diagnosing loops that are + /// not vectorized. These are handled as LoopAccessReport rather than + /// VectorizationReport because the << operator of VectorizationReport returns + /// LoopAccessReport. + void emitAnalysis(const LoopAccessReport &Message) const { + emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); + } + +public: + /// Map of scalar integer values to the smallest bitwidth they can be legally + /// represented as. The vector equivalents of these values should be truncated + /// to this type. + MapVector<Instruction*,uint64_t> MinBWs; + + /// The loop that we evaluate. + Loop *TheLoop; + /// Scev analysis. + ScalarEvolution *SE; + /// Loop Info analysis. + LoopInfo *LI; + /// Vectorization legality. + LoopVectorizationLegality *Legal; + /// Vector target information. + const TargetTransformInfo &TTI; + /// Target Library Info. + const TargetLibraryInfo *TLI; + /// Demanded bits analysis + DemandedBits *DB; + const Function *TheFunction; + // Loop Vectorize Hint. + const LoopVectorizeHints *Hints; + // Values to ignore in the cost model. + const SmallPtrSetImpl<const Value *> &ValuesToIgnore; +}; + +/// \brief This holds vectorization requirements that must be verified late in +/// the process. The requirements are set by legalize and costmodel. Once +/// vectorization has been determined to be possible and profitable the +/// requirements can be verified by looking for metadata or compiler options. +/// For example, some loops require FP commutativity which is only allowed if +/// vectorization is explicitly specified or if the fast-math compiler option +/// has been provided. +/// Late evaluation of these requirements allows helpful diagnostics to be +/// composed that tells the user what need to be done to vectorize the loop. For +/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late +/// evaluation should be used only when diagnostics can generated that can be +/// followed by a non-expert user. +class LoopVectorizationRequirements { +public: + LoopVectorizationRequirements() + : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} + + void addUnsafeAlgebraInst(Instruction *I) { + // First unsafe algebra instruction. + if (!UnsafeAlgebraInst) + UnsafeAlgebraInst = I; + } + + void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } + + bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { + const char *Name = Hints.vectorizeAnalysisPassName(); + bool Failed = false; + if (UnsafeAlgebraInst && !Hints.allowReordering()) { + emitOptimizationRemarkAnalysisFPCommute( + F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), + VectorizationReport() << "cannot prove it is safe to reorder " + "floating-point operations"); + Failed = true; + } + + // Test if runtime memcheck thresholds are exceeded. + bool PragmaThresholdReached = + NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; + bool ThresholdReached = + NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; + if ((ThresholdReached && !Hints.allowReordering()) || + PragmaThresholdReached) { + emitOptimizationRemarkAnalysisAliasing( + F->getContext(), Name, *F, L->getStartLoc(), + VectorizationReport() + << "cannot prove it is safe to reorder memory operations"); + DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); + Failed = true; + } + + return Failed; + } + +private: + unsigned NumRuntimePointerChecks; + Instruction *UnsafeAlgebraInst; +}; + +static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { + if (L.empty()) + return V.push_back(&L); + + for (Loop *InnerL : L) + addInnerLoop(*InnerL, V); +} + +/// The LoopVectorize Pass. +struct LoopVectorize : public FunctionPass { + /// Pass identification, replacement for typeid + static char ID; + + explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) + : FunctionPass(ID), + DisableUnrolling(NoUnrolling), + AlwaysVectorize(AlwaysVectorize) { + initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); + } + + ScalarEvolution *SE; + LoopInfo *LI; + TargetTransformInfo *TTI; + DominatorTree *DT; + BlockFrequencyInfo *BFI; + TargetLibraryInfo *TLI; + DemandedBits *DB; + AliasAnalysis *AA; + AssumptionCache *AC; + LoopAccessAnalysis *LAA; + bool DisableUnrolling; + bool AlwaysVectorize; + + BlockFrequency ColdEntryFreq; + + bool runOnFunction(Function &F) override { + SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); + auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); + TLI = TLIP ? &TLIP->getTLI() : nullptr; + AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + LAA = &getAnalysis<LoopAccessAnalysis>(); + DB = &getAnalysis<DemandedBits>(); + + // Compute some weights outside of the loop over the loops. Compute this + // using a BranchProbability to re-use its scaling math. + const BranchProbability ColdProb(1, 5); // 20% + ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; + + // Don't attempt if + // 1. the target claims to have no vector registers, and + // 2. interleaving won't help ILP. + // + // The second condition is necessary because, even if the target has no + // vector registers, loop vectorization may still enable scalar + // interleaving. + if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) + return false; + + // Build up a worklist of inner-loops to vectorize. This is necessary as + // the act of vectorizing or partially unrolling a loop creates new loops + // and can invalidate iterators across the loops. + SmallVector<Loop *, 8> Worklist; + + for (Loop *L : *LI) + addInnerLoop(*L, Worklist); + + LoopsAnalyzed += Worklist.size(); + + // Now walk the identified inner loops. + bool Changed = false; + while (!Worklist.empty()) + Changed |= processLoop(Worklist.pop_back_val()); + + // Process each loop nest in the function. + return Changed; + } + + static void AddRuntimeUnrollDisableMetaData(Loop *L) { + SmallVector<Metadata *, 4> MDs; + // Reserve first location for self reference to the LoopID metadata node. + MDs.push_back(nullptr); + bool IsUnrollMetadata = false; + MDNode *LoopID = L->getLoopID(); + if (LoopID) { + // First find existing loop unrolling disable metadata. + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); + if (MD) { + const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); + IsUnrollMetadata = + S && S->getString().startswith("llvm.loop.unroll.disable"); + } + MDs.push_back(LoopID->getOperand(i)); + } + } + + if (!IsUnrollMetadata) { + // Add runtime unroll disable metadata. + LLVMContext &Context = L->getHeader()->getContext(); + SmallVector<Metadata *, 1> DisableOperands; + DisableOperands.push_back( + MDString::get(Context, "llvm.loop.unroll.runtime.disable")); + MDNode *DisableNode = MDNode::get(Context, DisableOperands); + MDs.push_back(DisableNode); + MDNode *NewLoopID = MDNode::get(Context, MDs); + // Set operand 0 to refer to the loop id itself. + NewLoopID->replaceOperandWith(0, NewLoopID); + L->setLoopID(NewLoopID); + } + } + + bool processLoop(Loop *L) { + assert(L->empty() && "Only process inner loops."); + +#ifndef NDEBUG + const std::string DebugLocStr = getDebugLocString(L); +#endif /* NDEBUG */ + + DEBUG(dbgs() << "\nLV: Checking a loop in \"" + << L->getHeader()->getParent()->getName() << "\" from " + << DebugLocStr << "\n"); + + LoopVectorizeHints Hints(L, DisableUnrolling); + + DEBUG(dbgs() << "LV: Loop hints:" + << " force=" + << (Hints.getForce() == LoopVectorizeHints::FK_Disabled + ? "disabled" + : (Hints.getForce() == LoopVectorizeHints::FK_Enabled + ? "enabled" + : "?")) << " width=" << Hints.getWidth() + << " unroll=" << Hints.getInterleave() << "\n"); + + // Function containing loop + Function *F = L->getHeader()->getParent(); + + // Looking at the diagnostic output is the only way to determine if a loop + // was vectorized (other than looking at the IR or machine code), so it + // is important to generate an optimization remark for each loop. Most of + // these messages are generated by emitOptimizationRemarkAnalysis. Remarks + // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are + // less verbose reporting vectorized loops and unvectorized loops that may + // benefit from vectorization, respectively. + + if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { + DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); + return false; + } + + // Check the loop for a trip count threshold: + // do not vectorize loops with a tiny trip count. + const unsigned TC = SE->getSmallConstantTripCount(L); + if (TC > 0u && TC < TinyTripCountVectorThreshold) { + DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " + << "This loop is not worth vectorizing."); + if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) + DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); + else { + DEBUG(dbgs() << "\n"); + emitAnalysisDiag(F, L, Hints, VectorizationReport() + << "vectorization is not beneficial " + "and is not explicitly forced"); + return false; + } + } + + PredicatedScalarEvolution PSE(*SE); + + // Check if it is legal to vectorize the loop. + LoopVectorizationRequirements Requirements; + LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, + &Requirements, &Hints); + if (!LVL.canVectorize()) { + DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); + emitMissedWarning(F, L, Hints); + return false; + } + + // Collect values we want to ignore in the cost model. This includes + // type-promoting instructions we identified during reduction detection. + SmallPtrSet<const Value *, 32> ValuesToIgnore; + CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore); + for (auto &Reduction : *LVL.getReductionVars()) { + RecurrenceDescriptor &RedDes = Reduction.second; + SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); + ValuesToIgnore.insert(Casts.begin(), Casts.end()); + } + + // Use the cost model. + LoopVectorizationCostModel CM(L, PSE.getSE(), LI, &LVL, *TTI, TLI, DB, AC, + F, &Hints, ValuesToIgnore); + + // Check the function attributes to find out if this function should be + // optimized for size. + bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && + F->optForSize(); + + // Compute the weighted frequency of this loop being executed and see if it + // is less than 20% of the function entry baseline frequency. Note that we + // always have a canonical loop here because we think we *can* vectorize. + // FIXME: This is hidden behind a flag due to pervasive problems with + // exactly what block frequency models. + if (LoopVectorizeWithBlockFrequency) { + BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); + if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && + LoopEntryFreq < ColdEntryFreq) + OptForSize = true; + } + + // Check the function attributes to see if implicit floats are allowed. + // FIXME: This check doesn't seem possibly correct -- what if the loop is + // an integer loop and the vector instructions selected are purely integer + // vector instructions? + if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { + DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" + "attribute is used.\n"); + emitAnalysisDiag( + F, L, Hints, + VectorizationReport() + << "loop not vectorized due to NoImplicitFloat attribute"); + emitMissedWarning(F, L, Hints); + return false; + } + + // Select the optimal vectorization factor. + const LoopVectorizationCostModel::VectorizationFactor VF = + CM.selectVectorizationFactor(OptForSize); + + // Select the interleave count. + unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); + + // Get user interleave count. + unsigned UserIC = Hints.getInterleave(); + + // Identify the diagnostic messages that should be produced. + std::string VecDiagMsg, IntDiagMsg; + bool VectorizeLoop = true, InterleaveLoop = true; + + if (Requirements.doesNotMeet(F, L, Hints)) { + DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " + "requirements.\n"); + emitMissedWarning(F, L, Hints); + return false; + } + + if (VF.Width == 1) { + DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); + VecDiagMsg = + "the cost-model indicates that vectorization is not beneficial"; + VectorizeLoop = false; + } + + if (IC == 1 && UserIC <= 1) { + // Tell the user interleaving is not beneficial. + DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); + IntDiagMsg = + "the cost-model indicates that interleaving is not beneficial"; + InterleaveLoop = false; + if (UserIC == 1) + IntDiagMsg += + " and is explicitly disabled or interleave count is set to 1"; + } else if (IC > 1 && UserIC == 1) { + // Tell the user interleaving is beneficial, but it explicitly disabled. + DEBUG(dbgs() + << "LV: Interleaving is beneficial but is explicitly disabled."); + IntDiagMsg = "the cost-model indicates that interleaving is beneficial " + "but is explicitly disabled or interleave count is set to 1"; + InterleaveLoop = false; + } + + // Override IC if user provided an interleave count. + IC = UserIC > 0 ? UserIC : IC; + + // Emit diagnostic messages, if any. + const char *VAPassName = Hints.vectorizeAnalysisPassName(); + if (!VectorizeLoop && !InterleaveLoop) { + // Do not vectorize or interleaving the loop. + emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, + L->getStartLoc(), VecDiagMsg); + emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, + L->getStartLoc(), IntDiagMsg); + return false; + } else if (!VectorizeLoop && InterleaveLoop) { + DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); + emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, + L->getStartLoc(), VecDiagMsg); + } else if (VectorizeLoop && !InterleaveLoop) { + DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " + << DebugLocStr << '\n'); + emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, + L->getStartLoc(), IntDiagMsg); + } else if (VectorizeLoop && InterleaveLoop) { + DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " + << DebugLocStr << '\n'); + DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); + } + + if (!VectorizeLoop) { + assert(IC > 1 && "interleave count should not be 1 or 0"); + // If we decided that it is not legal to vectorize the loop then + // interleave it. + InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, IC); + Unroller.vectorize(&LVL, CM.MinBWs); + + emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), + Twine("interleaved loop (interleaved count: ") + + Twine(IC) + ")"); + } else { + // If we decided that it is *legal* to vectorize the loop then do it. + InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, VF.Width, IC); + LB.vectorize(&LVL, CM.MinBWs); + ++LoopsVectorized; + + // Add metadata to disable runtime unrolling scalar loop when there's no + // runtime check about strides and memory. Because at this situation, + // scalar loop is rarely used not worthy to be unrolled. + if (!LB.IsSafetyChecksAdded()) + AddRuntimeUnrollDisableMetaData(L); + + // Report the vectorization decision. + emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), + Twine("vectorized loop (vectorization width: ") + + Twine(VF.Width) + ", interleaved count: " + + Twine(IC) + ")"); + } + + // Mark the loop as already vectorized to avoid vectorizing again. + Hints.setAlreadyVectorized(); + + DEBUG(verifyFunction(*L->getHeader()->getParent())); + return true; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequiredID(LoopSimplifyID); + AU.addRequiredID(LCSSAID); + AU.addRequired<BlockFrequencyInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<LoopAccessAnalysis>(); + AU.addRequired<DemandedBits>(); + AU.addPreserved<LoopInfoWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<BasicAAWrapperPass>(); + AU.addPreserved<AAResultsWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + } + +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and +// LoopVectorizationCostModel. +//===----------------------------------------------------------------------===// + +Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { + // We need to place the broadcast of invariant variables outside the loop. + Instruction *Instr = dyn_cast<Instruction>(V); + bool NewInstr = + (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), + Instr->getParent()) != LoopVectorBody.end()); + bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; + + // Place the code for broadcasting invariant variables in the new preheader. + IRBuilder<>::InsertPointGuard Guard(Builder); + if (Invariant) + Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); + + // Broadcast the scalar into all locations in the vector. + Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); + + return Shuf; +} + +Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, + Value *Step) { + assert(Val->getType()->isVectorTy() && "Must be a vector"); + assert(Val->getType()->getScalarType()->isIntegerTy() && + "Elem must be an integer"); + assert(Step->getType() == Val->getType()->getScalarType() && + "Step has wrong type"); + // Create the types. + Type *ITy = Val->getType()->getScalarType(); + VectorType *Ty = cast<VectorType>(Val->getType()); + int VLen = Ty->getNumElements(); + SmallVector<Constant*, 8> Indices; + + // Create a vector of consecutive numbers from zero to VF. + for (int i = 0; i < VLen; ++i) + Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); + + // Add the consecutive indices to the vector value. + Constant *Cv = ConstantVector::get(Indices); + assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); + Step = Builder.CreateVectorSplat(VLen, Step); + assert(Step->getType() == Val->getType() && "Invalid step vec"); + // FIXME: The newly created binary instructions should contain nsw/nuw flags, + // which can be found from the original scalar operations. + Step = Builder.CreateMul(Cv, Step); + return Builder.CreateAdd(Val, Step, "induction"); +} + +int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { + assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); + auto *SE = PSE.getSE(); + // Make sure that the pointer does not point to structs. + if (Ptr->getType()->getPointerElementType()->isAggregateType()) + return 0; + + // If this value is a pointer induction variable we know it is consecutive. + PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); + if (Phi && Inductions.count(Phi)) { + InductionDescriptor II = Inductions[Phi]; + return II.getConsecutiveDirection(); + } + + GetElementPtrInst *Gep = getGEPInstruction(Ptr); + if (!Gep) + return 0; + + unsigned NumOperands = Gep->getNumOperands(); + Value *GpPtr = Gep->getPointerOperand(); + // If this GEP value is a consecutive pointer induction variable and all of + // the indices are constant then we know it is consecutive. We can + Phi = dyn_cast<PHINode>(GpPtr); + if (Phi && Inductions.count(Phi)) { + + // Make sure that the pointer does not point to structs. + PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); + if (GepPtrType->getElementType()->isAggregateType()) + return 0; + + // Make sure that all of the index operands are loop invariant. + for (unsigned i = 1; i < NumOperands; ++i) + if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) + return 0; + + InductionDescriptor II = Inductions[Phi]; + return II.getConsecutiveDirection(); + } + + unsigned InductionOperand = getGEPInductionOperand(Gep); + + // Check that all of the gep indices are uniform except for our induction + // operand. + for (unsigned i = 0; i != NumOperands; ++i) + if (i != InductionOperand && + !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) + return 0; + + // We can emit wide load/stores only if the last non-zero index is the + // induction variable. + const SCEV *Last = nullptr; + if (!Strides.count(Gep)) + Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); + else { + // Because of the multiplication by a stride we can have a s/zext cast. + // We are going to replace this stride by 1 so the cast is safe to ignore. + // + // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] + // %0 = trunc i64 %indvars.iv to i32 + // %mul = mul i32 %0, %Stride1 + // %idxprom = zext i32 %mul to i64 << Safe cast. + // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom + // + Last = replaceSymbolicStrideSCEV(PSE, Strides, + Gep->getOperand(InductionOperand), Gep); + if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) + Last = + (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) + ? C->getOperand() + : Last; + } + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { + const SCEV *Step = AR->getStepRecurrence(*SE); + + // The memory is consecutive because the last index is consecutive + // and all other indices are loop invariant. + if (Step->isOne()) + return 1; + if (Step->isAllOnesValue()) + return -1; + } + + return 0; +} + +bool LoopVectorizationLegality::isUniform(Value *V) { + return LAI->isUniform(V); +} + +InnerLoopVectorizer::VectorParts& +InnerLoopVectorizer::getVectorValue(Value *V) { + assert(V != Induction && "The new induction variable should not be used."); + assert(!V->getType()->isVectorTy() && "Can't widen a vector"); + + // If we have a stride that is replaced by one, do it here. + if (Legal->hasStride(V)) + V = ConstantInt::get(V->getType(), 1); + + // If we have this scalar in the map, return it. + if (WidenMap.has(V)) + return WidenMap.get(V); + + // If this scalar is unknown, assume that it is a constant or that it is + // loop invariant. Broadcast V and save the value for future uses. + Value *B = getBroadcastInstrs(V); + return WidenMap.splat(V, B); +} + +Value *InnerLoopVectorizer::reverseVector(Value *Vec) { + assert(Vec->getType()->isVectorTy() && "Invalid type"); + SmallVector<Constant*, 8> ShuffleMask; + for (unsigned i = 0; i < VF; ++i) + ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); + + return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), + ConstantVector::get(ShuffleMask), + "reverse"); +} + +// Get a mask to interleave \p NumVec vectors into a wide vector. +// I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> +// E.g. For 2 interleaved vectors, if VF is 4, the mask is: +// <0, 4, 1, 5, 2, 6, 3, 7> +static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, + unsigned NumVec) { + SmallVector<Constant *, 16> Mask; + for (unsigned i = 0; i < VF; i++) + for (unsigned j = 0; j < NumVec; j++) + Mask.push_back(Builder.getInt32(j * VF + i)); + + return ConstantVector::get(Mask); +} + +// Get the strided mask starting from index \p Start. +// I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> +static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, + unsigned Stride, unsigned VF) { + SmallVector<Constant *, 16> Mask; + for (unsigned i = 0; i < VF; i++) + Mask.push_back(Builder.getInt32(Start + i * Stride)); + + return ConstantVector::get(Mask); +} + +// Get a mask of two parts: The first part consists of sequential integers +// starting from 0, The second part consists of UNDEFs. +// I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> +static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, + unsigned NumUndef) { + SmallVector<Constant *, 16> Mask; + for (unsigned i = 0; i < NumInt; i++) + Mask.push_back(Builder.getInt32(i)); + + Constant *Undef = UndefValue::get(Builder.getInt32Ty()); + for (unsigned i = 0; i < NumUndef; i++) + Mask.push_back(Undef); + + return ConstantVector::get(Mask); +} + +// Concatenate two vectors with the same element type. The 2nd vector should +// not have more elements than the 1st vector. If the 2nd vector has less +// elements, extend it with UNDEFs. +static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, + Value *V2) { + VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); + VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); + assert(VecTy1 && VecTy2 && + VecTy1->getScalarType() == VecTy2->getScalarType() && + "Expect two vectors with the same element type"); + + unsigned NumElts1 = VecTy1->getNumElements(); + unsigned NumElts2 = VecTy2->getNumElements(); + assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); + + if (NumElts1 > NumElts2) { + // Extend with UNDEFs. + Constant *ExtMask = + getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); + V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); + } + + Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); + return Builder.CreateShuffleVector(V1, V2, Mask); +} + +// Concatenate vectors in the given list. All vectors have the same type. +static Value *ConcatenateVectors(IRBuilder<> &Builder, + ArrayRef<Value *> InputList) { + unsigned NumVec = InputList.size(); + assert(NumVec > 1 && "Should be at least two vectors"); + + SmallVector<Value *, 8> ResList; + ResList.append(InputList.begin(), InputList.end()); + do { + SmallVector<Value *, 8> TmpList; + for (unsigned i = 0; i < NumVec - 1; i += 2) { + Value *V0 = ResList[i], *V1 = ResList[i + 1]; + assert((V0->getType() == V1->getType() || i == NumVec - 2) && + "Only the last vector may have a different type"); + + TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); + } + + // Push the last vector if the total number of vectors is odd. + if (NumVec % 2 != 0) + TmpList.push_back(ResList[NumVec - 1]); + + ResList = TmpList; + NumVec = ResList.size(); + } while (NumVec > 1); + + return ResList[0]; +} + +// Try to vectorize the interleave group that \p Instr belongs to. +// +// E.g. Translate following interleaved load group (factor = 3): +// for (i = 0; i < N; i+=3) { +// R = Pic[i]; // Member of index 0 +// G = Pic[i+1]; // Member of index 1 +// B = Pic[i+2]; // Member of index 2 +// ... // do something to R, G, B +// } +// To: +// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B +// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements +// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements +// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements +// +// Or translate following interleaved store group (factor = 3): +// for (i = 0; i < N; i+=3) { +// ... do something to R, G, B +// Pic[i] = R; // Member of index 0 +// Pic[i+1] = G; // Member of index 1 +// Pic[i+2] = B; // Member of index 2 +// } +// To: +// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> +// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> +// %interleaved.vec = shuffle %R_G.vec, %B_U.vec, +// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements +// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B +void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { + const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); + assert(Group && "Fail to get an interleaved access group."); + + // Skip if current instruction is not the insert position. + if (Instr != Group->getInsertPos()) + return; + + LoadInst *LI = dyn_cast<LoadInst>(Instr); + StoreInst *SI = dyn_cast<StoreInst>(Instr); + Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); + + // Prepare for the vector type of the interleaved load/store. + Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); + unsigned InterleaveFactor = Group->getFactor(); + Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); + Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); + + // Prepare for the new pointers. + setDebugLocFromInst(Builder, Ptr); + VectorParts &PtrParts = getVectorValue(Ptr); + SmallVector<Value *, 2> NewPtrs; + unsigned Index = Group->getIndex(Instr); + for (unsigned Part = 0; Part < UF; Part++) { + // Extract the pointer for current instruction from the pointer vector. A + // reverse access uses the pointer in the last lane. + Value *NewPtr = Builder.CreateExtractElement( + PtrParts[Part], + Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); + + // Notice current instruction could be any index. Need to adjust the address + // to the member of index 0. + // + // E.g. a = A[i+1]; // Member of index 1 (Current instruction) + // b = A[i]; // Member of index 0 + // Current pointer is pointed to A[i+1], adjust it to A[i]. + // + // E.g. A[i+1] = a; // Member of index 1 + // A[i] = b; // Member of index 0 + // A[i+2] = c; // Member of index 2 (Current instruction) + // Current pointer is pointed to A[i+2], adjust it to A[i]. + NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); + + // Cast to the vector pointer type. + NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); + } + + setDebugLocFromInst(Builder, Instr); + Value *UndefVec = UndefValue::get(VecTy); + + // Vectorize the interleaved load group. + if (LI) { + for (unsigned Part = 0; Part < UF; Part++) { + Instruction *NewLoadInstr = Builder.CreateAlignedLoad( + NewPtrs[Part], Group->getAlignment(), "wide.vec"); + + for (unsigned i = 0; i < InterleaveFactor; i++) { + Instruction *Member = Group->getMember(i); + + // Skip the gaps in the group. + if (!Member) + continue; + + Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); + Value *StridedVec = Builder.CreateShuffleVector( + NewLoadInstr, UndefVec, StrideMask, "strided.vec"); + + // If this member has different type, cast the result type. + if (Member->getType() != ScalarTy) { + VectorType *OtherVTy = VectorType::get(Member->getType(), VF); + StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); + } + + VectorParts &Entry = WidenMap.get(Member); + Entry[Part] = + Group->isReverse() ? reverseVector(StridedVec) : StridedVec; + } + + propagateMetadata(NewLoadInstr, Instr); + } + return; + } + + // The sub vector type for current instruction. + VectorType *SubVT = VectorType::get(ScalarTy, VF); + + // Vectorize the interleaved store group. + for (unsigned Part = 0; Part < UF; Part++) { + // Collect the stored vector from each member. + SmallVector<Value *, 4> StoredVecs; + for (unsigned i = 0; i < InterleaveFactor; i++) { + // Interleaved store group doesn't allow a gap, so each index has a member + Instruction *Member = Group->getMember(i); + assert(Member && "Fail to get a member from an interleaved store group"); + + Value *StoredVec = + getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; + if (Group->isReverse()) + StoredVec = reverseVector(StoredVec); + + // If this member has different type, cast it to an unified type. + if (StoredVec->getType() != SubVT) + StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); + + StoredVecs.push_back(StoredVec); + } + + // Concatenate all vectors into a wide vector. + Value *WideVec = ConcatenateVectors(Builder, StoredVecs); + + // Interleave the elements in the wide vector. + Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); + Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, + "interleaved.vec"); + + Instruction *NewStoreInstr = + Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); + propagateMetadata(NewStoreInstr, Instr); + } +} + +void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { + // Attempt to issue a wide load. + LoadInst *LI = dyn_cast<LoadInst>(Instr); + StoreInst *SI = dyn_cast<StoreInst>(Instr); + + assert((LI || SI) && "Invalid Load/Store instruction"); + + // Try to vectorize the interleave group if this access is interleaved. + if (Legal->isAccessInterleaved(Instr)) + return vectorizeInterleaveGroup(Instr); + + Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); + Type *DataTy = VectorType::get(ScalarDataTy, VF); + Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); + unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); + // An alignment of 0 means target abi alignment. We need to use the scalar's + // target abi alignment in such a case. + const DataLayout &DL = Instr->getModule()->getDataLayout(); + if (!Alignment) + Alignment = DL.getABITypeAlignment(ScalarDataTy); + unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); + unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); + unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; + + if (SI && Legal->blockNeedsPredication(SI->getParent()) && + !Legal->isMaskRequired(SI)) + return scalarizeInstruction(Instr, true); + + if (ScalarAllocatedSize != VectorElementSize) + return scalarizeInstruction(Instr); + + // If the pointer is loop invariant or if it is non-consecutive, + // scalarize the load. + int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); + bool Reverse = ConsecutiveStride < 0; + bool UniformLoad = LI && Legal->isUniform(Ptr); + if (!ConsecutiveStride || UniformLoad) + return scalarizeInstruction(Instr); + + Constant *Zero = Builder.getInt32(0); + VectorParts &Entry = WidenMap.get(Instr); + + // Handle consecutive loads/stores. + GetElementPtrInst *Gep = getGEPInstruction(Ptr); + if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { + setDebugLocFromInst(Builder, Gep); + Value *PtrOperand = Gep->getPointerOperand(); + Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; + FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); + + // Create the new GEP with the new induction variable. + GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); + Gep2->setOperand(0, FirstBasePtr); + Gep2->setName("gep.indvar.base"); + Ptr = Builder.Insert(Gep2); + } else if (Gep) { + setDebugLocFromInst(Builder, Gep); + assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), + OrigLoop) && + "Base ptr must be invariant"); + + // The last index does not have to be the induction. It can be + // consecutive and be a function of the index. For example A[I+1]; + unsigned NumOperands = Gep->getNumOperands(); + unsigned InductionOperand = getGEPInductionOperand(Gep); + // Create the new GEP with the new induction variable. + GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); + + for (unsigned i = 0; i < NumOperands; ++i) { + Value *GepOperand = Gep->getOperand(i); + Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); + + // Update last index or loop invariant instruction anchored in loop. + if (i == InductionOperand || + (GepOperandInst && OrigLoop->contains(GepOperandInst))) { + assert((i == InductionOperand || + PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), + OrigLoop)) && + "Must be last index or loop invariant"); + + VectorParts &GEPParts = getVectorValue(GepOperand); + Value *Index = GEPParts[0]; + Index = Builder.CreateExtractElement(Index, Zero); + Gep2->setOperand(i, Index); + Gep2->setName("gep.indvar.idx"); + } + } + Ptr = Builder.Insert(Gep2); + } else { + // Use the induction element ptr. + assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); + setDebugLocFromInst(Builder, Ptr); + VectorParts &PtrVal = getVectorValue(Ptr); + Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); + } + + VectorParts Mask = createBlockInMask(Instr->getParent()); + // Handle Stores: + if (SI) { + assert(!Legal->isUniform(SI->getPointerOperand()) && + "We do not allow storing to uniform addresses"); + setDebugLocFromInst(Builder, SI); + // We don't want to update the value in the map as it might be used in + // another expression. So don't use a reference type for "StoredVal". + VectorParts StoredVal = getVectorValue(SI->getValueOperand()); + + for (unsigned Part = 0; Part < UF; ++Part) { + // Calculate the pointer for the specific unroll-part. + Value *PartPtr = + Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); + + if (Reverse) { + // If we store to reverse consecutive memory locations, then we need + // to reverse the order of elements in the stored value. + StoredVal[Part] = reverseVector(StoredVal[Part]); + // If the address is consecutive but reversed, then the + // wide store needs to start at the last vector element. + PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); + PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); + Mask[Part] = reverseVector(Mask[Part]); + } + + Value *VecPtr = Builder.CreateBitCast(PartPtr, + DataTy->getPointerTo(AddressSpace)); + + Instruction *NewSI; + if (Legal->isMaskRequired(SI)) + NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, + Mask[Part]); + else + NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); + propagateMetadata(NewSI, SI); + } + return; + } + + // Handle loads. + assert(LI && "Must have a load instruction"); + setDebugLocFromInst(Builder, LI); + for (unsigned Part = 0; Part < UF; ++Part) { + // Calculate the pointer for the specific unroll-part. + Value *PartPtr = + Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); + + if (Reverse) { + // If the address is consecutive but reversed, then the + // wide load needs to start at the last vector element. + PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); + PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); + Mask[Part] = reverseVector(Mask[Part]); + } + + Instruction* NewLI; + Value *VecPtr = Builder.CreateBitCast(PartPtr, + DataTy->getPointerTo(AddressSpace)); + if (Legal->isMaskRequired(LI)) + NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], + UndefValue::get(DataTy), + "wide.masked.load"); + else + NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); + propagateMetadata(NewLI, LI); + Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; + } +} + +void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, + bool IfPredicateStore) { + assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); + // Holds vector parameters or scalars, in case of uniform vals. + SmallVector<VectorParts, 4> Params; + + setDebugLocFromInst(Builder, Instr); + + // Find all of the vectorized parameters. + for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { + Value *SrcOp = Instr->getOperand(op); + + // If we are accessing the old induction variable, use the new one. + if (SrcOp == OldInduction) { + Params.push_back(getVectorValue(SrcOp)); + continue; + } + + // Try using previously calculated values. + Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); + + // If the src is an instruction that appeared earlier in the basic block, + // then it should already be vectorized. + if (SrcInst && OrigLoop->contains(SrcInst)) { + assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); + // The parameter is a vector value from earlier. + Params.push_back(WidenMap.get(SrcInst)); + } else { + // The parameter is a scalar from outside the loop. Maybe even a constant. + VectorParts Scalars; + Scalars.append(UF, SrcOp); + Params.push_back(Scalars); + } + } + + assert(Params.size() == Instr->getNumOperands() && + "Invalid number of operands"); + + // Does this instruction return a value ? + bool IsVoidRetTy = Instr->getType()->isVoidTy(); + + Value *UndefVec = IsVoidRetTy ? nullptr : + UndefValue::get(VectorType::get(Instr->getType(), VF)); + // Create a new entry in the WidenMap and initialize it to Undef or Null. + VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); + + VectorParts Cond; + if (IfPredicateStore) { + assert(Instr->getParent()->getSinglePredecessor() && + "Only support single predecessor blocks"); + Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), + Instr->getParent()); + } + + // For each vector unroll 'part': + for (unsigned Part = 0; Part < UF; ++Part) { + // For each scalar that we create: + for (unsigned Width = 0; Width < VF; ++Width) { + + // Start if-block. + Value *Cmp = nullptr; + if (IfPredicateStore) { + Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); + Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, + ConstantInt::get(Cmp->getType(), 1)); + } + + Instruction *Cloned = Instr->clone(); + if (!IsVoidRetTy) + Cloned->setName(Instr->getName() + ".cloned"); + // Replace the operands of the cloned instructions with extracted scalars. + for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { + Value *Op = Params[op][Part]; + // Param is a vector. Need to extract the right lane. + if (Op->getType()->isVectorTy()) + Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); + Cloned->setOperand(op, Op); + } + + // Place the cloned scalar in the new loop. + Builder.Insert(Cloned); + + // If the original scalar returns a value we need to place it in a vector + // so that future users will be able to use it. + if (!IsVoidRetTy) + VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, + Builder.getInt32(Width)); + // End if-block. + if (IfPredicateStore) + PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), + Cmp)); + } + } +} + +PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, + Value *End, Value *Step, + Instruction *DL) { + BasicBlock *Header = L->getHeader(); + BasicBlock *Latch = L->getLoopLatch(); + // As we're just creating this loop, it's possible no latch exists + // yet. If so, use the header as this will be a single block loop. + if (!Latch) + Latch = Header; + + IRBuilder<> Builder(&*Header->getFirstInsertionPt()); + setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); + auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); + + Builder.SetInsertPoint(Latch->getTerminator()); + + // Create i+1 and fill the PHINode. + Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); + Induction->addIncoming(Start, L->getLoopPreheader()); + Induction->addIncoming(Next, Latch); + // Create the compare. + Value *ICmp = Builder.CreateICmpEQ(Next, End); + Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); + + // Now we have two terminators. Remove the old one from the block. + Latch->getTerminator()->eraseFromParent(); + + return Induction; +} + +Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { + if (TripCount) + return TripCount; + + IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); + // Find the loop boundaries. + ScalarEvolution *SE = PSE.getSE(); + const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(OrigLoop); + assert(BackedgeTakenCount != SE->getCouldNotCompute() && + "Invalid loop count"); + + Type *IdxTy = Legal->getWidestInductionType(); + + // The exit count might have the type of i64 while the phi is i32. This can + // happen if we have an induction variable that is sign extended before the + // compare. The only way that we get a backedge taken count is that the + // induction variable was signed and as such will not overflow. In such a case + // truncation is legal. + if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > + IdxTy->getPrimitiveSizeInBits()) + BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); + BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); + + // Get the total trip count from the count by adding 1. + const SCEV *ExitCount = SE->getAddExpr( + BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); + + const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); + + // Expand the trip count and place the new instructions in the preheader. + // Notice that the pre-header does not change, only the loop body. + SCEVExpander Exp(*SE, DL, "induction"); + + // Count holds the overall loop count (N). + TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), + L->getLoopPreheader()->getTerminator()); + + if (TripCount->getType()->isPointerTy()) + TripCount = + CastInst::CreatePointerCast(TripCount, IdxTy, + "exitcount.ptrcnt.to.int", + L->getLoopPreheader()->getTerminator()); + + return TripCount; +} + +Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { + if (VectorTripCount) + return VectorTripCount; + + Value *TC = getOrCreateTripCount(L); + IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); + + // Now we need to generate the expression for N - (N % VF), which is + // the part that the vectorized body will execute. + // The loop step is equal to the vectorization factor (num of SIMD elements) + // times the unroll factor (num of SIMD instructions). + Constant *Step = ConstantInt::get(TC->getType(), VF * UF); + Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); + VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); + + return VectorTripCount; +} + +void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, + BasicBlock *Bypass) { + Value *Count = getOrCreateTripCount(L); + BasicBlock *BB = L->getLoopPreheader(); + IRBuilder<> Builder(BB->getTerminator()); + + // Generate code to check that the loop's trip count that we computed by + // adding one to the backedge-taken count will not overflow. + Value *CheckMinIters = + Builder.CreateICmpULT(Count, + ConstantInt::get(Count->getType(), VF * UF), + "min.iters.check"); + + BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), + "min.iters.checked"); + if (L->getParentLoop()) + L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); + ReplaceInstWithInst(BB->getTerminator(), + BranchInst::Create(Bypass, NewBB, CheckMinIters)); + LoopBypassBlocks.push_back(BB); +} + +void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, + BasicBlock *Bypass) { + Value *TC = getOrCreateVectorTripCount(L); + BasicBlock *BB = L->getLoopPreheader(); + IRBuilder<> Builder(BB->getTerminator()); + + // Now, compare the new count to zero. If it is zero skip the vector loop and + // jump to the scalar loop. + Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), + "cmp.zero"); + + // Generate code to check that the loop's trip count that we computed by + // adding one to the backedge-taken count will not overflow. + BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), + "vector.ph"); + if (L->getParentLoop()) + L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); + ReplaceInstWithInst(BB->getTerminator(), + BranchInst::Create(Bypass, NewBB, Cmp)); + LoopBypassBlocks.push_back(BB); +} + +void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { + BasicBlock *BB = L->getLoopPreheader(); + + // Generate the code to check that the SCEV assumptions that we made. + // We want the new basic block to start at the first instruction in a + // sequence of instructions that form a check. + SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), + "scev.check"); + Value *SCEVCheck = + Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); + + if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) + if (C->isZero()) + return; + + // Create a new block containing the stride check. + BB->setName("vector.scevcheck"); + auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); + if (L->getParentLoop()) + L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); + ReplaceInstWithInst(BB->getTerminator(), + BranchInst::Create(Bypass, NewBB, SCEVCheck)); + LoopBypassBlocks.push_back(BB); + AddedSafetyChecks = true; +} + +void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, + BasicBlock *Bypass) { + BasicBlock *BB = L->getLoopPreheader(); + + // Generate the code that checks in runtime if arrays overlap. We put the + // checks into a separate block to make the more common case of few elements + // faster. + Instruction *FirstCheckInst; + Instruction *MemRuntimeCheck; + std::tie(FirstCheckInst, MemRuntimeCheck) = + Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); + if (!MemRuntimeCheck) + return; + + // Create a new block containing the memory check. + BB->setName("vector.memcheck"); + auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); + if (L->getParentLoop()) + L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); + ReplaceInstWithInst(BB->getTerminator(), + BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); + LoopBypassBlocks.push_back(BB); + AddedSafetyChecks = true; +} + + +void InnerLoopVectorizer::createEmptyLoop() { + /* + In this function we generate a new loop. The new loop will contain + the vectorized instructions while the old loop will continue to run the + scalar remainder. + + [ ] <-- loop iteration number check. + / | + / v + | [ ] <-- vector loop bypass (may consist of multiple blocks). + | / | + | / v + || [ ] <-- vector pre header. + |/ | + | v + | [ ] \ + | [ ]_| <-- vector loop. + | | + | v + | -[ ] <--- middle-block. + | / | + | / v + -|- >[ ] <--- new preheader. + | | + | v + | [ ] \ + | [ ]_| <-- old scalar loop to handle remainder. + \ | + \ v + >[ ] <-- exit block. + ... + */ + + BasicBlock *OldBasicBlock = OrigLoop->getHeader(); + BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); + BasicBlock *ExitBlock = OrigLoop->getExitBlock(); + assert(VectorPH && "Invalid loop structure"); + assert(ExitBlock && "Must have an exit block"); + + // Some loops have a single integer induction variable, while other loops + // don't. One example is c++ iterators that often have multiple pointer + // induction variables. In the code below we also support a case where we + // don't have a single induction variable. + // + // We try to obtain an induction variable from the original loop as hard + // as possible. However if we don't find one that: + // - is an integer + // - counts from zero, stepping by one + // - is the size of the widest induction variable type + // then we create a new one. + OldInduction = Legal->getInduction(); + Type *IdxTy = Legal->getWidestInductionType(); + + // Split the single block loop into the two loop structure described above. + BasicBlock *VecBody = + VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); + BasicBlock *MiddleBlock = + VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); + BasicBlock *ScalarPH = + MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); + + // Create and register the new vector loop. + Loop* Lp = new Loop(); + Loop *ParentLoop = OrigLoop->getParentLoop(); + + // Insert the new loop into the loop nest and register the new basic blocks + // before calling any utilities such as SCEV that require valid LoopInfo. + if (ParentLoop) { + ParentLoop->addChildLoop(Lp); + ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); + ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); + } else { + LI->addTopLevelLoop(Lp); + } + Lp->addBasicBlockToLoop(VecBody, *LI); + + // Find the loop boundaries. + Value *Count = getOrCreateTripCount(Lp); + + Value *StartIdx = ConstantInt::get(IdxTy, 0); + + // We need to test whether the backedge-taken count is uint##_max. Adding one + // to it will cause overflow and an incorrect loop trip count in the vector + // body. In case of overflow we want to directly jump to the scalar remainder + // loop. + emitMinimumIterationCountCheck(Lp, ScalarPH); + // Now, compare the new count to zero. If it is zero skip the vector loop and + // jump to the scalar loop. + emitVectorLoopEnteredCheck(Lp, ScalarPH); + // Generate the code to check any assumptions that we've made for SCEV + // expressions. + emitSCEVChecks(Lp, ScalarPH); + + // Generate the code that checks in runtime if arrays overlap. We put the + // checks into a separate block to make the more common case of few elements + // faster. + emitMemRuntimeChecks(Lp, ScalarPH); + + // Generate the induction variable. + // The loop step is equal to the vectorization factor (num of SIMD elements) + // times the unroll factor (num of SIMD instructions). + Value *CountRoundDown = getOrCreateVectorTripCount(Lp); + Constant *Step = ConstantInt::get(IdxTy, VF * UF); + Induction = + createInductionVariable(Lp, StartIdx, CountRoundDown, Step, + getDebugLocFromInstOrOperands(OldInduction)); + + // We are going to resume the execution of the scalar loop. + // Go over all of the induction variables that we found and fix the + // PHIs that are left in the scalar version of the loop. + // The starting values of PHI nodes depend on the counter of the last + // iteration in the vectorized loop. + // If we come from a bypass edge then we need to start from the original + // start value. + + // This variable saves the new starting index for the scalar loop. It is used + // to test if there are any tail iterations left once the vector loop has + // completed. + LoopVectorizationLegality::InductionList::iterator I, E; + LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); + for (I = List->begin(), E = List->end(); I != E; ++I) { + PHINode *OrigPhi = I->first; + InductionDescriptor II = I->second; + + // Create phi nodes to merge from the backedge-taken check block. + PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, + "bc.resume.val", + ScalarPH->getTerminator()); + Value *EndValue; + if (OrigPhi == OldInduction) { + // We know what the end value is. + EndValue = CountRoundDown; + } else { + IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); + Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, + II.getStepValue()->getType(), + "cast.crd"); + EndValue = II.transform(B, CRD); + EndValue->setName("ind.end"); + } + + // The new PHI merges the original incoming value, in case of a bypass, + // or the value at the end of the vectorized loop. + BCResumeVal->addIncoming(EndValue, MiddleBlock); + + // Fix the scalar body counter (PHI node). + unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); + + // The old induction's phi node in the scalar body needs the truncated + // value. + for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) + BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); + OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); + } + + // Add a check in the middle block to see if we have completed + // all of the iterations in the first vector loop. + // If (N - N%VF) == N, then we *don't* need to run the remainder. + Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, + CountRoundDown, "cmp.n", + MiddleBlock->getTerminator()); + ReplaceInstWithInst(MiddleBlock->getTerminator(), + BranchInst::Create(ExitBlock, ScalarPH, CmpN)); + + // Get ready to start creating new instructions into the vectorized body. + Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); + + // Save the state. + LoopVectorPreHeader = Lp->getLoopPreheader(); + LoopScalarPreHeader = ScalarPH; + LoopMiddleBlock = MiddleBlock; + LoopExitBlock = ExitBlock; + LoopVectorBody.push_back(VecBody); + LoopScalarBody = OldBasicBlock; + + LoopVectorizeHints Hints(Lp, true); + Hints.setAlreadyVectorized(); +} + +namespace { +struct CSEDenseMapInfo { + static bool canHandle(Instruction *I) { + return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || + isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); + } + static inline Instruction *getEmptyKey() { + return DenseMapInfo<Instruction *>::getEmptyKey(); + } + static inline Instruction *getTombstoneKey() { + return DenseMapInfo<Instruction *>::getTombstoneKey(); + } + static unsigned getHashValue(Instruction *I) { + assert(canHandle(I) && "Unknown instruction!"); + return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), + I->value_op_end())); + } + static bool isEqual(Instruction *LHS, Instruction *RHS) { + if (LHS == getEmptyKey() || RHS == getEmptyKey() || + LHS == getTombstoneKey() || RHS == getTombstoneKey()) + return LHS == RHS; + return LHS->isIdenticalTo(RHS); + } +}; +} + +/// \brief Check whether this block is a predicated block. +/// Due to if predication of stores we might create a sequence of "if(pred) a[i] +/// = ...; " blocks. We start with one vectorized basic block. For every +/// conditional block we split this vectorized block. Therefore, every second +/// block will be a predicated one. +static bool isPredicatedBlock(unsigned BlockNum) { + return BlockNum % 2; +} + +///\brief Perform cse of induction variable instructions. +static void cse(SmallVector<BasicBlock *, 4> &BBs) { + // Perform simple cse. + SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; + for (unsigned i = 0, e = BBs.size(); i != e; ++i) { + BasicBlock *BB = BBs[i]; + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { + Instruction *In = &*I++; + + if (!CSEDenseMapInfo::canHandle(In)) + continue; + + // Check if we can replace this instruction with any of the + // visited instructions. + if (Instruction *V = CSEMap.lookup(In)) { + In->replaceAllUsesWith(V); + In->eraseFromParent(); + continue; + } + // Ignore instructions in conditional blocks. We create "if (pred) a[i] = + // ...;" blocks for predicated stores. Every second block is a predicated + // block. + if (isPredicatedBlock(i)) + continue; + + CSEMap[In] = In; + } + } +} + +/// \brief Adds a 'fast' flag to floating point operations. +static Value *addFastMathFlag(Value *V) { + if (isa<FPMathOperator>(V)){ + FastMathFlags Flags; + Flags.setUnsafeAlgebra(); + cast<Instruction>(V)->setFastMathFlags(Flags); + } + return V; +} + +/// Estimate the overhead of scalarizing a value. Insert and Extract are set if +/// the result needs to be inserted and/or extracted from vectors. +static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, + const TargetTransformInfo &TTI) { + if (Ty->isVoidTy()) + return 0; + + assert(Ty->isVectorTy() && "Can only scalarize vectors"); + unsigned Cost = 0; + + for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { + if (Insert) + Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); + if (Extract) + Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); + } + + return Cost; +} + +// Estimate cost of a call instruction CI if it were vectorized with factor VF. +// Return the cost of the instruction, including scalarization overhead if it's +// needed. The flag NeedToScalarize shows if the call needs to be scalarized - +// i.e. either vector version isn't available, or is too expensive. +static unsigned getVectorCallCost(CallInst *CI, unsigned VF, + const TargetTransformInfo &TTI, + const TargetLibraryInfo *TLI, + bool &NeedToScalarize) { + Function *F = CI->getCalledFunction(); + StringRef FnName = CI->getCalledFunction()->getName(); + Type *ScalarRetTy = CI->getType(); + SmallVector<Type *, 4> Tys, ScalarTys; + for (auto &ArgOp : CI->arg_operands()) + ScalarTys.push_back(ArgOp->getType()); + + // Estimate cost of scalarized vector call. The source operands are assumed + // to be vectors, so we need to extract individual elements from there, + // execute VF scalar calls, and then gather the result into the vector return + // value. + unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); + if (VF == 1) + return ScalarCallCost; + + // Compute corresponding vector type for return value and arguments. + Type *RetTy = ToVectorTy(ScalarRetTy, VF); + for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) + Tys.push_back(ToVectorTy(ScalarTys[i], VF)); + + // Compute costs of unpacking argument values for the scalar calls and + // packing the return values to a vector. + unsigned ScalarizationCost = + getScalarizationOverhead(RetTy, true, false, TTI); + for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) + ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); + + unsigned Cost = ScalarCallCost * VF + ScalarizationCost; + + // If we can't emit a vector call for this function, then the currently found + // cost is the cost we need to return. + NeedToScalarize = true; + if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) + return Cost; + + // If the corresponding vector cost is cheaper, return its cost. + unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); + if (VectorCallCost < Cost) { + NeedToScalarize = false; + return VectorCallCost; + } + return Cost; +} + +// Estimate cost of an intrinsic call instruction CI if it were vectorized with +// factor VF. Return the cost of the instruction, including scalarization +// overhead if it's needed. +static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, + const TargetTransformInfo &TTI, + const TargetLibraryInfo *TLI) { + Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + assert(ID && "Expected intrinsic call!"); + + Type *RetTy = ToVectorTy(CI->getType(), VF); + SmallVector<Type *, 4> Tys; + for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) + Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); + + return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); +} + +static Type *smallestIntegerVectorType(Type *T1, Type *T2) { + IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); + IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); + return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; +} +static Type *largestIntegerVectorType(Type *T1, Type *T2) { + IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); + IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); + return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; +} + +void InnerLoopVectorizer::truncateToMinimalBitwidths() { + // For every instruction `I` in MinBWs, truncate the operands, create a + // truncated version of `I` and reextend its result. InstCombine runs + // later and will remove any ext/trunc pairs. + // + for (auto &KV : MinBWs) { + VectorParts &Parts = WidenMap.get(KV.first); + for (Value *&I : Parts) { + if (I->use_empty()) + continue; + Type *OriginalTy = I->getType(); + Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), + KV.second); + Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, + OriginalTy->getVectorNumElements()); + if (TruncatedTy == OriginalTy) + continue; + + IRBuilder<> B(cast<Instruction>(I)); + auto ShrinkOperand = [&](Value *V) -> Value* { + if (auto *ZI = dyn_cast<ZExtInst>(V)) + if (ZI->getSrcTy() == TruncatedTy) + return ZI->getOperand(0); + return B.CreateZExtOrTrunc(V, TruncatedTy); + }; + + // The actual instruction modification depends on the instruction type, + // unfortunately. + Value *NewI = nullptr; + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { + NewI = B.CreateBinOp(BO->getOpcode(), + ShrinkOperand(BO->getOperand(0)), + ShrinkOperand(BO->getOperand(1))); + cast<BinaryOperator>(NewI)->copyIRFlags(I); + } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { + NewI = B.CreateICmp(CI->getPredicate(), + ShrinkOperand(CI->getOperand(0)), + ShrinkOperand(CI->getOperand(1))); + } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { + NewI = B.CreateSelect(SI->getCondition(), + ShrinkOperand(SI->getTrueValue()), + ShrinkOperand(SI->getFalseValue())); + } else if (CastInst *CI = dyn_cast<CastInst>(I)) { + switch (CI->getOpcode()) { + default: llvm_unreachable("Unhandled cast!"); + case Instruction::Trunc: + NewI = ShrinkOperand(CI->getOperand(0)); + break; + case Instruction::SExt: + NewI = B.CreateSExtOrTrunc(CI->getOperand(0), + smallestIntegerVectorType(OriginalTy, + TruncatedTy)); + break; + case Instruction::ZExt: + NewI = B.CreateZExtOrTrunc(CI->getOperand(0), + smallestIntegerVectorType(OriginalTy, + TruncatedTy)); + break; + } + } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { + auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); + auto *O0 = + B.CreateZExtOrTrunc(SI->getOperand(0), + VectorType::get(ScalarTruncatedTy, Elements0)); + auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); + auto *O1 = + B.CreateZExtOrTrunc(SI->getOperand(1), + VectorType::get(ScalarTruncatedTy, Elements1)); + + NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); + } else if (isa<LoadInst>(I)) { + // Don't do anything with the operands, just extend the result. + continue; + } else { + llvm_unreachable("Unhandled instruction type!"); + } + + // Lastly, extend the result. + NewI->takeName(cast<Instruction>(I)); + Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); + I->replaceAllUsesWith(Res); + cast<Instruction>(I)->eraseFromParent(); + I = Res; + } + } + + // We'll have created a bunch of ZExts that are now parentless. Clean up. + for (auto &KV : MinBWs) { + VectorParts &Parts = WidenMap.get(KV.first); + for (Value *&I : Parts) { + ZExtInst *Inst = dyn_cast<ZExtInst>(I); + if (Inst && Inst->use_empty()) { + Value *NewI = Inst->getOperand(0); + Inst->eraseFromParent(); + I = NewI; + } + } + } +} + +void InnerLoopVectorizer::vectorizeLoop() { + //===------------------------------------------------===// + // + // Notice: any optimization or new instruction that go + // into the code below should be also be implemented in + // the cost-model. + // + //===------------------------------------------------===// + Constant *Zero = Builder.getInt32(0); + + // In order to support reduction variables we need to be able to vectorize + // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two + // stages. First, we create a new vector PHI node with no incoming edges. + // We use this value when we vectorize all of the instructions that use the + // PHI. Next, after all of the instructions in the block are complete we + // add the new incoming edges to the PHI. At this point all of the + // instructions in the basic block are vectorized, so we can use them to + // construct the PHI. + PhiVector RdxPHIsToFix; + + // Scan the loop in a topological order to ensure that defs are vectorized + // before users. + LoopBlocksDFS DFS(OrigLoop); + DFS.perform(LI); + + // Vectorize all of the blocks in the original loop. + for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), + be = DFS.endRPO(); bb != be; ++bb) + vectorizeBlockInLoop(*bb, &RdxPHIsToFix); + + // Insert truncates and extends for any truncated instructions as hints to + // InstCombine. + if (VF > 1) + truncateToMinimalBitwidths(); + + // At this point every instruction in the original loop is widened to + // a vector form. We are almost done. Now, we need to fix the PHI nodes + // that we vectorized. The PHI nodes are currently empty because we did + // not want to introduce cycles. Notice that the remaining PHI nodes + // that we need to fix are reduction variables. + + // Create the 'reduced' values for each of the induction vars. + // The reduced values are the vector values that we scalarize and combine + // after the loop is finished. + for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); + it != e; ++it) { + PHINode *RdxPhi = *it; + assert(RdxPhi && "Unable to recover vectorized PHI"); + + // Find the reduction variable descriptor. + assert(Legal->isReductionVariable(RdxPhi) && + "Unable to find the reduction variable"); + RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; + + RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); + TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); + Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); + RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = + RdxDesc.getMinMaxRecurrenceKind(); + setDebugLocFromInst(Builder, ReductionStartValue); + + // We need to generate a reduction vector from the incoming scalar. + // To do so, we need to generate the 'identity' vector and override + // one of the elements with the incoming scalar reduction. We need + // to do it in the vector-loop preheader. + Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); + + // This is the vector-clone of the value that leaves the loop. + VectorParts &VectorExit = getVectorValue(LoopExitInst); + Type *VecTy = VectorExit[0]->getType(); + + // Find the reduction identity variable. Zero for addition, or, xor, + // one for multiplication, -1 for And. + Value *Identity; + Value *VectorStart; + if (RK == RecurrenceDescriptor::RK_IntegerMinMax || + RK == RecurrenceDescriptor::RK_FloatMinMax) { + // MinMax reduction have the start value as their identify. + if (VF == 1) { + VectorStart = Identity = ReductionStartValue; + } else { + VectorStart = Identity = + Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); + } + } else { + // Handle other reduction kinds: + Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( + RK, VecTy->getScalarType()); + if (VF == 1) { + Identity = Iden; + // This vector is the Identity vector where the first element is the + // incoming scalar reduction. + VectorStart = ReductionStartValue; + } else { + Identity = ConstantVector::getSplat(VF, Iden); + + // This vector is the Identity vector where the first element is the + // incoming scalar reduction. + VectorStart = + Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); + } + } + + // Fix the vector-loop phi. + + // Reductions do not have to start at zero. They can start with + // any loop invariant values. + VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); + BasicBlock *Latch = OrigLoop->getLoopLatch(); + Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); + VectorParts &Val = getVectorValue(LoopVal); + for (unsigned part = 0; part < UF; ++part) { + // Make sure to add the reduction stat value only to the + // first unroll part. + Value *StartVal = (part == 0) ? VectorStart : Identity; + cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, + LoopVectorPreHeader); + cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], + LoopVectorBody.back()); + } + + // Before each round, move the insertion point right between + // the PHIs and the values we are going to write. + // This allows us to write both PHINodes and the extractelement + // instructions. + Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); + + VectorParts RdxParts = getVectorValue(LoopExitInst); + setDebugLocFromInst(Builder, LoopExitInst); + + // If the vector reduction can be performed in a smaller type, we truncate + // then extend the loop exit value to enable InstCombine to evaluate the + // entire expression in the smaller type. + if (VF > 1 && RdxPhi->getType() != RdxDesc.getRecurrenceType()) { + Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); + Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator()); + for (unsigned part = 0; part < UF; ++part) { + Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); + Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) + : Builder.CreateZExt(Trunc, VecTy); + for (Value::user_iterator UI = RdxParts[part]->user_begin(); + UI != RdxParts[part]->user_end();) + if (*UI != Trunc) { + (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); + RdxParts[part] = Extnd; + } else { + ++UI; + } + } + Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); + for (unsigned part = 0; part < UF; ++part) + RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); + } + + // Reduce all of the unrolled parts into a single vector. + Value *ReducedPartRdx = RdxParts[0]; + unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); + setDebugLocFromInst(Builder, ReducedPartRdx); + for (unsigned part = 1; part < UF; ++part) { + if (Op != Instruction::ICmp && Op != Instruction::FCmp) + // Floating point operations had to be 'fast' to enable the reduction. + ReducedPartRdx = addFastMathFlag( + Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], + ReducedPartRdx, "bin.rdx")); + else + ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( + Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); + } + + if (VF > 1) { + // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles + // and vector ops, reducing the set of values being computed by half each + // round. + assert(isPowerOf2_32(VF) && + "Reduction emission only supported for pow2 vectors!"); + Value *TmpVec = ReducedPartRdx; + SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); + for (unsigned i = VF; i != 1; i >>= 1) { + // Move the upper half of the vector to the lower half. + for (unsigned j = 0; j != i/2; ++j) + ShuffleMask[j] = Builder.getInt32(i/2 + j); + + // Fill the rest of the mask with undef. + std::fill(&ShuffleMask[i/2], ShuffleMask.end(), + UndefValue::get(Builder.getInt32Ty())); + + Value *Shuf = + Builder.CreateShuffleVector(TmpVec, + UndefValue::get(TmpVec->getType()), + ConstantVector::get(ShuffleMask), + "rdx.shuf"); + + if (Op != Instruction::ICmp && Op != Instruction::FCmp) + // Floating point operations had to be 'fast' to enable the reduction. + TmpVec = addFastMathFlag(Builder.CreateBinOp( + (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); + else + TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, + TmpVec, Shuf); + } + + // The result is in the first element of the vector. + ReducedPartRdx = Builder.CreateExtractElement(TmpVec, + Builder.getInt32(0)); + + // If the reduction can be performed in a smaller type, we need to extend + // the reduction to the wider type before we branch to the original loop. + if (RdxPhi->getType() != RdxDesc.getRecurrenceType()) + ReducedPartRdx = + RdxDesc.isSigned() + ? Builder.CreateSExt(ReducedPartRdx, RdxPhi->getType()) + : Builder.CreateZExt(ReducedPartRdx, RdxPhi->getType()); + } + + // Create a phi node that merges control-flow from the backedge-taken check + // block and the middle block. + PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", + LoopScalarPreHeader->getTerminator()); + for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) + BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); + BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); + + // Now, we need to fix the users of the reduction variable + // inside and outside of the scalar remainder loop. + // We know that the loop is in LCSSA form. We need to update the + // PHI nodes in the exit blocks. + for (BasicBlock::iterator LEI = LoopExitBlock->begin(), + LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { + PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); + if (!LCSSAPhi) break; + + // All PHINodes need to have a single entry edge, or two if + // we already fixed them. + assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); + + // We found our reduction value exit-PHI. Update it with the + // incoming bypass edge. + if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { + // Add an edge coming from the bypass. + LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); + break; + } + }// end of the LCSSA phi scan. + + // Fix the scalar loop reduction variable with the incoming reduction sum + // from the vector body and from the backedge value. + int IncomingEdgeBlockIdx = + (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); + assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); + // Pick the other block. + int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); + (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); + (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); + }// end of for each redux variable. + + fixLCSSAPHIs(); + + // Make sure DomTree is updated. + updateAnalysis(); + + // Predicate any stores. + for (auto KV : PredicatedStores) { + BasicBlock::iterator I(KV.first); + auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); + auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, + /*BranchWeights=*/nullptr, DT); + I->moveBefore(T); + I->getParent()->setName("pred.store.if"); + BB->setName("pred.store.continue"); + } + DEBUG(DT->verifyDomTree()); + // Remove redundant induction instructions. + cse(LoopVectorBody); +} + +void InnerLoopVectorizer::fixLCSSAPHIs() { + for (BasicBlock::iterator LEI = LoopExitBlock->begin(), + LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { + PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); + if (!LCSSAPhi) break; + if (LCSSAPhi->getNumIncomingValues() == 1) + LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), + LoopMiddleBlock); + } +} + +InnerLoopVectorizer::VectorParts +InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { + assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && + "Invalid edge"); + + // Look for cached value. + std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); + EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); + if (ECEntryIt != MaskCache.end()) + return ECEntryIt->second; + + VectorParts SrcMask = createBlockInMask(Src); + + // The terminator has to be a branch inst! + BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); + assert(BI && "Unexpected terminator found"); + + if (BI->isConditional()) { + VectorParts EdgeMask = getVectorValue(BI->getCondition()); + + if (BI->getSuccessor(0) != Dst) + for (unsigned part = 0; part < UF; ++part) + EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); + + for (unsigned part = 0; part < UF; ++part) + EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); + + MaskCache[Edge] = EdgeMask; + return EdgeMask; + } + + MaskCache[Edge] = SrcMask; + return SrcMask; +} + +InnerLoopVectorizer::VectorParts +InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { + assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); + + // Loop incoming mask is all-one. + if (OrigLoop->getHeader() == BB) { + Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); + return getVectorValue(C); + } + + // This is the block mask. We OR all incoming edges, and with zero. + Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); + VectorParts BlockMask = getVectorValue(Zero); + + // For each pred: + for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { + VectorParts EM = createEdgeMask(*it, BB); + for (unsigned part = 0; part < UF; ++part) + BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); + } + + return BlockMask; +} + +void InnerLoopVectorizer::widenPHIInstruction( + Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, + unsigned VF, PhiVector *PV) { + PHINode* P = cast<PHINode>(PN); + // Handle reduction variables: + if (Legal->isReductionVariable(P)) { + for (unsigned part = 0; part < UF; ++part) { + // This is phase one of vectorizing PHIs. + Type *VecTy = (VF == 1) ? PN->getType() : + VectorType::get(PN->getType(), VF); + Entry[part] = PHINode::Create( + VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt()); + } + PV->push_back(P); + return; + } + + setDebugLocFromInst(Builder, P); + // Check for PHI nodes that are lowered to vector selects. + if (P->getParent() != OrigLoop->getHeader()) { + // We know that all PHIs in non-header blocks are converted into + // selects, so we don't have to worry about the insertion order and we + // can just use the builder. + // At this point we generate the predication tree. There may be + // duplications since this is a simple recursive scan, but future + // optimizations will clean it up. + + unsigned NumIncoming = P->getNumIncomingValues(); + + // Generate a sequence of selects of the form: + // SELECT(Mask3, In3, + // SELECT(Mask2, In2, + // ( ...))) + for (unsigned In = 0; In < NumIncoming; In++) { + VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), + P->getParent()); + VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); + + for (unsigned part = 0; part < UF; ++part) { + // We might have single edge PHIs (blocks) - use an identity + // 'select' for the first PHI operand. + if (In == 0) + Entry[part] = Builder.CreateSelect(Cond[part], In0[part], + In0[part]); + else + // Select between the current value and the previous incoming edge + // based on the incoming mask. + Entry[part] = Builder.CreateSelect(Cond[part], In0[part], + Entry[part], "predphi"); + } + } + return; + } + + // This PHINode must be an induction variable. + // Make sure that we know about it. + assert(Legal->getInductionVars()->count(P) && + "Not an induction variable"); + + InductionDescriptor II = Legal->getInductionVars()->lookup(P); + + // FIXME: The newly created binary instructions should contain nsw/nuw flags, + // which can be found from the original scalar operations. + switch (II.getKind()) { + case InductionDescriptor::IK_NoInduction: + llvm_unreachable("Unknown induction"); + case InductionDescriptor::IK_IntInduction: { + assert(P->getType() == II.getStartValue()->getType() && + "Types must match"); + // Handle other induction variables that are now based on the + // canonical one. + Value *V = Induction; + if (P != OldInduction) { + V = Builder.CreateSExtOrTrunc(Induction, P->getType()); + V = II.transform(Builder, V); + V->setName("offset.idx"); + } + Value *Broadcasted = getBroadcastInstrs(V); + // After broadcasting the induction variable we need to make the vector + // consecutive by adding 0, 1, 2, etc. + for (unsigned part = 0; part < UF; ++part) + Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue()); + return; + } + case InductionDescriptor::IK_PtrInduction: + // Handle the pointer induction variable case. + assert(P->getType()->isPointerTy() && "Unexpected type."); + // This is the normalized GEP that starts counting at zero. + Value *PtrInd = Induction; + PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType()); + // This is the vector of results. Notice that we don't generate + // vector geps because scalar geps result in better code. + for (unsigned part = 0; part < UF; ++part) { + if (VF == 1) { + int EltIndex = part; + Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); + Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); + Value *SclrGep = II.transform(Builder, GlobalIdx); + SclrGep->setName("next.gep"); + Entry[part] = SclrGep; + continue; + } + + Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); + for (unsigned int i = 0; i < VF; ++i) { + int EltIndex = i + part * VF; + Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); + Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); + Value *SclrGep = II.transform(Builder, GlobalIdx); + SclrGep->setName("next.gep"); + VecVal = Builder.CreateInsertElement(VecVal, SclrGep, + Builder.getInt32(i), + "insert.gep"); + } + Entry[part] = VecVal; + } + return; + } +} + +void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { + // For each instruction in the old loop. + for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { + VectorParts &Entry = WidenMap.get(&*it); + + switch (it->getOpcode()) { + case Instruction::Br: + // Nothing to do for PHIs and BR, since we already took care of the + // loop control flow instructions. + continue; + case Instruction::PHI: { + // Vectorize PHINodes. + widenPHIInstruction(&*it, Entry, UF, VF, PV); + continue; + }// End of PHI. + + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + // Just widen binops. + BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); + setDebugLocFromInst(Builder, BinOp); + VectorParts &A = getVectorValue(it->getOperand(0)); + VectorParts &B = getVectorValue(it->getOperand(1)); + + // Use this vector value for all users of the original instruction. + for (unsigned Part = 0; Part < UF; ++Part) { + Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); + + if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) + VecOp->copyIRFlags(BinOp); + + Entry[Part] = V; + } + + propagateMetadata(Entry, &*it); + break; + } + case Instruction::Select: { + // Widen selects. + // If the selector is loop invariant we can create a select + // instruction with a scalar condition. Otherwise, use vector-select. + auto *SE = PSE.getSE(); + bool InvariantCond = + SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); + setDebugLocFromInst(Builder, &*it); + + // The condition can be loop invariant but still defined inside the + // loop. This means that we can't just use the original 'cond' value. + // We have to take the 'vectorized' value and pick the first lane. + // Instcombine will make this a no-op. + VectorParts &Cond = getVectorValue(it->getOperand(0)); + VectorParts &Op0 = getVectorValue(it->getOperand(1)); + VectorParts &Op1 = getVectorValue(it->getOperand(2)); + + Value *ScalarCond = (VF == 1) ? Cond[0] : + Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); + + for (unsigned Part = 0; Part < UF; ++Part) { + Entry[Part] = Builder.CreateSelect( + InvariantCond ? ScalarCond : Cond[Part], + Op0[Part], + Op1[Part]); + } + + propagateMetadata(Entry, &*it); + break; + } + + case Instruction::ICmp: + case Instruction::FCmp: { + // Widen compares. Generate vector compares. + bool FCmp = (it->getOpcode() == Instruction::FCmp); + CmpInst *Cmp = dyn_cast<CmpInst>(it); + setDebugLocFromInst(Builder, &*it); + VectorParts &A = getVectorValue(it->getOperand(0)); + VectorParts &B = getVectorValue(it->getOperand(1)); + for (unsigned Part = 0; Part < UF; ++Part) { + Value *C = nullptr; + if (FCmp) { + C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); + cast<FCmpInst>(C)->copyFastMathFlags(&*it); + } else { + C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); + } + Entry[Part] = C; + } + + propagateMetadata(Entry, &*it); + break; + } + + case Instruction::Store: + case Instruction::Load: + vectorizeMemoryInstruction(&*it); + break; + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + CastInst *CI = dyn_cast<CastInst>(it); + setDebugLocFromInst(Builder, &*it); + /// Optimize the special case where the source is the induction + /// variable. Notice that we can only optimize the 'trunc' case + /// because: a. FP conversions lose precision, b. sext/zext may wrap, + /// c. other casts depend on pointer size. + if (CI->getOperand(0) == OldInduction && + it->getOpcode() == Instruction::Trunc) { + Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, + CI->getType()); + Value *Broadcasted = getBroadcastInstrs(ScalarCast); + InductionDescriptor II = + Legal->getInductionVars()->lookup(OldInduction); + Constant *Step = ConstantInt::getSigned( + CI->getType(), II.getStepValue()->getSExtValue()); + for (unsigned Part = 0; Part < UF; ++Part) + Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); + propagateMetadata(Entry, &*it); + break; + } + /// Vectorize casts. + Type *DestTy = (VF == 1) ? CI->getType() : + VectorType::get(CI->getType(), VF); + + VectorParts &A = getVectorValue(it->getOperand(0)); + for (unsigned Part = 0; Part < UF; ++Part) + Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); + propagateMetadata(Entry, &*it); + break; + } + + case Instruction::Call: { + // Ignore dbg intrinsics. + if (isa<DbgInfoIntrinsic>(it)) + break; + setDebugLocFromInst(Builder, &*it); + + Module *M = BB->getParent()->getParent(); + CallInst *CI = cast<CallInst>(it); + + StringRef FnName = CI->getCalledFunction()->getName(); + Function *F = CI->getCalledFunction(); + Type *RetTy = ToVectorTy(CI->getType(), VF); + SmallVector<Type *, 4> Tys; + for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) + Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); + + Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + if (ID && + (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || + ID == Intrinsic::lifetime_start)) { + scalarizeInstruction(&*it); + break; + } + // The flag shows whether we use Intrinsic or a usual Call for vectorized + // version of the instruction. + // Is it beneficial to perform intrinsic call compared to lib call? + bool NeedToScalarize; + unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); + bool UseVectorIntrinsic = + ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; + if (!UseVectorIntrinsic && NeedToScalarize) { + scalarizeInstruction(&*it); + break; + } + + for (unsigned Part = 0; Part < UF; ++Part) { + SmallVector<Value *, 4> Args; + for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { + Value *Arg = CI->getArgOperand(i); + // Some intrinsics have a scalar argument - don't replace it with a + // vector. + if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { + VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); + Arg = VectorArg[Part]; + } + Args.push_back(Arg); + } + + Function *VectorF; + if (UseVectorIntrinsic) { + // Use vector version of the intrinsic. + Type *TysForDecl[] = {CI->getType()}; + if (VF > 1) + TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); + VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); + } else { + // Use vector version of the library call. + StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); + assert(!VFnName.empty() && "Vector function name is empty."); + VectorF = M->getFunction(VFnName); + if (!VectorF) { + // Generate a declaration + FunctionType *FTy = FunctionType::get(RetTy, Tys, false); + VectorF = + Function::Create(FTy, Function::ExternalLinkage, VFnName, M); + VectorF->copyAttributesFrom(F); + } + } + assert(VectorF && "Can't create vector function."); + Entry[Part] = Builder.CreateCall(VectorF, Args); + } + + propagateMetadata(Entry, &*it); + break; + } + + default: + // All other instructions are unsupported. Scalarize them. + scalarizeInstruction(&*it); + break; + }// end of switch. + }// end of for_each instr. +} + +void InnerLoopVectorizer::updateAnalysis() { + // Forget the original basic block. + PSE.getSE()->forgetLoop(OrigLoop); + + // Update the dominator tree information. + assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && + "Entry does not dominate exit."); + + for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) + DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); + DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); + + // We don't predicate stores by this point, so the vector body should be a + // single loop. + assert(LoopVectorBody.size() == 1 && "Expected single block loop!"); + DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); + + DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back()); + DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); + DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); + DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); + + DEBUG(DT->verifyDomTree()); +} + +/// \brief Check whether it is safe to if-convert this phi node. +/// +/// Phi nodes with constant expressions that can trap are not safe to if +/// convert. +static bool canIfConvertPHINodes(BasicBlock *BB) { + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + PHINode *Phi = dyn_cast<PHINode>(I); + if (!Phi) + return true; + for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) + if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) + if (C->canTrap()) + return false; + } + return true; +} + +bool LoopVectorizationLegality::canVectorizeWithIfConvert() { + if (!EnableIfConversion) { + emitAnalysis(VectorizationReport() << "if-conversion is disabled"); + return false; + } + + assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); + + // A list of pointers that we can safely read and write to. + SmallPtrSet<Value *, 8> SafePointes; + + // Collect safe addresses. + for (Loop::block_iterator BI = TheLoop->block_begin(), + BE = TheLoop->block_end(); BI != BE; ++BI) { + BasicBlock *BB = *BI; + + if (blockNeedsPredication(BB)) + continue; + + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + SafePointes.insert(LI->getPointerOperand()); + else if (StoreInst *SI = dyn_cast<StoreInst>(I)) + SafePointes.insert(SI->getPointerOperand()); + } + } + + // Collect the blocks that need predication. + BasicBlock *Header = TheLoop->getHeader(); + for (Loop::block_iterator BI = TheLoop->block_begin(), + BE = TheLoop->block_end(); BI != BE; ++BI) { + BasicBlock *BB = *BI; + + // We don't support switch statements inside loops. + if (!isa<BranchInst>(BB->getTerminator())) { + emitAnalysis(VectorizationReport(BB->getTerminator()) + << "loop contains a switch statement"); + return false; + } + + // We must be able to predicate all blocks that need to be predicated. + if (blockNeedsPredication(BB)) { + if (!blockCanBePredicated(BB, SafePointes)) { + emitAnalysis(VectorizationReport(BB->getTerminator()) + << "control flow cannot be substituted for a select"); + return false; + } + } else if (BB != Header && !canIfConvertPHINodes(BB)) { + emitAnalysis(VectorizationReport(BB->getTerminator()) + << "control flow cannot be substituted for a select"); + return false; + } + } + + // We can if-convert this loop. + return true; +} + +bool LoopVectorizationLegality::canVectorize() { + // We must have a loop in canonical form. Loops with indirectbr in them cannot + // be canonicalized. + if (!TheLoop->getLoopPreheader()) { + emitAnalysis( + VectorizationReport() << + "loop control flow is not understood by vectorizer"); + return false; + } + + // We can only vectorize innermost loops. + if (!TheLoop->empty()) { + emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); + return false; + } + + // We must have a single backedge. + if (TheLoop->getNumBackEdges() != 1) { + emitAnalysis( + VectorizationReport() << + "loop control flow is not understood by vectorizer"); + return false; + } + + // We must have a single exiting block. + if (!TheLoop->getExitingBlock()) { + emitAnalysis( + VectorizationReport() << + "loop control flow is not understood by vectorizer"); + return false; + } + + // We only handle bottom-tested loops, i.e. loop in which the condition is + // checked at the end of each iteration. With that we can assume that all + // instructions in the loop are executed the same number of times. + if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { + emitAnalysis( + VectorizationReport() << + "loop control flow is not understood by vectorizer"); + return false; + } + + // We need to have a loop header. + DEBUG(dbgs() << "LV: Found a loop: " << + TheLoop->getHeader()->getName() << '\n'); + + // Check if we can if-convert non-single-bb loops. + unsigned NumBlocks = TheLoop->getNumBlocks(); + if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { + DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); + return false; + } + + // ScalarEvolution needs to be able to find the exit count. + const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop); + if (ExitCount == PSE.getSE()->getCouldNotCompute()) { + emitAnalysis(VectorizationReport() + << "could not determine number of loop iterations"); + DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); + return false; + } + + // Check if we can vectorize the instructions and CFG in this loop. + if (!canVectorizeInstrs()) { + DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); + return false; + } + + // Go over each instruction and look at memory deps. + if (!canVectorizeMemory()) { + DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); + return false; + } + + // Collect all of the variables that remain uniform after vectorization. + collectLoopUniforms(); + + DEBUG(dbgs() << "LV: We can vectorize this loop" + << (LAI->getRuntimePointerChecking()->Need + ? " (with a runtime bound check)" + : "") + << "!\n"); + + bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); + + // If an override option has been passed in for interleaved accesses, use it. + if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) + UseInterleaved = EnableInterleavedMemAccesses; + + // Analyze interleaved memory accesses. + if (UseInterleaved) + InterleaveInfo.analyzeInterleaving(Strides); + + unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; + if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) + SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; + + if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { + emitAnalysis(VectorizationReport() + << "Too many SCEV assumptions need to be made and checked " + << "at runtime"); + DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); + return false; + } + + // Okay! We can vectorize. At this point we don't have any other mem analysis + // which may limit our maximum vectorization factor, so just return true with + // no restrictions. + return true; +} + +static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { + if (Ty->isPointerTy()) + return DL.getIntPtrType(Ty); + + // It is possible that char's or short's overflow when we ask for the loop's + // trip count, work around this by changing the type size. + if (Ty->getScalarSizeInBits() < 32) + return Type::getInt32Ty(Ty->getContext()); + + return Ty; +} + +static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { + Ty0 = convertPointerToIntegerType(DL, Ty0); + Ty1 = convertPointerToIntegerType(DL, Ty1); + if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) + return Ty0; + return Ty1; +} + +/// \brief Check that the instruction has outside loop users and is not an +/// identified reduction variable. +static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, + SmallPtrSetImpl<Value *> &Reductions) { + // Reduction instructions are allowed to have exit users. All other + // instructions must not have external users. + if (!Reductions.count(Inst)) + //Check that all of the users of the loop are inside the BB. + for (User *U : Inst->users()) { + Instruction *UI = cast<Instruction>(U); + // This user may be a reduction exit value. + if (!TheLoop->contains(UI)) { + DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); + return true; + } + } + return false; +} + +bool LoopVectorizationLegality::canVectorizeInstrs() { + BasicBlock *Header = TheLoop->getHeader(); + + // Look for the attribute signaling the absence of NaNs. + Function &F = *Header->getParent(); + const DataLayout &DL = F.getParent()->getDataLayout(); + if (F.hasFnAttribute("no-nans-fp-math")) + HasFunNoNaNAttr = + F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; + + // For each block in the loop. + for (Loop::block_iterator bb = TheLoop->block_begin(), + be = TheLoop->block_end(); bb != be; ++bb) { + + // Scan the instructions in the block and look for hazards. + for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; + ++it) { + + if (PHINode *Phi = dyn_cast<PHINode>(it)) { + Type *PhiTy = Phi->getType(); + // Check that this PHI type is allowed. + if (!PhiTy->isIntegerTy() && + !PhiTy->isFloatingPointTy() && + !PhiTy->isPointerTy()) { + emitAnalysis(VectorizationReport(&*it) + << "loop control flow is not understood by vectorizer"); + DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); + return false; + } + + // If this PHINode is not in the header block, then we know that we + // can convert it to select during if-conversion. No need to check if + // the PHIs in this block are induction or reduction variables. + if (*bb != Header) { + // Check that this instruction has no outside users or is an + // identified reduction value with an outside user. + if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) + continue; + emitAnalysis(VectorizationReport(&*it) << + "value could not be identified as " + "an induction or reduction variable"); + return false; + } + + // We only allow if-converted PHIs with exactly two incoming values. + if (Phi->getNumIncomingValues() != 2) { + emitAnalysis(VectorizationReport(&*it) + << "control flow not understood by vectorizer"); + DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); + return false; + } + + InductionDescriptor ID; + if (InductionDescriptor::isInductionPHI(Phi, PSE.getSE(), ID)) { + Inductions[Phi] = ID; + // Get the widest type. + if (!WidestIndTy) + WidestIndTy = convertPointerToIntegerType(DL, PhiTy); + else + WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); + + // Int inductions are special because we only allow one IV. + if (ID.getKind() == InductionDescriptor::IK_IntInduction && + ID.getStepValue()->isOne() && + isa<Constant>(ID.getStartValue()) && + cast<Constant>(ID.getStartValue())->isNullValue()) { + // Use the phi node with the widest type as induction. Use the last + // one if there are multiple (no good reason for doing this other + // than it is expedient). We've checked that it begins at zero and + // steps by one, so this is a canonical induction variable. + if (!Induction || PhiTy == WidestIndTy) + Induction = Phi; + } + + DEBUG(dbgs() << "LV: Found an induction variable.\n"); + + // Until we explicitly handle the case of an induction variable with + // an outside loop user we have to give up vectorizing this loop. + if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { + emitAnalysis(VectorizationReport(&*it) << + "use of induction value outside of the " + "loop is not handled by vectorizer"); + return false; + } + + continue; + } + + RecurrenceDescriptor RedDes; + if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { + if (RedDes.hasUnsafeAlgebra()) + Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); + AllowedExit.insert(RedDes.getLoopExitInstr()); + Reductions[Phi] = RedDes; + continue; + } + + emitAnalysis(VectorizationReport(&*it) << + "value that could not be identified as " + "reduction is used outside the loop"); + DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); + return false; + }// end of PHI handling + + // We handle calls that: + // * Are debug info intrinsics. + // * Have a mapping to an IR intrinsic. + // * Have a vector version available. + CallInst *CI = dyn_cast<CallInst>(it); + if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && + !(CI->getCalledFunction() && TLI && + TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { + emitAnalysis(VectorizationReport(&*it) + << "call instruction cannot be vectorized"); + DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); + return false; + } + + // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the + // second argument is the same (i.e. loop invariant) + if (CI && + hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { + auto *SE = PSE.getSE(); + if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { + emitAnalysis(VectorizationReport(&*it) + << "intrinsic instruction cannot be vectorized"); + DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); + return false; + } + } + + // Check that the instruction return type is vectorizable. + // Also, we can't vectorize extractelement instructions. + if ((!VectorType::isValidElementType(it->getType()) && + !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { + emitAnalysis(VectorizationReport(&*it) + << "instruction return type cannot be vectorized"); + DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); + return false; + } + + // Check that the stored type is vectorizable. + if (StoreInst *ST = dyn_cast<StoreInst>(it)) { + Type *T = ST->getValueOperand()->getType(); + if (!VectorType::isValidElementType(T)) { + emitAnalysis(VectorizationReport(ST) << + "store instruction cannot be vectorized"); + return false; + } + if (EnableMemAccessVersioning) + collectStridedAccess(ST); + } + + if (EnableMemAccessVersioning) + if (LoadInst *LI = dyn_cast<LoadInst>(it)) + collectStridedAccess(LI); + + // Reduction instructions are allowed to have exit users. + // All other instructions must not have external users. + if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { + emitAnalysis(VectorizationReport(&*it) << + "value cannot be used outside the loop"); + return false; + } + + } // next instr. + + } + + if (!Induction) { + DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); + if (Inductions.empty()) { + emitAnalysis(VectorizationReport() + << "loop induction variable could not be identified"); + return false; + } + } + + // Now we know the widest induction type, check if our found induction + // is the same size. If it's not, unset it here and InnerLoopVectorizer + // will create another. + if (Induction && WidestIndTy != Induction->getType()) + Induction = nullptr; + + return true; +} + +void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { + Value *Ptr = nullptr; + if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) + Ptr = LI->getPointerOperand(); + else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) + Ptr = SI->getPointerOperand(); + else + return; + + Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); + if (!Stride) + return; + + DEBUG(dbgs() << "LV: Found a strided access that we can version"); + DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); + Strides[Ptr] = Stride; + StrideSet.insert(Stride); +} + +void LoopVectorizationLegality::collectLoopUniforms() { + // We now know that the loop is vectorizable! + // Collect variables that will remain uniform after vectorization. + std::vector<Value*> Worklist; + BasicBlock *Latch = TheLoop->getLoopLatch(); + + // Start with the conditional branch and walk up the block. + Worklist.push_back(Latch->getTerminator()->getOperand(0)); + + // Also add all consecutive pointer values; these values will be uniform + // after vectorization (and subsequent cleanup) and, until revectorization is + // supported, all dependencies must also be uniform. + for (Loop::block_iterator B = TheLoop->block_begin(), + BE = TheLoop->block_end(); B != BE; ++B) + for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); + I != IE; ++I) + if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) + Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); + + while (!Worklist.empty()) { + Instruction *I = dyn_cast<Instruction>(Worklist.back()); + Worklist.pop_back(); + + // Look at instructions inside this loop. + // Stop when reaching PHI nodes. + // TODO: we need to follow values all over the loop, not only in this block. + if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) + continue; + + // This is a known uniform. + Uniforms.insert(I); + + // Insert all operands. + Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); + } +} + +bool LoopVectorizationLegality::canVectorizeMemory() { + LAI = &LAA->getInfo(TheLoop, Strides); + auto &OptionalReport = LAI->getReport(); + if (OptionalReport) + emitAnalysis(VectorizationReport(*OptionalReport)); + if (!LAI->canVectorizeMemory()) + return false; + + if (LAI->hasStoreToLoopInvariantAddress()) { + emitAnalysis( + VectorizationReport() + << "write to a loop invariant address could not be vectorized"); + DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); + return false; + } + + Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); + PSE.addPredicate(LAI->PSE.getUnionPredicate()); + + return true; +} + +bool LoopVectorizationLegality::isInductionVariable(const Value *V) { + Value *In0 = const_cast<Value*>(V); + PHINode *PN = dyn_cast_or_null<PHINode>(In0); + if (!PN) + return false; + + return Inductions.count(PN); +} + +bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { + return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); +} + +bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, + SmallPtrSetImpl<Value *> &SafePtrs) { + + for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { + // Check that we don't have a constant expression that can trap as operand. + for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); + OI != OE; ++OI) { + if (Constant *C = dyn_cast<Constant>(*OI)) + if (C->canTrap()) + return false; + } + // We might be able to hoist the load. + if (it->mayReadFromMemory()) { + LoadInst *LI = dyn_cast<LoadInst>(it); + if (!LI) + return false; + if (!SafePtrs.count(LI->getPointerOperand())) { + if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { + MaskedOp.insert(LI); + continue; + } + return false; + } + } + + // We don't predicate stores at the moment. + if (it->mayWriteToMemory()) { + StoreInst *SI = dyn_cast<StoreInst>(it); + // We only support predication of stores in basic blocks with one + // predecessor. + if (!SI) + return false; + + bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); + bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); + + if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || + !isSinglePredecessor) { + // Build a masked store if it is legal for the target, otherwise + // scalarize the block. + bool isLegalMaskedOp = + isLegalMaskedStore(SI->getValueOperand()->getType(), + SI->getPointerOperand()); + if (isLegalMaskedOp) { + --NumPredStores; + MaskedOp.insert(SI); + continue; + } + return false; + } + } + if (it->mayThrow()) + return false; + + // The instructions below can trap. + switch (it->getOpcode()) { + default: continue; + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + return false; + } + } + + return true; +} + +void InterleavedAccessInfo::collectConstStridedAccesses( + MapVector<Instruction *, StrideDescriptor> &StrideAccesses, + const ValueToValueMap &Strides) { + // Holds load/store instructions in program order. + SmallVector<Instruction *, 16> AccessList; + + for (auto *BB : TheLoop->getBlocks()) { + bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); + + for (auto &I : *BB) { + if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) + continue; + // FIXME: Currently we can't handle mixed accesses and predicated accesses + if (IsPred) + return; + + AccessList.push_back(&I); + } + } + + if (AccessList.empty()) + return; + + auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); + for (auto I : AccessList) { + LoadInst *LI = dyn_cast<LoadInst>(I); + StoreInst *SI = dyn_cast<StoreInst>(I); + + Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); + int Stride = isStridedPtr(PSE, Ptr, TheLoop, Strides); + + // The factor of the corresponding interleave group. + unsigned Factor = std::abs(Stride); + + // Ignore the access if the factor is too small or too large. + if (Factor < 2 || Factor > MaxInterleaveGroupFactor) + continue; + + const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); + PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); + unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); + + // An alignment of 0 means target ABI alignment. + unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); + if (!Align) + Align = DL.getABITypeAlignment(PtrTy->getElementType()); + + StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); + } +} + +// Analyze interleaved accesses and collect them into interleave groups. +// +// Notice that the vectorization on interleaved groups will change instruction +// orders and may break dependences. But the memory dependence check guarantees +// that there is no overlap between two pointers of different strides, element +// sizes or underlying bases. +// +// For pointers sharing the same stride, element size and underlying base, no +// need to worry about Read-After-Write dependences and Write-After-Read +// dependences. +// +// E.g. The RAW dependence: A[i] = a; +// b = A[i]; +// This won't exist as it is a store-load forwarding conflict, which has +// already been checked and forbidden in the dependence check. +// +// E.g. The WAR dependence: a = A[i]; // (1) +// A[i] = b; // (2) +// The store group of (2) is always inserted at or below (2), and the load group +// of (1) is always inserted at or above (1). The dependence is safe. +void InterleavedAccessInfo::analyzeInterleaving( + const ValueToValueMap &Strides) { + DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); + + // Holds all the stride accesses. + MapVector<Instruction *, StrideDescriptor> StrideAccesses; + collectConstStridedAccesses(StrideAccesses, Strides); + + if (StrideAccesses.empty()) + return; + + // Holds all interleaved store groups temporarily. + SmallSetVector<InterleaveGroup *, 4> StoreGroups; + // Holds all interleaved load groups temporarily. + SmallSetVector<InterleaveGroup *, 4> LoadGroups; + + // Search the load-load/write-write pair B-A in bottom-up order and try to + // insert B into the interleave group of A according to 3 rules: + // 1. A and B have the same stride. + // 2. A and B have the same memory object size. + // 3. B belongs to the group according to the distance. + // + // The bottom-up order can avoid breaking the Write-After-Write dependences + // between two pointers of the same base. + // E.g. A[i] = a; (1) + // A[i] = b; (2) + // A[i+1] = c (3) + // We form the group (2)+(3) in front, so (1) has to form groups with accesses + // above (1), which guarantees that (1) is always above (2). + for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; + ++I) { + Instruction *A = I->first; + StrideDescriptor DesA = I->second; + + InterleaveGroup *Group = getInterleaveGroup(A); + if (!Group) { + DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); + Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); + } + + if (A->mayWriteToMemory()) + StoreGroups.insert(Group); + else + LoadGroups.insert(Group); + + for (auto II = std::next(I); II != E; ++II) { + Instruction *B = II->first; + StrideDescriptor DesB = II->second; + + // Ignore if B is already in a group or B is a different memory operation. + if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) + continue; + + // Check the rule 1 and 2. + if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) + continue; + + // Calculate the distance and prepare for the rule 3. + const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( + PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); + if (!DistToA) + continue; + + int DistanceToA = DistToA->getAPInt().getSExtValue(); + + // Skip if the distance is not multiple of size as they are not in the + // same group. + if (DistanceToA % static_cast<int>(DesA.Size)) + continue; + + // The index of B is the index of A plus the related index to A. + int IndexB = + Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); + + // Try to insert B into the group. + if (Group->insertMember(B, IndexB, DesB.Align)) { + DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' + << " into the interleave group with" << *A << '\n'); + InterleaveGroupMap[B] = Group; + + // Set the first load in program order as the insert position. + if (B->mayReadFromMemory()) + Group->setInsertPos(B); + } + } // Iteration on instruction B + } // Iteration on instruction A + + // Remove interleaved store groups with gaps. + for (InterleaveGroup *Group : StoreGroups) + if (Group->getNumMembers() != Group->getFactor()) + releaseGroup(Group); + + // Remove interleaved load groups that don't have the first and last member. + // This guarantees that we won't do speculative out of bounds loads. + for (InterleaveGroup *Group : LoadGroups) + if (!Group->getMember(0) || !Group->getMember(Group->getFactor() - 1)) + releaseGroup(Group); +} + +LoopVectorizationCostModel::VectorizationFactor +LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { + // Width 1 means no vectorize + VectorizationFactor Factor = { 1U, 0U }; + if (OptForSize && Legal->getRuntimePointerChecking()->Need) { + emitAnalysis(VectorizationReport() << + "runtime pointer checks needed. Enable vectorization of this " + "loop with '#pragma clang loop vectorize(enable)' when " + "compiling with -Os/-Oz"); + DEBUG(dbgs() << + "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); + return Factor; + } + + if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { + emitAnalysis(VectorizationReport() << + "store that is conditionally executed prevents vectorization"); + DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); + return Factor; + } + + // Find the trip count. + unsigned TC = SE->getSmallConstantTripCount(TheLoop); + DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); + + MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); + unsigned SmallestType, WidestType; + std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); + unsigned WidestRegister = TTI.getRegisterBitWidth(true); + unsigned MaxSafeDepDist = -1U; + if (Legal->getMaxSafeDepDistBytes() != -1U) + MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; + WidestRegister = ((WidestRegister < MaxSafeDepDist) ? + WidestRegister : MaxSafeDepDist); + unsigned MaxVectorSize = WidestRegister / WidestType; + + DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " + << WidestType << " bits.\n"); + DEBUG(dbgs() << "LV: The Widest register is: " + << WidestRegister << " bits.\n"); + + if (MaxVectorSize == 0) { + DEBUG(dbgs() << "LV: The target has no vector registers.\n"); + MaxVectorSize = 1; + } + + assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" + " into one vector!"); + + unsigned VF = MaxVectorSize; + if (MaximizeBandwidth && !OptForSize) { + // Collect all viable vectorization factors. + SmallVector<unsigned, 8> VFs; + unsigned NewMaxVectorSize = WidestRegister / SmallestType; + for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) + VFs.push_back(VS); + + // For each VF calculate its register usage. + auto RUs = calculateRegisterUsage(VFs); + + // Select the largest VF which doesn't require more registers than existing + // ones. + unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); + for (int i = RUs.size() - 1; i >= 0; --i) { + if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { + VF = VFs[i]; + break; + } + } + } + + // If we optimize the program for size, avoid creating the tail loop. + if (OptForSize) { + // If we are unable to calculate the trip count then don't try to vectorize. + if (TC < 2) { + emitAnalysis + (VectorizationReport() << + "unable to calculate the loop count due to complex control flow"); + DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); + return Factor; + } + + // Find the maximum SIMD width that can fit within the trip count. + VF = TC % MaxVectorSize; + + if (VF == 0) + VF = MaxVectorSize; + else { + // If the trip count that we found modulo the vectorization factor is not + // zero then we require a tail. + emitAnalysis(VectorizationReport() << + "cannot optimize for size and vectorize at the " + "same time. Enable vectorization of this loop " + "with '#pragma clang loop vectorize(enable)' " + "when compiling with -Os/-Oz"); + DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); + return Factor; + } + } + + int UserVF = Hints->getWidth(); + if (UserVF != 0) { + assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); + DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); + + Factor.Width = UserVF; + return Factor; + } + + float Cost = expectedCost(1); +#ifndef NDEBUG + const float ScalarCost = Cost; +#endif /* NDEBUG */ + unsigned Width = 1; + DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); + + bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; + // Ignore scalar width, because the user explicitly wants vectorization. + if (ForceVectorization && VF > 1) { + Width = 2; + Cost = expectedCost(Width) / (float)Width; + } + + for (unsigned i=2; i <= VF; i*=2) { + // Notice that the vector loop needs to be executed less times, so + // we need to divide the cost of the vector loops by the width of + // the vector elements. + float VectorCost = expectedCost(i) / (float)i; + DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << + (int)VectorCost << ".\n"); + if (VectorCost < Cost) { + Cost = VectorCost; + Width = i; + } + } + + DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() + << "LV: Vectorization seems to be not beneficial, " + << "but was forced by a user.\n"); + DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); + Factor.Width = Width; + Factor.Cost = Width * Cost; + return Factor; +} + +std::pair<unsigned, unsigned> +LoopVectorizationCostModel::getSmallestAndWidestTypes() { + unsigned MinWidth = -1U; + unsigned MaxWidth = 8; + const DataLayout &DL = TheFunction->getParent()->getDataLayout(); + + // For each block. + for (Loop::block_iterator bb = TheLoop->block_begin(), + be = TheLoop->block_end(); bb != be; ++bb) { + BasicBlock *BB = *bb; + + // For each instruction in the loop. + for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { + Type *T = it->getType(); + + // Skip ignored values. + if (ValuesToIgnore.count(&*it)) + continue; + + // Only examine Loads, Stores and PHINodes. + if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) + continue; + + // Examine PHI nodes that are reduction variables. Update the type to + // account for the recurrence type. + if (PHINode *PN = dyn_cast<PHINode>(it)) { + if (!Legal->isReductionVariable(PN)) + continue; + RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; + T = RdxDesc.getRecurrenceType(); + } + + // Examine the stored values. + if (StoreInst *ST = dyn_cast<StoreInst>(it)) + T = ST->getValueOperand()->getType(); + + // Ignore loaded pointer types and stored pointer types that are not + // consecutive. However, we do want to take consecutive stores/loads of + // pointer vectors into account. + if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) + continue; + + MinWidth = std::min(MinWidth, + (unsigned)DL.getTypeSizeInBits(T->getScalarType())); + MaxWidth = std::max(MaxWidth, + (unsigned)DL.getTypeSizeInBits(T->getScalarType())); + } + } + + return {MinWidth, MaxWidth}; +} + +unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, + unsigned VF, + unsigned LoopCost) { + + // -- The interleave heuristics -- + // We interleave the loop in order to expose ILP and reduce the loop overhead. + // There are many micro-architectural considerations that we can't predict + // at this level. For example, frontend pressure (on decode or fetch) due to + // code size, or the number and capabilities of the execution ports. + // + // We use the following heuristics to select the interleave count: + // 1. If the code has reductions, then we interleave to break the cross + // iteration dependency. + // 2. If the loop is really small, then we interleave to reduce the loop + // overhead. + // 3. We don't interleave if we think that we will spill registers to memory + // due to the increased register pressure. + + // When we optimize for size, we don't interleave. + if (OptForSize) + return 1; + + // We used the distance for the interleave count. + if (Legal->getMaxSafeDepDistBytes() != -1U) + return 1; + + // Do not interleave loops with a relatively small trip count. + unsigned TC = SE->getSmallConstantTripCount(TheLoop); + if (TC > 1 && TC < TinyTripCountInterleaveThreshold) + return 1; + + unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); + DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << + " registers\n"); + + if (VF == 1) { + if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) + TargetNumRegisters = ForceTargetNumScalarRegs; + } else { + if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) + TargetNumRegisters = ForceTargetNumVectorRegs; + } + + RegisterUsage R = calculateRegisterUsage({VF})[0]; + // We divide by these constants so assume that we have at least one + // instruction that uses at least one register. + R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); + R.NumInstructions = std::max(R.NumInstructions, 1U); + + // We calculate the interleave count using the following formula. + // Subtract the number of loop invariants from the number of available + // registers. These registers are used by all of the interleaved instances. + // Next, divide the remaining registers by the number of registers that is + // required by the loop, in order to estimate how many parallel instances + // fit without causing spills. All of this is rounded down if necessary to be + // a power of two. We want power of two interleave count to simplify any + // addressing operations or alignment considerations. + unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / + R.MaxLocalUsers); + + // Don't count the induction variable as interleaved. + if (EnableIndVarRegisterHeur) + IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / + std::max(1U, (R.MaxLocalUsers - 1))); + + // Clamp the interleave ranges to reasonable counts. + unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); + + // Check if the user has overridden the max. + if (VF == 1) { + if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) + MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; + } else { + if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) + MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; + } + + // If we did not calculate the cost for VF (because the user selected the VF) + // then we calculate the cost of VF here. + if (LoopCost == 0) + LoopCost = expectedCost(VF); + + // Clamp the calculated IC to be between the 1 and the max interleave count + // that the target allows. + if (IC > MaxInterleaveCount) + IC = MaxInterleaveCount; + else if (IC < 1) + IC = 1; + + // Interleave if we vectorized this loop and there is a reduction that could + // benefit from interleaving. + if (VF > 1 && Legal->getReductionVars()->size()) { + DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); + return IC; + } + + // Note that if we've already vectorized the loop we will have done the + // runtime check and so interleaving won't require further checks. + bool InterleavingRequiresRuntimePointerCheck = + (VF == 1 && Legal->getRuntimePointerChecking()->Need); + + // We want to interleave small loops in order to reduce the loop overhead and + // potentially expose ILP opportunities. + DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); + if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { + // We assume that the cost overhead is 1 and we use the cost model + // to estimate the cost of the loop and interleave until the cost of the + // loop overhead is about 5% of the cost of the loop. + unsigned SmallIC = + std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); + + // Interleave until store/load ports (estimated by max interleave count) are + // saturated. + unsigned NumStores = Legal->getNumStores(); + unsigned NumLoads = Legal->getNumLoads(); + unsigned StoresIC = IC / (NumStores ? NumStores : 1); + unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); + + // If we have a scalar reduction (vector reductions are already dealt with + // by this point), we can increase the critical path length if the loop + // we're interleaving is inside another loop. Limit, by default to 2, so the + // critical path only gets increased by one reduction operation. + if (Legal->getReductionVars()->size() && + TheLoop->getLoopDepth() > 1) { + unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); + SmallIC = std::min(SmallIC, F); + StoresIC = std::min(StoresIC, F); + LoadsIC = std::min(LoadsIC, F); + } + + if (EnableLoadStoreRuntimeInterleave && + std::max(StoresIC, LoadsIC) > SmallIC) { + DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); + return std::max(StoresIC, LoadsIC); + } + + DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); + return SmallIC; + } + + // Interleave if this is a large loop (small loops are already dealt with by + // this point) that could benefit from interleaving. + bool HasReductions = (Legal->getReductionVars()->size() > 0); + if (TTI.enableAggressiveInterleaving(HasReductions)) { + DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); + return IC; + } + + DEBUG(dbgs() << "LV: Not Interleaving.\n"); + return 1; +} + +SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> +LoopVectorizationCostModel::calculateRegisterUsage( + const SmallVector<unsigned, 8> &VFs) { + // This function calculates the register usage by measuring the highest number + // of values that are alive at a single location. Obviously, this is a very + // rough estimation. We scan the loop in a topological order in order and + // assign a number to each instruction. We use RPO to ensure that defs are + // met before their users. We assume that each instruction that has in-loop + // users starts an interval. We record every time that an in-loop value is + // used, so we have a list of the first and last occurrences of each + // instruction. Next, we transpose this data structure into a multi map that + // holds the list of intervals that *end* at a specific location. This multi + // map allows us to perform a linear search. We scan the instructions linearly + // and record each time that a new interval starts, by placing it in a set. + // If we find this value in the multi-map then we remove it from the set. + // The max register usage is the maximum size of the set. + // We also search for instructions that are defined outside the loop, but are + // used inside the loop. We need this number separately from the max-interval + // usage number because when we unroll, loop-invariant values do not take + // more register. + LoopBlocksDFS DFS(TheLoop); + DFS.perform(LI); + + RegisterUsage RU; + RU.NumInstructions = 0; + + // Each 'key' in the map opens a new interval. The values + // of the map are the index of the 'last seen' usage of the + // instruction that is the key. + typedef DenseMap<Instruction*, unsigned> IntervalMap; + // Maps instruction to its index. + DenseMap<unsigned, Instruction*> IdxToInstr; + // Marks the end of each interval. + IntervalMap EndPoint; + // Saves the list of instruction indices that are used in the loop. + SmallSet<Instruction*, 8> Ends; + // Saves the list of values that are used in the loop but are + // defined outside the loop, such as arguments and constants. + SmallPtrSet<Value*, 8> LoopInvariants; + + unsigned Index = 0; + for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), + be = DFS.endRPO(); bb != be; ++bb) { + RU.NumInstructions += (*bb)->size(); + for (Instruction &I : **bb) { + IdxToInstr[Index++] = &I; + + // Save the end location of each USE. + for (unsigned i = 0; i < I.getNumOperands(); ++i) { + Value *U = I.getOperand(i); + Instruction *Instr = dyn_cast<Instruction>(U); + + // Ignore non-instruction values such as arguments, constants, etc. + if (!Instr) continue; + + // If this instruction is outside the loop then record it and continue. + if (!TheLoop->contains(Instr)) { + LoopInvariants.insert(Instr); + continue; + } + + // Overwrite previous end points. + EndPoint[Instr] = Index; + Ends.insert(Instr); + } + } + } + + // Saves the list of intervals that end with the index in 'key'. + typedef SmallVector<Instruction*, 2> InstrList; + DenseMap<unsigned, InstrList> TransposeEnds; + + // Transpose the EndPoints to a list of values that end at each index. + for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); + it != e; ++it) + TransposeEnds[it->second].push_back(it->first); + + SmallSet<Instruction*, 8> OpenIntervals; + + // Get the size of the widest register. + unsigned MaxSafeDepDist = -1U; + if (Legal->getMaxSafeDepDistBytes() != -1U) + MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; + unsigned WidestRegister = + std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); + const DataLayout &DL = TheFunction->getParent()->getDataLayout(); + + SmallVector<RegisterUsage, 8> RUs(VFs.size()); + SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); + + DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); + + // A lambda that gets the register usage for the given type and VF. + auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { + unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); + return std::max<unsigned>(1, VF * TypeSize / WidestRegister); + }; + + for (unsigned int i = 0; i < Index; ++i) { + Instruction *I = IdxToInstr[i]; + // Ignore instructions that are never used within the loop. + if (!Ends.count(I)) continue; + + // Skip ignored values. + if (ValuesToIgnore.count(I)) + continue; + + // Remove all of the instructions that end at this location. + InstrList &List = TransposeEnds[i]; + for (unsigned int j = 0, e = List.size(); j < e; ++j) + OpenIntervals.erase(List[j]); + + // For each VF find the maximum usage of registers. + for (unsigned j = 0, e = VFs.size(); j < e; ++j) { + if (VFs[j] == 1) { + MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); + continue; + } + + // Count the number of live intervals. + unsigned RegUsage = 0; + for (auto Inst : OpenIntervals) + RegUsage += GetRegUsage(Inst->getType(), VFs[j]); + MaxUsages[j] = std::max(MaxUsages[j], RegUsage); + } + + DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " + << OpenIntervals.size() << '\n'); + + // Add the current instruction to the list of open intervals. + OpenIntervals.insert(I); + } + + for (unsigned i = 0, e = VFs.size(); i < e; ++i) { + unsigned Invariant = 0; + if (VFs[i] == 1) + Invariant = LoopInvariants.size(); + else { + for (auto Inst : LoopInvariants) + Invariant += GetRegUsage(Inst->getType(), VFs[i]); + } + + DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); + DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); + DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); + DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); + + RU.LoopInvariantRegs = Invariant; + RU.MaxLocalUsers = MaxUsages[i]; + RUs[i] = RU; + } + + return RUs; +} + +unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { + unsigned Cost = 0; + + // For each block. + for (Loop::block_iterator bb = TheLoop->block_begin(), + be = TheLoop->block_end(); bb != be; ++bb) { + unsigned BlockCost = 0; + BasicBlock *BB = *bb; + + // For each instruction in the old loop. + for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { + // Skip dbg intrinsics. + if (isa<DbgInfoIntrinsic>(it)) + continue; + + // Skip ignored values. + if (ValuesToIgnore.count(&*it)) + continue; + + unsigned C = getInstructionCost(&*it, VF); + + // Check if we should override the cost. + if (ForceTargetInstructionCost.getNumOccurrences() > 0) + C = ForceTargetInstructionCost; + + BlockCost += C; + DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << + VF << " For instruction: " << *it << '\n'); + } + + // We assume that if-converted blocks have a 50% chance of being executed. + // When the code is scalar then some of the blocks are avoided due to CF. + // When the code is vectorized we execute all code paths. + if (VF == 1 && Legal->blockNeedsPredication(*bb)) + BlockCost /= 2; + + Cost += BlockCost; + } + + return Cost; +} + +/// \brief Check whether the address computation for a non-consecutive memory +/// access looks like an unlikely candidate for being merged into the indexing +/// mode. +/// +/// We look for a GEP which has one index that is an induction variable and all +/// other indices are loop invariant. If the stride of this access is also +/// within a small bound we decide that this address computation can likely be +/// merged into the addressing mode. +/// In all other cases, we identify the address computation as complex. +static bool isLikelyComplexAddressComputation(Value *Ptr, + LoopVectorizationLegality *Legal, + ScalarEvolution *SE, + const Loop *TheLoop) { + GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); + if (!Gep) + return true; + + // We are looking for a gep with all loop invariant indices except for one + // which should be an induction variable. + unsigned NumOperands = Gep->getNumOperands(); + for (unsigned i = 1; i < NumOperands; ++i) { + Value *Opd = Gep->getOperand(i); + if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && + !Legal->isInductionVariable(Opd)) + return true; + } + + // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step + // can likely be merged into the address computation. + unsigned MaxMergeDistance = 64; + + const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); + if (!AddRec) + return true; + + // Check the step is constant. + const SCEV *Step = AddRec->getStepRecurrence(*SE); + // Calculate the pointer stride and check if it is consecutive. + const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); + if (!C) + return true; + + const APInt &APStepVal = C->getAPInt(); + + // Huge step value - give up. + if (APStepVal.getBitWidth() > 64) + return true; + + int64_t StepVal = APStepVal.getSExtValue(); + + return StepVal > MaxMergeDistance; +} + +static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { + return Legal->hasStride(I->getOperand(0)) || + Legal->hasStride(I->getOperand(1)); +} + +unsigned +LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { + // If we know that this instruction will remain uniform, check the cost of + // the scalar version. + if (Legal->isUniformAfterVectorization(I)) + VF = 1; + + Type *RetTy = I->getType(); + if (VF > 1 && MinBWs.count(I)) + RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); + Type *VectorTy = ToVectorTy(RetTy, VF); + + // TODO: We need to estimate the cost of intrinsic calls. + switch (I->getOpcode()) { + case Instruction::GetElementPtr: + // We mark this instruction as zero-cost because the cost of GEPs in + // vectorized code depends on whether the corresponding memory instruction + // is scalarized or not. Therefore, we handle GEPs with the memory + // instruction cost. + return 0; + case Instruction::Br: { + return TTI.getCFInstrCost(I->getOpcode()); + } + case Instruction::PHI: + //TODO: IF-converted IFs become selects. + return 0; + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + // Since we will replace the stride by 1 the multiplication should go away. + if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) + return 0; + // Certain instructions can be cheaper to vectorize if they have a constant + // second vector operand. One example of this are shifts on x86. + TargetTransformInfo::OperandValueKind Op1VK = + TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueKind Op2VK = + TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueProperties Op1VP = + TargetTransformInfo::OP_None; + TargetTransformInfo::OperandValueProperties Op2VP = + TargetTransformInfo::OP_None; + Value *Op2 = I->getOperand(1); + + // Check for a splat of a constant or for a non uniform vector of constants. + if (isa<ConstantInt>(Op2)) { + ConstantInt *CInt = cast<ConstantInt>(Op2); + if (CInt && CInt->getValue().isPowerOf2()) + Op2VP = TargetTransformInfo::OP_PowerOf2; + Op2VK = TargetTransformInfo::OK_UniformConstantValue; + } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { + Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; + Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); + if (SplatValue) { + ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); + if (CInt && CInt->getValue().isPowerOf2()) + Op2VP = TargetTransformInfo::OP_PowerOf2; + Op2VK = TargetTransformInfo::OK_UniformConstantValue; + } + } + + return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, + Op1VP, Op2VP); + } + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(I); + const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); + bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); + Type *CondTy = SI->getCondition()->getType(); + if (!ScalarCond) + CondTy = VectorType::get(CondTy, VF); + + return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); + } + case Instruction::ICmp: + case Instruction::FCmp: { + Type *ValTy = I->getOperand(0)->getType(); + Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); + auto It = MinBWs.find(Op0AsInstruction); + if (VF > 1 && It != MinBWs.end()) + ValTy = IntegerType::get(ValTy->getContext(), It->second); + VectorTy = ToVectorTy(ValTy, VF); + return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); + } + case Instruction::Store: + case Instruction::Load: { + StoreInst *SI = dyn_cast<StoreInst>(I); + LoadInst *LI = dyn_cast<LoadInst>(I); + Type *ValTy = (SI ? SI->getValueOperand()->getType() : + LI->getType()); + VectorTy = ToVectorTy(ValTy, VF); + + unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); + unsigned AS = SI ? SI->getPointerAddressSpace() : + LI->getPointerAddressSpace(); + Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); + // We add the cost of address computation here instead of with the gep + // instruction because only here we know whether the operation is + // scalarized. + if (VF == 1) + return TTI.getAddressComputationCost(VectorTy) + + TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); + + // For an interleaved access, calculate the total cost of the whole + // interleave group. + if (Legal->isAccessInterleaved(I)) { + auto Group = Legal->getInterleavedAccessGroup(I); + assert(Group && "Fail to get an interleaved access group."); + + // Only calculate the cost once at the insert position. + if (Group->getInsertPos() != I) + return 0; + + unsigned InterleaveFactor = Group->getFactor(); + Type *WideVecTy = + VectorType::get(VectorTy->getVectorElementType(), + VectorTy->getVectorNumElements() * InterleaveFactor); + + // Holds the indices of existing members in an interleaved load group. + // An interleaved store group doesn't need this as it dones't allow gaps. + SmallVector<unsigned, 4> Indices; + if (LI) { + for (unsigned i = 0; i < InterleaveFactor; i++) + if (Group->getMember(i)) + Indices.push_back(i); + } + + // Calculate the cost of the whole interleaved group. + unsigned Cost = TTI.getInterleavedMemoryOpCost( + I->getOpcode(), WideVecTy, Group->getFactor(), Indices, + Group->getAlignment(), AS); + + if (Group->isReverse()) + Cost += + Group->getNumMembers() * + TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); + + // FIXME: The interleaved load group with a huge gap could be even more + // expensive than scalar operations. Then we could ignore such group and + // use scalar operations instead. + return Cost; + } + + // Scalarized loads/stores. + int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); + bool Reverse = ConsecutiveStride < 0; + const DataLayout &DL = I->getModule()->getDataLayout(); + unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); + unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; + if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { + bool IsComplexComputation = + isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); + unsigned Cost = 0; + // The cost of extracting from the value vector and pointer vector. + Type *PtrTy = ToVectorTy(Ptr->getType(), VF); + for (unsigned i = 0; i < VF; ++i) { + // The cost of extracting the pointer operand. + Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); + // In case of STORE, the cost of ExtractElement from the vector. + // In case of LOAD, the cost of InsertElement into the returned + // vector. + Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : + Instruction::InsertElement, + VectorTy, i); + } + + // The cost of the scalar loads/stores. + Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); + Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), + Alignment, AS); + return Cost; + } + + // Wide load/stores. + unsigned Cost = TTI.getAddressComputationCost(VectorTy); + if (Legal->isMaskRequired(I)) + Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, + AS); + else + Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); + + if (Reverse) + Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, + VectorTy, 0); + return Cost; + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + // We optimize the truncation of induction variable. + // The cost of these is the same as the scalar operation. + if (I->getOpcode() == Instruction::Trunc && + Legal->isInductionVariable(I->getOperand(0))) + return TTI.getCastInstrCost(I->getOpcode(), I->getType(), + I->getOperand(0)->getType()); + + Type *SrcScalarTy = I->getOperand(0)->getType(); + Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); + if (VF > 1 && MinBWs.count(I)) { + // This cast is going to be shrunk. This may remove the cast or it might + // turn it into slightly different cast. For example, if MinBW == 16, + // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". + // + // Calculate the modified src and dest types. + Type *MinVecTy = VectorTy; + if (I->getOpcode() == Instruction::Trunc) { + SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); + VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), + MinVecTy); + } else if (I->getOpcode() == Instruction::ZExt || + I->getOpcode() == Instruction::SExt) { + SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); + VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), + MinVecTy); + } + } + + return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); + } + case Instruction::Call: { + bool NeedToScalarize; + CallInst *CI = cast<CallInst>(I); + unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); + if (getIntrinsicIDForCall(CI, TLI)) + return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); + return CallCost; + } + default: { + // We are scalarizing the instruction. Return the cost of the scalar + // instruction, plus the cost of insert and extract into vector + // elements, times the vector width. + unsigned Cost = 0; + + if (!RetTy->isVoidTy() && VF != 1) { + unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, + VectorTy); + unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, + VectorTy); + + // The cost of inserting the results plus extracting each one of the + // operands. + Cost += VF * (InsCost + ExtCost * I->getNumOperands()); + } + + // The cost of executing VF copies of the scalar instruction. This opcode + // is unknown. Assume that it is the same as 'mul'. + Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); + return Cost; + } + }// end of switch. +} + +char LoopVectorize::ID = 0; +static const char lv_name[] = "Loop Vectorization"; +INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LCSSA) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) +INITIALIZE_PASS_DEPENDENCY(DemandedBits) +INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) + +namespace llvm { + Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { + return new LoopVectorize(NoUnrolling, AlwaysVectorize); + } +} + +bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { + // Check for a store. + if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) + return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; + + // Check for a load. + if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) + return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; + + return false; +} + + +void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, + bool IfPredicateStore) { + assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); + // Holds vector parameters or scalars, in case of uniform vals. + SmallVector<VectorParts, 4> Params; + + setDebugLocFromInst(Builder, Instr); + + // Find all of the vectorized parameters. + for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { + Value *SrcOp = Instr->getOperand(op); + + // If we are accessing the old induction variable, use the new one. + if (SrcOp == OldInduction) { + Params.push_back(getVectorValue(SrcOp)); + continue; + } + + // Try using previously calculated values. + Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); + + // If the src is an instruction that appeared earlier in the basic block + // then it should already be vectorized. + if (SrcInst && OrigLoop->contains(SrcInst)) { + assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); + // The parameter is a vector value from earlier. + Params.push_back(WidenMap.get(SrcInst)); + } else { + // The parameter is a scalar from outside the loop. Maybe even a constant. + VectorParts Scalars; + Scalars.append(UF, SrcOp); + Params.push_back(Scalars); + } + } + + assert(Params.size() == Instr->getNumOperands() && + "Invalid number of operands"); + + // Does this instruction return a value ? + bool IsVoidRetTy = Instr->getType()->isVoidTy(); + + Value *UndefVec = IsVoidRetTy ? nullptr : + UndefValue::get(Instr->getType()); + // Create a new entry in the WidenMap and initialize it to Undef or Null. + VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); + + VectorParts Cond; + if (IfPredicateStore) { + assert(Instr->getParent()->getSinglePredecessor() && + "Only support single predecessor blocks"); + Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), + Instr->getParent()); + } + + // For each vector unroll 'part': + for (unsigned Part = 0; Part < UF; ++Part) { + // For each scalar that we create: + + // Start an "if (pred) a[i] = ..." block. + Value *Cmp = nullptr; + if (IfPredicateStore) { + if (Cond[Part]->getType()->isVectorTy()) + Cond[Part] = + Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); + Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], + ConstantInt::get(Cond[Part]->getType(), 1)); + } + + Instruction *Cloned = Instr->clone(); + if (!IsVoidRetTy) + Cloned->setName(Instr->getName() + ".cloned"); + // Replace the operands of the cloned instructions with extracted scalars. + for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { + Value *Op = Params[op][Part]; + Cloned->setOperand(op, Op); + } + + // Place the cloned scalar in the new loop. + Builder.Insert(Cloned); + + // If the original scalar returns a value we need to place it in a vector + // so that future users will be able to use it. + if (!IsVoidRetTy) + VecResults[Part] = Cloned; + + // End if-block. + if (IfPredicateStore) + PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), + Cmp)); + } +} + +void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { + StoreInst *SI = dyn_cast<StoreInst>(Instr); + bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); + + return scalarizeInstruction(Instr, IfPredicateStore); +} + +Value *InnerLoopUnroller::reverseVector(Value *Vec) { + return Vec; +} + +Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { + return V; +} + +Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { + // When unrolling and the VF is 1, we only need to add a simple scalar. + Type *ITy = Val->getType(); + assert(!ITy->isVectorTy() && "Val must be a scalar"); + Constant *C = ConstantInt::get(ITy, StartIdx); + return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); +} |
