summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r--gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp5758
1 files changed, 5758 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
new file mode 100644
index 00000000000..17c25dfffc1
--- /dev/null
+++ b/gnu/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -0,0 +1,5758 @@
+//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
+// and generates target-independent LLVM-IR.
+// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
+// of instructions in order to estimate the profitability of vectorization.
+//
+// The loop vectorizer combines consecutive loop iterations into a single
+// 'wide' iteration. After this transformation the index is incremented
+// by the SIMD vector width, and not by one.
+//
+// This pass has three parts:
+// 1. The main loop pass that drives the different parts.
+// 2. LoopVectorizationLegality - A unit that checks for the legality
+// of the vectorization.
+// 3. InnerLoopVectorizer - A unit that performs the actual
+// widening of instructions.
+// 4. LoopVectorizationCostModel - A unit that checks for the profitability
+// of vectorization. It decides on the optimal vector width, which
+// can be one, if vectorization is not profitable.
+//
+//===----------------------------------------------------------------------===//
+//
+// The reduction-variable vectorization is based on the paper:
+// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
+//
+// Variable uniformity checks are inspired by:
+// Karrenberg, R. and Hack, S. Whole Function Vectorization.
+//
+// The interleaved access vectorization is based on the paper:
+// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
+// Data for SIMD
+//
+// Other ideas/concepts are from:
+// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
+//
+// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
+// Vectorizing Compilers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/DemandedBits.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/LoopAccessAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include <algorithm>
+#include <functional>
+#include <map>
+#include <tuple>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+
+STATISTIC(LoopsVectorized, "Number of loops vectorized");
+STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
+
+static cl::opt<bool>
+EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
+ cl::desc("Enable if-conversion during vectorization."));
+
+/// We don't vectorize loops with a known constant trip count below this number.
+static cl::opt<unsigned>
+TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
+ cl::Hidden,
+ cl::desc("Don't vectorize loops with a constant "
+ "trip count that is smaller than this "
+ "value."));
+
+static cl::opt<bool> MaximizeBandwidth(
+ "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
+ cl::desc("Maximize bandwidth when selecting vectorization factor which "
+ "will be determined by the smallest type in loop."));
+
+/// This enables versioning on the strides of symbolically striding memory
+/// accesses in code like the following.
+/// for (i = 0; i < N; ++i)
+/// A[i * Stride1] += B[i * Stride2] ...
+///
+/// Will be roughly translated to
+/// if (Stride1 == 1 && Stride2 == 1) {
+/// for (i = 0; i < N; i+=4)
+/// A[i:i+3] += ...
+/// } else
+/// ...
+static cl::opt<bool> EnableMemAccessVersioning(
+ "enable-mem-access-versioning", cl::init(true), cl::Hidden,
+ cl::desc("Enable symbolic stride memory access versioning"));
+
+static cl::opt<bool> EnableInterleavedMemAccesses(
+ "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
+ cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
+
+/// Maximum factor for an interleaved memory access.
+static cl::opt<unsigned> MaxInterleaveGroupFactor(
+ "max-interleave-group-factor", cl::Hidden,
+ cl::desc("Maximum factor for an interleaved access group (default = 8)"),
+ cl::init(8));
+
+/// We don't interleave loops with a known constant trip count below this
+/// number.
+static const unsigned TinyTripCountInterleaveThreshold = 128;
+
+static cl::opt<unsigned> ForceTargetNumScalarRegs(
+ "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
+ cl::desc("A flag that overrides the target's number of scalar registers."));
+
+static cl::opt<unsigned> ForceTargetNumVectorRegs(
+ "force-target-num-vector-regs", cl::init(0), cl::Hidden,
+ cl::desc("A flag that overrides the target's number of vector registers."));
+
+/// Maximum vectorization interleave count.
+static const unsigned MaxInterleaveFactor = 16;
+
+static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
+ "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
+ cl::desc("A flag that overrides the target's max interleave factor for "
+ "scalar loops."));
+
+static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
+ "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
+ cl::desc("A flag that overrides the target's max interleave factor for "
+ "vectorized loops."));
+
+static cl::opt<unsigned> ForceTargetInstructionCost(
+ "force-target-instruction-cost", cl::init(0), cl::Hidden,
+ cl::desc("A flag that overrides the target's expected cost for "
+ "an instruction to a single constant value. Mostly "
+ "useful for getting consistent testing."));
+
+static cl::opt<unsigned> SmallLoopCost(
+ "small-loop-cost", cl::init(20), cl::Hidden,
+ cl::desc(
+ "The cost of a loop that is considered 'small' by the interleaver."));
+
+static cl::opt<bool> LoopVectorizeWithBlockFrequency(
+ "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
+ cl::desc("Enable the use of the block frequency analysis to access PGO "
+ "heuristics minimizing code growth in cold regions and being more "
+ "aggressive in hot regions."));
+
+// Runtime interleave loops for load/store throughput.
+static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
+ "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
+ cl::desc(
+ "Enable runtime interleaving until load/store ports are saturated"));
+
+/// The number of stores in a loop that are allowed to need predication.
+static cl::opt<unsigned> NumberOfStoresToPredicate(
+ "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
+ cl::desc("Max number of stores to be predicated behind an if."));
+
+static cl::opt<bool> EnableIndVarRegisterHeur(
+ "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
+ cl::desc("Count the induction variable only once when interleaving"));
+
+static cl::opt<bool> EnableCondStoresVectorization(
+ "enable-cond-stores-vec", cl::init(false), cl::Hidden,
+ cl::desc("Enable if predication of stores during vectorization."));
+
+static cl::opt<unsigned> MaxNestedScalarReductionIC(
+ "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
+ cl::desc("The maximum interleave count to use when interleaving a scalar "
+ "reduction in a nested loop."));
+
+static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
+ "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
+ cl::desc("The maximum allowed number of runtime memory checks with a "
+ "vectorize(enable) pragma."));
+
+static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
+ "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
+ cl::desc("The maximum number of SCEV checks allowed."));
+
+static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
+ "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
+ cl::desc("The maximum number of SCEV checks allowed with a "
+ "vectorize(enable) pragma"));
+
+namespace {
+
+// Forward declarations.
+class LoopVectorizeHints;
+class LoopVectorizationLegality;
+class LoopVectorizationCostModel;
+class LoopVectorizationRequirements;
+
+/// \brief This modifies LoopAccessReport to initialize message with
+/// loop-vectorizer-specific part.
+class VectorizationReport : public LoopAccessReport {
+public:
+ VectorizationReport(Instruction *I = nullptr)
+ : LoopAccessReport("loop not vectorized: ", I) {}
+
+ /// \brief This allows promotion of the loop-access analysis report into the
+ /// loop-vectorizer report. It modifies the message to add the
+ /// loop-vectorizer-specific part of the message.
+ explicit VectorizationReport(const LoopAccessReport &R)
+ : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
+ R.getInstr()) {}
+};
+
+/// A helper function for converting Scalar types to vector types.
+/// If the incoming type is void, we return void. If the VF is 1, we return
+/// the scalar type.
+static Type* ToVectorTy(Type *Scalar, unsigned VF) {
+ if (Scalar->isVoidTy() || VF == 1)
+ return Scalar;
+ return VectorType::get(Scalar, VF);
+}
+
+/// A helper function that returns GEP instruction and knows to skip a
+/// 'bitcast'. The 'bitcast' may be skipped if the source and the destination
+/// pointee types of the 'bitcast' have the same size.
+/// For example:
+/// bitcast double** %var to i64* - can be skipped
+/// bitcast double** %var to i8* - can not
+static GetElementPtrInst *getGEPInstruction(Value *Ptr) {
+
+ if (isa<GetElementPtrInst>(Ptr))
+ return cast<GetElementPtrInst>(Ptr);
+
+ if (isa<BitCastInst>(Ptr) &&
+ isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) {
+ Type *BitcastTy = Ptr->getType();
+ Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy();
+ if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy))
+ return nullptr;
+ Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType();
+ Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType();
+ const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout();
+ if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty))
+ return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0));
+ }
+ return nullptr;
+}
+
+/// InnerLoopVectorizer vectorizes loops which contain only one basic
+/// block to a specified vectorization factor (VF).
+/// This class performs the widening of scalars into vectors, or multiple
+/// scalars. This class also implements the following features:
+/// * It inserts an epilogue loop for handling loops that don't have iteration
+/// counts that are known to be a multiple of the vectorization factor.
+/// * It handles the code generation for reduction variables.
+/// * Scalarization (implementation using scalars) of un-vectorizable
+/// instructions.
+/// InnerLoopVectorizer does not perform any vectorization-legality
+/// checks, and relies on the caller to check for the different legality
+/// aspects. The InnerLoopVectorizer relies on the
+/// LoopVectorizationLegality class to provide information about the induction
+/// and reduction variables that were found to a given vectorization factor.
+class InnerLoopVectorizer {
+public:
+ InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
+ LoopInfo *LI, DominatorTree *DT,
+ const TargetLibraryInfo *TLI,
+ const TargetTransformInfo *TTI, unsigned VecWidth,
+ unsigned UnrollFactor)
+ : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
+ VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
+ Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
+ TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr),
+ AddedSafetyChecks(false) {}
+
+ // Perform the actual loop widening (vectorization).
+ // MinimumBitWidths maps scalar integer values to the smallest bitwidth they
+ // can be validly truncated to. The cost model has assumed this truncation
+ // will happen when vectorizing.
+ void vectorize(LoopVectorizationLegality *L,
+ MapVector<Instruction*,uint64_t> MinimumBitWidths) {
+ MinBWs = MinimumBitWidths;
+ Legal = L;
+ // Create a new empty loop. Unlink the old loop and connect the new one.
+ createEmptyLoop();
+ // Widen each instruction in the old loop to a new one in the new loop.
+ // Use the Legality module to find the induction and reduction variables.
+ vectorizeLoop();
+ }
+
+ // Return true if any runtime check is added.
+ bool IsSafetyChecksAdded() {
+ return AddedSafetyChecks;
+ }
+
+ virtual ~InnerLoopVectorizer() {}
+
+protected:
+ /// A small list of PHINodes.
+ typedef SmallVector<PHINode*, 4> PhiVector;
+ /// When we unroll loops we have multiple vector values for each scalar.
+ /// This data structure holds the unrolled and vectorized values that
+ /// originated from one scalar instruction.
+ typedef SmallVector<Value*, 2> VectorParts;
+
+ // When we if-convert we need to create edge masks. We have to cache values
+ // so that we don't end up with exponential recursion/IR.
+ typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
+ VectorParts> EdgeMaskCache;
+
+ /// Create an empty loop, based on the loop ranges of the old loop.
+ void createEmptyLoop();
+ /// Create a new induction variable inside L.
+ PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
+ Value *Step, Instruction *DL);
+ /// Copy and widen the instructions from the old loop.
+ virtual void vectorizeLoop();
+
+ /// \brief The Loop exit block may have single value PHI nodes where the
+ /// incoming value is 'Undef'. While vectorizing we only handled real values
+ /// that were defined inside the loop. Here we fix the 'undef case'.
+ /// See PR14725.
+ void fixLCSSAPHIs();
+
+ /// Shrinks vector element sizes based on information in "MinBWs".
+ void truncateToMinimalBitwidths();
+
+ /// A helper function that computes the predicate of the block BB, assuming
+ /// that the header block of the loop is set to True. It returns the *entry*
+ /// mask for the block BB.
+ VectorParts createBlockInMask(BasicBlock *BB);
+ /// A helper function that computes the predicate of the edge between SRC
+ /// and DST.
+ VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
+
+ /// A helper function to vectorize a single BB within the innermost loop.
+ void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
+
+ /// Vectorize a single PHINode in a block. This method handles the induction
+ /// variable canonicalization. It supports both VF = 1 for unrolled loops and
+ /// arbitrary length vectors.
+ void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
+ unsigned UF, unsigned VF, PhiVector *PV);
+
+ /// Insert the new loop to the loop hierarchy and pass manager
+ /// and update the analysis passes.
+ void updateAnalysis();
+
+ /// This instruction is un-vectorizable. Implement it as a sequence
+ /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
+ /// scalarized instruction behind an if block predicated on the control
+ /// dependence of the instruction.
+ virtual void scalarizeInstruction(Instruction *Instr,
+ bool IfPredicateStore=false);
+
+ /// Vectorize Load and Store instructions,
+ virtual void vectorizeMemoryInstruction(Instruction *Instr);
+
+ /// Create a broadcast instruction. This method generates a broadcast
+ /// instruction (shuffle) for loop invariant values and for the induction
+ /// value. If this is the induction variable then we extend it to N, N+1, ...
+ /// this is needed because each iteration in the loop corresponds to a SIMD
+ /// element.
+ virtual Value *getBroadcastInstrs(Value *V);
+
+ /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
+ /// to each vector element of Val. The sequence starts at StartIndex.
+ virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
+
+ /// When we go over instructions in the basic block we rely on previous
+ /// values within the current basic block or on loop invariant values.
+ /// When we widen (vectorize) values we place them in the map. If the values
+ /// are not within the map, they have to be loop invariant, so we simply
+ /// broadcast them into a vector.
+ VectorParts &getVectorValue(Value *V);
+
+ /// Try to vectorize the interleaved access group that \p Instr belongs to.
+ void vectorizeInterleaveGroup(Instruction *Instr);
+
+ /// Generate a shuffle sequence that will reverse the vector Vec.
+ virtual Value *reverseVector(Value *Vec);
+
+ /// Returns (and creates if needed) the original loop trip count.
+ Value *getOrCreateTripCount(Loop *NewLoop);
+
+ /// Returns (and creates if needed) the trip count of the widened loop.
+ Value *getOrCreateVectorTripCount(Loop *NewLoop);
+
+ /// Emit a bypass check to see if the trip count would overflow, or we
+ /// wouldn't have enough iterations to execute one vector loop.
+ void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
+ /// Emit a bypass check to see if the vector trip count is nonzero.
+ void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
+ /// Emit a bypass check to see if all of the SCEV assumptions we've
+ /// had to make are correct.
+ void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
+ /// Emit bypass checks to check any memory assumptions we may have made.
+ void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
+
+ /// This is a helper class that holds the vectorizer state. It maps scalar
+ /// instructions to vector instructions. When the code is 'unrolled' then
+ /// then a single scalar value is mapped to multiple vector parts. The parts
+ /// are stored in the VectorPart type.
+ struct ValueMap {
+ /// C'tor. UnrollFactor controls the number of vectors ('parts') that
+ /// are mapped.
+ ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
+
+ /// \return True if 'Key' is saved in the Value Map.
+ bool has(Value *Key) const { return MapStorage.count(Key); }
+
+ /// Initializes a new entry in the map. Sets all of the vector parts to the
+ /// save value in 'Val'.
+ /// \return A reference to a vector with splat values.
+ VectorParts &splat(Value *Key, Value *Val) {
+ VectorParts &Entry = MapStorage[Key];
+ Entry.assign(UF, Val);
+ return Entry;
+ }
+
+ ///\return A reference to the value that is stored at 'Key'.
+ VectorParts &get(Value *Key) {
+ VectorParts &Entry = MapStorage[Key];
+ if (Entry.empty())
+ Entry.resize(UF);
+ assert(Entry.size() == UF);
+ return Entry;
+ }
+
+ private:
+ /// The unroll factor. Each entry in the map stores this number of vector
+ /// elements.
+ unsigned UF;
+
+ /// Map storage. We use std::map and not DenseMap because insertions to a
+ /// dense map invalidates its iterators.
+ std::map<Value *, VectorParts> MapStorage;
+ };
+
+ /// The original loop.
+ Loop *OrigLoop;
+ /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
+ /// dynamic knowledge to simplify SCEV expressions and converts them to a
+ /// more usable form.
+ PredicatedScalarEvolution &PSE;
+ /// Loop Info.
+ LoopInfo *LI;
+ /// Dominator Tree.
+ DominatorTree *DT;
+ /// Alias Analysis.
+ AliasAnalysis *AA;
+ /// Target Library Info.
+ const TargetLibraryInfo *TLI;
+ /// Target Transform Info.
+ const TargetTransformInfo *TTI;
+
+ /// The vectorization SIMD factor to use. Each vector will have this many
+ /// vector elements.
+ unsigned VF;
+
+protected:
+ /// The vectorization unroll factor to use. Each scalar is vectorized to this
+ /// many different vector instructions.
+ unsigned UF;
+
+ /// The builder that we use
+ IRBuilder<> Builder;
+
+ // --- Vectorization state ---
+
+ /// The vector-loop preheader.
+ BasicBlock *LoopVectorPreHeader;
+ /// The scalar-loop preheader.
+ BasicBlock *LoopScalarPreHeader;
+ /// Middle Block between the vector and the scalar.
+ BasicBlock *LoopMiddleBlock;
+ ///The ExitBlock of the scalar loop.
+ BasicBlock *LoopExitBlock;
+ ///The vector loop body.
+ SmallVector<BasicBlock *, 4> LoopVectorBody;
+ ///The scalar loop body.
+ BasicBlock *LoopScalarBody;
+ /// A list of all bypass blocks. The first block is the entry of the loop.
+ SmallVector<BasicBlock *, 4> LoopBypassBlocks;
+
+ /// The new Induction variable which was added to the new block.
+ PHINode *Induction;
+ /// The induction variable of the old basic block.
+ PHINode *OldInduction;
+ /// Maps scalars to widened vectors.
+ ValueMap WidenMap;
+ /// Store instructions that should be predicated, as a pair
+ /// <StoreInst, Predicate>
+ SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores;
+ EdgeMaskCache MaskCache;
+ /// Trip count of the original loop.
+ Value *TripCount;
+ /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
+ Value *VectorTripCount;
+
+ /// Map of scalar integer values to the smallest bitwidth they can be legally
+ /// represented as. The vector equivalents of these values should be truncated
+ /// to this type.
+ MapVector<Instruction*,uint64_t> MinBWs;
+ LoopVectorizationLegality *Legal;
+
+ // Record whether runtime check is added.
+ bool AddedSafetyChecks;
+};
+
+class InnerLoopUnroller : public InnerLoopVectorizer {
+public:
+ InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
+ LoopInfo *LI, DominatorTree *DT,
+ const TargetLibraryInfo *TLI,
+ const TargetTransformInfo *TTI, unsigned UnrollFactor)
+ : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, 1, UnrollFactor) {}
+
+private:
+ void scalarizeInstruction(Instruction *Instr,
+ bool IfPredicateStore = false) override;
+ void vectorizeMemoryInstruction(Instruction *Instr) override;
+ Value *getBroadcastInstrs(Value *V) override;
+ Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
+ Value *reverseVector(Value *Vec) override;
+};
+
+/// \brief Look for a meaningful debug location on the instruction or it's
+/// operands.
+static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
+ if (!I)
+ return I;
+
+ DebugLoc Empty;
+ if (I->getDebugLoc() != Empty)
+ return I;
+
+ for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
+ if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
+ if (OpInst->getDebugLoc() != Empty)
+ return OpInst;
+ }
+
+ return I;
+}
+
+/// \brief Set the debug location in the builder using the debug location in the
+/// instruction.
+static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
+ if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
+ B.SetCurrentDebugLocation(Inst->getDebugLoc());
+ else
+ B.SetCurrentDebugLocation(DebugLoc());
+}
+
+#ifndef NDEBUG
+/// \return string containing a file name and a line # for the given loop.
+static std::string getDebugLocString(const Loop *L) {
+ std::string Result;
+ if (L) {
+ raw_string_ostream OS(Result);
+ if (const DebugLoc LoopDbgLoc = L->getStartLoc())
+ LoopDbgLoc.print(OS);
+ else
+ // Just print the module name.
+ OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
+ OS.flush();
+ }
+ return Result;
+}
+#endif
+
+/// \brief Propagate known metadata from one instruction to another.
+static void propagateMetadata(Instruction *To, const Instruction *From) {
+ SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
+ From->getAllMetadataOtherThanDebugLoc(Metadata);
+
+ for (auto M : Metadata) {
+ unsigned Kind = M.first;
+
+ // These are safe to transfer (this is safe for TBAA, even when we
+ // if-convert, because should that metadata have had a control dependency
+ // on the condition, and thus actually aliased with some other
+ // non-speculated memory access when the condition was false, this would be
+ // caught by the runtime overlap checks).
+ if (Kind != LLVMContext::MD_tbaa &&
+ Kind != LLVMContext::MD_alias_scope &&
+ Kind != LLVMContext::MD_noalias &&
+ Kind != LLVMContext::MD_fpmath &&
+ Kind != LLVMContext::MD_nontemporal)
+ continue;
+
+ To->setMetadata(Kind, M.second);
+ }
+}
+
+/// \brief Propagate known metadata from one instruction to a vector of others.
+static void propagateMetadata(SmallVectorImpl<Value *> &To,
+ const Instruction *From) {
+ for (Value *V : To)
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ propagateMetadata(I, From);
+}
+
+/// \brief The group of interleaved loads/stores sharing the same stride and
+/// close to each other.
+///
+/// Each member in this group has an index starting from 0, and the largest
+/// index should be less than interleaved factor, which is equal to the absolute
+/// value of the access's stride.
+///
+/// E.g. An interleaved load group of factor 4:
+/// for (unsigned i = 0; i < 1024; i+=4) {
+/// a = A[i]; // Member of index 0
+/// b = A[i+1]; // Member of index 1
+/// d = A[i+3]; // Member of index 3
+/// ...
+/// }
+///
+/// An interleaved store group of factor 4:
+/// for (unsigned i = 0; i < 1024; i+=4) {
+/// ...
+/// A[i] = a; // Member of index 0
+/// A[i+1] = b; // Member of index 1
+/// A[i+2] = c; // Member of index 2
+/// A[i+3] = d; // Member of index 3
+/// }
+///
+/// Note: the interleaved load group could have gaps (missing members), but
+/// the interleaved store group doesn't allow gaps.
+class InterleaveGroup {
+public:
+ InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
+ : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
+ assert(Align && "The alignment should be non-zero");
+
+ Factor = std::abs(Stride);
+ assert(Factor > 1 && "Invalid interleave factor");
+
+ Reverse = Stride < 0;
+ Members[0] = Instr;
+ }
+
+ bool isReverse() const { return Reverse; }
+ unsigned getFactor() const { return Factor; }
+ unsigned getAlignment() const { return Align; }
+ unsigned getNumMembers() const { return Members.size(); }
+
+ /// \brief Try to insert a new member \p Instr with index \p Index and
+ /// alignment \p NewAlign. The index is related to the leader and it could be
+ /// negative if it is the new leader.
+ ///
+ /// \returns false if the instruction doesn't belong to the group.
+ bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
+ assert(NewAlign && "The new member's alignment should be non-zero");
+
+ int Key = Index + SmallestKey;
+
+ // Skip if there is already a member with the same index.
+ if (Members.count(Key))
+ return false;
+
+ if (Key > LargestKey) {
+ // The largest index is always less than the interleave factor.
+ if (Index >= static_cast<int>(Factor))
+ return false;
+
+ LargestKey = Key;
+ } else if (Key < SmallestKey) {
+ // The largest index is always less than the interleave factor.
+ if (LargestKey - Key >= static_cast<int>(Factor))
+ return false;
+
+ SmallestKey = Key;
+ }
+
+ // It's always safe to select the minimum alignment.
+ Align = std::min(Align, NewAlign);
+ Members[Key] = Instr;
+ return true;
+ }
+
+ /// \brief Get the member with the given index \p Index
+ ///
+ /// \returns nullptr if contains no such member.
+ Instruction *getMember(unsigned Index) const {
+ int Key = SmallestKey + Index;
+ if (!Members.count(Key))
+ return nullptr;
+
+ return Members.find(Key)->second;
+ }
+
+ /// \brief Get the index for the given member. Unlike the key in the member
+ /// map, the index starts from 0.
+ unsigned getIndex(Instruction *Instr) const {
+ for (auto I : Members)
+ if (I.second == Instr)
+ return I.first - SmallestKey;
+
+ llvm_unreachable("InterleaveGroup contains no such member");
+ }
+
+ Instruction *getInsertPos() const { return InsertPos; }
+ void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
+
+private:
+ unsigned Factor; // Interleave Factor.
+ bool Reverse;
+ unsigned Align;
+ DenseMap<int, Instruction *> Members;
+ int SmallestKey;
+ int LargestKey;
+
+ // To avoid breaking dependences, vectorized instructions of an interleave
+ // group should be inserted at either the first load or the last store in
+ // program order.
+ //
+ // E.g. %even = load i32 // Insert Position
+ // %add = add i32 %even // Use of %even
+ // %odd = load i32
+ //
+ // store i32 %even
+ // %odd = add i32 // Def of %odd
+ // store i32 %odd // Insert Position
+ Instruction *InsertPos;
+};
+
+/// \brief Drive the analysis of interleaved memory accesses in the loop.
+///
+/// Use this class to analyze interleaved accesses only when we can vectorize
+/// a loop. Otherwise it's meaningless to do analysis as the vectorization
+/// on interleaved accesses is unsafe.
+///
+/// The analysis collects interleave groups and records the relationships
+/// between the member and the group in a map.
+class InterleavedAccessInfo {
+public:
+ InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
+ DominatorTree *DT)
+ : PSE(PSE), TheLoop(L), DT(DT) {}
+
+ ~InterleavedAccessInfo() {
+ SmallSet<InterleaveGroup *, 4> DelSet;
+ // Avoid releasing a pointer twice.
+ for (auto &I : InterleaveGroupMap)
+ DelSet.insert(I.second);
+ for (auto *Ptr : DelSet)
+ delete Ptr;
+ }
+
+ /// \brief Analyze the interleaved accesses and collect them in interleave
+ /// groups. Substitute symbolic strides using \p Strides.
+ void analyzeInterleaving(const ValueToValueMap &Strides);
+
+ /// \brief Check if \p Instr belongs to any interleave group.
+ bool isInterleaved(Instruction *Instr) const {
+ return InterleaveGroupMap.count(Instr);
+ }
+
+ /// \brief Get the interleave group that \p Instr belongs to.
+ ///
+ /// \returns nullptr if doesn't have such group.
+ InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
+ if (InterleaveGroupMap.count(Instr))
+ return InterleaveGroupMap.find(Instr)->second;
+ return nullptr;
+ }
+
+private:
+ /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
+ /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
+ /// The interleaved access analysis can also add new predicates (for example
+ /// by versioning strides of pointers).
+ PredicatedScalarEvolution &PSE;
+ Loop *TheLoop;
+ DominatorTree *DT;
+
+ /// Holds the relationships between the members and the interleave group.
+ DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
+
+ /// \brief The descriptor for a strided memory access.
+ struct StrideDescriptor {
+ StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size,
+ unsigned Align)
+ : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
+
+ StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {}
+
+ int Stride; // The access's stride. It is negative for a reverse access.
+ const SCEV *Scev; // The scalar expression of this access
+ unsigned Size; // The size of the memory object.
+ unsigned Align; // The alignment of this access.
+ };
+
+ /// \brief Create a new interleave group with the given instruction \p Instr,
+ /// stride \p Stride and alignment \p Align.
+ ///
+ /// \returns the newly created interleave group.
+ InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
+ unsigned Align) {
+ assert(!InterleaveGroupMap.count(Instr) &&
+ "Already in an interleaved access group");
+ InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
+ return InterleaveGroupMap[Instr];
+ }
+
+ /// \brief Release the group and remove all the relationships.
+ void releaseGroup(InterleaveGroup *Group) {
+ for (unsigned i = 0; i < Group->getFactor(); i++)
+ if (Instruction *Member = Group->getMember(i))
+ InterleaveGroupMap.erase(Member);
+
+ delete Group;
+ }
+
+ /// \brief Collect all the accesses with a constant stride in program order.
+ void collectConstStridedAccesses(
+ MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
+ const ValueToValueMap &Strides);
+};
+
+/// Utility class for getting and setting loop vectorizer hints in the form
+/// of loop metadata.
+/// This class keeps a number of loop annotations locally (as member variables)
+/// and can, upon request, write them back as metadata on the loop. It will
+/// initially scan the loop for existing metadata, and will update the local
+/// values based on information in the loop.
+/// We cannot write all values to metadata, as the mere presence of some info,
+/// for example 'force', means a decision has been made. So, we need to be
+/// careful NOT to add them if the user hasn't specifically asked so.
+class LoopVectorizeHints {
+ enum HintKind {
+ HK_WIDTH,
+ HK_UNROLL,
+ HK_FORCE
+ };
+
+ /// Hint - associates name and validation with the hint value.
+ struct Hint {
+ const char * Name;
+ unsigned Value; // This may have to change for non-numeric values.
+ HintKind Kind;
+
+ Hint(const char * Name, unsigned Value, HintKind Kind)
+ : Name(Name), Value(Value), Kind(Kind) { }
+
+ bool validate(unsigned Val) {
+ switch (Kind) {
+ case HK_WIDTH:
+ return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
+ case HK_UNROLL:
+ return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
+ case HK_FORCE:
+ return (Val <= 1);
+ }
+ return false;
+ }
+ };
+
+ /// Vectorization width.
+ Hint Width;
+ /// Vectorization interleave factor.
+ Hint Interleave;
+ /// Vectorization forced
+ Hint Force;
+
+ /// Return the loop metadata prefix.
+ static StringRef Prefix() { return "llvm.loop."; }
+
+public:
+ enum ForceKind {
+ FK_Undefined = -1, ///< Not selected.
+ FK_Disabled = 0, ///< Forcing disabled.
+ FK_Enabled = 1, ///< Forcing enabled.
+ };
+
+ LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
+ : Width("vectorize.width", VectorizerParams::VectorizationFactor,
+ HK_WIDTH),
+ Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
+ Force("vectorize.enable", FK_Undefined, HK_FORCE),
+ TheLoop(L) {
+ // Populate values with existing loop metadata.
+ getHintsFromMetadata();
+
+ // force-vector-interleave overrides DisableInterleaving.
+ if (VectorizerParams::isInterleaveForced())
+ Interleave.Value = VectorizerParams::VectorizationInterleave;
+
+ DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
+ << "LV: Interleaving disabled by the pass manager\n");
+ }
+
+ /// Mark the loop L as already vectorized by setting the width to 1.
+ void setAlreadyVectorized() {
+ Width.Value = Interleave.Value = 1;
+ Hint Hints[] = {Width, Interleave};
+ writeHintsToMetadata(Hints);
+ }
+
+ bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
+ if (getForce() == LoopVectorizeHints::FK_Disabled) {
+ DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
+ emitOptimizationRemarkAnalysis(F->getContext(),
+ vectorizeAnalysisPassName(), *F,
+ L->getStartLoc(), emitRemark());
+ return false;
+ }
+
+ if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
+ DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
+ emitOptimizationRemarkAnalysis(F->getContext(),
+ vectorizeAnalysisPassName(), *F,
+ L->getStartLoc(), emitRemark());
+ return false;
+ }
+
+ if (getWidth() == 1 && getInterleave() == 1) {
+ // FIXME: Add a separate metadata to indicate when the loop has already
+ // been vectorized instead of setting width and count to 1.
+ DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
+ // FIXME: Add interleave.disable metadata. This will allow
+ // vectorize.disable to be used without disabling the pass and errors
+ // to differentiate between disabled vectorization and a width of 1.
+ emitOptimizationRemarkAnalysis(
+ F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(),
+ "loop not vectorized: vectorization and interleaving are explicitly "
+ "disabled, or vectorize width and interleave count are both set to "
+ "1");
+ return false;
+ }
+
+ return true;
+ }
+
+ /// Dumps all the hint information.
+ std::string emitRemark() const {
+ VectorizationReport R;
+ if (Force.Value == LoopVectorizeHints::FK_Disabled)
+ R << "vectorization is explicitly disabled";
+ else {
+ R << "use -Rpass-analysis=loop-vectorize for more info";
+ if (Force.Value == LoopVectorizeHints::FK_Enabled) {
+ R << " (Force=true";
+ if (Width.Value != 0)
+ R << ", Vector Width=" << Width.Value;
+ if (Interleave.Value != 0)
+ R << ", Interleave Count=" << Interleave.Value;
+ R << ")";
+ }
+ }
+
+ return R.str();
+ }
+
+ unsigned getWidth() const { return Width.Value; }
+ unsigned getInterleave() const { return Interleave.Value; }
+ enum ForceKind getForce() const { return (ForceKind)Force.Value; }
+ const char *vectorizeAnalysisPassName() const {
+ // If hints are provided that don't disable vectorization use the
+ // AlwaysPrint pass name to force the frontend to print the diagnostic.
+ if (getWidth() == 1)
+ return LV_NAME;
+ if (getForce() == LoopVectorizeHints::FK_Disabled)
+ return LV_NAME;
+ if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
+ return LV_NAME;
+ return DiagnosticInfo::AlwaysPrint;
+ }
+
+ bool allowReordering() const {
+ // When enabling loop hints are provided we allow the vectorizer to change
+ // the order of operations that is given by the scalar loop. This is not
+ // enabled by default because can be unsafe or inefficient. For example,
+ // reordering floating-point operations will change the way round-off
+ // error accumulates in the loop.
+ return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
+ }
+
+private:
+ /// Find hints specified in the loop metadata and update local values.
+ void getHintsFromMetadata() {
+ MDNode *LoopID = TheLoop->getLoopID();
+ if (!LoopID)
+ return;
+
+ // First operand should refer to the loop id itself.
+ assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ const MDString *S = nullptr;
+ SmallVector<Metadata *, 4> Args;
+
+ // The expected hint is either a MDString or a MDNode with the first
+ // operand a MDString.
+ if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
+ if (!MD || MD->getNumOperands() == 0)
+ continue;
+ S = dyn_cast<MDString>(MD->getOperand(0));
+ for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
+ Args.push_back(MD->getOperand(i));
+ } else {
+ S = dyn_cast<MDString>(LoopID->getOperand(i));
+ assert(Args.size() == 0 && "too many arguments for MDString");
+ }
+
+ if (!S)
+ continue;
+
+ // Check if the hint starts with the loop metadata prefix.
+ StringRef Name = S->getString();
+ if (Args.size() == 1)
+ setHint(Name, Args[0]);
+ }
+ }
+
+ /// Checks string hint with one operand and set value if valid.
+ void setHint(StringRef Name, Metadata *Arg) {
+ if (!Name.startswith(Prefix()))
+ return;
+ Name = Name.substr(Prefix().size(), StringRef::npos);
+
+ const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
+ if (!C) return;
+ unsigned Val = C->getZExtValue();
+
+ Hint *Hints[] = {&Width, &Interleave, &Force};
+ for (auto H : Hints) {
+ if (Name == H->Name) {
+ if (H->validate(Val))
+ H->Value = Val;
+ else
+ DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
+ break;
+ }
+ }
+ }
+
+ /// Create a new hint from name / value pair.
+ MDNode *createHintMetadata(StringRef Name, unsigned V) const {
+ LLVMContext &Context = TheLoop->getHeader()->getContext();
+ Metadata *MDs[] = {MDString::get(Context, Name),
+ ConstantAsMetadata::get(
+ ConstantInt::get(Type::getInt32Ty(Context), V))};
+ return MDNode::get(Context, MDs);
+ }
+
+ /// Matches metadata with hint name.
+ bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
+ MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
+ if (!Name)
+ return false;
+
+ for (auto H : HintTypes)
+ if (Name->getString().endswith(H.Name))
+ return true;
+ return false;
+ }
+
+ /// Sets current hints into loop metadata, keeping other values intact.
+ void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
+ if (HintTypes.size() == 0)
+ return;
+
+ // Reserve the first element to LoopID (see below).
+ SmallVector<Metadata *, 4> MDs(1);
+ // If the loop already has metadata, then ignore the existing operands.
+ MDNode *LoopID = TheLoop->getLoopID();
+ if (LoopID) {
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
+ // If node in update list, ignore old value.
+ if (!matchesHintMetadataName(Node, HintTypes))
+ MDs.push_back(Node);
+ }
+ }
+
+ // Now, add the missing hints.
+ for (auto H : HintTypes)
+ MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
+
+ // Replace current metadata node with new one.
+ LLVMContext &Context = TheLoop->getHeader()->getContext();
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+
+ TheLoop->setLoopID(NewLoopID);
+ }
+
+ /// The loop these hints belong to.
+ const Loop *TheLoop;
+};
+
+static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop,
+ const LoopVectorizeHints &Hints,
+ const LoopAccessReport &Message) {
+ const char *Name = Hints.vectorizeAnalysisPassName();
+ LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name);
+}
+
+static void emitMissedWarning(Function *F, Loop *L,
+ const LoopVectorizeHints &LH) {
+ emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(),
+ LH.emitRemark());
+
+ if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
+ if (LH.getWidth() != 1)
+ emitLoopVectorizeWarning(
+ F->getContext(), *F, L->getStartLoc(),
+ "failed explicitly specified loop vectorization");
+ else if (LH.getInterleave() != 1)
+ emitLoopInterleaveWarning(
+ F->getContext(), *F, L->getStartLoc(),
+ "failed explicitly specified loop interleaving");
+ }
+}
+
+/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
+/// to what vectorization factor.
+/// This class does not look at the profitability of vectorization, only the
+/// legality. This class has two main kinds of checks:
+/// * Memory checks - The code in canVectorizeMemory checks if vectorization
+/// will change the order of memory accesses in a way that will change the
+/// correctness of the program.
+/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
+/// checks for a number of different conditions, such as the availability of a
+/// single induction variable, that all types are supported and vectorize-able,
+/// etc. This code reflects the capabilities of InnerLoopVectorizer.
+/// This class is also used by InnerLoopVectorizer for identifying
+/// induction variable and the different reduction variables.
+class LoopVectorizationLegality {
+public:
+ LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE,
+ DominatorTree *DT, TargetLibraryInfo *TLI,
+ AliasAnalysis *AA, Function *F,
+ const TargetTransformInfo *TTI,
+ LoopAccessAnalysis *LAA,
+ LoopVectorizationRequirements *R,
+ const LoopVectorizeHints *H)
+ : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F),
+ TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT),
+ Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false),
+ Requirements(R), Hints(H) {}
+
+ /// ReductionList contains the reduction descriptors for all
+ /// of the reductions that were found in the loop.
+ typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
+
+ /// InductionList saves induction variables and maps them to the
+ /// induction descriptor.
+ typedef MapVector<PHINode*, InductionDescriptor> InductionList;
+
+ /// Returns true if it is legal to vectorize this loop.
+ /// This does not mean that it is profitable to vectorize this
+ /// loop, only that it is legal to do so.
+ bool canVectorize();
+
+ /// Returns the Induction variable.
+ PHINode *getInduction() { return Induction; }
+
+ /// Returns the reduction variables found in the loop.
+ ReductionList *getReductionVars() { return &Reductions; }
+
+ /// Returns the induction variables found in the loop.
+ InductionList *getInductionVars() { return &Inductions; }
+
+ /// Returns the widest induction type.
+ Type *getWidestInductionType() { return WidestIndTy; }
+
+ /// Returns True if V is an induction variable in this loop.
+ bool isInductionVariable(const Value *V);
+
+ /// Returns True if PN is a reduction variable in this loop.
+ bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
+
+ /// Return true if the block BB needs to be predicated in order for the loop
+ /// to be vectorized.
+ bool blockNeedsPredication(BasicBlock *BB);
+
+ /// Check if this pointer is consecutive when vectorizing. This happens
+ /// when the last index of the GEP is the induction variable, or that the
+ /// pointer itself is an induction variable.
+ /// This check allows us to vectorize A[idx] into a wide load/store.
+ /// Returns:
+ /// 0 - Stride is unknown or non-consecutive.
+ /// 1 - Address is consecutive.
+ /// -1 - Address is consecutive, and decreasing.
+ int isConsecutivePtr(Value *Ptr);
+
+ /// Returns true if the value V is uniform within the loop.
+ bool isUniform(Value *V);
+
+ /// Returns true if this instruction will remain scalar after vectorization.
+ bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
+
+ /// Returns the information that we collected about runtime memory check.
+ const RuntimePointerChecking *getRuntimePointerChecking() const {
+ return LAI->getRuntimePointerChecking();
+ }
+
+ const LoopAccessInfo *getLAI() const {
+ return LAI;
+ }
+
+ /// \brief Check if \p Instr belongs to any interleaved access group.
+ bool isAccessInterleaved(Instruction *Instr) {
+ return InterleaveInfo.isInterleaved(Instr);
+ }
+
+ /// \brief Get the interleaved access group that \p Instr belongs to.
+ const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
+ return InterleaveInfo.getInterleaveGroup(Instr);
+ }
+
+ unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
+
+ bool hasStride(Value *V) { return StrideSet.count(V); }
+ bool mustCheckStrides() { return !StrideSet.empty(); }
+ SmallPtrSet<Value *, 8>::iterator strides_begin() {
+ return StrideSet.begin();
+ }
+ SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
+
+ /// Returns true if the target machine supports masked store operation
+ /// for the given \p DataType and kind of access to \p Ptr.
+ bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
+ return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
+ }
+ /// Returns true if the target machine supports masked load operation
+ /// for the given \p DataType and kind of access to \p Ptr.
+ bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
+ return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
+ }
+ /// Returns true if vector representation of the instruction \p I
+ /// requires mask.
+ bool isMaskRequired(const Instruction* I) {
+ return (MaskedOp.count(I) != 0);
+ }
+ unsigned getNumStores() const {
+ return LAI->getNumStores();
+ }
+ unsigned getNumLoads() const {
+ return LAI->getNumLoads();
+ }
+ unsigned getNumPredStores() const {
+ return NumPredStores;
+ }
+private:
+ /// Check if a single basic block loop is vectorizable.
+ /// At this point we know that this is a loop with a constant trip count
+ /// and we only need to check individual instructions.
+ bool canVectorizeInstrs();
+
+ /// When we vectorize loops we may change the order in which
+ /// we read and write from memory. This method checks if it is
+ /// legal to vectorize the code, considering only memory constrains.
+ /// Returns true if the loop is vectorizable
+ bool canVectorizeMemory();
+
+ /// Return true if we can vectorize this loop using the IF-conversion
+ /// transformation.
+ bool canVectorizeWithIfConvert();
+
+ /// Collect the variables that need to stay uniform after vectorization.
+ void collectLoopUniforms();
+
+ /// Return true if all of the instructions in the block can be speculatively
+ /// executed. \p SafePtrs is a list of addresses that are known to be legal
+ /// and we know that we can read from them without segfault.
+ bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
+
+ /// \brief Collect memory access with loop invariant strides.
+ ///
+ /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
+ /// invariant.
+ void collectStridedAccess(Value *LoadOrStoreInst);
+
+ /// Report an analysis message to assist the user in diagnosing loops that are
+ /// not vectorized. These are handled as LoopAccessReport rather than
+ /// VectorizationReport because the << operator of VectorizationReport returns
+ /// LoopAccessReport.
+ void emitAnalysis(const LoopAccessReport &Message) const {
+ emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
+ }
+
+ unsigned NumPredStores;
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
+ /// Applies dynamic knowledge to simplify SCEV expressions in the context
+ /// of existing SCEV assumptions. The analysis will also add a minimal set
+ /// of new predicates if this is required to enable vectorization and
+ /// unrolling.
+ PredicatedScalarEvolution &PSE;
+ /// Target Library Info.
+ TargetLibraryInfo *TLI;
+ /// Parent function
+ Function *TheFunction;
+ /// Target Transform Info
+ const TargetTransformInfo *TTI;
+ /// Dominator Tree.
+ DominatorTree *DT;
+ // LoopAccess analysis.
+ LoopAccessAnalysis *LAA;
+ // And the loop-accesses info corresponding to this loop. This pointer is
+ // null until canVectorizeMemory sets it up.
+ const LoopAccessInfo *LAI;
+
+ /// The interleave access information contains groups of interleaved accesses
+ /// with the same stride and close to each other.
+ InterleavedAccessInfo InterleaveInfo;
+
+ // --- vectorization state --- //
+
+ /// Holds the integer induction variable. This is the counter of the
+ /// loop.
+ PHINode *Induction;
+ /// Holds the reduction variables.
+ ReductionList Reductions;
+ /// Holds all of the induction variables that we found in the loop.
+ /// Notice that inductions don't need to start at zero and that induction
+ /// variables can be pointers.
+ InductionList Inductions;
+ /// Holds the widest induction type encountered.
+ Type *WidestIndTy;
+
+ /// Allowed outside users. This holds the reduction
+ /// vars which can be accessed from outside the loop.
+ SmallPtrSet<Value*, 4> AllowedExit;
+ /// This set holds the variables which are known to be uniform after
+ /// vectorization.
+ SmallPtrSet<Instruction*, 4> Uniforms;
+
+ /// Can we assume the absence of NaNs.
+ bool HasFunNoNaNAttr;
+
+ /// Vectorization requirements that will go through late-evaluation.
+ LoopVectorizationRequirements *Requirements;
+
+ /// Used to emit an analysis of any legality issues.
+ const LoopVectorizeHints *Hints;
+
+ ValueToValueMap Strides;
+ SmallPtrSet<Value *, 8> StrideSet;
+
+ /// While vectorizing these instructions we have to generate a
+ /// call to the appropriate masked intrinsic
+ SmallPtrSet<const Instruction *, 8> MaskedOp;
+};
+
+/// LoopVectorizationCostModel - estimates the expected speedups due to
+/// vectorization.
+/// In many cases vectorization is not profitable. This can happen because of
+/// a number of reasons. In this class we mainly attempt to predict the
+/// expected speedup/slowdowns due to the supported instruction set. We use the
+/// TargetTransformInfo to query the different backends for the cost of
+/// different operations.
+class LoopVectorizationCostModel {
+public:
+ LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
+ LoopVectorizationLegality *Legal,
+ const TargetTransformInfo &TTI,
+ const TargetLibraryInfo *TLI, DemandedBits *DB,
+ AssumptionCache *AC, const Function *F,
+ const LoopVectorizeHints *Hints,
+ SmallPtrSetImpl<const Value *> &ValuesToIgnore)
+ : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
+ TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {}
+
+ /// Information about vectorization costs
+ struct VectorizationFactor {
+ unsigned Width; // Vector width with best cost
+ unsigned Cost; // Cost of the loop with that width
+ };
+ /// \return The most profitable vectorization factor and the cost of that VF.
+ /// This method checks every power of two up to VF. If UserVF is not ZERO
+ /// then this vectorization factor will be selected if vectorization is
+ /// possible.
+ VectorizationFactor selectVectorizationFactor(bool OptForSize);
+
+ /// \return The size (in bits) of the smallest and widest types in the code
+ /// that needs to be vectorized. We ignore values that remain scalar such as
+ /// 64 bit loop indices.
+ std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
+
+ /// \return The desired interleave count.
+ /// If interleave count has been specified by metadata it will be returned.
+ /// Otherwise, the interleave count is computed and returned. VF and LoopCost
+ /// are the selected vectorization factor and the cost of the selected VF.
+ unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
+ unsigned LoopCost);
+
+ /// \return The most profitable unroll factor.
+ /// This method finds the best unroll-factor based on register pressure and
+ /// other parameters. VF and LoopCost are the selected vectorization factor
+ /// and the cost of the selected VF.
+ unsigned computeInterleaveCount(bool OptForSize, unsigned VF,
+ unsigned LoopCost);
+
+ /// \brief A struct that represents some properties of the register usage
+ /// of a loop.
+ struct RegisterUsage {
+ /// Holds the number of loop invariant values that are used in the loop.
+ unsigned LoopInvariantRegs;
+ /// Holds the maximum number of concurrent live intervals in the loop.
+ unsigned MaxLocalUsers;
+ /// Holds the number of instructions in the loop.
+ unsigned NumInstructions;
+ };
+
+ /// \return Returns information about the register usages of the loop for the
+ /// given vectorization factors.
+ SmallVector<RegisterUsage, 8>
+ calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs);
+
+private:
+ /// Returns the expected execution cost. The unit of the cost does
+ /// not matter because we use the 'cost' units to compare different
+ /// vector widths. The cost that is returned is *not* normalized by
+ /// the factor width.
+ unsigned expectedCost(unsigned VF);
+
+ /// Returns the execution time cost of an instruction for a given vector
+ /// width. Vector width of one means scalar.
+ unsigned getInstructionCost(Instruction *I, unsigned VF);
+
+ /// Returns whether the instruction is a load or store and will be a emitted
+ /// as a vector operation.
+ bool isConsecutiveLoadOrStore(Instruction *I);
+
+ /// Report an analysis message to assist the user in diagnosing loops that are
+ /// not vectorized. These are handled as LoopAccessReport rather than
+ /// VectorizationReport because the << operator of VectorizationReport returns
+ /// LoopAccessReport.
+ void emitAnalysis(const LoopAccessReport &Message) const {
+ emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
+ }
+
+public:
+ /// Map of scalar integer values to the smallest bitwidth they can be legally
+ /// represented as. The vector equivalents of these values should be truncated
+ /// to this type.
+ MapVector<Instruction*,uint64_t> MinBWs;
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// Loop Info analysis.
+ LoopInfo *LI;
+ /// Vectorization legality.
+ LoopVectorizationLegality *Legal;
+ /// Vector target information.
+ const TargetTransformInfo &TTI;
+ /// Target Library Info.
+ const TargetLibraryInfo *TLI;
+ /// Demanded bits analysis
+ DemandedBits *DB;
+ const Function *TheFunction;
+ // Loop Vectorize Hint.
+ const LoopVectorizeHints *Hints;
+ // Values to ignore in the cost model.
+ const SmallPtrSetImpl<const Value *> &ValuesToIgnore;
+};
+
+/// \brief This holds vectorization requirements that must be verified late in
+/// the process. The requirements are set by legalize and costmodel. Once
+/// vectorization has been determined to be possible and profitable the
+/// requirements can be verified by looking for metadata or compiler options.
+/// For example, some loops require FP commutativity which is only allowed if
+/// vectorization is explicitly specified or if the fast-math compiler option
+/// has been provided.
+/// Late evaluation of these requirements allows helpful diagnostics to be
+/// composed that tells the user what need to be done to vectorize the loop. For
+/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
+/// evaluation should be used only when diagnostics can generated that can be
+/// followed by a non-expert user.
+class LoopVectorizationRequirements {
+public:
+ LoopVectorizationRequirements()
+ : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {}
+
+ void addUnsafeAlgebraInst(Instruction *I) {
+ // First unsafe algebra instruction.
+ if (!UnsafeAlgebraInst)
+ UnsafeAlgebraInst = I;
+ }
+
+ void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
+
+ bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
+ const char *Name = Hints.vectorizeAnalysisPassName();
+ bool Failed = false;
+ if (UnsafeAlgebraInst && !Hints.allowReordering()) {
+ emitOptimizationRemarkAnalysisFPCommute(
+ F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(),
+ VectorizationReport() << "cannot prove it is safe to reorder "
+ "floating-point operations");
+ Failed = true;
+ }
+
+ // Test if runtime memcheck thresholds are exceeded.
+ bool PragmaThresholdReached =
+ NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
+ bool ThresholdReached =
+ NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
+ if ((ThresholdReached && !Hints.allowReordering()) ||
+ PragmaThresholdReached) {
+ emitOptimizationRemarkAnalysisAliasing(
+ F->getContext(), Name, *F, L->getStartLoc(),
+ VectorizationReport()
+ << "cannot prove it is safe to reorder memory operations");
+ DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
+ Failed = true;
+ }
+
+ return Failed;
+ }
+
+private:
+ unsigned NumRuntimePointerChecks;
+ Instruction *UnsafeAlgebraInst;
+};
+
+static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
+ if (L.empty())
+ return V.push_back(&L);
+
+ for (Loop *InnerL : L)
+ addInnerLoop(*InnerL, V);
+}
+
+/// The LoopVectorize Pass.
+struct LoopVectorize : public FunctionPass {
+ /// Pass identification, replacement for typeid
+ static char ID;
+
+ explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
+ : FunctionPass(ID),
+ DisableUnrolling(NoUnrolling),
+ AlwaysVectorize(AlwaysVectorize) {
+ initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
+ }
+
+ ScalarEvolution *SE;
+ LoopInfo *LI;
+ TargetTransformInfo *TTI;
+ DominatorTree *DT;
+ BlockFrequencyInfo *BFI;
+ TargetLibraryInfo *TLI;
+ DemandedBits *DB;
+ AliasAnalysis *AA;
+ AssumptionCache *AC;
+ LoopAccessAnalysis *LAA;
+ bool DisableUnrolling;
+ bool AlwaysVectorize;
+
+ BlockFrequency ColdEntryFreq;
+
+ bool runOnFunction(Function &F) override {
+ SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
+ auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
+ TLI = TLIP ? &TLIP->getTLI() : nullptr;
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ LAA = &getAnalysis<LoopAccessAnalysis>();
+ DB = &getAnalysis<DemandedBits>();
+
+ // Compute some weights outside of the loop over the loops. Compute this
+ // using a BranchProbability to re-use its scaling math.
+ const BranchProbability ColdProb(1, 5); // 20%
+ ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
+
+ // Don't attempt if
+ // 1. the target claims to have no vector registers, and
+ // 2. interleaving won't help ILP.
+ //
+ // The second condition is necessary because, even if the target has no
+ // vector registers, loop vectorization may still enable scalar
+ // interleaving.
+ if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
+ return false;
+
+ // Build up a worklist of inner-loops to vectorize. This is necessary as
+ // the act of vectorizing or partially unrolling a loop creates new loops
+ // and can invalidate iterators across the loops.
+ SmallVector<Loop *, 8> Worklist;
+
+ for (Loop *L : *LI)
+ addInnerLoop(*L, Worklist);
+
+ LoopsAnalyzed += Worklist.size();
+
+ // Now walk the identified inner loops.
+ bool Changed = false;
+ while (!Worklist.empty())
+ Changed |= processLoop(Worklist.pop_back_val());
+
+ // Process each loop nest in the function.
+ return Changed;
+ }
+
+ static void AddRuntimeUnrollDisableMetaData(Loop *L) {
+ SmallVector<Metadata *, 4> MDs;
+ // Reserve first location for self reference to the LoopID metadata node.
+ MDs.push_back(nullptr);
+ bool IsUnrollMetadata = false;
+ MDNode *LoopID = L->getLoopID();
+ if (LoopID) {
+ // First find existing loop unrolling disable metadata.
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (MD) {
+ const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ IsUnrollMetadata =
+ S && S->getString().startswith("llvm.loop.unroll.disable");
+ }
+ MDs.push_back(LoopID->getOperand(i));
+ }
+ }
+
+ if (!IsUnrollMetadata) {
+ // Add runtime unroll disable metadata.
+ LLVMContext &Context = L->getHeader()->getContext();
+ SmallVector<Metadata *, 1> DisableOperands;
+ DisableOperands.push_back(
+ MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
+ MDNode *DisableNode = MDNode::get(Context, DisableOperands);
+ MDs.push_back(DisableNode);
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+ L->setLoopID(NewLoopID);
+ }
+ }
+
+ bool processLoop(Loop *L) {
+ assert(L->empty() && "Only process inner loops.");
+
+#ifndef NDEBUG
+ const std::string DebugLocStr = getDebugLocString(L);
+#endif /* NDEBUG */
+
+ DEBUG(dbgs() << "\nLV: Checking a loop in \""
+ << L->getHeader()->getParent()->getName() << "\" from "
+ << DebugLocStr << "\n");
+
+ LoopVectorizeHints Hints(L, DisableUnrolling);
+
+ DEBUG(dbgs() << "LV: Loop hints:"
+ << " force="
+ << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
+ ? "disabled"
+ : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
+ ? "enabled"
+ : "?")) << " width=" << Hints.getWidth()
+ << " unroll=" << Hints.getInterleave() << "\n");
+
+ // Function containing loop
+ Function *F = L->getHeader()->getParent();
+
+ // Looking at the diagnostic output is the only way to determine if a loop
+ // was vectorized (other than looking at the IR or machine code), so it
+ // is important to generate an optimization remark for each loop. Most of
+ // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
+ // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
+ // less verbose reporting vectorized loops and unvectorized loops that may
+ // benefit from vectorization, respectively.
+
+ if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
+ DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
+ return false;
+ }
+
+ // Check the loop for a trip count threshold:
+ // do not vectorize loops with a tiny trip count.
+ const unsigned TC = SE->getSmallConstantTripCount(L);
+ if (TC > 0u && TC < TinyTripCountVectorThreshold) {
+ DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
+ << "This loop is not worth vectorizing.");
+ if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
+ DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
+ else {
+ DEBUG(dbgs() << "\n");
+ emitAnalysisDiag(F, L, Hints, VectorizationReport()
+ << "vectorization is not beneficial "
+ "and is not explicitly forced");
+ return false;
+ }
+ }
+
+ PredicatedScalarEvolution PSE(*SE);
+
+ // Check if it is legal to vectorize the loop.
+ LoopVectorizationRequirements Requirements;
+ LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA,
+ &Requirements, &Hints);
+ if (!LVL.canVectorize()) {
+ DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
+ emitMissedWarning(F, L, Hints);
+ return false;
+ }
+
+ // Collect values we want to ignore in the cost model. This includes
+ // type-promoting instructions we identified during reduction detection.
+ SmallPtrSet<const Value *, 32> ValuesToIgnore;
+ CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore);
+ for (auto &Reduction : *LVL.getReductionVars()) {
+ RecurrenceDescriptor &RedDes = Reduction.second;
+ SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
+ ValuesToIgnore.insert(Casts.begin(), Casts.end());
+ }
+
+ // Use the cost model.
+ LoopVectorizationCostModel CM(L, PSE.getSE(), LI, &LVL, *TTI, TLI, DB, AC,
+ F, &Hints, ValuesToIgnore);
+
+ // Check the function attributes to find out if this function should be
+ // optimized for size.
+ bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
+ F->optForSize();
+
+ // Compute the weighted frequency of this loop being executed and see if it
+ // is less than 20% of the function entry baseline frequency. Note that we
+ // always have a canonical loop here because we think we *can* vectorize.
+ // FIXME: This is hidden behind a flag due to pervasive problems with
+ // exactly what block frequency models.
+ if (LoopVectorizeWithBlockFrequency) {
+ BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
+ if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
+ LoopEntryFreq < ColdEntryFreq)
+ OptForSize = true;
+ }
+
+ // Check the function attributes to see if implicit floats are allowed.
+ // FIXME: This check doesn't seem possibly correct -- what if the loop is
+ // an integer loop and the vector instructions selected are purely integer
+ // vector instructions?
+ if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
+ DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
+ "attribute is used.\n");
+ emitAnalysisDiag(
+ F, L, Hints,
+ VectorizationReport()
+ << "loop not vectorized due to NoImplicitFloat attribute");
+ emitMissedWarning(F, L, Hints);
+ return false;
+ }
+
+ // Select the optimal vectorization factor.
+ const LoopVectorizationCostModel::VectorizationFactor VF =
+ CM.selectVectorizationFactor(OptForSize);
+
+ // Select the interleave count.
+ unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
+
+ // Get user interleave count.
+ unsigned UserIC = Hints.getInterleave();
+
+ // Identify the diagnostic messages that should be produced.
+ std::string VecDiagMsg, IntDiagMsg;
+ bool VectorizeLoop = true, InterleaveLoop = true;
+
+ if (Requirements.doesNotMeet(F, L, Hints)) {
+ DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
+ "requirements.\n");
+ emitMissedWarning(F, L, Hints);
+ return false;
+ }
+
+ if (VF.Width == 1) {
+ DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
+ VecDiagMsg =
+ "the cost-model indicates that vectorization is not beneficial";
+ VectorizeLoop = false;
+ }
+
+ if (IC == 1 && UserIC <= 1) {
+ // Tell the user interleaving is not beneficial.
+ DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
+ IntDiagMsg =
+ "the cost-model indicates that interleaving is not beneficial";
+ InterleaveLoop = false;
+ if (UserIC == 1)
+ IntDiagMsg +=
+ " and is explicitly disabled or interleave count is set to 1";
+ } else if (IC > 1 && UserIC == 1) {
+ // Tell the user interleaving is beneficial, but it explicitly disabled.
+ DEBUG(dbgs()
+ << "LV: Interleaving is beneficial but is explicitly disabled.");
+ IntDiagMsg = "the cost-model indicates that interleaving is beneficial "
+ "but is explicitly disabled or interleave count is set to 1";
+ InterleaveLoop = false;
+ }
+
+ // Override IC if user provided an interleave count.
+ IC = UserIC > 0 ? UserIC : IC;
+
+ // Emit diagnostic messages, if any.
+ const char *VAPassName = Hints.vectorizeAnalysisPassName();
+ if (!VectorizeLoop && !InterleaveLoop) {
+ // Do not vectorize or interleaving the loop.
+ emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
+ L->getStartLoc(), VecDiagMsg);
+ emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
+ L->getStartLoc(), IntDiagMsg);
+ return false;
+ } else if (!VectorizeLoop && InterleaveLoop) {
+ DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
+ emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
+ L->getStartLoc(), VecDiagMsg);
+ } else if (VectorizeLoop && !InterleaveLoop) {
+ DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
+ << DebugLocStr << '\n');
+ emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
+ L->getStartLoc(), IntDiagMsg);
+ } else if (VectorizeLoop && InterleaveLoop) {
+ DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
+ << DebugLocStr << '\n');
+ DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
+ }
+
+ if (!VectorizeLoop) {
+ assert(IC > 1 && "interleave count should not be 1 or 0");
+ // If we decided that it is not legal to vectorize the loop then
+ // interleave it.
+ InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, IC);
+ Unroller.vectorize(&LVL, CM.MinBWs);
+
+ emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
+ Twine("interleaved loop (interleaved count: ") +
+ Twine(IC) + ")");
+ } else {
+ // If we decided that it is *legal* to vectorize the loop then do it.
+ InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, VF.Width, IC);
+ LB.vectorize(&LVL, CM.MinBWs);
+ ++LoopsVectorized;
+
+ // Add metadata to disable runtime unrolling scalar loop when there's no
+ // runtime check about strides and memory. Because at this situation,
+ // scalar loop is rarely used not worthy to be unrolled.
+ if (!LB.IsSafetyChecksAdded())
+ AddRuntimeUnrollDisableMetaData(L);
+
+ // Report the vectorization decision.
+ emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
+ Twine("vectorized loop (vectorization width: ") +
+ Twine(VF.Width) + ", interleaved count: " +
+ Twine(IC) + ")");
+ }
+
+ // Mark the loop as already vectorized to avoid vectorizing again.
+ Hints.setAlreadyVectorized();
+
+ DEBUG(verifyFunction(*L->getHeader()->getParent()));
+ return true;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addRequired<BlockFrequencyInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<LoopAccessAnalysis>();
+ AU.addRequired<DemandedBits>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<BasicAAWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ }
+
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
+// LoopVectorizationCostModel.
+//===----------------------------------------------------------------------===//
+
+Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
+ // We need to place the broadcast of invariant variables outside the loop.
+ Instruction *Instr = dyn_cast<Instruction>(V);
+ bool NewInstr =
+ (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
+ Instr->getParent()) != LoopVectorBody.end());
+ bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
+
+ // Place the code for broadcasting invariant variables in the new preheader.
+ IRBuilder<>::InsertPointGuard Guard(Builder);
+ if (Invariant)
+ Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
+
+ // Broadcast the scalar into all locations in the vector.
+ Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
+
+ return Shuf;
+}
+
+Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
+ Value *Step) {
+ assert(Val->getType()->isVectorTy() && "Must be a vector");
+ assert(Val->getType()->getScalarType()->isIntegerTy() &&
+ "Elem must be an integer");
+ assert(Step->getType() == Val->getType()->getScalarType() &&
+ "Step has wrong type");
+ // Create the types.
+ Type *ITy = Val->getType()->getScalarType();
+ VectorType *Ty = cast<VectorType>(Val->getType());
+ int VLen = Ty->getNumElements();
+ SmallVector<Constant*, 8> Indices;
+
+ // Create a vector of consecutive numbers from zero to VF.
+ for (int i = 0; i < VLen; ++i)
+ Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
+
+ // Add the consecutive indices to the vector value.
+ Constant *Cv = ConstantVector::get(Indices);
+ assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
+ Step = Builder.CreateVectorSplat(VLen, Step);
+ assert(Step->getType() == Val->getType() && "Invalid step vec");
+ // FIXME: The newly created binary instructions should contain nsw/nuw flags,
+ // which can be found from the original scalar operations.
+ Step = Builder.CreateMul(Cv, Step);
+ return Builder.CreateAdd(Val, Step, "induction");
+}
+
+int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+ assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
+ auto *SE = PSE.getSE();
+ // Make sure that the pointer does not point to structs.
+ if (Ptr->getType()->getPointerElementType()->isAggregateType())
+ return 0;
+
+ // If this value is a pointer induction variable we know it is consecutive.
+ PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
+ if (Phi && Inductions.count(Phi)) {
+ InductionDescriptor II = Inductions[Phi];
+ return II.getConsecutiveDirection();
+ }
+
+ GetElementPtrInst *Gep = getGEPInstruction(Ptr);
+ if (!Gep)
+ return 0;
+
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *GpPtr = Gep->getPointerOperand();
+ // If this GEP value is a consecutive pointer induction variable and all of
+ // the indices are constant then we know it is consecutive. We can
+ Phi = dyn_cast<PHINode>(GpPtr);
+ if (Phi && Inductions.count(Phi)) {
+
+ // Make sure that the pointer does not point to structs.
+ PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
+ if (GepPtrType->getElementType()->isAggregateType())
+ return 0;
+
+ // Make sure that all of the index operands are loop invariant.
+ for (unsigned i = 1; i < NumOperands; ++i)
+ if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
+ return 0;
+
+ InductionDescriptor II = Inductions[Phi];
+ return II.getConsecutiveDirection();
+ }
+
+ unsigned InductionOperand = getGEPInductionOperand(Gep);
+
+ // Check that all of the gep indices are uniform except for our induction
+ // operand.
+ for (unsigned i = 0; i != NumOperands; ++i)
+ if (i != InductionOperand &&
+ !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
+ return 0;
+
+ // We can emit wide load/stores only if the last non-zero index is the
+ // induction variable.
+ const SCEV *Last = nullptr;
+ if (!Strides.count(Gep))
+ Last = PSE.getSCEV(Gep->getOperand(InductionOperand));
+ else {
+ // Because of the multiplication by a stride we can have a s/zext cast.
+ // We are going to replace this stride by 1 so the cast is safe to ignore.
+ //
+ // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
+ // %0 = trunc i64 %indvars.iv to i32
+ // %mul = mul i32 %0, %Stride1
+ // %idxprom = zext i32 %mul to i64 << Safe cast.
+ // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
+ //
+ Last = replaceSymbolicStrideSCEV(PSE, Strides,
+ Gep->getOperand(InductionOperand), Gep);
+ if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
+ Last =
+ (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
+ ? C->getOperand()
+ : Last;
+ }
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // The memory is consecutive because the last index is consecutive
+ // and all other indices are loop invariant.
+ if (Step->isOne())
+ return 1;
+ if (Step->isAllOnesValue())
+ return -1;
+ }
+
+ return 0;
+}
+
+bool LoopVectorizationLegality::isUniform(Value *V) {
+ return LAI->isUniform(V);
+}
+
+InnerLoopVectorizer::VectorParts&
+InnerLoopVectorizer::getVectorValue(Value *V) {
+ assert(V != Induction && "The new induction variable should not be used.");
+ assert(!V->getType()->isVectorTy() && "Can't widen a vector");
+
+ // If we have a stride that is replaced by one, do it here.
+ if (Legal->hasStride(V))
+ V = ConstantInt::get(V->getType(), 1);
+
+ // If we have this scalar in the map, return it.
+ if (WidenMap.has(V))
+ return WidenMap.get(V);
+
+ // If this scalar is unknown, assume that it is a constant or that it is
+ // loop invariant. Broadcast V and save the value for future uses.
+ Value *B = getBroadcastInstrs(V);
+ return WidenMap.splat(V, B);
+}
+
+Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
+ assert(Vec->getType()->isVectorTy() && "Invalid type");
+ SmallVector<Constant*, 8> ShuffleMask;
+ for (unsigned i = 0; i < VF; ++i)
+ ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
+
+ return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "reverse");
+}
+
+// Get a mask to interleave \p NumVec vectors into a wide vector.
+// I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
+// E.g. For 2 interleaved vectors, if VF is 4, the mask is:
+// <0, 4, 1, 5, 2, 6, 3, 7>
+static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
+ unsigned NumVec) {
+ SmallVector<Constant *, 16> Mask;
+ for (unsigned i = 0; i < VF; i++)
+ for (unsigned j = 0; j < NumVec; j++)
+ Mask.push_back(Builder.getInt32(j * VF + i));
+
+ return ConstantVector::get(Mask);
+}
+
+// Get the strided mask starting from index \p Start.
+// I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)>
+static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
+ unsigned Stride, unsigned VF) {
+ SmallVector<Constant *, 16> Mask;
+ for (unsigned i = 0; i < VF; i++)
+ Mask.push_back(Builder.getInt32(Start + i * Stride));
+
+ return ConstantVector::get(Mask);
+}
+
+// Get a mask of two parts: The first part consists of sequential integers
+// starting from 0, The second part consists of UNDEFs.
+// I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
+static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
+ unsigned NumUndef) {
+ SmallVector<Constant *, 16> Mask;
+ for (unsigned i = 0; i < NumInt; i++)
+ Mask.push_back(Builder.getInt32(i));
+
+ Constant *Undef = UndefValue::get(Builder.getInt32Ty());
+ for (unsigned i = 0; i < NumUndef; i++)
+ Mask.push_back(Undef);
+
+ return ConstantVector::get(Mask);
+}
+
+// Concatenate two vectors with the same element type. The 2nd vector should
+// not have more elements than the 1st vector. If the 2nd vector has less
+// elements, extend it with UNDEFs.
+static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
+ Value *V2) {
+ VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
+ VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
+ assert(VecTy1 && VecTy2 &&
+ VecTy1->getScalarType() == VecTy2->getScalarType() &&
+ "Expect two vectors with the same element type");
+
+ unsigned NumElts1 = VecTy1->getNumElements();
+ unsigned NumElts2 = VecTy2->getNumElements();
+ assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
+
+ if (NumElts1 > NumElts2) {
+ // Extend with UNDEFs.
+ Constant *ExtMask =
+ getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
+ V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
+ }
+
+ Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
+ return Builder.CreateShuffleVector(V1, V2, Mask);
+}
+
+// Concatenate vectors in the given list. All vectors have the same type.
+static Value *ConcatenateVectors(IRBuilder<> &Builder,
+ ArrayRef<Value *> InputList) {
+ unsigned NumVec = InputList.size();
+ assert(NumVec > 1 && "Should be at least two vectors");
+
+ SmallVector<Value *, 8> ResList;
+ ResList.append(InputList.begin(), InputList.end());
+ do {
+ SmallVector<Value *, 8> TmpList;
+ for (unsigned i = 0; i < NumVec - 1; i += 2) {
+ Value *V0 = ResList[i], *V1 = ResList[i + 1];
+ assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
+ "Only the last vector may have a different type");
+
+ TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
+ }
+
+ // Push the last vector if the total number of vectors is odd.
+ if (NumVec % 2 != 0)
+ TmpList.push_back(ResList[NumVec - 1]);
+
+ ResList = TmpList;
+ NumVec = ResList.size();
+ } while (NumVec > 1);
+
+ return ResList[0];
+}
+
+// Try to vectorize the interleave group that \p Instr belongs to.
+//
+// E.g. Translate following interleaved load group (factor = 3):
+// for (i = 0; i < N; i+=3) {
+// R = Pic[i]; // Member of index 0
+// G = Pic[i+1]; // Member of index 1
+// B = Pic[i+2]; // Member of index 2
+// ... // do something to R, G, B
+// }
+// To:
+// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
+// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
+// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
+// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
+//
+// Or translate following interleaved store group (factor = 3):
+// for (i = 0; i < N; i+=3) {
+// ... do something to R, G, B
+// Pic[i] = R; // Member of index 0
+// Pic[i+1] = G; // Member of index 1
+// Pic[i+2] = B; // Member of index 2
+// }
+// To:
+// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
+// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
+// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
+// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
+// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
+void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
+ const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
+ assert(Group && "Fail to get an interleaved access group.");
+
+ // Skip if current instruction is not the insert position.
+ if (Instr != Group->getInsertPos())
+ return;
+
+ LoadInst *LI = dyn_cast<LoadInst>(Instr);
+ StoreInst *SI = dyn_cast<StoreInst>(Instr);
+ Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
+
+ // Prepare for the vector type of the interleaved load/store.
+ Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
+ unsigned InterleaveFactor = Group->getFactor();
+ Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
+ Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
+
+ // Prepare for the new pointers.
+ setDebugLocFromInst(Builder, Ptr);
+ VectorParts &PtrParts = getVectorValue(Ptr);
+ SmallVector<Value *, 2> NewPtrs;
+ unsigned Index = Group->getIndex(Instr);
+ for (unsigned Part = 0; Part < UF; Part++) {
+ // Extract the pointer for current instruction from the pointer vector. A
+ // reverse access uses the pointer in the last lane.
+ Value *NewPtr = Builder.CreateExtractElement(
+ PtrParts[Part],
+ Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0));
+
+ // Notice current instruction could be any index. Need to adjust the address
+ // to the member of index 0.
+ //
+ // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
+ // b = A[i]; // Member of index 0
+ // Current pointer is pointed to A[i+1], adjust it to A[i].
+ //
+ // E.g. A[i+1] = a; // Member of index 1
+ // A[i] = b; // Member of index 0
+ // A[i+2] = c; // Member of index 2 (Current instruction)
+ // Current pointer is pointed to A[i+2], adjust it to A[i].
+ NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
+
+ // Cast to the vector pointer type.
+ NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
+ }
+
+ setDebugLocFromInst(Builder, Instr);
+ Value *UndefVec = UndefValue::get(VecTy);
+
+ // Vectorize the interleaved load group.
+ if (LI) {
+ for (unsigned Part = 0; Part < UF; Part++) {
+ Instruction *NewLoadInstr = Builder.CreateAlignedLoad(
+ NewPtrs[Part], Group->getAlignment(), "wide.vec");
+
+ for (unsigned i = 0; i < InterleaveFactor; i++) {
+ Instruction *Member = Group->getMember(i);
+
+ // Skip the gaps in the group.
+ if (!Member)
+ continue;
+
+ Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF);
+ Value *StridedVec = Builder.CreateShuffleVector(
+ NewLoadInstr, UndefVec, StrideMask, "strided.vec");
+
+ // If this member has different type, cast the result type.
+ if (Member->getType() != ScalarTy) {
+ VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
+ StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
+ }
+
+ VectorParts &Entry = WidenMap.get(Member);
+ Entry[Part] =
+ Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
+ }
+
+ propagateMetadata(NewLoadInstr, Instr);
+ }
+ return;
+ }
+
+ // The sub vector type for current instruction.
+ VectorType *SubVT = VectorType::get(ScalarTy, VF);
+
+ // Vectorize the interleaved store group.
+ for (unsigned Part = 0; Part < UF; Part++) {
+ // Collect the stored vector from each member.
+ SmallVector<Value *, 4> StoredVecs;
+ for (unsigned i = 0; i < InterleaveFactor; i++) {
+ // Interleaved store group doesn't allow a gap, so each index has a member
+ Instruction *Member = Group->getMember(i);
+ assert(Member && "Fail to get a member from an interleaved store group");
+
+ Value *StoredVec =
+ getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part];
+ if (Group->isReverse())
+ StoredVec = reverseVector(StoredVec);
+
+ // If this member has different type, cast it to an unified type.
+ if (StoredVec->getType() != SubVT)
+ StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
+
+ StoredVecs.push_back(StoredVec);
+ }
+
+ // Concatenate all vectors into a wide vector.
+ Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
+
+ // Interleave the elements in the wide vector.
+ Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
+ Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
+ "interleaved.vec");
+
+ Instruction *NewStoreInstr =
+ Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
+ propagateMetadata(NewStoreInstr, Instr);
+ }
+}
+
+void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
+ // Attempt to issue a wide load.
+ LoadInst *LI = dyn_cast<LoadInst>(Instr);
+ StoreInst *SI = dyn_cast<StoreInst>(Instr);
+
+ assert((LI || SI) && "Invalid Load/Store instruction");
+
+ // Try to vectorize the interleave group if this access is interleaved.
+ if (Legal->isAccessInterleaved(Instr))
+ return vectorizeInterleaveGroup(Instr);
+
+ Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
+ Type *DataTy = VectorType::get(ScalarDataTy, VF);
+ Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
+ unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
+ // An alignment of 0 means target abi alignment. We need to use the scalar's
+ // target abi alignment in such a case.
+ const DataLayout &DL = Instr->getModule()->getDataLayout();
+ if (!Alignment)
+ Alignment = DL.getABITypeAlignment(ScalarDataTy);
+ unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
+ unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
+ unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
+
+ if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
+ !Legal->isMaskRequired(SI))
+ return scalarizeInstruction(Instr, true);
+
+ if (ScalarAllocatedSize != VectorElementSize)
+ return scalarizeInstruction(Instr);
+
+ // If the pointer is loop invariant or if it is non-consecutive,
+ // scalarize the load.
+ int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = ConsecutiveStride < 0;
+ bool UniformLoad = LI && Legal->isUniform(Ptr);
+ if (!ConsecutiveStride || UniformLoad)
+ return scalarizeInstruction(Instr);
+
+ Constant *Zero = Builder.getInt32(0);
+ VectorParts &Entry = WidenMap.get(Instr);
+
+ // Handle consecutive loads/stores.
+ GetElementPtrInst *Gep = getGEPInstruction(Ptr);
+ if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
+ setDebugLocFromInst(Builder, Gep);
+ Value *PtrOperand = Gep->getPointerOperand();
+ Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
+ FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(0, FirstBasePtr);
+ Gep2->setName("gep.indvar.base");
+ Ptr = Builder.Insert(Gep2);
+ } else if (Gep) {
+ setDebugLocFromInst(Builder, Gep);
+ assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()),
+ OrigLoop) &&
+ "Base ptr must be invariant");
+
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+ unsigned InductionOperand = getGEPInductionOperand(Gep);
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+
+ for (unsigned i = 0; i < NumOperands; ++i) {
+ Value *GepOperand = Gep->getOperand(i);
+ Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
+
+ // Update last index or loop invariant instruction anchored in loop.
+ if (i == InductionOperand ||
+ (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
+ assert((i == InductionOperand ||
+ PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst),
+ OrigLoop)) &&
+ "Must be last index or loop invariant");
+
+ VectorParts &GEPParts = getVectorValue(GepOperand);
+ Value *Index = GEPParts[0];
+ Index = Builder.CreateExtractElement(Index, Zero);
+ Gep2->setOperand(i, Index);
+ Gep2->setName("gep.indvar.idx");
+ }
+ }
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ setDebugLocFromInst(Builder, Ptr);
+ VectorParts &PtrVal = getVectorValue(Ptr);
+ Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
+ }
+
+ VectorParts Mask = createBlockInMask(Instr->getParent());
+ // Handle Stores:
+ if (SI) {
+ assert(!Legal->isUniform(SI->getPointerOperand()) &&
+ "We do not allow storing to uniform addresses");
+ setDebugLocFromInst(Builder, SI);
+ // We don't want to update the value in the map as it might be used in
+ // another expression. So don't use a reference type for "StoredVal".
+ VectorParts StoredVal = getVectorValue(SI->getValueOperand());
+
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr =
+ Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If we store to reverse consecutive memory locations, then we need
+ // to reverse the order of elements in the stored value.
+ StoredVal[Part] = reverseVector(StoredVal[Part]);
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
+ Mask[Part] = reverseVector(Mask[Part]);
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr,
+ DataTy->getPointerTo(AddressSpace));
+
+ Instruction *NewSI;
+ if (Legal->isMaskRequired(SI))
+ NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
+ Mask[Part]);
+ else
+ NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
+ propagateMetadata(NewSI, SI);
+ }
+ return;
+ }
+
+ // Handle loads.
+ assert(LI && "Must have a load instruction");
+ setDebugLocFromInst(Builder, LI);
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr =
+ Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If the address is consecutive but reversed, then the
+ // wide load needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
+ Mask[Part] = reverseVector(Mask[Part]);
+ }
+
+ Instruction* NewLI;
+ Value *VecPtr = Builder.CreateBitCast(PartPtr,
+ DataTy->getPointerTo(AddressSpace));
+ if (Legal->isMaskRequired(LI))
+ NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
+ UndefValue::get(DataTy),
+ "wide.masked.load");
+ else
+ NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
+ propagateMetadata(NewLI, LI);
+ Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
+ }
+}
+
+void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
+ bool IfPredicateStore) {
+ assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
+ // Holds vector parameters or scalars, in case of uniform vals.
+ SmallVector<VectorParts, 4> Params;
+
+ setDebugLocFromInst(Builder, Instr);
+
+ // Find all of the vectorized parameters.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *SrcOp = Instr->getOperand(op);
+
+ // If we are accessing the old induction variable, use the new one.
+ if (SrcOp == OldInduction) {
+ Params.push_back(getVectorValue(SrcOp));
+ continue;
+ }
+
+ // Try using previously calculated values.
+ Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
+
+ // If the src is an instruction that appeared earlier in the basic block,
+ // then it should already be vectorized.
+ if (SrcInst && OrigLoop->contains(SrcInst)) {
+ assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
+ // The parameter is a vector value from earlier.
+ Params.push_back(WidenMap.get(SrcInst));
+ } else {
+ // The parameter is a scalar from outside the loop. Maybe even a constant.
+ VectorParts Scalars;
+ Scalars.append(UF, SrcOp);
+ Params.push_back(Scalars);
+ }
+ }
+
+ assert(Params.size() == Instr->getNumOperands() &&
+ "Invalid number of operands");
+
+ // Does this instruction return a value ?
+ bool IsVoidRetTy = Instr->getType()->isVoidTy();
+
+ Value *UndefVec = IsVoidRetTy ? nullptr :
+ UndefValue::get(VectorType::get(Instr->getType(), VF));
+ // Create a new entry in the WidenMap and initialize it to Undef or Null.
+ VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
+
+ VectorParts Cond;
+ if (IfPredicateStore) {
+ assert(Instr->getParent()->getSinglePredecessor() &&
+ "Only support single predecessor blocks");
+ Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
+ Instr->getParent());
+ }
+
+ // For each vector unroll 'part':
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // For each scalar that we create:
+ for (unsigned Width = 0; Width < VF; ++Width) {
+
+ // Start if-block.
+ Value *Cmp = nullptr;
+ if (IfPredicateStore) {
+ Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
+ Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
+ ConstantInt::get(Cmp->getType(), 1));
+ }
+
+ Instruction *Cloned = Instr->clone();
+ if (!IsVoidRetTy)
+ Cloned->setName(Instr->getName() + ".cloned");
+ // Replace the operands of the cloned instructions with extracted scalars.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *Op = Params[op][Part];
+ // Param is a vector. Need to extract the right lane.
+ if (Op->getType()->isVectorTy())
+ Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
+ Cloned->setOperand(op, Op);
+ }
+
+ // Place the cloned scalar in the new loop.
+ Builder.Insert(Cloned);
+
+ // If the original scalar returns a value we need to place it in a vector
+ // so that future users will be able to use it.
+ if (!IsVoidRetTy)
+ VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
+ Builder.getInt32(Width));
+ // End if-block.
+ if (IfPredicateStore)
+ PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned),
+ Cmp));
+ }
+ }
+}
+
+PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
+ Value *End, Value *Step,
+ Instruction *DL) {
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *Latch = L->getLoopLatch();
+ // As we're just creating this loop, it's possible no latch exists
+ // yet. If so, use the header as this will be a single block loop.
+ if (!Latch)
+ Latch = Header;
+
+ IRBuilder<> Builder(&*Header->getFirstInsertionPt());
+ setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
+ auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
+
+ Builder.SetInsertPoint(Latch->getTerminator());
+
+ // Create i+1 and fill the PHINode.
+ Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
+ Induction->addIncoming(Start, L->getLoopPreheader());
+ Induction->addIncoming(Next, Latch);
+ // Create the compare.
+ Value *ICmp = Builder.CreateICmpEQ(Next, End);
+ Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
+
+ // Now we have two terminators. Remove the old one from the block.
+ Latch->getTerminator()->eraseFromParent();
+
+ return Induction;
+}
+
+Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
+ if (TripCount)
+ return TripCount;
+
+ IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
+ // Find the loop boundaries.
+ ScalarEvolution *SE = PSE.getSE();
+ const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(OrigLoop);
+ assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
+ "Invalid loop count");
+
+ Type *IdxTy = Legal->getWidestInductionType();
+
+ // The exit count might have the type of i64 while the phi is i32. This can
+ // happen if we have an induction variable that is sign extended before the
+ // compare. The only way that we get a backedge taken count is that the
+ // induction variable was signed and as such will not overflow. In such a case
+ // truncation is legal.
+ if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
+ IdxTy->getPrimitiveSizeInBits())
+ BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
+ BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
+
+ // Get the total trip count from the count by adding 1.
+ const SCEV *ExitCount = SE->getAddExpr(
+ BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
+
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+
+ // Expand the trip count and place the new instructions in the preheader.
+ // Notice that the pre-header does not change, only the loop body.
+ SCEVExpander Exp(*SE, DL, "induction");
+
+ // Count holds the overall loop count (N).
+ TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
+ L->getLoopPreheader()->getTerminator());
+
+ if (TripCount->getType()->isPointerTy())
+ TripCount =
+ CastInst::CreatePointerCast(TripCount, IdxTy,
+ "exitcount.ptrcnt.to.int",
+ L->getLoopPreheader()->getTerminator());
+
+ return TripCount;
+}
+
+Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
+ if (VectorTripCount)
+ return VectorTripCount;
+
+ Value *TC = getOrCreateTripCount(L);
+ IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
+
+ // Now we need to generate the expression for N - (N % VF), which is
+ // the part that the vectorized body will execute.
+ // The loop step is equal to the vectorization factor (num of SIMD elements)
+ // times the unroll factor (num of SIMD instructions).
+ Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
+ Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
+ VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
+
+ return VectorTripCount;
+}
+
+void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
+ BasicBlock *Bypass) {
+ Value *Count = getOrCreateTripCount(L);
+ BasicBlock *BB = L->getLoopPreheader();
+ IRBuilder<> Builder(BB->getTerminator());
+
+ // Generate code to check that the loop's trip count that we computed by
+ // adding one to the backedge-taken count will not overflow.
+ Value *CheckMinIters =
+ Builder.CreateICmpULT(Count,
+ ConstantInt::get(Count->getType(), VF * UF),
+ "min.iters.check");
+
+ BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(),
+ "min.iters.checked");
+ if (L->getParentLoop())
+ L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
+ ReplaceInstWithInst(BB->getTerminator(),
+ BranchInst::Create(Bypass, NewBB, CheckMinIters));
+ LoopBypassBlocks.push_back(BB);
+}
+
+void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
+ BasicBlock *Bypass) {
+ Value *TC = getOrCreateVectorTripCount(L);
+ BasicBlock *BB = L->getLoopPreheader();
+ IRBuilder<> Builder(BB->getTerminator());
+
+ // Now, compare the new count to zero. If it is zero skip the vector loop and
+ // jump to the scalar loop.
+ Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
+ "cmp.zero");
+
+ // Generate code to check that the loop's trip count that we computed by
+ // adding one to the backedge-taken count will not overflow.
+ BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(),
+ "vector.ph");
+ if (L->getParentLoop())
+ L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
+ ReplaceInstWithInst(BB->getTerminator(),
+ BranchInst::Create(Bypass, NewBB, Cmp));
+ LoopBypassBlocks.push_back(BB);
+}
+
+void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
+ BasicBlock *BB = L->getLoopPreheader();
+
+ // Generate the code to check that the SCEV assumptions that we made.
+ // We want the new basic block to start at the first instruction in a
+ // sequence of instructions that form a check.
+ SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
+ "scev.check");
+ Value *SCEVCheck =
+ Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
+
+ if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
+ if (C->isZero())
+ return;
+
+ // Create a new block containing the stride check.
+ BB->setName("vector.scevcheck");
+ auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
+ if (L->getParentLoop())
+ L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
+ ReplaceInstWithInst(BB->getTerminator(),
+ BranchInst::Create(Bypass, NewBB, SCEVCheck));
+ LoopBypassBlocks.push_back(BB);
+ AddedSafetyChecks = true;
+}
+
+void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
+ BasicBlock *Bypass) {
+ BasicBlock *BB = L->getLoopPreheader();
+
+ // Generate the code that checks in runtime if arrays overlap. We put the
+ // checks into a separate block to make the more common case of few elements
+ // faster.
+ Instruction *FirstCheckInst;
+ Instruction *MemRuntimeCheck;
+ std::tie(FirstCheckInst, MemRuntimeCheck) =
+ Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
+ if (!MemRuntimeCheck)
+ return;
+
+ // Create a new block containing the memory check.
+ BB->setName("vector.memcheck");
+ auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
+ if (L->getParentLoop())
+ L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
+ ReplaceInstWithInst(BB->getTerminator(),
+ BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
+ LoopBypassBlocks.push_back(BB);
+ AddedSafetyChecks = true;
+}
+
+
+void InnerLoopVectorizer::createEmptyLoop() {
+ /*
+ In this function we generate a new loop. The new loop will contain
+ the vectorized instructions while the old loop will continue to run the
+ scalar remainder.
+
+ [ ] <-- loop iteration number check.
+ / |
+ / v
+ | [ ] <-- vector loop bypass (may consist of multiple blocks).
+ | / |
+ | / v
+ || [ ] <-- vector pre header.
+ |/ |
+ | v
+ | [ ] \
+ | [ ]_| <-- vector loop.
+ | |
+ | v
+ | -[ ] <--- middle-block.
+ | / |
+ | / v
+ -|- >[ ] <--- new preheader.
+ | |
+ | v
+ | [ ] \
+ | [ ]_| <-- old scalar loop to handle remainder.
+ \ |
+ \ v
+ >[ ] <-- exit block.
+ ...
+ */
+
+ BasicBlock *OldBasicBlock = OrigLoop->getHeader();
+ BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
+ BasicBlock *ExitBlock = OrigLoop->getExitBlock();
+ assert(VectorPH && "Invalid loop structure");
+ assert(ExitBlock && "Must have an exit block");
+
+ // Some loops have a single integer induction variable, while other loops
+ // don't. One example is c++ iterators that often have multiple pointer
+ // induction variables. In the code below we also support a case where we
+ // don't have a single induction variable.
+ //
+ // We try to obtain an induction variable from the original loop as hard
+ // as possible. However if we don't find one that:
+ // - is an integer
+ // - counts from zero, stepping by one
+ // - is the size of the widest induction variable type
+ // then we create a new one.
+ OldInduction = Legal->getInduction();
+ Type *IdxTy = Legal->getWidestInductionType();
+
+ // Split the single block loop into the two loop structure described above.
+ BasicBlock *VecBody =
+ VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
+ BasicBlock *MiddleBlock =
+ VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
+ BasicBlock *ScalarPH =
+ MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
+
+ // Create and register the new vector loop.
+ Loop* Lp = new Loop();
+ Loop *ParentLoop = OrigLoop->getParentLoop();
+
+ // Insert the new loop into the loop nest and register the new basic blocks
+ // before calling any utilities such as SCEV that require valid LoopInfo.
+ if (ParentLoop) {
+ ParentLoop->addChildLoop(Lp);
+ ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
+ ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
+ } else {
+ LI->addTopLevelLoop(Lp);
+ }
+ Lp->addBasicBlockToLoop(VecBody, *LI);
+
+ // Find the loop boundaries.
+ Value *Count = getOrCreateTripCount(Lp);
+
+ Value *StartIdx = ConstantInt::get(IdxTy, 0);
+
+ // We need to test whether the backedge-taken count is uint##_max. Adding one
+ // to it will cause overflow and an incorrect loop trip count in the vector
+ // body. In case of overflow we want to directly jump to the scalar remainder
+ // loop.
+ emitMinimumIterationCountCheck(Lp, ScalarPH);
+ // Now, compare the new count to zero. If it is zero skip the vector loop and
+ // jump to the scalar loop.
+ emitVectorLoopEnteredCheck(Lp, ScalarPH);
+ // Generate the code to check any assumptions that we've made for SCEV
+ // expressions.
+ emitSCEVChecks(Lp, ScalarPH);
+
+ // Generate the code that checks in runtime if arrays overlap. We put the
+ // checks into a separate block to make the more common case of few elements
+ // faster.
+ emitMemRuntimeChecks(Lp, ScalarPH);
+
+ // Generate the induction variable.
+ // The loop step is equal to the vectorization factor (num of SIMD elements)
+ // times the unroll factor (num of SIMD instructions).
+ Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
+ Constant *Step = ConstantInt::get(IdxTy, VF * UF);
+ Induction =
+ createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
+ getDebugLocFromInstOrOperands(OldInduction));
+
+ // We are going to resume the execution of the scalar loop.
+ // Go over all of the induction variables that we found and fix the
+ // PHIs that are left in the scalar version of the loop.
+ // The starting values of PHI nodes depend on the counter of the last
+ // iteration in the vectorized loop.
+ // If we come from a bypass edge then we need to start from the original
+ // start value.
+
+ // This variable saves the new starting index for the scalar loop. It is used
+ // to test if there are any tail iterations left once the vector loop has
+ // completed.
+ LoopVectorizationLegality::InductionList::iterator I, E;
+ LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
+ for (I = List->begin(), E = List->end(); I != E; ++I) {
+ PHINode *OrigPhi = I->first;
+ InductionDescriptor II = I->second;
+
+ // Create phi nodes to merge from the backedge-taken check block.
+ PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3,
+ "bc.resume.val",
+ ScalarPH->getTerminator());
+ Value *EndValue;
+ if (OrigPhi == OldInduction) {
+ // We know what the end value is.
+ EndValue = CountRoundDown;
+ } else {
+ IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
+ Value *CRD = B.CreateSExtOrTrunc(CountRoundDown,
+ II.getStepValue()->getType(),
+ "cast.crd");
+ EndValue = II.transform(B, CRD);
+ EndValue->setName("ind.end");
+ }
+
+ // The new PHI merges the original incoming value, in case of a bypass,
+ // or the value at the end of the vectorized loop.
+ BCResumeVal->addIncoming(EndValue, MiddleBlock);
+
+ // Fix the scalar body counter (PHI node).
+ unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
+
+ // The old induction's phi node in the scalar body needs the truncated
+ // value.
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]);
+ OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
+ }
+
+ // Add a check in the middle block to see if we have completed
+ // all of the iterations in the first vector loop.
+ // If (N - N%VF) == N, then we *don't* need to run the remainder.
+ Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
+ CountRoundDown, "cmp.n",
+ MiddleBlock->getTerminator());
+ ReplaceInstWithInst(MiddleBlock->getTerminator(),
+ BranchInst::Create(ExitBlock, ScalarPH, CmpN));
+
+ // Get ready to start creating new instructions into the vectorized body.
+ Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
+
+ // Save the state.
+ LoopVectorPreHeader = Lp->getLoopPreheader();
+ LoopScalarPreHeader = ScalarPH;
+ LoopMiddleBlock = MiddleBlock;
+ LoopExitBlock = ExitBlock;
+ LoopVectorBody.push_back(VecBody);
+ LoopScalarBody = OldBasicBlock;
+
+ LoopVectorizeHints Hints(Lp, true);
+ Hints.setAlreadyVectorized();
+}
+
+namespace {
+struct CSEDenseMapInfo {
+ static bool canHandle(Instruction *I) {
+ return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
+ isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
+ }
+ static inline Instruction *getEmptyKey() {
+ return DenseMapInfo<Instruction *>::getEmptyKey();
+ }
+ static inline Instruction *getTombstoneKey() {
+ return DenseMapInfo<Instruction *>::getTombstoneKey();
+ }
+ static unsigned getHashValue(Instruction *I) {
+ assert(canHandle(I) && "Unknown instruction!");
+ return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
+ I->value_op_end()));
+ }
+ static bool isEqual(Instruction *LHS, Instruction *RHS) {
+ if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
+ LHS == getTombstoneKey() || RHS == getTombstoneKey())
+ return LHS == RHS;
+ return LHS->isIdenticalTo(RHS);
+ }
+};
+}
+
+/// \brief Check whether this block is a predicated block.
+/// Due to if predication of stores we might create a sequence of "if(pred) a[i]
+/// = ...; " blocks. We start with one vectorized basic block. For every
+/// conditional block we split this vectorized block. Therefore, every second
+/// block will be a predicated one.
+static bool isPredicatedBlock(unsigned BlockNum) {
+ return BlockNum % 2;
+}
+
+///\brief Perform cse of induction variable instructions.
+static void cse(SmallVector<BasicBlock *, 4> &BBs) {
+ // Perform simple cse.
+ SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
+ for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
+ BasicBlock *BB = BBs[i];
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
+ Instruction *In = &*I++;
+
+ if (!CSEDenseMapInfo::canHandle(In))
+ continue;
+
+ // Check if we can replace this instruction with any of the
+ // visited instructions.
+ if (Instruction *V = CSEMap.lookup(In)) {
+ In->replaceAllUsesWith(V);
+ In->eraseFromParent();
+ continue;
+ }
+ // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
+ // ...;" blocks for predicated stores. Every second block is a predicated
+ // block.
+ if (isPredicatedBlock(i))
+ continue;
+
+ CSEMap[In] = In;
+ }
+ }
+}
+
+/// \brief Adds a 'fast' flag to floating point operations.
+static Value *addFastMathFlag(Value *V) {
+ if (isa<FPMathOperator>(V)){
+ FastMathFlags Flags;
+ Flags.setUnsafeAlgebra();
+ cast<Instruction>(V)->setFastMathFlags(Flags);
+ }
+ return V;
+}
+
+/// Estimate the overhead of scalarizing a value. Insert and Extract are set if
+/// the result needs to be inserted and/or extracted from vectors.
+static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
+ const TargetTransformInfo &TTI) {
+ if (Ty->isVoidTy())
+ return 0;
+
+ assert(Ty->isVectorTy() && "Can only scalarize vectors");
+ unsigned Cost = 0;
+
+ for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+ if (Insert)
+ Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ if (Extract)
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+ }
+
+ return Cost;
+}
+
+// Estimate cost of a call instruction CI if it were vectorized with factor VF.
+// Return the cost of the instruction, including scalarization overhead if it's
+// needed. The flag NeedToScalarize shows if the call needs to be scalarized -
+// i.e. either vector version isn't available, or is too expensive.
+static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
+ const TargetTransformInfo &TTI,
+ const TargetLibraryInfo *TLI,
+ bool &NeedToScalarize) {
+ Function *F = CI->getCalledFunction();
+ StringRef FnName = CI->getCalledFunction()->getName();
+ Type *ScalarRetTy = CI->getType();
+ SmallVector<Type *, 4> Tys, ScalarTys;
+ for (auto &ArgOp : CI->arg_operands())
+ ScalarTys.push_back(ArgOp->getType());
+
+ // Estimate cost of scalarized vector call. The source operands are assumed
+ // to be vectors, so we need to extract individual elements from there,
+ // execute VF scalar calls, and then gather the result into the vector return
+ // value.
+ unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
+ if (VF == 1)
+ return ScalarCallCost;
+
+ // Compute corresponding vector type for return value and arguments.
+ Type *RetTy = ToVectorTy(ScalarRetTy, VF);
+ for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i)
+ Tys.push_back(ToVectorTy(ScalarTys[i], VF));
+
+ // Compute costs of unpacking argument values for the scalar calls and
+ // packing the return values to a vector.
+ unsigned ScalarizationCost =
+ getScalarizationOverhead(RetTy, true, false, TTI);
+ for (unsigned i = 0, ie = Tys.size(); i != ie; ++i)
+ ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI);
+
+ unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
+
+ // If we can't emit a vector call for this function, then the currently found
+ // cost is the cost we need to return.
+ NeedToScalarize = true;
+ if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
+ return Cost;
+
+ // If the corresponding vector cost is cheaper, return its cost.
+ unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
+ if (VectorCallCost < Cost) {
+ NeedToScalarize = false;
+ return VectorCallCost;
+ }
+ return Cost;
+}
+
+// Estimate cost of an intrinsic call instruction CI if it were vectorized with
+// factor VF. Return the cost of the instruction, including scalarization
+// overhead if it's needed.
+static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
+ const TargetTransformInfo &TTI,
+ const TargetLibraryInfo *TLI) {
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ assert(ID && "Expected intrinsic call!");
+
+ Type *RetTy = ToVectorTy(CI->getType(), VF);
+ SmallVector<Type *, 4> Tys;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
+
+ return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
+}
+
+static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
+ IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType());
+ IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType());
+ return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
+}
+static Type *largestIntegerVectorType(Type *T1, Type *T2) {
+ IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType());
+ IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType());
+ return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
+}
+
+void InnerLoopVectorizer::truncateToMinimalBitwidths() {
+ // For every instruction `I` in MinBWs, truncate the operands, create a
+ // truncated version of `I` and reextend its result. InstCombine runs
+ // later and will remove any ext/trunc pairs.
+ //
+ for (auto &KV : MinBWs) {
+ VectorParts &Parts = WidenMap.get(KV.first);
+ for (Value *&I : Parts) {
+ if (I->use_empty())
+ continue;
+ Type *OriginalTy = I->getType();
+ Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(),
+ KV.second);
+ Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
+ OriginalTy->getVectorNumElements());
+ if (TruncatedTy == OriginalTy)
+ continue;
+
+ IRBuilder<> B(cast<Instruction>(I));
+ auto ShrinkOperand = [&](Value *V) -> Value* {
+ if (auto *ZI = dyn_cast<ZExtInst>(V))
+ if (ZI->getSrcTy() == TruncatedTy)
+ return ZI->getOperand(0);
+ return B.CreateZExtOrTrunc(V, TruncatedTy);
+ };
+
+ // The actual instruction modification depends on the instruction type,
+ // unfortunately.
+ Value *NewI = nullptr;
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+ NewI = B.CreateBinOp(BO->getOpcode(),
+ ShrinkOperand(BO->getOperand(0)),
+ ShrinkOperand(BO->getOperand(1)));
+ cast<BinaryOperator>(NewI)->copyIRFlags(I);
+ } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) {
+ NewI = B.CreateICmp(CI->getPredicate(),
+ ShrinkOperand(CI->getOperand(0)),
+ ShrinkOperand(CI->getOperand(1)));
+ } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+ NewI = B.CreateSelect(SI->getCondition(),
+ ShrinkOperand(SI->getTrueValue()),
+ ShrinkOperand(SI->getFalseValue()));
+ } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
+ switch (CI->getOpcode()) {
+ default: llvm_unreachable("Unhandled cast!");
+ case Instruction::Trunc:
+ NewI = ShrinkOperand(CI->getOperand(0));
+ break;
+ case Instruction::SExt:
+ NewI = B.CreateSExtOrTrunc(CI->getOperand(0),
+ smallestIntegerVectorType(OriginalTy,
+ TruncatedTy));
+ break;
+ case Instruction::ZExt:
+ NewI = B.CreateZExtOrTrunc(CI->getOperand(0),
+ smallestIntegerVectorType(OriginalTy,
+ TruncatedTy));
+ break;
+ }
+ } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
+ auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
+ auto *O0 =
+ B.CreateZExtOrTrunc(SI->getOperand(0),
+ VectorType::get(ScalarTruncatedTy, Elements0));
+ auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
+ auto *O1 =
+ B.CreateZExtOrTrunc(SI->getOperand(1),
+ VectorType::get(ScalarTruncatedTy, Elements1));
+
+ NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
+ } else if (isa<LoadInst>(I)) {
+ // Don't do anything with the operands, just extend the result.
+ continue;
+ } else {
+ llvm_unreachable("Unhandled instruction type!");
+ }
+
+ // Lastly, extend the result.
+ NewI->takeName(cast<Instruction>(I));
+ Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
+ I->replaceAllUsesWith(Res);
+ cast<Instruction>(I)->eraseFromParent();
+ I = Res;
+ }
+ }
+
+ // We'll have created a bunch of ZExts that are now parentless. Clean up.
+ for (auto &KV : MinBWs) {
+ VectorParts &Parts = WidenMap.get(KV.first);
+ for (Value *&I : Parts) {
+ ZExtInst *Inst = dyn_cast<ZExtInst>(I);
+ if (Inst && Inst->use_empty()) {
+ Value *NewI = Inst->getOperand(0);
+ Inst->eraseFromParent();
+ I = NewI;
+ }
+ }
+ }
+}
+
+void InnerLoopVectorizer::vectorizeLoop() {
+ //===------------------------------------------------===//
+ //
+ // Notice: any optimization or new instruction that go
+ // into the code below should be also be implemented in
+ // the cost-model.
+ //
+ //===------------------------------------------------===//
+ Constant *Zero = Builder.getInt32(0);
+
+ // In order to support reduction variables we need to be able to vectorize
+ // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
+ // stages. First, we create a new vector PHI node with no incoming edges.
+ // We use this value when we vectorize all of the instructions that use the
+ // PHI. Next, after all of the instructions in the block are complete we
+ // add the new incoming edges to the PHI. At this point all of the
+ // instructions in the basic block are vectorized, so we can use them to
+ // construct the PHI.
+ PhiVector RdxPHIsToFix;
+
+ // Scan the loop in a topological order to ensure that defs are vectorized
+ // before users.
+ LoopBlocksDFS DFS(OrigLoop);
+ DFS.perform(LI);
+
+ // Vectorize all of the blocks in the original loop.
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb)
+ vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
+
+ // Insert truncates and extends for any truncated instructions as hints to
+ // InstCombine.
+ if (VF > 1)
+ truncateToMinimalBitwidths();
+
+ // At this point every instruction in the original loop is widened to
+ // a vector form. We are almost done. Now, we need to fix the PHI nodes
+ // that we vectorized. The PHI nodes are currently empty because we did
+ // not want to introduce cycles. Notice that the remaining PHI nodes
+ // that we need to fix are reduction variables.
+
+ // Create the 'reduced' values for each of the induction vars.
+ // The reduced values are the vector values that we scalarize and combine
+ // after the loop is finished.
+ for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
+ it != e; ++it) {
+ PHINode *RdxPhi = *it;
+ assert(RdxPhi && "Unable to recover vectorized PHI");
+
+ // Find the reduction variable descriptor.
+ assert(Legal->isReductionVariable(RdxPhi) &&
+ "Unable to find the reduction variable");
+ RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
+
+ RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
+ TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
+ Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
+ RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
+ RdxDesc.getMinMaxRecurrenceKind();
+ setDebugLocFromInst(Builder, ReductionStartValue);
+
+ // We need to generate a reduction vector from the incoming scalar.
+ // To do so, we need to generate the 'identity' vector and override
+ // one of the elements with the incoming scalar reduction. We need
+ // to do it in the vector-loop preheader.
+ Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
+
+ // This is the vector-clone of the value that leaves the loop.
+ VectorParts &VectorExit = getVectorValue(LoopExitInst);
+ Type *VecTy = VectorExit[0]->getType();
+
+ // Find the reduction identity variable. Zero for addition, or, xor,
+ // one for multiplication, -1 for And.
+ Value *Identity;
+ Value *VectorStart;
+ if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
+ RK == RecurrenceDescriptor::RK_FloatMinMax) {
+ // MinMax reduction have the start value as their identify.
+ if (VF == 1) {
+ VectorStart = Identity = ReductionStartValue;
+ } else {
+ VectorStart = Identity =
+ Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
+ }
+ } else {
+ // Handle other reduction kinds:
+ Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
+ RK, VecTy->getScalarType());
+ if (VF == 1) {
+ Identity = Iden;
+ // This vector is the Identity vector where the first element is the
+ // incoming scalar reduction.
+ VectorStart = ReductionStartValue;
+ } else {
+ Identity = ConstantVector::getSplat(VF, Iden);
+
+ // This vector is the Identity vector where the first element is the
+ // incoming scalar reduction.
+ VectorStart =
+ Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
+ }
+ }
+
+ // Fix the vector-loop phi.
+
+ // Reductions do not have to start at zero. They can start with
+ // any loop invariant values.
+ VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
+ BasicBlock *Latch = OrigLoop->getLoopLatch();
+ Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
+ VectorParts &Val = getVectorValue(LoopVal);
+ for (unsigned part = 0; part < UF; ++part) {
+ // Make sure to add the reduction stat value only to the
+ // first unroll part.
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
+ LoopVectorPreHeader);
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
+ LoopVectorBody.back());
+ }
+
+ // Before each round, move the insertion point right between
+ // the PHIs and the values we are going to write.
+ // This allows us to write both PHINodes and the extractelement
+ // instructions.
+ Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
+
+ VectorParts RdxParts = getVectorValue(LoopExitInst);
+ setDebugLocFromInst(Builder, LoopExitInst);
+
+ // If the vector reduction can be performed in a smaller type, we truncate
+ // then extend the loop exit value to enable InstCombine to evaluate the
+ // entire expression in the smaller type.
+ if (VF > 1 && RdxPhi->getType() != RdxDesc.getRecurrenceType()) {
+ Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
+ Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator());
+ for (unsigned part = 0; part < UF; ++part) {
+ Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
+ Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
+ : Builder.CreateZExt(Trunc, VecTy);
+ for (Value::user_iterator UI = RdxParts[part]->user_begin();
+ UI != RdxParts[part]->user_end();)
+ if (*UI != Trunc) {
+ (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd);
+ RdxParts[part] = Extnd;
+ } else {
+ ++UI;
+ }
+ }
+ Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
+ for (unsigned part = 0; part < UF; ++part)
+ RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
+ }
+
+ // Reduce all of the unrolled parts into a single vector.
+ Value *ReducedPartRdx = RdxParts[0];
+ unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
+ setDebugLocFromInst(Builder, ReducedPartRdx);
+ for (unsigned part = 1; part < UF; ++part) {
+ if (Op != Instruction::ICmp && Op != Instruction::FCmp)
+ // Floating point operations had to be 'fast' to enable the reduction.
+ ReducedPartRdx = addFastMathFlag(
+ Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
+ ReducedPartRdx, "bin.rdx"));
+ else
+ ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
+ Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
+ }
+
+ if (VF > 1) {
+ // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
+ // and vector ops, reducing the set of values being computed by half each
+ // round.
+ assert(isPowerOf2_32(VF) &&
+ "Reduction emission only supported for pow2 vectors!");
+ Value *TmpVec = ReducedPartRdx;
+ SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
+ for (unsigned i = VF; i != 1; i >>= 1) {
+ // Move the upper half of the vector to the lower half.
+ for (unsigned j = 0; j != i/2; ++j)
+ ShuffleMask[j] = Builder.getInt32(i/2 + j);
+
+ // Fill the rest of the mask with undef.
+ std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
+ UndefValue::get(Builder.getInt32Ty()));
+
+ Value *Shuf =
+ Builder.CreateShuffleVector(TmpVec,
+ UndefValue::get(TmpVec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "rdx.shuf");
+
+ if (Op != Instruction::ICmp && Op != Instruction::FCmp)
+ // Floating point operations had to be 'fast' to enable the reduction.
+ TmpVec = addFastMathFlag(Builder.CreateBinOp(
+ (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
+ else
+ TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
+ TmpVec, Shuf);
+ }
+
+ // The result is in the first element of the vector.
+ ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
+ Builder.getInt32(0));
+
+ // If the reduction can be performed in a smaller type, we need to extend
+ // the reduction to the wider type before we branch to the original loop.
+ if (RdxPhi->getType() != RdxDesc.getRecurrenceType())
+ ReducedPartRdx =
+ RdxDesc.isSigned()
+ ? Builder.CreateSExt(ReducedPartRdx, RdxPhi->getType())
+ : Builder.CreateZExt(ReducedPartRdx, RdxPhi->getType());
+ }
+
+ // Create a phi node that merges control-flow from the backedge-taken check
+ // block and the middle block.
+ PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
+ LoopScalarPreHeader->getTerminator());
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
+ BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
+
+ // Now, we need to fix the users of the reduction variable
+ // inside and outside of the scalar remainder loop.
+ // We know that the loop is in LCSSA form. We need to update the
+ // PHI nodes in the exit blocks.
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) break;
+
+ // All PHINodes need to have a single entry edge, or two if
+ // we already fixed them.
+ assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
+
+ // We found our reduction value exit-PHI. Update it with the
+ // incoming bypass edge.
+ if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
+ // Add an edge coming from the bypass.
+ LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
+ break;
+ }
+ }// end of the LCSSA phi scan.
+
+ // Fix the scalar loop reduction variable with the incoming reduction sum
+ // from the vector body and from the backedge value.
+ int IncomingEdgeBlockIdx =
+ (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
+ assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
+ // Pick the other block.
+ int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
+ (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
+ (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
+ }// end of for each redux variable.
+
+ fixLCSSAPHIs();
+
+ // Make sure DomTree is updated.
+ updateAnalysis();
+
+ // Predicate any stores.
+ for (auto KV : PredicatedStores) {
+ BasicBlock::iterator I(KV.first);
+ auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI);
+ auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
+ /*BranchWeights=*/nullptr, DT);
+ I->moveBefore(T);
+ I->getParent()->setName("pred.store.if");
+ BB->setName("pred.store.continue");
+ }
+ DEBUG(DT->verifyDomTree());
+ // Remove redundant induction instructions.
+ cse(LoopVectorBody);
+}
+
+void InnerLoopVectorizer::fixLCSSAPHIs() {
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) break;
+ if (LCSSAPhi->getNumIncomingValues() == 1)
+ LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
+ LoopMiddleBlock);
+ }
+}
+
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
+ assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
+ "Invalid edge");
+
+ // Look for cached value.
+ std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
+ EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
+ if (ECEntryIt != MaskCache.end())
+ return ECEntryIt->second;
+
+ VectorParts SrcMask = createBlockInMask(Src);
+
+ // The terminator has to be a branch inst!
+ BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
+ assert(BI && "Unexpected terminator found");
+
+ if (BI->isConditional()) {
+ VectorParts EdgeMask = getVectorValue(BI->getCondition());
+
+ if (BI->getSuccessor(0) != Dst)
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
+
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
+
+ MaskCache[Edge] = EdgeMask;
+ return EdgeMask;
+ }
+
+ MaskCache[Edge] = SrcMask;
+ return SrcMask;
+}
+
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
+ assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
+
+ // Loop incoming mask is all-one.
+ if (OrigLoop->getHeader() == BB) {
+ Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
+ return getVectorValue(C);
+ }
+
+ // This is the block mask. We OR all incoming edges, and with zero.
+ Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
+ VectorParts BlockMask = getVectorValue(Zero);
+
+ // For each pred:
+ for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
+ VectorParts EM = createEdgeMask(*it, BB);
+ for (unsigned part = 0; part < UF; ++part)
+ BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
+ }
+
+ return BlockMask;
+}
+
+void InnerLoopVectorizer::widenPHIInstruction(
+ Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF,
+ unsigned VF, PhiVector *PV) {
+ PHINode* P = cast<PHINode>(PN);
+ // Handle reduction variables:
+ if (Legal->isReductionVariable(P)) {
+ for (unsigned part = 0; part < UF; ++part) {
+ // This is phase one of vectorizing PHIs.
+ Type *VecTy = (VF == 1) ? PN->getType() :
+ VectorType::get(PN->getType(), VF);
+ Entry[part] = PHINode::Create(
+ VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt());
+ }
+ PV->push_back(P);
+ return;
+ }
+
+ setDebugLocFromInst(Builder, P);
+ // Check for PHI nodes that are lowered to vector selects.
+ if (P->getParent() != OrigLoop->getHeader()) {
+ // We know that all PHIs in non-header blocks are converted into
+ // selects, so we don't have to worry about the insertion order and we
+ // can just use the builder.
+ // At this point we generate the predication tree. There may be
+ // duplications since this is a simple recursive scan, but future
+ // optimizations will clean it up.
+
+ unsigned NumIncoming = P->getNumIncomingValues();
+
+ // Generate a sequence of selects of the form:
+ // SELECT(Mask3, In3,
+ // SELECT(Mask2, In2,
+ // ( ...)))
+ for (unsigned In = 0; In < NumIncoming; In++) {
+ VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
+ P->getParent());
+ VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
+
+ for (unsigned part = 0; part < UF; ++part) {
+ // We might have single edge PHIs (blocks) - use an identity
+ // 'select' for the first PHI operand.
+ if (In == 0)
+ Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
+ In0[part]);
+ else
+ // Select between the current value and the previous incoming edge
+ // based on the incoming mask.
+ Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
+ Entry[part], "predphi");
+ }
+ }
+ return;
+ }
+
+ // This PHINode must be an induction variable.
+ // Make sure that we know about it.
+ assert(Legal->getInductionVars()->count(P) &&
+ "Not an induction variable");
+
+ InductionDescriptor II = Legal->getInductionVars()->lookup(P);
+
+ // FIXME: The newly created binary instructions should contain nsw/nuw flags,
+ // which can be found from the original scalar operations.
+ switch (II.getKind()) {
+ case InductionDescriptor::IK_NoInduction:
+ llvm_unreachable("Unknown induction");
+ case InductionDescriptor::IK_IntInduction: {
+ assert(P->getType() == II.getStartValue()->getType() &&
+ "Types must match");
+ // Handle other induction variables that are now based on the
+ // canonical one.
+ Value *V = Induction;
+ if (P != OldInduction) {
+ V = Builder.CreateSExtOrTrunc(Induction, P->getType());
+ V = II.transform(Builder, V);
+ V->setName("offset.idx");
+ }
+ Value *Broadcasted = getBroadcastInstrs(V);
+ // After broadcasting the induction variable we need to make the vector
+ // consecutive by adding 0, 1, 2, etc.
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue());
+ return;
+ }
+ case InductionDescriptor::IK_PtrInduction:
+ // Handle the pointer induction variable case.
+ assert(P->getType()->isPointerTy() && "Unexpected type.");
+ // This is the normalized GEP that starts counting at zero.
+ Value *PtrInd = Induction;
+ PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType());
+ // This is the vector of results. Notice that we don't generate
+ // vector geps because scalar geps result in better code.
+ for (unsigned part = 0; part < UF; ++part) {
+ if (VF == 1) {
+ int EltIndex = part;
+ Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
+ Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
+ Value *SclrGep = II.transform(Builder, GlobalIdx);
+ SclrGep->setName("next.gep");
+ Entry[part] = SclrGep;
+ continue;
+ }
+
+ Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
+ for (unsigned int i = 0; i < VF; ++i) {
+ int EltIndex = i + part * VF;
+ Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
+ Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
+ Value *SclrGep = II.transform(Builder, GlobalIdx);
+ SclrGep->setName("next.gep");
+ VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
+ Builder.getInt32(i),
+ "insert.gep");
+ }
+ Entry[part] = VecVal;
+ }
+ return;
+ }
+}
+
+void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ VectorParts &Entry = WidenMap.get(&*it);
+
+ switch (it->getOpcode()) {
+ case Instruction::Br:
+ // Nothing to do for PHIs and BR, since we already took care of the
+ // loop control flow instructions.
+ continue;
+ case Instruction::PHI: {
+ // Vectorize PHINodes.
+ widenPHIInstruction(&*it, Entry, UF, VF, PV);
+ continue;
+ }// End of PHI.
+
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Just widen binops.
+ BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
+ setDebugLocFromInst(Builder, BinOp);
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+
+ // Use this vector value for all users of the original instruction.
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
+
+ if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
+ VecOp->copyIRFlags(BinOp);
+
+ Entry[Part] = V;
+ }
+
+ propagateMetadata(Entry, &*it);
+ break;
+ }
+ case Instruction::Select: {
+ // Widen selects.
+ // If the selector is loop invariant we can create a select
+ // instruction with a scalar condition. Otherwise, use vector-select.
+ auto *SE = PSE.getSE();
+ bool InvariantCond =
+ SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop);
+ setDebugLocFromInst(Builder, &*it);
+
+ // The condition can be loop invariant but still defined inside the
+ // loop. This means that we can't just use the original 'cond' value.
+ // We have to take the 'vectorized' value and pick the first lane.
+ // Instcombine will make this a no-op.
+ VectorParts &Cond = getVectorValue(it->getOperand(0));
+ VectorParts &Op0 = getVectorValue(it->getOperand(1));
+ VectorParts &Op1 = getVectorValue(it->getOperand(2));
+
+ Value *ScalarCond = (VF == 1) ? Cond[0] :
+ Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
+
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Entry[Part] = Builder.CreateSelect(
+ InvariantCond ? ScalarCond : Cond[Part],
+ Op0[Part],
+ Op1[Part]);
+ }
+
+ propagateMetadata(Entry, &*it);
+ break;
+ }
+
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // Widen compares. Generate vector compares.
+ bool FCmp = (it->getOpcode() == Instruction::FCmp);
+ CmpInst *Cmp = dyn_cast<CmpInst>(it);
+ setDebugLocFromInst(Builder, &*it);
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *C = nullptr;
+ if (FCmp) {
+ C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
+ cast<FCmpInst>(C)->copyFastMathFlags(&*it);
+ } else {
+ C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
+ }
+ Entry[Part] = C;
+ }
+
+ propagateMetadata(Entry, &*it);
+ break;
+ }
+
+ case Instruction::Store:
+ case Instruction::Load:
+ vectorizeMemoryInstruction(&*it);
+ break;
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ CastInst *CI = dyn_cast<CastInst>(it);
+ setDebugLocFromInst(Builder, &*it);
+ /// Optimize the special case where the source is the induction
+ /// variable. Notice that we can only optimize the 'trunc' case
+ /// because: a. FP conversions lose precision, b. sext/zext may wrap,
+ /// c. other casts depend on pointer size.
+ if (CI->getOperand(0) == OldInduction &&
+ it->getOpcode() == Instruction::Trunc) {
+ Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
+ CI->getType());
+ Value *Broadcasted = getBroadcastInstrs(ScalarCast);
+ InductionDescriptor II =
+ Legal->getInductionVars()->lookup(OldInduction);
+ Constant *Step = ConstantInt::getSigned(
+ CI->getType(), II.getStepValue()->getSExtValue());
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
+ propagateMetadata(Entry, &*it);
+ break;
+ }
+ /// Vectorize casts.
+ Type *DestTy = (VF == 1) ? CI->getType() :
+ VectorType::get(CI->getType(), VF);
+
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
+ propagateMetadata(Entry, &*it);
+ break;
+ }
+
+ case Instruction::Call: {
+ // Ignore dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(it))
+ break;
+ setDebugLocFromInst(Builder, &*it);
+
+ Module *M = BB->getParent()->getParent();
+ CallInst *CI = cast<CallInst>(it);
+
+ StringRef FnName = CI->getCalledFunction()->getName();
+ Function *F = CI->getCalledFunction();
+ Type *RetTy = ToVectorTy(CI->getType(), VF);
+ SmallVector<Type *, 4> Tys;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
+
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ if (ID &&
+ (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
+ ID == Intrinsic::lifetime_start)) {
+ scalarizeInstruction(&*it);
+ break;
+ }
+ // The flag shows whether we use Intrinsic or a usual Call for vectorized
+ // version of the instruction.
+ // Is it beneficial to perform intrinsic call compared to lib call?
+ bool NeedToScalarize;
+ unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
+ bool UseVectorIntrinsic =
+ ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
+ if (!UseVectorIntrinsic && NeedToScalarize) {
+ scalarizeInstruction(&*it);
+ break;
+ }
+
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ SmallVector<Value *, 4> Args;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ Value *Arg = CI->getArgOperand(i);
+ // Some intrinsics have a scalar argument - don't replace it with a
+ // vector.
+ if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
+ VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
+ Arg = VectorArg[Part];
+ }
+ Args.push_back(Arg);
+ }
+
+ Function *VectorF;
+ if (UseVectorIntrinsic) {
+ // Use vector version of the intrinsic.
+ Type *TysForDecl[] = {CI->getType()};
+ if (VF > 1)
+ TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
+ VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
+ } else {
+ // Use vector version of the library call.
+ StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
+ assert(!VFnName.empty() && "Vector function name is empty.");
+ VectorF = M->getFunction(VFnName);
+ if (!VectorF) {
+ // Generate a declaration
+ FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
+ VectorF =
+ Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
+ VectorF->copyAttributesFrom(F);
+ }
+ }
+ assert(VectorF && "Can't create vector function.");
+ Entry[Part] = Builder.CreateCall(VectorF, Args);
+ }
+
+ propagateMetadata(Entry, &*it);
+ break;
+ }
+
+ default:
+ // All other instructions are unsupported. Scalarize them.
+ scalarizeInstruction(&*it);
+ break;
+ }// end of switch.
+ }// end of for_each instr.
+}
+
+void InnerLoopVectorizer::updateAnalysis() {
+ // Forget the original basic block.
+ PSE.getSE()->forgetLoop(OrigLoop);
+
+ // Update the dominator tree information.
+ assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
+ "Entry does not dominate exit.");
+
+ for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
+ DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
+ DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
+
+ // We don't predicate stores by this point, so the vector body should be a
+ // single loop.
+ assert(LoopVectorBody.size() == 1 && "Expected single block loop!");
+ DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
+
+ DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back());
+ DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
+ DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
+ DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
+
+ DEBUG(DT->verifyDomTree());
+}
+
+/// \brief Check whether it is safe to if-convert this phi node.
+///
+/// Phi nodes with constant expressions that can trap are not safe to if
+/// convert.
+static bool canIfConvertPHINodes(BasicBlock *BB) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ PHINode *Phi = dyn_cast<PHINode>(I);
+ if (!Phi)
+ return true;
+ for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
+ if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
+ if (C->canTrap())
+ return false;
+ }
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
+ if (!EnableIfConversion) {
+ emitAnalysis(VectorizationReport() << "if-conversion is disabled");
+ return false;
+ }
+
+ assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
+
+ // A list of pointers that we can safely read and write to.
+ SmallPtrSet<Value *, 8> SafePointes;
+
+ // Collect safe addresses.
+ for (Loop::block_iterator BI = TheLoop->block_begin(),
+ BE = TheLoop->block_end(); BI != BE; ++BI) {
+ BasicBlock *BB = *BI;
+
+ if (blockNeedsPredication(BB))
+ continue;
+
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ SafePointes.insert(LI->getPointerOperand());
+ else if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ SafePointes.insert(SI->getPointerOperand());
+ }
+ }
+
+ // Collect the blocks that need predication.
+ BasicBlock *Header = TheLoop->getHeader();
+ for (Loop::block_iterator BI = TheLoop->block_begin(),
+ BE = TheLoop->block_end(); BI != BE; ++BI) {
+ BasicBlock *BB = *BI;
+
+ // We don't support switch statements inside loops.
+ if (!isa<BranchInst>(BB->getTerminator())) {
+ emitAnalysis(VectorizationReport(BB->getTerminator())
+ << "loop contains a switch statement");
+ return false;
+ }
+
+ // We must be able to predicate all blocks that need to be predicated.
+ if (blockNeedsPredication(BB)) {
+ if (!blockCanBePredicated(BB, SafePointes)) {
+ emitAnalysis(VectorizationReport(BB->getTerminator())
+ << "control flow cannot be substituted for a select");
+ return false;
+ }
+ } else if (BB != Header && !canIfConvertPHINodes(BB)) {
+ emitAnalysis(VectorizationReport(BB->getTerminator())
+ << "control flow cannot be substituted for a select");
+ return false;
+ }
+ }
+
+ // We can if-convert this loop.
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorize() {
+ // We must have a loop in canonical form. Loops with indirectbr in them cannot
+ // be canonicalized.
+ if (!TheLoop->getLoopPreheader()) {
+ emitAnalysis(
+ VectorizationReport() <<
+ "loop control flow is not understood by vectorizer");
+ return false;
+ }
+
+ // We can only vectorize innermost loops.
+ if (!TheLoop->empty()) {
+ emitAnalysis(VectorizationReport() << "loop is not the innermost loop");
+ return false;
+ }
+
+ // We must have a single backedge.
+ if (TheLoop->getNumBackEdges() != 1) {
+ emitAnalysis(
+ VectorizationReport() <<
+ "loop control flow is not understood by vectorizer");
+ return false;
+ }
+
+ // We must have a single exiting block.
+ if (!TheLoop->getExitingBlock()) {
+ emitAnalysis(
+ VectorizationReport() <<
+ "loop control flow is not understood by vectorizer");
+ return false;
+ }
+
+ // We only handle bottom-tested loops, i.e. loop in which the condition is
+ // checked at the end of each iteration. With that we can assume that all
+ // instructions in the loop are executed the same number of times.
+ if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
+ emitAnalysis(
+ VectorizationReport() <<
+ "loop control flow is not understood by vectorizer");
+ return false;
+ }
+
+ // We need to have a loop header.
+ DEBUG(dbgs() << "LV: Found a loop: " <<
+ TheLoop->getHeader()->getName() << '\n');
+
+ // Check if we can if-convert non-single-bb loops.
+ unsigned NumBlocks = TheLoop->getNumBlocks();
+ if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
+ DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
+ return false;
+ }
+
+ // ScalarEvolution needs to be able to find the exit count.
+ const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop);
+ if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
+ emitAnalysis(VectorizationReport()
+ << "could not determine number of loop iterations");
+ DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
+ return false;
+ }
+
+ // Check if we can vectorize the instructions and CFG in this loop.
+ if (!canVectorizeInstrs()) {
+ DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
+ return false;
+ }
+
+ // Go over each instruction and look at memory deps.
+ if (!canVectorizeMemory()) {
+ DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
+ return false;
+ }
+
+ // Collect all of the variables that remain uniform after vectorization.
+ collectLoopUniforms();
+
+ DEBUG(dbgs() << "LV: We can vectorize this loop"
+ << (LAI->getRuntimePointerChecking()->Need
+ ? " (with a runtime bound check)"
+ : "")
+ << "!\n");
+
+ bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
+
+ // If an override option has been passed in for interleaved accesses, use it.
+ if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
+ UseInterleaved = EnableInterleavedMemAccesses;
+
+ // Analyze interleaved memory accesses.
+ if (UseInterleaved)
+ InterleaveInfo.analyzeInterleaving(Strides);
+
+ unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
+ if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
+ SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
+
+ if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
+ emitAnalysis(VectorizationReport()
+ << "Too many SCEV assumptions need to be made and checked "
+ << "at runtime");
+ DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
+ return false;
+ }
+
+ // Okay! We can vectorize. At this point we don't have any other mem analysis
+ // which may limit our maximum vectorization factor, so just return true with
+ // no restrictions.
+ return true;
+}
+
+static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
+ if (Ty->isPointerTy())
+ return DL.getIntPtrType(Ty);
+
+ // It is possible that char's or short's overflow when we ask for the loop's
+ // trip count, work around this by changing the type size.
+ if (Ty->getScalarSizeInBits() < 32)
+ return Type::getInt32Ty(Ty->getContext());
+
+ return Ty;
+}
+
+static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
+ Ty0 = convertPointerToIntegerType(DL, Ty0);
+ Ty1 = convertPointerToIntegerType(DL, Ty1);
+ if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
+ return Ty0;
+ return Ty1;
+}
+
+/// \brief Check that the instruction has outside loop users and is not an
+/// identified reduction variable.
+static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
+ SmallPtrSetImpl<Value *> &Reductions) {
+ // Reduction instructions are allowed to have exit users. All other
+ // instructions must not have external users.
+ if (!Reductions.count(Inst))
+ //Check that all of the users of the loop are inside the BB.
+ for (User *U : Inst->users()) {
+ Instruction *UI = cast<Instruction>(U);
+ // This user may be a reduction exit value.
+ if (!TheLoop->contains(UI)) {
+ DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
+ return true;
+ }
+ }
+ return false;
+}
+
+bool LoopVectorizationLegality::canVectorizeInstrs() {
+ BasicBlock *Header = TheLoop->getHeader();
+
+ // Look for the attribute signaling the absence of NaNs.
+ Function &F = *Header->getParent();
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ if (F.hasFnAttribute("no-nans-fp-math"))
+ HasFunNoNaNAttr =
+ F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
+
+ // For each block in the loop.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+
+ // Scan the instructions in the block and look for hazards.
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+
+ if (PHINode *Phi = dyn_cast<PHINode>(it)) {
+ Type *PhiTy = Phi->getType();
+ // Check that this PHI type is allowed.
+ if (!PhiTy->isIntegerTy() &&
+ !PhiTy->isFloatingPointTy() &&
+ !PhiTy->isPointerTy()) {
+ emitAnalysis(VectorizationReport(&*it)
+ << "loop control flow is not understood by vectorizer");
+ DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
+ return false;
+ }
+
+ // If this PHINode is not in the header block, then we know that we
+ // can convert it to select during if-conversion. No need to check if
+ // the PHIs in this block are induction or reduction variables.
+ if (*bb != Header) {
+ // Check that this instruction has no outside users or is an
+ // identified reduction value with an outside user.
+ if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit))
+ continue;
+ emitAnalysis(VectorizationReport(&*it) <<
+ "value could not be identified as "
+ "an induction or reduction variable");
+ return false;
+ }
+
+ // We only allow if-converted PHIs with exactly two incoming values.
+ if (Phi->getNumIncomingValues() != 2) {
+ emitAnalysis(VectorizationReport(&*it)
+ << "control flow not understood by vectorizer");
+ DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
+ return false;
+ }
+
+ InductionDescriptor ID;
+ if (InductionDescriptor::isInductionPHI(Phi, PSE.getSE(), ID)) {
+ Inductions[Phi] = ID;
+ // Get the widest type.
+ if (!WidestIndTy)
+ WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
+ else
+ WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
+
+ // Int inductions are special because we only allow one IV.
+ if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
+ ID.getStepValue()->isOne() &&
+ isa<Constant>(ID.getStartValue()) &&
+ cast<Constant>(ID.getStartValue())->isNullValue()) {
+ // Use the phi node with the widest type as induction. Use the last
+ // one if there are multiple (no good reason for doing this other
+ // than it is expedient). We've checked that it begins at zero and
+ // steps by one, so this is a canonical induction variable.
+ if (!Induction || PhiTy == WidestIndTy)
+ Induction = Phi;
+ }
+
+ DEBUG(dbgs() << "LV: Found an induction variable.\n");
+
+ // Until we explicitly handle the case of an induction variable with
+ // an outside loop user we have to give up vectorizing this loop.
+ if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) {
+ emitAnalysis(VectorizationReport(&*it) <<
+ "use of induction value outside of the "
+ "loop is not handled by vectorizer");
+ return false;
+ }
+
+ continue;
+ }
+
+ RecurrenceDescriptor RedDes;
+ if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) {
+ if (RedDes.hasUnsafeAlgebra())
+ Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
+ AllowedExit.insert(RedDes.getLoopExitInstr());
+ Reductions[Phi] = RedDes;
+ continue;
+ }
+
+ emitAnalysis(VectorizationReport(&*it) <<
+ "value that could not be identified as "
+ "reduction is used outside the loop");
+ DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
+ return false;
+ }// end of PHI handling
+
+ // We handle calls that:
+ // * Are debug info intrinsics.
+ // * Have a mapping to an IR intrinsic.
+ // * Have a vector version available.
+ CallInst *CI = dyn_cast<CallInst>(it);
+ if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) &&
+ !(CI->getCalledFunction() && TLI &&
+ TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
+ emitAnalysis(VectorizationReport(&*it)
+ << "call instruction cannot be vectorized");
+ DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
+ return false;
+ }
+
+ // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
+ // second argument is the same (i.e. loop invariant)
+ if (CI &&
+ hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
+ auto *SE = PSE.getSE();
+ if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
+ emitAnalysis(VectorizationReport(&*it)
+ << "intrinsic instruction cannot be vectorized");
+ DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
+ return false;
+ }
+ }
+
+ // Check that the instruction return type is vectorizable.
+ // Also, we can't vectorize extractelement instructions.
+ if ((!VectorType::isValidElementType(it->getType()) &&
+ !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
+ emitAnalysis(VectorizationReport(&*it)
+ << "instruction return type cannot be vectorized");
+ DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
+ return false;
+ }
+
+ // Check that the stored type is vectorizable.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
+ Type *T = ST->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(T)) {
+ emitAnalysis(VectorizationReport(ST) <<
+ "store instruction cannot be vectorized");
+ return false;
+ }
+ if (EnableMemAccessVersioning)
+ collectStridedAccess(ST);
+ }
+
+ if (EnableMemAccessVersioning)
+ if (LoadInst *LI = dyn_cast<LoadInst>(it))
+ collectStridedAccess(LI);
+
+ // Reduction instructions are allowed to have exit users.
+ // All other instructions must not have external users.
+ if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) {
+ emitAnalysis(VectorizationReport(&*it) <<
+ "value cannot be used outside the loop");
+ return false;
+ }
+
+ } // next instr.
+
+ }
+
+ if (!Induction) {
+ DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
+ if (Inductions.empty()) {
+ emitAnalysis(VectorizationReport()
+ << "loop induction variable could not be identified");
+ return false;
+ }
+ }
+
+ // Now we know the widest induction type, check if our found induction
+ // is the same size. If it's not, unset it here and InnerLoopVectorizer
+ // will create another.
+ if (Induction && WidestIndTy != Induction->getType())
+ Induction = nullptr;
+
+ return true;
+}
+
+void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
+ Value *Ptr = nullptr;
+ if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
+ Ptr = LI->getPointerOperand();
+ else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
+ Ptr = SI->getPointerOperand();
+ else
+ return;
+
+ Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop);
+ if (!Stride)
+ return;
+
+ DEBUG(dbgs() << "LV: Found a strided access that we can version");
+ DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
+ Strides[Ptr] = Stride;
+ StrideSet.insert(Stride);
+}
+
+void LoopVectorizationLegality::collectLoopUniforms() {
+ // We now know that the loop is vectorizable!
+ // Collect variables that will remain uniform after vectorization.
+ std::vector<Value*> Worklist;
+ BasicBlock *Latch = TheLoop->getLoopLatch();
+
+ // Start with the conditional branch and walk up the block.
+ Worklist.push_back(Latch->getTerminator()->getOperand(0));
+
+ // Also add all consecutive pointer values; these values will be uniform
+ // after vectorization (and subsequent cleanup) and, until revectorization is
+ // supported, all dependencies must also be uniform.
+ for (Loop::block_iterator B = TheLoop->block_begin(),
+ BE = TheLoop->block_end(); B != BE; ++B)
+ for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
+ I != IE; ++I)
+ if (I->getType()->isPointerTy() && isConsecutivePtr(&*I))
+ Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
+
+ while (!Worklist.empty()) {
+ Instruction *I = dyn_cast<Instruction>(Worklist.back());
+ Worklist.pop_back();
+
+ // Look at instructions inside this loop.
+ // Stop when reaching PHI nodes.
+ // TODO: we need to follow values all over the loop, not only in this block.
+ if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
+ continue;
+
+ // This is a known uniform.
+ Uniforms.insert(I);
+
+ // Insert all operands.
+ Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
+ }
+}
+
+bool LoopVectorizationLegality::canVectorizeMemory() {
+ LAI = &LAA->getInfo(TheLoop, Strides);
+ auto &OptionalReport = LAI->getReport();
+ if (OptionalReport)
+ emitAnalysis(VectorizationReport(*OptionalReport));
+ if (!LAI->canVectorizeMemory())
+ return false;
+
+ if (LAI->hasStoreToLoopInvariantAddress()) {
+ emitAnalysis(
+ VectorizationReport()
+ << "write to a loop invariant address could not be vectorized");
+ DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
+ return false;
+ }
+
+ Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
+ PSE.addPredicate(LAI->PSE.getUnionPredicate());
+
+ return true;
+}
+
+bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
+ Value *In0 = const_cast<Value*>(V);
+ PHINode *PN = dyn_cast_or_null<PHINode>(In0);
+ if (!PN)
+ return false;
+
+ return Inductions.count(PN);
+}
+
+bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
+ return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
+}
+
+bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
+ SmallPtrSetImpl<Value *> &SafePtrs) {
+
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // Check that we don't have a constant expression that can trap as operand.
+ for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
+ OI != OE; ++OI) {
+ if (Constant *C = dyn_cast<Constant>(*OI))
+ if (C->canTrap())
+ return false;
+ }
+ // We might be able to hoist the load.
+ if (it->mayReadFromMemory()) {
+ LoadInst *LI = dyn_cast<LoadInst>(it);
+ if (!LI)
+ return false;
+ if (!SafePtrs.count(LI->getPointerOperand())) {
+ if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) {
+ MaskedOp.insert(LI);
+ continue;
+ }
+ return false;
+ }
+ }
+
+ // We don't predicate stores at the moment.
+ if (it->mayWriteToMemory()) {
+ StoreInst *SI = dyn_cast<StoreInst>(it);
+ // We only support predication of stores in basic blocks with one
+ // predecessor.
+ if (!SI)
+ return false;
+
+ bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
+ bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
+
+ if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
+ !isSinglePredecessor) {
+ // Build a masked store if it is legal for the target, otherwise
+ // scalarize the block.
+ bool isLegalMaskedOp =
+ isLegalMaskedStore(SI->getValueOperand()->getType(),
+ SI->getPointerOperand());
+ if (isLegalMaskedOp) {
+ --NumPredStores;
+ MaskedOp.insert(SI);
+ continue;
+ }
+ return false;
+ }
+ }
+ if (it->mayThrow())
+ return false;
+
+ // The instructions below can trap.
+ switch (it->getOpcode()) {
+ default: continue;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void InterleavedAccessInfo::collectConstStridedAccesses(
+ MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
+ const ValueToValueMap &Strides) {
+ // Holds load/store instructions in program order.
+ SmallVector<Instruction *, 16> AccessList;
+
+ for (auto *BB : TheLoop->getBlocks()) {
+ bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
+
+ for (auto &I : *BB) {
+ if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I))
+ continue;
+ // FIXME: Currently we can't handle mixed accesses and predicated accesses
+ if (IsPred)
+ return;
+
+ AccessList.push_back(&I);
+ }
+ }
+
+ if (AccessList.empty())
+ return;
+
+ auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
+ for (auto I : AccessList) {
+ LoadInst *LI = dyn_cast<LoadInst>(I);
+ StoreInst *SI = dyn_cast<StoreInst>(I);
+
+ Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
+ int Stride = isStridedPtr(PSE, Ptr, TheLoop, Strides);
+
+ // The factor of the corresponding interleave group.
+ unsigned Factor = std::abs(Stride);
+
+ // Ignore the access if the factor is too small or too large.
+ if (Factor < 2 || Factor > MaxInterleaveGroupFactor)
+ continue;
+
+ const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
+ PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
+ unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType());
+
+ // An alignment of 0 means target ABI alignment.
+ unsigned Align = LI ? LI->getAlignment() : SI->getAlignment();
+ if (!Align)
+ Align = DL.getABITypeAlignment(PtrTy->getElementType());
+
+ StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align);
+ }
+}
+
+// Analyze interleaved accesses and collect them into interleave groups.
+//
+// Notice that the vectorization on interleaved groups will change instruction
+// orders and may break dependences. But the memory dependence check guarantees
+// that there is no overlap between two pointers of different strides, element
+// sizes or underlying bases.
+//
+// For pointers sharing the same stride, element size and underlying base, no
+// need to worry about Read-After-Write dependences and Write-After-Read
+// dependences.
+//
+// E.g. The RAW dependence: A[i] = a;
+// b = A[i];
+// This won't exist as it is a store-load forwarding conflict, which has
+// already been checked and forbidden in the dependence check.
+//
+// E.g. The WAR dependence: a = A[i]; // (1)
+// A[i] = b; // (2)
+// The store group of (2) is always inserted at or below (2), and the load group
+// of (1) is always inserted at or above (1). The dependence is safe.
+void InterleavedAccessInfo::analyzeInterleaving(
+ const ValueToValueMap &Strides) {
+ DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
+
+ // Holds all the stride accesses.
+ MapVector<Instruction *, StrideDescriptor> StrideAccesses;
+ collectConstStridedAccesses(StrideAccesses, Strides);
+
+ if (StrideAccesses.empty())
+ return;
+
+ // Holds all interleaved store groups temporarily.
+ SmallSetVector<InterleaveGroup *, 4> StoreGroups;
+ // Holds all interleaved load groups temporarily.
+ SmallSetVector<InterleaveGroup *, 4> LoadGroups;
+
+ // Search the load-load/write-write pair B-A in bottom-up order and try to
+ // insert B into the interleave group of A according to 3 rules:
+ // 1. A and B have the same stride.
+ // 2. A and B have the same memory object size.
+ // 3. B belongs to the group according to the distance.
+ //
+ // The bottom-up order can avoid breaking the Write-After-Write dependences
+ // between two pointers of the same base.
+ // E.g. A[i] = a; (1)
+ // A[i] = b; (2)
+ // A[i+1] = c (3)
+ // We form the group (2)+(3) in front, so (1) has to form groups with accesses
+ // above (1), which guarantees that (1) is always above (2).
+ for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E;
+ ++I) {
+ Instruction *A = I->first;
+ StrideDescriptor DesA = I->second;
+
+ InterleaveGroup *Group = getInterleaveGroup(A);
+ if (!Group) {
+ DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n');
+ Group = createInterleaveGroup(A, DesA.Stride, DesA.Align);
+ }
+
+ if (A->mayWriteToMemory())
+ StoreGroups.insert(Group);
+ else
+ LoadGroups.insert(Group);
+
+ for (auto II = std::next(I); II != E; ++II) {
+ Instruction *B = II->first;
+ StrideDescriptor DesB = II->second;
+
+ // Ignore if B is already in a group or B is a different memory operation.
+ if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory())
+ continue;
+
+ // Check the rule 1 and 2.
+ if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size)
+ continue;
+
+ // Calculate the distance and prepare for the rule 3.
+ const SCEVConstant *DistToA = dyn_cast<SCEVConstant>(
+ PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev));
+ if (!DistToA)
+ continue;
+
+ int DistanceToA = DistToA->getAPInt().getSExtValue();
+
+ // Skip if the distance is not multiple of size as they are not in the
+ // same group.
+ if (DistanceToA % static_cast<int>(DesA.Size))
+ continue;
+
+ // The index of B is the index of A plus the related index to A.
+ int IndexB =
+ Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size);
+
+ // Try to insert B into the group.
+ if (Group->insertMember(B, IndexB, DesB.Align)) {
+ DEBUG(dbgs() << "LV: Inserted:" << *B << '\n'
+ << " into the interleave group with" << *A << '\n');
+ InterleaveGroupMap[B] = Group;
+
+ // Set the first load in program order as the insert position.
+ if (B->mayReadFromMemory())
+ Group->setInsertPos(B);
+ }
+ } // Iteration on instruction B
+ } // Iteration on instruction A
+
+ // Remove interleaved store groups with gaps.
+ for (InterleaveGroup *Group : StoreGroups)
+ if (Group->getNumMembers() != Group->getFactor())
+ releaseGroup(Group);
+
+ // Remove interleaved load groups that don't have the first and last member.
+ // This guarantees that we won't do speculative out of bounds loads.
+ for (InterleaveGroup *Group : LoadGroups)
+ if (!Group->getMember(0) || !Group->getMember(Group->getFactor() - 1))
+ releaseGroup(Group);
+}
+
+LoopVectorizationCostModel::VectorizationFactor
+LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
+ // Width 1 means no vectorize
+ VectorizationFactor Factor = { 1U, 0U };
+ if (OptForSize && Legal->getRuntimePointerChecking()->Need) {
+ emitAnalysis(VectorizationReport() <<
+ "runtime pointer checks needed. Enable vectorization of this "
+ "loop with '#pragma clang loop vectorize(enable)' when "
+ "compiling with -Os/-Oz");
+ DEBUG(dbgs() <<
+ "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
+ return Factor;
+ }
+
+ if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
+ emitAnalysis(VectorizationReport() <<
+ "store that is conditionally executed prevents vectorization");
+ DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
+ return Factor;
+ }
+
+ // Find the trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop);
+ DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
+
+ MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
+ unsigned SmallestType, WidestType;
+ std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
+ unsigned WidestRegister = TTI.getRegisterBitWidth(true);
+ unsigned MaxSafeDepDist = -1U;
+ if (Legal->getMaxSafeDepDistBytes() != -1U)
+ MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
+ WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
+ WidestRegister : MaxSafeDepDist);
+ unsigned MaxVectorSize = WidestRegister / WidestType;
+
+ DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
+ << WidestType << " bits.\n");
+ DEBUG(dbgs() << "LV: The Widest register is: "
+ << WidestRegister << " bits.\n");
+
+ if (MaxVectorSize == 0) {
+ DEBUG(dbgs() << "LV: The target has no vector registers.\n");
+ MaxVectorSize = 1;
+ }
+
+ assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
+ " into one vector!");
+
+ unsigned VF = MaxVectorSize;
+ if (MaximizeBandwidth && !OptForSize) {
+ // Collect all viable vectorization factors.
+ SmallVector<unsigned, 8> VFs;
+ unsigned NewMaxVectorSize = WidestRegister / SmallestType;
+ for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2)
+ VFs.push_back(VS);
+
+ // For each VF calculate its register usage.
+ auto RUs = calculateRegisterUsage(VFs);
+
+ // Select the largest VF which doesn't require more registers than existing
+ // ones.
+ unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
+ for (int i = RUs.size() - 1; i >= 0; --i) {
+ if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
+ VF = VFs[i];
+ break;
+ }
+ }
+ }
+
+ // If we optimize the program for size, avoid creating the tail loop.
+ if (OptForSize) {
+ // If we are unable to calculate the trip count then don't try to vectorize.
+ if (TC < 2) {
+ emitAnalysis
+ (VectorizationReport() <<
+ "unable to calculate the loop count due to complex control flow");
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
+ return Factor;
+ }
+
+ // Find the maximum SIMD width that can fit within the trip count.
+ VF = TC % MaxVectorSize;
+
+ if (VF == 0)
+ VF = MaxVectorSize;
+ else {
+ // If the trip count that we found modulo the vectorization factor is not
+ // zero then we require a tail.
+ emitAnalysis(VectorizationReport() <<
+ "cannot optimize for size and vectorize at the "
+ "same time. Enable vectorization of this loop "
+ "with '#pragma clang loop vectorize(enable)' "
+ "when compiling with -Os/-Oz");
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
+ return Factor;
+ }
+ }
+
+ int UserVF = Hints->getWidth();
+ if (UserVF != 0) {
+ assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
+ DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
+
+ Factor.Width = UserVF;
+ return Factor;
+ }
+
+ float Cost = expectedCost(1);
+#ifndef NDEBUG
+ const float ScalarCost = Cost;
+#endif /* NDEBUG */
+ unsigned Width = 1;
+ DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
+
+ bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
+ // Ignore scalar width, because the user explicitly wants vectorization.
+ if (ForceVectorization && VF > 1) {
+ Width = 2;
+ Cost = expectedCost(Width) / (float)Width;
+ }
+
+ for (unsigned i=2; i <= VF; i*=2) {
+ // Notice that the vector loop needs to be executed less times, so
+ // we need to divide the cost of the vector loops by the width of
+ // the vector elements.
+ float VectorCost = expectedCost(i) / (float)i;
+ DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
+ (int)VectorCost << ".\n");
+ if (VectorCost < Cost) {
+ Cost = VectorCost;
+ Width = i;
+ }
+ }
+
+ DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
+ << "LV: Vectorization seems to be not beneficial, "
+ << "but was forced by a user.\n");
+ DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
+ Factor.Width = Width;
+ Factor.Cost = Width * Cost;
+ return Factor;
+}
+
+std::pair<unsigned, unsigned>
+LoopVectorizationCostModel::getSmallestAndWidestTypes() {
+ unsigned MinWidth = -1U;
+ unsigned MaxWidth = 8;
+ const DataLayout &DL = TheFunction->getParent()->getDataLayout();
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+ BasicBlock *BB = *bb;
+
+ // For each instruction in the loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ Type *T = it->getType();
+
+ // Skip ignored values.
+ if (ValuesToIgnore.count(&*it))
+ continue;
+
+ // Only examine Loads, Stores and PHINodes.
+ if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
+ continue;
+
+ // Examine PHI nodes that are reduction variables. Update the type to
+ // account for the recurrence type.
+ if (PHINode *PN = dyn_cast<PHINode>(it)) {
+ if (!Legal->isReductionVariable(PN))
+ continue;
+ RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
+ T = RdxDesc.getRecurrenceType();
+ }
+
+ // Examine the stored values.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it))
+ T = ST->getValueOperand()->getType();
+
+ // Ignore loaded pointer types and stored pointer types that are not
+ // consecutive. However, we do want to take consecutive stores/loads of
+ // pointer vectors into account.
+ if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it))
+ continue;
+
+ MinWidth = std::min(MinWidth,
+ (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
+ MaxWidth = std::max(MaxWidth,
+ (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
+ }
+ }
+
+ return {MinWidth, MaxWidth};
+}
+
+unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
+ unsigned VF,
+ unsigned LoopCost) {
+
+ // -- The interleave heuristics --
+ // We interleave the loop in order to expose ILP and reduce the loop overhead.
+ // There are many micro-architectural considerations that we can't predict
+ // at this level. For example, frontend pressure (on decode or fetch) due to
+ // code size, or the number and capabilities of the execution ports.
+ //
+ // We use the following heuristics to select the interleave count:
+ // 1. If the code has reductions, then we interleave to break the cross
+ // iteration dependency.
+ // 2. If the loop is really small, then we interleave to reduce the loop
+ // overhead.
+ // 3. We don't interleave if we think that we will spill registers to memory
+ // due to the increased register pressure.
+
+ // When we optimize for size, we don't interleave.
+ if (OptForSize)
+ return 1;
+
+ // We used the distance for the interleave count.
+ if (Legal->getMaxSafeDepDistBytes() != -1U)
+ return 1;
+
+ // Do not interleave loops with a relatively small trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop);
+ if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
+ return 1;
+
+ unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
+ DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
+ " registers\n");
+
+ if (VF == 1) {
+ if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
+ TargetNumRegisters = ForceTargetNumScalarRegs;
+ } else {
+ if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
+ TargetNumRegisters = ForceTargetNumVectorRegs;
+ }
+
+ RegisterUsage R = calculateRegisterUsage({VF})[0];
+ // We divide by these constants so assume that we have at least one
+ // instruction that uses at least one register.
+ R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
+ R.NumInstructions = std::max(R.NumInstructions, 1U);
+
+ // We calculate the interleave count using the following formula.
+ // Subtract the number of loop invariants from the number of available
+ // registers. These registers are used by all of the interleaved instances.
+ // Next, divide the remaining registers by the number of registers that is
+ // required by the loop, in order to estimate how many parallel instances
+ // fit without causing spills. All of this is rounded down if necessary to be
+ // a power of two. We want power of two interleave count to simplify any
+ // addressing operations or alignment considerations.
+ unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
+ R.MaxLocalUsers);
+
+ // Don't count the induction variable as interleaved.
+ if (EnableIndVarRegisterHeur)
+ IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
+ std::max(1U, (R.MaxLocalUsers - 1)));
+
+ // Clamp the interleave ranges to reasonable counts.
+ unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
+
+ // Check if the user has overridden the max.
+ if (VF == 1) {
+ if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
+ MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
+ } else {
+ if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
+ MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
+ }
+
+ // If we did not calculate the cost for VF (because the user selected the VF)
+ // then we calculate the cost of VF here.
+ if (LoopCost == 0)
+ LoopCost = expectedCost(VF);
+
+ // Clamp the calculated IC to be between the 1 and the max interleave count
+ // that the target allows.
+ if (IC > MaxInterleaveCount)
+ IC = MaxInterleaveCount;
+ else if (IC < 1)
+ IC = 1;
+
+ // Interleave if we vectorized this loop and there is a reduction that could
+ // benefit from interleaving.
+ if (VF > 1 && Legal->getReductionVars()->size()) {
+ DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
+ return IC;
+ }
+
+ // Note that if we've already vectorized the loop we will have done the
+ // runtime check and so interleaving won't require further checks.
+ bool InterleavingRequiresRuntimePointerCheck =
+ (VF == 1 && Legal->getRuntimePointerChecking()->Need);
+
+ // We want to interleave small loops in order to reduce the loop overhead and
+ // potentially expose ILP opportunities.
+ DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
+ if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
+ // We assume that the cost overhead is 1 and we use the cost model
+ // to estimate the cost of the loop and interleave until the cost of the
+ // loop overhead is about 5% of the cost of the loop.
+ unsigned SmallIC =
+ std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
+
+ // Interleave until store/load ports (estimated by max interleave count) are
+ // saturated.
+ unsigned NumStores = Legal->getNumStores();
+ unsigned NumLoads = Legal->getNumLoads();
+ unsigned StoresIC = IC / (NumStores ? NumStores : 1);
+ unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
+
+ // If we have a scalar reduction (vector reductions are already dealt with
+ // by this point), we can increase the critical path length if the loop
+ // we're interleaving is inside another loop. Limit, by default to 2, so the
+ // critical path only gets increased by one reduction operation.
+ if (Legal->getReductionVars()->size() &&
+ TheLoop->getLoopDepth() > 1) {
+ unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
+ SmallIC = std::min(SmallIC, F);
+ StoresIC = std::min(StoresIC, F);
+ LoadsIC = std::min(LoadsIC, F);
+ }
+
+ if (EnableLoadStoreRuntimeInterleave &&
+ std::max(StoresIC, LoadsIC) > SmallIC) {
+ DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
+ return std::max(StoresIC, LoadsIC);
+ }
+
+ DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
+ return SmallIC;
+ }
+
+ // Interleave if this is a large loop (small loops are already dealt with by
+ // this point) that could benefit from interleaving.
+ bool HasReductions = (Legal->getReductionVars()->size() > 0);
+ if (TTI.enableAggressiveInterleaving(HasReductions)) {
+ DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
+ return IC;
+ }
+
+ DEBUG(dbgs() << "LV: Not Interleaving.\n");
+ return 1;
+}
+
+SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
+LoopVectorizationCostModel::calculateRegisterUsage(
+ const SmallVector<unsigned, 8> &VFs) {
+ // This function calculates the register usage by measuring the highest number
+ // of values that are alive at a single location. Obviously, this is a very
+ // rough estimation. We scan the loop in a topological order in order and
+ // assign a number to each instruction. We use RPO to ensure that defs are
+ // met before their users. We assume that each instruction that has in-loop
+ // users starts an interval. We record every time that an in-loop value is
+ // used, so we have a list of the first and last occurrences of each
+ // instruction. Next, we transpose this data structure into a multi map that
+ // holds the list of intervals that *end* at a specific location. This multi
+ // map allows us to perform a linear search. We scan the instructions linearly
+ // and record each time that a new interval starts, by placing it in a set.
+ // If we find this value in the multi-map then we remove it from the set.
+ // The max register usage is the maximum size of the set.
+ // We also search for instructions that are defined outside the loop, but are
+ // used inside the loop. We need this number separately from the max-interval
+ // usage number because when we unroll, loop-invariant values do not take
+ // more register.
+ LoopBlocksDFS DFS(TheLoop);
+ DFS.perform(LI);
+
+ RegisterUsage RU;
+ RU.NumInstructions = 0;
+
+ // Each 'key' in the map opens a new interval. The values
+ // of the map are the index of the 'last seen' usage of the
+ // instruction that is the key.
+ typedef DenseMap<Instruction*, unsigned> IntervalMap;
+ // Maps instruction to its index.
+ DenseMap<unsigned, Instruction*> IdxToInstr;
+ // Marks the end of each interval.
+ IntervalMap EndPoint;
+ // Saves the list of instruction indices that are used in the loop.
+ SmallSet<Instruction*, 8> Ends;
+ // Saves the list of values that are used in the loop but are
+ // defined outside the loop, such as arguments and constants.
+ SmallPtrSet<Value*, 8> LoopInvariants;
+
+ unsigned Index = 0;
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb) {
+ RU.NumInstructions += (*bb)->size();
+ for (Instruction &I : **bb) {
+ IdxToInstr[Index++] = &I;
+
+ // Save the end location of each USE.
+ for (unsigned i = 0; i < I.getNumOperands(); ++i) {
+ Value *U = I.getOperand(i);
+ Instruction *Instr = dyn_cast<Instruction>(U);
+
+ // Ignore non-instruction values such as arguments, constants, etc.
+ if (!Instr) continue;
+
+ // If this instruction is outside the loop then record it and continue.
+ if (!TheLoop->contains(Instr)) {
+ LoopInvariants.insert(Instr);
+ continue;
+ }
+
+ // Overwrite previous end points.
+ EndPoint[Instr] = Index;
+ Ends.insert(Instr);
+ }
+ }
+ }
+
+ // Saves the list of intervals that end with the index in 'key'.
+ typedef SmallVector<Instruction*, 2> InstrList;
+ DenseMap<unsigned, InstrList> TransposeEnds;
+
+ // Transpose the EndPoints to a list of values that end at each index.
+ for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
+ it != e; ++it)
+ TransposeEnds[it->second].push_back(it->first);
+
+ SmallSet<Instruction*, 8> OpenIntervals;
+
+ // Get the size of the widest register.
+ unsigned MaxSafeDepDist = -1U;
+ if (Legal->getMaxSafeDepDistBytes() != -1U)
+ MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
+ unsigned WidestRegister =
+ std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
+ const DataLayout &DL = TheFunction->getParent()->getDataLayout();
+
+ SmallVector<RegisterUsage, 8> RUs(VFs.size());
+ SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
+
+ DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
+
+ // A lambda that gets the register usage for the given type and VF.
+ auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
+ unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
+ return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
+ };
+
+ for (unsigned int i = 0; i < Index; ++i) {
+ Instruction *I = IdxToInstr[i];
+ // Ignore instructions that are never used within the loop.
+ if (!Ends.count(I)) continue;
+
+ // Skip ignored values.
+ if (ValuesToIgnore.count(I))
+ continue;
+
+ // Remove all of the instructions that end at this location.
+ InstrList &List = TransposeEnds[i];
+ for (unsigned int j = 0, e = List.size(); j < e; ++j)
+ OpenIntervals.erase(List[j]);
+
+ // For each VF find the maximum usage of registers.
+ for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
+ if (VFs[j] == 1) {
+ MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
+ continue;
+ }
+
+ // Count the number of live intervals.
+ unsigned RegUsage = 0;
+ for (auto Inst : OpenIntervals)
+ RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
+ MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
+ }
+
+ DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
+ << OpenIntervals.size() << '\n');
+
+ // Add the current instruction to the list of open intervals.
+ OpenIntervals.insert(I);
+ }
+
+ for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
+ unsigned Invariant = 0;
+ if (VFs[i] == 1)
+ Invariant = LoopInvariants.size();
+ else {
+ for (auto Inst : LoopInvariants)
+ Invariant += GetRegUsage(Inst->getType(), VFs[i]);
+ }
+
+ DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
+ DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
+ DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
+ DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n');
+
+ RU.LoopInvariantRegs = Invariant;
+ RU.MaxLocalUsers = MaxUsages[i];
+ RUs[i] = RU;
+ }
+
+ return RUs;
+}
+
+unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
+ unsigned Cost = 0;
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+ unsigned BlockCost = 0;
+ BasicBlock *BB = *bb;
+
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // Skip dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(it))
+ continue;
+
+ // Skip ignored values.
+ if (ValuesToIgnore.count(&*it))
+ continue;
+
+ unsigned C = getInstructionCost(&*it, VF);
+
+ // Check if we should override the cost.
+ if (ForceTargetInstructionCost.getNumOccurrences() > 0)
+ C = ForceTargetInstructionCost;
+
+ BlockCost += C;
+ DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
+ VF << " For instruction: " << *it << '\n');
+ }
+
+ // We assume that if-converted blocks have a 50% chance of being executed.
+ // When the code is scalar then some of the blocks are avoided due to CF.
+ // When the code is vectorized we execute all code paths.
+ if (VF == 1 && Legal->blockNeedsPredication(*bb))
+ BlockCost /= 2;
+
+ Cost += BlockCost;
+ }
+
+ return Cost;
+}
+
+/// \brief Check whether the address computation for a non-consecutive memory
+/// access looks like an unlikely candidate for being merged into the indexing
+/// mode.
+///
+/// We look for a GEP which has one index that is an induction variable and all
+/// other indices are loop invariant. If the stride of this access is also
+/// within a small bound we decide that this address computation can likely be
+/// merged into the addressing mode.
+/// In all other cases, we identify the address computation as complex.
+static bool isLikelyComplexAddressComputation(Value *Ptr,
+ LoopVectorizationLegality *Legal,
+ ScalarEvolution *SE,
+ const Loop *TheLoop) {
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+ if (!Gep)
+ return true;
+
+ // We are looking for a gep with all loop invariant indices except for one
+ // which should be an induction variable.
+ unsigned NumOperands = Gep->getNumOperands();
+ for (unsigned i = 1; i < NumOperands; ++i) {
+ Value *Opd = Gep->getOperand(i);
+ if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
+ !Legal->isInductionVariable(Opd))
+ return true;
+ }
+
+ // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
+ // can likely be merged into the address computation.
+ unsigned MaxMergeDistance = 64;
+
+ const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
+ if (!AddRec)
+ return true;
+
+ // Check the step is constant.
+ const SCEV *Step = AddRec->getStepRecurrence(*SE);
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C)
+ return true;
+
+ const APInt &APStepVal = C->getAPInt();
+
+ // Huge step value - give up.
+ if (APStepVal.getBitWidth() > 64)
+ return true;
+
+ int64_t StepVal = APStepVal.getSExtValue();
+
+ return StepVal > MaxMergeDistance;
+}
+
+static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
+ return Legal->hasStride(I->getOperand(0)) ||
+ Legal->hasStride(I->getOperand(1));
+}
+
+unsigned
+LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
+ // If we know that this instruction will remain uniform, check the cost of
+ // the scalar version.
+ if (Legal->isUniformAfterVectorization(I))
+ VF = 1;
+
+ Type *RetTy = I->getType();
+ if (VF > 1 && MinBWs.count(I))
+ RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
+ Type *VectorTy = ToVectorTy(RetTy, VF);
+
+ // TODO: We need to estimate the cost of intrinsic calls.
+ switch (I->getOpcode()) {
+ case Instruction::GetElementPtr:
+ // We mark this instruction as zero-cost because the cost of GEPs in
+ // vectorized code depends on whether the corresponding memory instruction
+ // is scalarized or not. Therefore, we handle GEPs with the memory
+ // instruction cost.
+ return 0;
+ case Instruction::Br: {
+ return TTI.getCFInstrCost(I->getOpcode());
+ }
+ case Instruction::PHI:
+ //TODO: IF-converted IFs become selects.
+ return 0;
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Since we will replace the stride by 1 the multiplication should go away.
+ if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
+ return 0;
+ // Certain instructions can be cheaper to vectorize if they have a constant
+ // second vector operand. One example of this are shifts on x86.
+ TargetTransformInfo::OperandValueKind Op1VK =
+ TargetTransformInfo::OK_AnyValue;
+ TargetTransformInfo::OperandValueKind Op2VK =
+ TargetTransformInfo::OK_AnyValue;
+ TargetTransformInfo::OperandValueProperties Op1VP =
+ TargetTransformInfo::OP_None;
+ TargetTransformInfo::OperandValueProperties Op2VP =
+ TargetTransformInfo::OP_None;
+ Value *Op2 = I->getOperand(1);
+
+ // Check for a splat of a constant or for a non uniform vector of constants.
+ if (isa<ConstantInt>(Op2)) {
+ ConstantInt *CInt = cast<ConstantInt>(Op2);
+ if (CInt && CInt->getValue().isPowerOf2())
+ Op2VP = TargetTransformInfo::OP_PowerOf2;
+ Op2VK = TargetTransformInfo::OK_UniformConstantValue;
+ } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
+ Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
+ Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
+ if (SplatValue) {
+ ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
+ if (CInt && CInt->getValue().isPowerOf2())
+ Op2VP = TargetTransformInfo::OP_PowerOf2;
+ Op2VK = TargetTransformInfo::OK_UniformConstantValue;
+ }
+ }
+
+ return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
+ Op1VP, Op2VP);
+ }
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
+ bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
+ Type *CondTy = SI->getCondition()->getType();
+ if (!ScalarCond)
+ CondTy = VectorType::get(CondTy, VF);
+
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ Type *ValTy = I->getOperand(0)->getType();
+ Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
+ auto It = MinBWs.find(Op0AsInstruction);
+ if (VF > 1 && It != MinBWs.end())
+ ValTy = IntegerType::get(ValTy->getContext(), It->second);
+ VectorTy = ToVectorTy(ValTy, VF);
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
+ }
+ case Instruction::Store:
+ case Instruction::Load: {
+ StoreInst *SI = dyn_cast<StoreInst>(I);
+ LoadInst *LI = dyn_cast<LoadInst>(I);
+ Type *ValTy = (SI ? SI->getValueOperand()->getType() :
+ LI->getType());
+ VectorTy = ToVectorTy(ValTy, VF);
+
+ unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
+ unsigned AS = SI ? SI->getPointerAddressSpace() :
+ LI->getPointerAddressSpace();
+ Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
+ // We add the cost of address computation here instead of with the gep
+ // instruction because only here we know whether the operation is
+ // scalarized.
+ if (VF == 1)
+ return TTI.getAddressComputationCost(VectorTy) +
+ TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
+
+ // For an interleaved access, calculate the total cost of the whole
+ // interleave group.
+ if (Legal->isAccessInterleaved(I)) {
+ auto Group = Legal->getInterleavedAccessGroup(I);
+ assert(Group && "Fail to get an interleaved access group.");
+
+ // Only calculate the cost once at the insert position.
+ if (Group->getInsertPos() != I)
+ return 0;
+
+ unsigned InterleaveFactor = Group->getFactor();
+ Type *WideVecTy =
+ VectorType::get(VectorTy->getVectorElementType(),
+ VectorTy->getVectorNumElements() * InterleaveFactor);
+
+ // Holds the indices of existing members in an interleaved load group.
+ // An interleaved store group doesn't need this as it dones't allow gaps.
+ SmallVector<unsigned, 4> Indices;
+ if (LI) {
+ for (unsigned i = 0; i < InterleaveFactor; i++)
+ if (Group->getMember(i))
+ Indices.push_back(i);
+ }
+
+ // Calculate the cost of the whole interleaved group.
+ unsigned Cost = TTI.getInterleavedMemoryOpCost(
+ I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
+ Group->getAlignment(), AS);
+
+ if (Group->isReverse())
+ Cost +=
+ Group->getNumMembers() *
+ TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
+
+ // FIXME: The interleaved load group with a huge gap could be even more
+ // expensive than scalar operations. Then we could ignore such group and
+ // use scalar operations instead.
+ return Cost;
+ }
+
+ // Scalarized loads/stores.
+ int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = ConsecutiveStride < 0;
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
+ unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
+ if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
+ bool IsComplexComputation =
+ isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
+ unsigned Cost = 0;
+ // The cost of extracting from the value vector and pointer vector.
+ Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
+ for (unsigned i = 0; i < VF; ++i) {
+ // The cost of extracting the pointer operand.
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
+ // In case of STORE, the cost of ExtractElement from the vector.
+ // In case of LOAD, the cost of InsertElement into the returned
+ // vector.
+ Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
+ Instruction::InsertElement,
+ VectorTy, i);
+ }
+
+ // The cost of the scalar loads/stores.
+ Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
+ Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
+ Alignment, AS);
+ return Cost;
+ }
+
+ // Wide load/stores.
+ unsigned Cost = TTI.getAddressComputationCost(VectorTy);
+ if (Legal->isMaskRequired(I))
+ Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment,
+ AS);
+ else
+ Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
+
+ if (Reverse)
+ Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
+ VectorTy, 0);
+ return Cost;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ // We optimize the truncation of induction variable.
+ // The cost of these is the same as the scalar operation.
+ if (I->getOpcode() == Instruction::Trunc &&
+ Legal->isInductionVariable(I->getOperand(0)))
+ return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
+ I->getOperand(0)->getType());
+
+ Type *SrcScalarTy = I->getOperand(0)->getType();
+ Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF);
+ if (VF > 1 && MinBWs.count(I)) {
+ // This cast is going to be shrunk. This may remove the cast or it might
+ // turn it into slightly different cast. For example, if MinBW == 16,
+ // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
+ //
+ // Calculate the modified src and dest types.
+ Type *MinVecTy = VectorTy;
+ if (I->getOpcode() == Instruction::Trunc) {
+ SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
+ VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF),
+ MinVecTy);
+ } else if (I->getOpcode() == Instruction::ZExt ||
+ I->getOpcode() == Instruction::SExt) {
+ SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
+ VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF),
+ MinVecTy);
+ }
+ }
+
+ return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
+ }
+ case Instruction::Call: {
+ bool NeedToScalarize;
+ CallInst *CI = cast<CallInst>(I);
+ unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
+ if (getIntrinsicIDForCall(CI, TLI))
+ return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
+ return CallCost;
+ }
+ default: {
+ // We are scalarizing the instruction. Return the cost of the scalar
+ // instruction, plus the cost of insert and extract into vector
+ // elements, times the vector width.
+ unsigned Cost = 0;
+
+ if (!RetTy->isVoidTy() && VF != 1) {
+ unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
+ VectorTy);
+ unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
+ VectorTy);
+
+ // The cost of inserting the results plus extracting each one of the
+ // operands.
+ Cost += VF * (InsCost + ExtCost * I->getNumOperands());
+ }
+
+ // The cost of executing VF copies of the scalar instruction. This opcode
+ // is unknown. Assume that it is the same as 'mul'.
+ Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
+ return Cost;
+ }
+ }// end of switch.
+}
+
+char LoopVectorize::ID = 0;
+static const char lv_name[] = "Loop Vectorization";
+INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LCSSA)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
+INITIALIZE_PASS_DEPENDENCY(DemandedBits)
+INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
+
+namespace llvm {
+ Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
+ return new LoopVectorize(NoUnrolling, AlwaysVectorize);
+ }
+}
+
+bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
+ // Check for a store.
+ if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
+ return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
+
+ // Check for a load.
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
+
+ return false;
+}
+
+
+void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
+ bool IfPredicateStore) {
+ assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
+ // Holds vector parameters or scalars, in case of uniform vals.
+ SmallVector<VectorParts, 4> Params;
+
+ setDebugLocFromInst(Builder, Instr);
+
+ // Find all of the vectorized parameters.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *SrcOp = Instr->getOperand(op);
+
+ // If we are accessing the old induction variable, use the new one.
+ if (SrcOp == OldInduction) {
+ Params.push_back(getVectorValue(SrcOp));
+ continue;
+ }
+
+ // Try using previously calculated values.
+ Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
+
+ // If the src is an instruction that appeared earlier in the basic block
+ // then it should already be vectorized.
+ if (SrcInst && OrigLoop->contains(SrcInst)) {
+ assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
+ // The parameter is a vector value from earlier.
+ Params.push_back(WidenMap.get(SrcInst));
+ } else {
+ // The parameter is a scalar from outside the loop. Maybe even a constant.
+ VectorParts Scalars;
+ Scalars.append(UF, SrcOp);
+ Params.push_back(Scalars);
+ }
+ }
+
+ assert(Params.size() == Instr->getNumOperands() &&
+ "Invalid number of operands");
+
+ // Does this instruction return a value ?
+ bool IsVoidRetTy = Instr->getType()->isVoidTy();
+
+ Value *UndefVec = IsVoidRetTy ? nullptr :
+ UndefValue::get(Instr->getType());
+ // Create a new entry in the WidenMap and initialize it to Undef or Null.
+ VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
+
+ VectorParts Cond;
+ if (IfPredicateStore) {
+ assert(Instr->getParent()->getSinglePredecessor() &&
+ "Only support single predecessor blocks");
+ Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
+ Instr->getParent());
+ }
+
+ // For each vector unroll 'part':
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // For each scalar that we create:
+
+ // Start an "if (pred) a[i] = ..." block.
+ Value *Cmp = nullptr;
+ if (IfPredicateStore) {
+ if (Cond[Part]->getType()->isVectorTy())
+ Cond[Part] =
+ Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
+ Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
+ ConstantInt::get(Cond[Part]->getType(), 1));
+ }
+
+ Instruction *Cloned = Instr->clone();
+ if (!IsVoidRetTy)
+ Cloned->setName(Instr->getName() + ".cloned");
+ // Replace the operands of the cloned instructions with extracted scalars.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *Op = Params[op][Part];
+ Cloned->setOperand(op, Op);
+ }
+
+ // Place the cloned scalar in the new loop.
+ Builder.Insert(Cloned);
+
+ // If the original scalar returns a value we need to place it in a vector
+ // so that future users will be able to use it.
+ if (!IsVoidRetTy)
+ VecResults[Part] = Cloned;
+
+ // End if-block.
+ if (IfPredicateStore)
+ PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned),
+ Cmp));
+ }
+}
+
+void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
+ StoreInst *SI = dyn_cast<StoreInst>(Instr);
+ bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
+
+ return scalarizeInstruction(Instr, IfPredicateStore);
+}
+
+Value *InnerLoopUnroller::reverseVector(Value *Vec) {
+ return Vec;
+}
+
+Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
+ return V;
+}
+
+Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
+ // When unrolling and the VF is 1, we only need to add a simple scalar.
+ Type *ITy = Val->getType();
+ assert(!ITy->isVectorTy() && "Val must be a scalar");
+ Constant *C = ConstantInt::get(ITy, StartIdx);
+ return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
+}