diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp | 4224 |
1 files changed, 4224 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/gnu/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp new file mode 100644 index 00000000000..f69a4e52c7e --- /dev/null +++ b/gnu/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp @@ -0,0 +1,4224 @@ +//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// This pass implements the Bottom Up SLP vectorizer. It detects consecutive +// stores that can be put together into vector-stores. Next, it attempts to +// construct vectorizable tree using the use-def chains. If a profitable tree +// was found, the SLP vectorizer performs vectorization on the tree. +// +// The pass is inspired by the work described in the paper: +// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. +// +//===----------------------------------------------------------------------===// +#include "llvm/Transforms/Vectorize.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/NoFolder.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/Verifier.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Analysis/VectorUtils.h" +#include <algorithm> +#include <map> +#include <memory> + +using namespace llvm; + +#define SV_NAME "slp-vectorizer" +#define DEBUG_TYPE "SLP" + +STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); + +static cl::opt<int> + SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, + cl::desc("Only vectorize if you gain more than this " + "number ")); + +static cl::opt<bool> +ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, + cl::desc("Attempt to vectorize horizontal reductions")); + +static cl::opt<bool> ShouldStartVectorizeHorAtStore( + "slp-vectorize-hor-store", cl::init(false), cl::Hidden, + cl::desc( + "Attempt to vectorize horizontal reductions feeding into a store")); + +static cl::opt<int> +MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, + cl::desc("Attempt to vectorize for this register size in bits")); + +/// Limits the size of scheduling regions in a block. +/// It avoid long compile times for _very_ large blocks where vector +/// instructions are spread over a wide range. +/// This limit is way higher than needed by real-world functions. +static cl::opt<int> +ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, + cl::desc("Limit the size of the SLP scheduling region per block")); + +namespace { + +// FIXME: Set this via cl::opt to allow overriding. +static const unsigned MinVecRegSize = 128; + +static const unsigned RecursionMaxDepth = 12; + +// Limit the number of alias checks. The limit is chosen so that +// it has no negative effect on the llvm benchmarks. +static const unsigned AliasedCheckLimit = 10; + +// Another limit for the alias checks: The maximum distance between load/store +// instructions where alias checks are done. +// This limit is useful for very large basic blocks. +static const unsigned MaxMemDepDistance = 160; + +/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling +/// regions to be handled. +static const int MinScheduleRegionSize = 16; + +/// \brief Predicate for the element types that the SLP vectorizer supports. +/// +/// The most important thing to filter here are types which are invalid in LLVM +/// vectors. We also filter target specific types which have absolutely no +/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just +/// avoids spending time checking the cost model and realizing that they will +/// be inevitably scalarized. +static bool isValidElementType(Type *Ty) { + return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && + !Ty->isPPC_FP128Ty(); +} + +/// \returns the parent basic block if all of the instructions in \p VL +/// are in the same block or null otherwise. +static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { + Instruction *I0 = dyn_cast<Instruction>(VL[0]); + if (!I0) + return nullptr; + BasicBlock *BB = I0->getParent(); + for (int i = 1, e = VL.size(); i < e; i++) { + Instruction *I = dyn_cast<Instruction>(VL[i]); + if (!I) + return nullptr; + + if (BB != I->getParent()) + return nullptr; + } + return BB; +} + +/// \returns True if all of the values in \p VL are constants. +static bool allConstant(ArrayRef<Value *> VL) { + for (unsigned i = 0, e = VL.size(); i < e; ++i) + if (!isa<Constant>(VL[i])) + return false; + return true; +} + +/// \returns True if all of the values in \p VL are identical. +static bool isSplat(ArrayRef<Value *> VL) { + for (unsigned i = 1, e = VL.size(); i < e; ++i) + if (VL[i] != VL[0]) + return false; + return true; +} + +///\returns Opcode that can be clubbed with \p Op to create an alternate +/// sequence which can later be merged as a ShuffleVector instruction. +static unsigned getAltOpcode(unsigned Op) { + switch (Op) { + case Instruction::FAdd: + return Instruction::FSub; + case Instruction::FSub: + return Instruction::FAdd; + case Instruction::Add: + return Instruction::Sub; + case Instruction::Sub: + return Instruction::Add; + default: + return 0; + } +} + +///\returns bool representing if Opcode \p Op can be part +/// of an alternate sequence which can later be merged as +/// a ShuffleVector instruction. +static bool canCombineAsAltInst(unsigned Op) { + return Op == Instruction::FAdd || Op == Instruction::FSub || + Op == Instruction::Sub || Op == Instruction::Add; +} + +/// \returns ShuffleVector instruction if instructions in \p VL have +/// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. +/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) +static unsigned isAltInst(ArrayRef<Value *> VL) { + Instruction *I0 = dyn_cast<Instruction>(VL[0]); + unsigned Opcode = I0->getOpcode(); + unsigned AltOpcode = getAltOpcode(Opcode); + for (int i = 1, e = VL.size(); i < e; i++) { + Instruction *I = dyn_cast<Instruction>(VL[i]); + if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) + return 0; + } + return Instruction::ShuffleVector; +} + +/// \returns The opcode if all of the Instructions in \p VL have the same +/// opcode, or zero. +static unsigned getSameOpcode(ArrayRef<Value *> VL) { + Instruction *I0 = dyn_cast<Instruction>(VL[0]); + if (!I0) + return 0; + unsigned Opcode = I0->getOpcode(); + for (int i = 1, e = VL.size(); i < e; i++) { + Instruction *I = dyn_cast<Instruction>(VL[i]); + if (!I || Opcode != I->getOpcode()) { + if (canCombineAsAltInst(Opcode) && i == 1) + return isAltInst(VL); + return 0; + } + } + return Opcode; +} + +/// Get the intersection (logical and) of all of the potential IR flags +/// of each scalar operation (VL) that will be converted into a vector (I). +/// Flag set: NSW, NUW, exact, and all of fast-math. +static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { + if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { + if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { + // Intersection is initialized to the 0th scalar, + // so start counting from index '1'. + for (int i = 1, e = VL.size(); i < e; ++i) { + if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) + Intersection->andIRFlags(Scalar); + } + VecOp->copyIRFlags(Intersection); + } + } +} + +/// \returns \p I after propagating metadata from \p VL. +static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { + Instruction *I0 = cast<Instruction>(VL[0]); + SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; + I0->getAllMetadataOtherThanDebugLoc(Metadata); + + for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { + unsigned Kind = Metadata[i].first; + MDNode *MD = Metadata[i].second; + + for (int i = 1, e = VL.size(); MD && i != e; i++) { + Instruction *I = cast<Instruction>(VL[i]); + MDNode *IMD = I->getMetadata(Kind); + + switch (Kind) { + default: + MD = nullptr; // Remove unknown metadata + break; + case LLVMContext::MD_tbaa: + MD = MDNode::getMostGenericTBAA(MD, IMD); + break; + case LLVMContext::MD_alias_scope: + MD = MDNode::getMostGenericAliasScope(MD, IMD); + break; + case LLVMContext::MD_noalias: + MD = MDNode::intersect(MD, IMD); + break; + case LLVMContext::MD_fpmath: + MD = MDNode::getMostGenericFPMath(MD, IMD); + break; + case LLVMContext::MD_nontemporal: + MD = MDNode::intersect(MD, IMD); + break; + } + } + I->setMetadata(Kind, MD); + } + return I; +} + +/// \returns The type that all of the values in \p VL have or null if there +/// are different types. +static Type* getSameType(ArrayRef<Value *> VL) { + Type *Ty = VL[0]->getType(); + for (int i = 1, e = VL.size(); i < e; i++) + if (VL[i]->getType() != Ty) + return nullptr; + + return Ty; +} + +/// \returns True if the ExtractElement instructions in VL can be vectorized +/// to use the original vector. +static bool CanReuseExtract(ArrayRef<Value *> VL) { + assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); + // Check if all of the extracts come from the same vector and from the + // correct offset. + Value *VL0 = VL[0]; + ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); + Value *Vec = E0->getOperand(0); + + // We have to extract from the same vector type. + unsigned NElts = Vec->getType()->getVectorNumElements(); + + if (NElts != VL.size()) + return false; + + // Check that all of the indices extract from the correct offset. + ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); + if (!CI || CI->getZExtValue()) + return false; + + for (unsigned i = 1, e = VL.size(); i < e; ++i) { + ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); + ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); + + if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) + return false; + } + + return true; +} + +/// \returns True if in-tree use also needs extract. This refers to +/// possible scalar operand in vectorized instruction. +static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, + TargetLibraryInfo *TLI) { + + unsigned Opcode = UserInst->getOpcode(); + switch (Opcode) { + case Instruction::Load: { + LoadInst *LI = cast<LoadInst>(UserInst); + return (LI->getPointerOperand() == Scalar); + } + case Instruction::Store: { + StoreInst *SI = cast<StoreInst>(UserInst); + return (SI->getPointerOperand() == Scalar); + } + case Instruction::Call: { + CallInst *CI = cast<CallInst>(UserInst); + Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + if (hasVectorInstrinsicScalarOpd(ID, 1)) { + return (CI->getArgOperand(1) == Scalar); + } + } + default: + return false; + } +} + +/// \returns the AA location that is being access by the instruction. +static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + return MemoryLocation::get(SI); + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + return MemoryLocation::get(LI); + return MemoryLocation(); +} + +/// \returns True if the instruction is not a volatile or atomic load/store. +static bool isSimple(Instruction *I) { + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + return LI->isSimple(); + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + return SI->isSimple(); + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) + return !MI->isVolatile(); + return true; +} + +/// Bottom Up SLP Vectorizer. +class BoUpSLP { +public: + typedef SmallVector<Value *, 8> ValueList; + typedef SmallVector<Instruction *, 16> InstrList; + typedef SmallPtrSet<Value *, 16> ValueSet; + typedef SmallVector<StoreInst *, 8> StoreList; + + BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, + TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, + DominatorTree *Dt, AssumptionCache *AC) + : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), + SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), + Builder(Se->getContext()) { + CodeMetrics::collectEphemeralValues(F, AC, EphValues); + } + + /// \brief Vectorize the tree that starts with the elements in \p VL. + /// Returns the vectorized root. + Value *vectorizeTree(); + + /// \returns the cost incurred by unwanted spills and fills, caused by + /// holding live values over call sites. + int getSpillCost(); + + /// \returns the vectorization cost of the subtree that starts at \p VL. + /// A negative number means that this is profitable. + int getTreeCost(); + + /// Construct a vectorizable tree that starts at \p Roots, ignoring users for + /// the purpose of scheduling and extraction in the \p UserIgnoreLst. + void buildTree(ArrayRef<Value *> Roots, + ArrayRef<Value *> UserIgnoreLst = None); + + /// Clear the internal data structures that are created by 'buildTree'. + void deleteTree() { + VectorizableTree.clear(); + ScalarToTreeEntry.clear(); + MustGather.clear(); + ExternalUses.clear(); + NumLoadsWantToKeepOrder = 0; + NumLoadsWantToChangeOrder = 0; + for (auto &Iter : BlocksSchedules) { + BlockScheduling *BS = Iter.second.get(); + BS->clear(); + } + } + + /// \returns true if the memory operations A and B are consecutive. + bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL); + + /// \brief Perform LICM and CSE on the newly generated gather sequences. + void optimizeGatherSequence(); + + /// \returns true if it is beneficial to reverse the vector order. + bool shouldReorder() const { + return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; + } + +private: + struct TreeEntry; + + /// \returns the cost of the vectorizable entry. + int getEntryCost(TreeEntry *E); + + /// This is the recursive part of buildTree. + void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); + + /// Vectorize a single entry in the tree. + Value *vectorizeTree(TreeEntry *E); + + /// Vectorize a single entry in the tree, starting in \p VL. + Value *vectorizeTree(ArrayRef<Value *> VL); + + /// \returns the pointer to the vectorized value if \p VL is already + /// vectorized, or NULL. They may happen in cycles. + Value *alreadyVectorized(ArrayRef<Value *> VL) const; + + /// \brief Take the pointer operand from the Load/Store instruction. + /// \returns NULL if this is not a valid Load/Store instruction. + static Value *getPointerOperand(Value *I); + + /// \brief Take the address space operand from the Load/Store instruction. + /// \returns -1 if this is not a valid Load/Store instruction. + static unsigned getAddressSpaceOperand(Value *I); + + /// \returns the scalarization cost for this type. Scalarization in this + /// context means the creation of vectors from a group of scalars. + int getGatherCost(Type *Ty); + + /// \returns the scalarization cost for this list of values. Assuming that + /// this subtree gets vectorized, we may need to extract the values from the + /// roots. This method calculates the cost of extracting the values. + int getGatherCost(ArrayRef<Value *> VL); + + /// \brief Set the Builder insert point to one after the last instruction in + /// the bundle + void setInsertPointAfterBundle(ArrayRef<Value *> VL); + + /// \returns a vector from a collection of scalars in \p VL. + Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); + + /// \returns whether the VectorizableTree is fully vectorizable and will + /// be beneficial even the tree height is tiny. + bool isFullyVectorizableTinyTree(); + + /// \reorder commutative operands in alt shuffle if they result in + /// vectorized code. + void reorderAltShuffleOperands(ArrayRef<Value *> VL, + SmallVectorImpl<Value *> &Left, + SmallVectorImpl<Value *> &Right); + /// \reorder commutative operands to get better probability of + /// generating vectorized code. + void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, + SmallVectorImpl<Value *> &Left, + SmallVectorImpl<Value *> &Right); + struct TreeEntry { + TreeEntry() : Scalars(), VectorizedValue(nullptr), + NeedToGather(0) {} + + /// \returns true if the scalars in VL are equal to this entry. + bool isSame(ArrayRef<Value *> VL) const { + assert(VL.size() == Scalars.size() && "Invalid size"); + return std::equal(VL.begin(), VL.end(), Scalars.begin()); + } + + /// A vector of scalars. + ValueList Scalars; + + /// The Scalars are vectorized into this value. It is initialized to Null. + Value *VectorizedValue; + + /// Do we need to gather this sequence ? + bool NeedToGather; + }; + + /// Create a new VectorizableTree entry. + TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { + VectorizableTree.emplace_back(); + int idx = VectorizableTree.size() - 1; + TreeEntry *Last = &VectorizableTree[idx]; + Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); + Last->NeedToGather = !Vectorized; + if (Vectorized) { + for (int i = 0, e = VL.size(); i != e; ++i) { + assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); + ScalarToTreeEntry[VL[i]] = idx; + } + } else { + MustGather.insert(VL.begin(), VL.end()); + } + return Last; + } + + /// -- Vectorization State -- + /// Holds all of the tree entries. + std::vector<TreeEntry> VectorizableTree; + + /// Maps a specific scalar to its tree entry. + SmallDenseMap<Value*, int> ScalarToTreeEntry; + + /// A list of scalars that we found that we need to keep as scalars. + ValueSet MustGather; + + /// This POD struct describes one external user in the vectorized tree. + struct ExternalUser { + ExternalUser (Value *S, llvm::User *U, int L) : + Scalar(S), User(U), Lane(L){} + // Which scalar in our function. + Value *Scalar; + // Which user that uses the scalar. + llvm::User *User; + // Which lane does the scalar belong to. + int Lane; + }; + typedef SmallVector<ExternalUser, 16> UserList; + + /// Checks if two instructions may access the same memory. + /// + /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it + /// is invariant in the calling loop. + bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, + Instruction *Inst2) { + + // First check if the result is already in the cache. + AliasCacheKey key = std::make_pair(Inst1, Inst2); + Optional<bool> &result = AliasCache[key]; + if (result.hasValue()) { + return result.getValue(); + } + MemoryLocation Loc2 = getLocation(Inst2, AA); + bool aliased = true; + if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { + // Do the alias check. + aliased = AA->alias(Loc1, Loc2); + } + // Store the result in the cache. + result = aliased; + return aliased; + } + + typedef std::pair<Instruction *, Instruction *> AliasCacheKey; + + /// Cache for alias results. + /// TODO: consider moving this to the AliasAnalysis itself. + DenseMap<AliasCacheKey, Optional<bool>> AliasCache; + + /// Removes an instruction from its block and eventually deletes it. + /// It's like Instruction::eraseFromParent() except that the actual deletion + /// is delayed until BoUpSLP is destructed. + /// This is required to ensure that there are no incorrect collisions in the + /// AliasCache, which can happen if a new instruction is allocated at the + /// same address as a previously deleted instruction. + void eraseInstruction(Instruction *I) { + I->removeFromParent(); + I->dropAllReferences(); + DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); + } + + /// Temporary store for deleted instructions. Instructions will be deleted + /// eventually when the BoUpSLP is destructed. + SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; + + /// A list of values that need to extracted out of the tree. + /// This list holds pairs of (Internal Scalar : External User). + UserList ExternalUses; + + /// Values used only by @llvm.assume calls. + SmallPtrSet<const Value *, 32> EphValues; + + /// Holds all of the instructions that we gathered. + SetVector<Instruction *> GatherSeq; + /// A list of blocks that we are going to CSE. + SetVector<BasicBlock *> CSEBlocks; + + /// Contains all scheduling relevant data for an instruction. + /// A ScheduleData either represents a single instruction or a member of an + /// instruction bundle (= a group of instructions which is combined into a + /// vector instruction). + struct ScheduleData { + + // The initial value for the dependency counters. It means that the + // dependencies are not calculated yet. + enum { InvalidDeps = -1 }; + + ScheduleData() + : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), + NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), + Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), + UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} + + void init(int BlockSchedulingRegionID) { + FirstInBundle = this; + NextInBundle = nullptr; + NextLoadStore = nullptr; + IsScheduled = false; + SchedulingRegionID = BlockSchedulingRegionID; + UnscheduledDepsInBundle = UnscheduledDeps; + clearDependencies(); + } + + /// Returns true if the dependency information has been calculated. + bool hasValidDependencies() const { return Dependencies != InvalidDeps; } + + /// Returns true for single instructions and for bundle representatives + /// (= the head of a bundle). + bool isSchedulingEntity() const { return FirstInBundle == this; } + + /// Returns true if it represents an instruction bundle and not only a + /// single instruction. + bool isPartOfBundle() const { + return NextInBundle != nullptr || FirstInBundle != this; + } + + /// Returns true if it is ready for scheduling, i.e. it has no more + /// unscheduled depending instructions/bundles. + bool isReady() const { + assert(isSchedulingEntity() && + "can't consider non-scheduling entity for ready list"); + return UnscheduledDepsInBundle == 0 && !IsScheduled; + } + + /// Modifies the number of unscheduled dependencies, also updating it for + /// the whole bundle. + int incrementUnscheduledDeps(int Incr) { + UnscheduledDeps += Incr; + return FirstInBundle->UnscheduledDepsInBundle += Incr; + } + + /// Sets the number of unscheduled dependencies to the number of + /// dependencies. + void resetUnscheduledDeps() { + incrementUnscheduledDeps(Dependencies - UnscheduledDeps); + } + + /// Clears all dependency information. + void clearDependencies() { + Dependencies = InvalidDeps; + resetUnscheduledDeps(); + MemoryDependencies.clear(); + } + + void dump(raw_ostream &os) const { + if (!isSchedulingEntity()) { + os << "/ " << *Inst; + } else if (NextInBundle) { + os << '[' << *Inst; + ScheduleData *SD = NextInBundle; + while (SD) { + os << ';' << *SD->Inst; + SD = SD->NextInBundle; + } + os << ']'; + } else { + os << *Inst; + } + } + + Instruction *Inst; + + /// Points to the head in an instruction bundle (and always to this for + /// single instructions). + ScheduleData *FirstInBundle; + + /// Single linked list of all instructions in a bundle. Null if it is a + /// single instruction. + ScheduleData *NextInBundle; + + /// Single linked list of all memory instructions (e.g. load, store, call) + /// in the block - until the end of the scheduling region. + ScheduleData *NextLoadStore; + + /// The dependent memory instructions. + /// This list is derived on demand in calculateDependencies(). + SmallVector<ScheduleData *, 4> MemoryDependencies; + + /// This ScheduleData is in the current scheduling region if this matches + /// the current SchedulingRegionID of BlockScheduling. + int SchedulingRegionID; + + /// Used for getting a "good" final ordering of instructions. + int SchedulingPriority; + + /// The number of dependencies. Constitutes of the number of users of the + /// instruction plus the number of dependent memory instructions (if any). + /// This value is calculated on demand. + /// If InvalidDeps, the number of dependencies is not calculated yet. + /// + int Dependencies; + + /// The number of dependencies minus the number of dependencies of scheduled + /// instructions. As soon as this is zero, the instruction/bundle gets ready + /// for scheduling. + /// Note that this is negative as long as Dependencies is not calculated. + int UnscheduledDeps; + + /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for + /// single instructions. + int UnscheduledDepsInBundle; + + /// True if this instruction is scheduled (or considered as scheduled in the + /// dry-run). + bool IsScheduled; + }; + +#ifndef NDEBUG + friend raw_ostream &operator<<(raw_ostream &os, + const BoUpSLP::ScheduleData &SD); +#endif + + /// Contains all scheduling data for a basic block. + /// + struct BlockScheduling { + + BlockScheduling(BasicBlock *BB) + : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), + ScheduleStart(nullptr), ScheduleEnd(nullptr), + FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), + ScheduleRegionSize(0), + ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), + // Make sure that the initial SchedulingRegionID is greater than the + // initial SchedulingRegionID in ScheduleData (which is 0). + SchedulingRegionID(1) {} + + void clear() { + ReadyInsts.clear(); + ScheduleStart = nullptr; + ScheduleEnd = nullptr; + FirstLoadStoreInRegion = nullptr; + LastLoadStoreInRegion = nullptr; + + // Reduce the maximum schedule region size by the size of the + // previous scheduling run. + ScheduleRegionSizeLimit -= ScheduleRegionSize; + if (ScheduleRegionSizeLimit < MinScheduleRegionSize) + ScheduleRegionSizeLimit = MinScheduleRegionSize; + ScheduleRegionSize = 0; + + // Make a new scheduling region, i.e. all existing ScheduleData is not + // in the new region yet. + ++SchedulingRegionID; + } + + ScheduleData *getScheduleData(Value *V) { + ScheduleData *SD = ScheduleDataMap[V]; + if (SD && SD->SchedulingRegionID == SchedulingRegionID) + return SD; + return nullptr; + } + + bool isInSchedulingRegion(ScheduleData *SD) { + return SD->SchedulingRegionID == SchedulingRegionID; + } + + /// Marks an instruction as scheduled and puts all dependent ready + /// instructions into the ready-list. + template <typename ReadyListType> + void schedule(ScheduleData *SD, ReadyListType &ReadyList) { + SD->IsScheduled = true; + DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); + + ScheduleData *BundleMember = SD; + while (BundleMember) { + // Handle the def-use chain dependencies. + for (Use &U : BundleMember->Inst->operands()) { + ScheduleData *OpDef = getScheduleData(U.get()); + if (OpDef && OpDef->hasValidDependencies() && + OpDef->incrementUnscheduledDeps(-1) == 0) { + // There are no more unscheduled dependencies after decrementing, + // so we can put the dependent instruction into the ready list. + ScheduleData *DepBundle = OpDef->FirstInBundle; + assert(!DepBundle->IsScheduled && + "already scheduled bundle gets ready"); + ReadyList.insert(DepBundle); + DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); + } + } + // Handle the memory dependencies. + for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { + if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { + // There are no more unscheduled dependencies after decrementing, + // so we can put the dependent instruction into the ready list. + ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; + assert(!DepBundle->IsScheduled && + "already scheduled bundle gets ready"); + ReadyList.insert(DepBundle); + DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); + } + } + BundleMember = BundleMember->NextInBundle; + } + } + + /// Put all instructions into the ReadyList which are ready for scheduling. + template <typename ReadyListType> + void initialFillReadyList(ReadyListType &ReadyList) { + for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { + ScheduleData *SD = getScheduleData(I); + if (SD->isSchedulingEntity() && SD->isReady()) { + ReadyList.insert(SD); + DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); + } + } + } + + /// Checks if a bundle of instructions can be scheduled, i.e. has no + /// cyclic dependencies. This is only a dry-run, no instructions are + /// actually moved at this stage. + bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); + + /// Un-bundles a group of instructions. + void cancelScheduling(ArrayRef<Value *> VL); + + /// Extends the scheduling region so that V is inside the region. + /// \returns true if the region size is within the limit. + bool extendSchedulingRegion(Value *V); + + /// Initialize the ScheduleData structures for new instructions in the + /// scheduling region. + void initScheduleData(Instruction *FromI, Instruction *ToI, + ScheduleData *PrevLoadStore, + ScheduleData *NextLoadStore); + + /// Updates the dependency information of a bundle and of all instructions/ + /// bundles which depend on the original bundle. + void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, + BoUpSLP *SLP); + + /// Sets all instruction in the scheduling region to un-scheduled. + void resetSchedule(); + + BasicBlock *BB; + + /// Simple memory allocation for ScheduleData. + std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; + + /// The size of a ScheduleData array in ScheduleDataChunks. + int ChunkSize; + + /// The allocator position in the current chunk, which is the last entry + /// of ScheduleDataChunks. + int ChunkPos; + + /// Attaches ScheduleData to Instruction. + /// Note that the mapping survives during all vectorization iterations, i.e. + /// ScheduleData structures are recycled. + DenseMap<Value *, ScheduleData *> ScheduleDataMap; + + struct ReadyList : SmallVector<ScheduleData *, 8> { + void insert(ScheduleData *SD) { push_back(SD); } + }; + + /// The ready-list for scheduling (only used for the dry-run). + ReadyList ReadyInsts; + + /// The first instruction of the scheduling region. + Instruction *ScheduleStart; + + /// The first instruction _after_ the scheduling region. + Instruction *ScheduleEnd; + + /// The first memory accessing instruction in the scheduling region + /// (can be null). + ScheduleData *FirstLoadStoreInRegion; + + /// The last memory accessing instruction in the scheduling region + /// (can be null). + ScheduleData *LastLoadStoreInRegion; + + /// The current size of the scheduling region. + int ScheduleRegionSize; + + /// The maximum size allowed for the scheduling region. + int ScheduleRegionSizeLimit; + + /// The ID of the scheduling region. For a new vectorization iteration this + /// is incremented which "removes" all ScheduleData from the region. + int SchedulingRegionID; + }; + + /// Attaches the BlockScheduling structures to basic blocks. + MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; + + /// Performs the "real" scheduling. Done before vectorization is actually + /// performed in a basic block. + void scheduleBlock(BlockScheduling *BS); + + /// List of users to ignore during scheduling and that don't need extracting. + ArrayRef<Value *> UserIgnoreList; + + // Number of load-bundles, which contain consecutive loads. + int NumLoadsWantToKeepOrder; + + // Number of load-bundles of size 2, which are consecutive loads if reversed. + int NumLoadsWantToChangeOrder; + + // Analysis and block reference. + Function *F; + ScalarEvolution *SE; + TargetTransformInfo *TTI; + TargetLibraryInfo *TLI; + AliasAnalysis *AA; + LoopInfo *LI; + DominatorTree *DT; + /// Instruction builder to construct the vectorized tree. + IRBuilder<> Builder; +}; + +#ifndef NDEBUG +raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { + SD.dump(os); + return os; +} +#endif + +void BoUpSLP::buildTree(ArrayRef<Value *> Roots, + ArrayRef<Value *> UserIgnoreLst) { + deleteTree(); + UserIgnoreList = UserIgnoreLst; + if (!getSameType(Roots)) + return; + buildTree_rec(Roots, 0); + + // Collect the values that we need to extract from the tree. + for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { + TreeEntry *Entry = &VectorizableTree[EIdx]; + + // For each lane: + for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { + Value *Scalar = Entry->Scalars[Lane]; + + // No need to handle users of gathered values. + if (Entry->NeedToGather) + continue; + + for (User *U : Scalar->users()) { + DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); + + Instruction *UserInst = dyn_cast<Instruction>(U); + if (!UserInst) + continue; + + // Skip in-tree scalars that become vectors + if (ScalarToTreeEntry.count(U)) { + int Idx = ScalarToTreeEntry[U]; + TreeEntry *UseEntry = &VectorizableTree[Idx]; + Value *UseScalar = UseEntry->Scalars[0]; + // Some in-tree scalars will remain as scalar in vectorized + // instructions. If that is the case, the one in Lane 0 will + // be used. + if (UseScalar != U || + !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { + DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U + << ".\n"); + assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); + continue; + } + } + + // Ignore users in the user ignore list. + if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != + UserIgnoreList.end()) + continue; + + DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << + Lane << " from " << *Scalar << ".\n"); + ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); + } + } + } +} + + +void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { + bool SameTy = getSameType(VL); (void)SameTy; + bool isAltShuffle = false; + assert(SameTy && "Invalid types!"); + + if (Depth == RecursionMaxDepth) { + DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); + newTreeEntry(VL, false); + return; + } + + // Don't handle vectors. + if (VL[0]->getType()->isVectorTy()) { + DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); + newTreeEntry(VL, false); + return; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) + if (SI->getValueOperand()->getType()->isVectorTy()) { + DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); + newTreeEntry(VL, false); + return; + } + unsigned Opcode = getSameOpcode(VL); + + // Check that this shuffle vector refers to the alternate + // sequence of opcodes. + if (Opcode == Instruction::ShuffleVector) { + Instruction *I0 = dyn_cast<Instruction>(VL[0]); + unsigned Op = I0->getOpcode(); + if (Op != Instruction::ShuffleVector) + isAltShuffle = true; + } + + // If all of the operands are identical or constant we have a simple solution. + if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { + DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); + newTreeEntry(VL, false); + return; + } + + // We now know that this is a vector of instructions of the same type from + // the same block. + + // Don't vectorize ephemeral values. + for (unsigned i = 0, e = VL.size(); i != e; ++i) { + if (EphValues.count(VL[i])) { + DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << + ") is ephemeral.\n"); + newTreeEntry(VL, false); + return; + } + } + + // Check if this is a duplicate of another entry. + if (ScalarToTreeEntry.count(VL[0])) { + int Idx = ScalarToTreeEntry[VL[0]]; + TreeEntry *E = &VectorizableTree[Idx]; + for (unsigned i = 0, e = VL.size(); i != e; ++i) { + DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); + if (E->Scalars[i] != VL[i]) { + DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); + newTreeEntry(VL, false); + return; + } + } + DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); + return; + } + + // Check that none of the instructions in the bundle are already in the tree. + for (unsigned i = 0, e = VL.size(); i != e; ++i) { + if (ScalarToTreeEntry.count(VL[i])) { + DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << + ") is already in tree.\n"); + newTreeEntry(VL, false); + return; + } + } + + // If any of the scalars is marked as a value that needs to stay scalar then + // we need to gather the scalars. + for (unsigned i = 0, e = VL.size(); i != e; ++i) { + if (MustGather.count(VL[i])) { + DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); + newTreeEntry(VL, false); + return; + } + } + + // Check that all of the users of the scalars that we want to vectorize are + // schedulable. + Instruction *VL0 = cast<Instruction>(VL[0]); + BasicBlock *BB = cast<Instruction>(VL0)->getParent(); + + if (!DT->isReachableFromEntry(BB)) { + // Don't go into unreachable blocks. They may contain instructions with + // dependency cycles which confuse the final scheduling. + DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); + newTreeEntry(VL, false); + return; + } + + // Check that every instructions appears once in this bundle. + for (unsigned i = 0, e = VL.size(); i < e; ++i) + for (unsigned j = i+1; j < e; ++j) + if (VL[i] == VL[j]) { + DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); + newTreeEntry(VL, false); + return; + } + + auto &BSRef = BlocksSchedules[BB]; + if (!BSRef) { + BSRef = llvm::make_unique<BlockScheduling>(BB); + } + BlockScheduling &BS = *BSRef.get(); + + if (!BS.tryScheduleBundle(VL, this)) { + DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); + assert((!BS.getScheduleData(VL[0]) || + !BS.getScheduleData(VL[0])->isPartOfBundle()) && + "tryScheduleBundle should cancelScheduling on failure"); + newTreeEntry(VL, false); + return; + } + DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); + + switch (Opcode) { + case Instruction::PHI: { + PHINode *PH = dyn_cast<PHINode>(VL0); + + // Check for terminator values (e.g. invoke). + for (unsigned j = 0; j < VL.size(); ++j) + for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { + TerminatorInst *Term = dyn_cast<TerminatorInst>( + cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); + if (Term) { + DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + return; + } + } + + newTreeEntry(VL, true); + DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); + + for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (unsigned j = 0; j < VL.size(); ++j) + Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( + PH->getIncomingBlock(i))); + + buildTree_rec(Operands, Depth + 1); + } + return; + } + case Instruction::ExtractElement: { + bool Reuse = CanReuseExtract(VL); + if (Reuse) { + DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); + } else { + BS.cancelScheduling(VL); + } + newTreeEntry(VL, Reuse); + return; + } + case Instruction::Load: { + // Check that a vectorized load would load the same memory as a scalar + // load. + // For example we don't want vectorize loads that are smaller than 8 bit. + // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats + // loading/storing it as an i8 struct. If we vectorize loads/stores from + // such a struct we read/write packed bits disagreeing with the + // unvectorized version. + const DataLayout &DL = F->getParent()->getDataLayout(); + Type *ScalarTy = VL[0]->getType(); + + if (DL.getTypeSizeInBits(ScalarTy) != + DL.getTypeAllocSizeInBits(ScalarTy)) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); + return; + } + // Check if the loads are consecutive or of we need to swizzle them. + for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { + LoadInst *L = cast<LoadInst>(VL[i]); + if (!L->isSimple()) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); + return; + } + + if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { + if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) { + ++NumLoadsWantToChangeOrder; + } + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); + return; + } + } + ++NumLoadsWantToKeepOrder; + newTreeEntry(VL, true); + DEBUG(dbgs() << "SLP: added a vector of loads.\n"); + return; + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + Type *SrcTy = VL0->getOperand(0)->getType(); + for (unsigned i = 0; i < VL.size(); ++i) { + Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); + if (Ty != SrcTy || !isValidElementType(Ty)) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); + return; + } + } + newTreeEntry(VL, true); + DEBUG(dbgs() << "SLP: added a vector of casts.\n"); + + for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (unsigned j = 0; j < VL.size(); ++j) + Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + + buildTree_rec(Operands, Depth+1); + } + return; + } + case Instruction::ICmp: + case Instruction::FCmp: { + // Check that all of the compares have the same predicate. + CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); + Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); + for (unsigned i = 1, e = VL.size(); i < e; ++i) { + CmpInst *Cmp = cast<CmpInst>(VL[i]); + if (Cmp->getPredicate() != P0 || + Cmp->getOperand(0)->getType() != ComparedTy) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); + return; + } + } + + newTreeEntry(VL, true); + DEBUG(dbgs() << "SLP: added a vector of compares.\n"); + + for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (unsigned j = 0; j < VL.size(); ++j) + Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + + buildTree_rec(Operands, Depth+1); + } + return; + } + case Instruction::Select: + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + newTreeEntry(VL, true); + DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); + + // Sort operands of the instructions so that each side is more likely to + // have the same opcode. + if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { + ValueList Left, Right; + reorderInputsAccordingToOpcode(VL, Left, Right); + buildTree_rec(Left, Depth + 1); + buildTree_rec(Right, Depth + 1); + return; + } + + for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (unsigned j = 0; j < VL.size(); ++j) + Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + + buildTree_rec(Operands, Depth+1); + } + return; + } + case Instruction::GetElementPtr: { + // We don't combine GEPs with complicated (nested) indexing. + for (unsigned j = 0; j < VL.size(); ++j) { + if (cast<Instruction>(VL[j])->getNumOperands() != 2) { + DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + return; + } + } + + // We can't combine several GEPs into one vector if they operate on + // different types. + Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); + for (unsigned j = 0; j < VL.size(); ++j) { + Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); + if (Ty0 != CurTy) { + DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + return; + } + } + + // We don't combine GEPs with non-constant indexes. + for (unsigned j = 0; j < VL.size(); ++j) { + auto Op = cast<Instruction>(VL[j])->getOperand(1); + if (!isa<ConstantInt>(Op)) { + DEBUG( + dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + return; + } + } + + newTreeEntry(VL, true); + DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); + for (unsigned i = 0, e = 2; i < e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (unsigned j = 0; j < VL.size(); ++j) + Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + + buildTree_rec(Operands, Depth + 1); + } + return; + } + case Instruction::Store: { + const DataLayout &DL = F->getParent()->getDataLayout(); + // Check if the stores are consecutive or of we need to swizzle them. + for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) + if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); + return; + } + + newTreeEntry(VL, true); + DEBUG(dbgs() << "SLP: added a vector of stores.\n"); + + ValueList Operands; + for (unsigned j = 0; j < VL.size(); ++j) + Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); + + buildTree_rec(Operands, Depth + 1); + return; + } + case Instruction::Call: { + // Check if the calls are all to the same vectorizable intrinsic. + CallInst *CI = cast<CallInst>(VL[0]); + // Check if this is an Intrinsic call or something that can be + // represented by an intrinsic call + Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + if (!isTriviallyVectorizable(ID)) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); + return; + } + Function *Int = CI->getCalledFunction(); + Value *A1I = nullptr; + if (hasVectorInstrinsicScalarOpd(ID, 1)) + A1I = CI->getArgOperand(1); + for (unsigned i = 1, e = VL.size(); i != e; ++i) { + CallInst *CI2 = dyn_cast<CallInst>(VL[i]); + if (!CI2 || CI2->getCalledFunction() != Int || + getIntrinsicIDForCall(CI2, TLI) != ID) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] + << "\n"); + return; + } + // ctlz,cttz and powi are special intrinsics whose second argument + // should be same in order for them to be vectorized. + if (hasVectorInstrinsicScalarOpd(ID, 1)) { + Value *A1J = CI2->getArgOperand(1); + if (A1I != A1J) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI + << " argument "<< A1I<<"!=" << A1J + << "\n"); + return; + } + } + } + + newTreeEntry(VL, true); + for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (unsigned j = 0; j < VL.size(); ++j) { + CallInst *CI2 = dyn_cast<CallInst>(VL[j]); + Operands.push_back(CI2->getArgOperand(i)); + } + buildTree_rec(Operands, Depth + 1); + } + return; + } + case Instruction::ShuffleVector: { + // If this is not an alternate sequence of opcode like add-sub + // then do not vectorize this instruction. + if (!isAltShuffle) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); + return; + } + newTreeEntry(VL, true); + DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); + + // Reorder operands if reordering would enable vectorization. + if (isa<BinaryOperator>(VL0)) { + ValueList Left, Right; + reorderAltShuffleOperands(VL, Left, Right); + buildTree_rec(Left, Depth + 1); + buildTree_rec(Right, Depth + 1); + return; + } + + for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (unsigned j = 0; j < VL.size(); ++j) + Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + + buildTree_rec(Operands, Depth + 1); + } + return; + } + default: + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); + return; + } +} + +int BoUpSLP::getEntryCost(TreeEntry *E) { + ArrayRef<Value*> VL = E->Scalars; + + Type *ScalarTy = VL[0]->getType(); + if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) + ScalarTy = SI->getValueOperand()->getType(); + VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); + + if (E->NeedToGather) { + if (allConstant(VL)) + return 0; + if (isSplat(VL)) { + return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); + } + return getGatherCost(E->Scalars); + } + unsigned Opcode = getSameOpcode(VL); + assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); + Instruction *VL0 = cast<Instruction>(VL[0]); + switch (Opcode) { + case Instruction::PHI: { + return 0; + } + case Instruction::ExtractElement: { + if (CanReuseExtract(VL)) { + int DeadCost = 0; + for (unsigned i = 0, e = VL.size(); i < e; ++i) { + ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); + if (E->hasOneUse()) + // Take credit for instruction that will become dead. + DeadCost += + TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); + } + return -DeadCost; + } + return getGatherCost(VecTy); + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + Type *SrcTy = VL0->getOperand(0)->getType(); + + // Calculate the cost of this instruction. + int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), + VL0->getType(), SrcTy); + + VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); + int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); + return VecCost - ScalarCost; + } + case Instruction::FCmp: + case Instruction::ICmp: + case Instruction::Select: + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + // Calculate the cost of this instruction. + int ScalarCost = 0; + int VecCost = 0; + if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || + Opcode == Instruction::Select) { + VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); + ScalarCost = VecTy->getNumElements() * + TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); + VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); + } else { + // Certain instructions can be cheaper to vectorize if they have a + // constant second vector operand. + TargetTransformInfo::OperandValueKind Op1VK = + TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueKind Op2VK = + TargetTransformInfo::OK_UniformConstantValue; + TargetTransformInfo::OperandValueProperties Op1VP = + TargetTransformInfo::OP_None; + TargetTransformInfo::OperandValueProperties Op2VP = + TargetTransformInfo::OP_None; + + // If all operands are exactly the same ConstantInt then set the + // operand kind to OK_UniformConstantValue. + // If instead not all operands are constants, then set the operand kind + // to OK_AnyValue. If all operands are constants but not the same, + // then set the operand kind to OK_NonUniformConstantValue. + ConstantInt *CInt = nullptr; + for (unsigned i = 0; i < VL.size(); ++i) { + const Instruction *I = cast<Instruction>(VL[i]); + if (!isa<ConstantInt>(I->getOperand(1))) { + Op2VK = TargetTransformInfo::OK_AnyValue; + break; + } + if (i == 0) { + CInt = cast<ConstantInt>(I->getOperand(1)); + continue; + } + if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && + CInt != cast<ConstantInt>(I->getOperand(1))) + Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; + } + // FIXME: Currently cost of model modification for division by + // power of 2 is handled only for X86. Add support for other targets. + if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && + CInt->getValue().isPowerOf2()) + Op2VP = TargetTransformInfo::OP_PowerOf2; + + ScalarCost = VecTy->getNumElements() * + TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, + Op1VP, Op2VP); + VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, + Op1VP, Op2VP); + } + return VecCost - ScalarCost; + } + case Instruction::GetElementPtr: { + TargetTransformInfo::OperandValueKind Op1VK = + TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueKind Op2VK = + TargetTransformInfo::OK_UniformConstantValue; + + int ScalarCost = + VecTy->getNumElements() * + TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); + int VecCost = + TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); + + return VecCost - ScalarCost; + } + case Instruction::Load: { + // Cost of wide load - cost of scalar loads. + int ScalarLdCost = VecTy->getNumElements() * + TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); + int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); + return VecLdCost - ScalarLdCost; + } + case Instruction::Store: { + // We know that we can merge the stores. Calculate the cost. + int ScalarStCost = VecTy->getNumElements() * + TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); + int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); + return VecStCost - ScalarStCost; + } + case Instruction::Call: { + CallInst *CI = cast<CallInst>(VL0); + Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + + // Calculate the cost of the scalar and vector calls. + SmallVector<Type*, 4> ScalarTys, VecTys; + for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { + ScalarTys.push_back(CI->getArgOperand(op)->getType()); + VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), + VecTy->getNumElements())); + } + + int ScalarCallCost = VecTy->getNumElements() * + TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); + + int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); + + DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost + << " (" << VecCallCost << "-" << ScalarCallCost << ")" + << " for " << *CI << "\n"); + + return VecCallCost - ScalarCallCost; + } + case Instruction::ShuffleVector: { + TargetTransformInfo::OperandValueKind Op1VK = + TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueKind Op2VK = + TargetTransformInfo::OK_AnyValue; + int ScalarCost = 0; + int VecCost = 0; + for (unsigned i = 0; i < VL.size(); ++i) { + Instruction *I = cast<Instruction>(VL[i]); + if (!I) + break; + ScalarCost += + TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); + } + // VecCost is equal to sum of the cost of creating 2 vectors + // and the cost of creating shuffle. + Instruction *I0 = cast<Instruction>(VL[0]); + VecCost = + TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); + Instruction *I1 = cast<Instruction>(VL[1]); + VecCost += + TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); + VecCost += + TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); + return VecCost - ScalarCost; + } + default: + llvm_unreachable("Unknown instruction"); + } +} + +bool BoUpSLP::isFullyVectorizableTinyTree() { + DEBUG(dbgs() << "SLP: Check whether the tree with height " << + VectorizableTree.size() << " is fully vectorizable .\n"); + + // We only handle trees of height 2. + if (VectorizableTree.size() != 2) + return false; + + // Handle splat and all-constants stores. + if (!VectorizableTree[0].NeedToGather && + (allConstant(VectorizableTree[1].Scalars) || + isSplat(VectorizableTree[1].Scalars))) + return true; + + // Gathering cost would be too much for tiny trees. + if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) + return false; + + return true; +} + +int BoUpSLP::getSpillCost() { + // Walk from the bottom of the tree to the top, tracking which values are + // live. When we see a call instruction that is not part of our tree, + // query TTI to see if there is a cost to keeping values live over it + // (for example, if spills and fills are required). + unsigned BundleWidth = VectorizableTree.front().Scalars.size(); + int Cost = 0; + + SmallPtrSet<Instruction*, 4> LiveValues; + Instruction *PrevInst = nullptr; + + for (unsigned N = 0; N < VectorizableTree.size(); ++N) { + Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); + if (!Inst) + continue; + + if (!PrevInst) { + PrevInst = Inst; + continue; + } + + DEBUG( + dbgs() << "SLP: #LV: " << LiveValues.size(); + for (auto *X : LiveValues) + dbgs() << " " << X->getName(); + dbgs() << ", Looking at "; + Inst->dump(); + ); + + // Update LiveValues. + LiveValues.erase(PrevInst); + for (auto &J : PrevInst->operands()) { + if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) + LiveValues.insert(cast<Instruction>(&*J)); + } + + // Now find the sequence of instructions between PrevInst and Inst. + BasicBlock::reverse_iterator InstIt(Inst->getIterator()), + PrevInstIt(PrevInst->getIterator()); + --PrevInstIt; + while (InstIt != PrevInstIt) { + if (PrevInstIt == PrevInst->getParent()->rend()) { + PrevInstIt = Inst->getParent()->rbegin(); + continue; + } + + if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { + SmallVector<Type*, 4> V; + for (auto *II : LiveValues) + V.push_back(VectorType::get(II->getType(), BundleWidth)); + Cost += TTI->getCostOfKeepingLiveOverCall(V); + } + + ++PrevInstIt; + } + + PrevInst = Inst; + } + + DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n"); + return Cost; +} + +int BoUpSLP::getTreeCost() { + int Cost = 0; + DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << + VectorizableTree.size() << ".\n"); + + // We only vectorize tiny trees if it is fully vectorizable. + if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { + if (VectorizableTree.empty()) { + assert(!ExternalUses.size() && "We should not have any external users"); + } + return INT_MAX; + } + + unsigned BundleWidth = VectorizableTree[0].Scalars.size(); + + for (TreeEntry &TE : VectorizableTree) { + int C = getEntryCost(&TE); + DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " + << TE.Scalars[0] << " .\n"); + Cost += C; + } + + SmallSet<Value *, 16> ExtractCostCalculated; + int ExtractCost = 0; + for (ExternalUser &EU : ExternalUses) { + // We only add extract cost once for the same scalar. + if (!ExtractCostCalculated.insert(EU.Scalar).second) + continue; + + // Uses by ephemeral values are free (because the ephemeral value will be + // removed prior to code generation, and so the extraction will be + // removed as well). + if (EphValues.count(EU.User)) + continue; + + VectorType *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); + ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, + EU.Lane); + } + + Cost += getSpillCost(); + + DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); + return Cost + ExtractCost; +} + +int BoUpSLP::getGatherCost(Type *Ty) { + int Cost = 0; + for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) + Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); + return Cost; +} + +int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { + // Find the type of the operands in VL. + Type *ScalarTy = VL[0]->getType(); + if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) + ScalarTy = SI->getValueOperand()->getType(); + VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); + // Find the cost of inserting/extracting values from the vector. + return getGatherCost(VecTy); +} + +Value *BoUpSLP::getPointerOperand(Value *I) { + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + return LI->getPointerOperand(); + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + return SI->getPointerOperand(); + return nullptr; +} + +unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { + if (LoadInst *L = dyn_cast<LoadInst>(I)) + return L->getPointerAddressSpace(); + if (StoreInst *S = dyn_cast<StoreInst>(I)) + return S->getPointerAddressSpace(); + return -1; +} + +bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) { + Value *PtrA = getPointerOperand(A); + Value *PtrB = getPointerOperand(B); + unsigned ASA = getAddressSpaceOperand(A); + unsigned ASB = getAddressSpaceOperand(B); + + // Check that the address spaces match and that the pointers are valid. + if (!PtrA || !PtrB || (ASA != ASB)) + return false; + + // Make sure that A and B are different pointers of the same type. + if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) + return false; + + unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); + Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); + APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); + + APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); + PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); + PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); + + APInt OffsetDelta = OffsetB - OffsetA; + + // Check if they are based on the same pointer. That makes the offsets + // sufficient. + if (PtrA == PtrB) + return OffsetDelta == Size; + + // Compute the necessary base pointer delta to have the necessary final delta + // equal to the size. + APInt BaseDelta = Size - OffsetDelta; + + // Otherwise compute the distance with SCEV between the base pointers. + const SCEV *PtrSCEVA = SE->getSCEV(PtrA); + const SCEV *PtrSCEVB = SE->getSCEV(PtrB); + const SCEV *C = SE->getConstant(BaseDelta); + const SCEV *X = SE->getAddExpr(PtrSCEVA, C); + return X == PtrSCEVB; +} + +// Reorder commutative operations in alternate shuffle if the resulting vectors +// are consecutive loads. This would allow us to vectorize the tree. +// If we have something like- +// load a[0] - load b[0] +// load b[1] + load a[1] +// load a[2] - load b[2] +// load a[3] + load b[3] +// Reordering the second load b[1] load a[1] would allow us to vectorize this +// code. +void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, + SmallVectorImpl<Value *> &Left, + SmallVectorImpl<Value *> &Right) { + const DataLayout &DL = F->getParent()->getDataLayout(); + + // Push left and right operands of binary operation into Left and Right + for (unsigned i = 0, e = VL.size(); i < e; ++i) { + Left.push_back(cast<Instruction>(VL[i])->getOperand(0)); + Right.push_back(cast<Instruction>(VL[i])->getOperand(1)); + } + + // Reorder if we have a commutative operation and consecutive access + // are on either side of the alternate instructions. + for (unsigned j = 0; j < VL.size() - 1; ++j) { + if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { + if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { + Instruction *VL1 = cast<Instruction>(VL[j]); + Instruction *VL2 = cast<Instruction>(VL[j + 1]); + if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { + std::swap(Left[j], Right[j]); + continue; + } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { + std::swap(Left[j + 1], Right[j + 1]); + continue; + } + // else unchanged + } + } + if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { + if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { + Instruction *VL1 = cast<Instruction>(VL[j]); + Instruction *VL2 = cast<Instruction>(VL[j + 1]); + if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { + std::swap(Left[j], Right[j]); + continue; + } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { + std::swap(Left[j + 1], Right[j + 1]); + continue; + } + // else unchanged + } + } + } +} + +// Return true if I should be commuted before adding it's left and right +// operands to the arrays Left and Right. +// +// The vectorizer is trying to either have all elements one side being +// instruction with the same opcode to enable further vectorization, or having +// a splat to lower the vectorizing cost. +static bool shouldReorderOperands(int i, Instruction &I, + SmallVectorImpl<Value *> &Left, + SmallVectorImpl<Value *> &Right, + bool AllSameOpcodeLeft, + bool AllSameOpcodeRight, bool SplatLeft, + bool SplatRight) { + Value *VLeft = I.getOperand(0); + Value *VRight = I.getOperand(1); + // If we have "SplatRight", try to see if commuting is needed to preserve it. + if (SplatRight) { + if (VRight == Right[i - 1]) + // Preserve SplatRight + return false; + if (VLeft == Right[i - 1]) { + // Commuting would preserve SplatRight, but we don't want to break + // SplatLeft either, i.e. preserve the original order if possible. + // (FIXME: why do we care?) + if (SplatLeft && VLeft == Left[i - 1]) + return false; + return true; + } + } + // Symmetrically handle Right side. + if (SplatLeft) { + if (VLeft == Left[i - 1]) + // Preserve SplatLeft + return false; + if (VRight == Left[i - 1]) + return true; + } + + Instruction *ILeft = dyn_cast<Instruction>(VLeft); + Instruction *IRight = dyn_cast<Instruction>(VRight); + + // If we have "AllSameOpcodeRight", try to see if the left operands preserves + // it and not the right, in this case we want to commute. + if (AllSameOpcodeRight) { + unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); + if (IRight && RightPrevOpcode == IRight->getOpcode()) + // Do not commute, a match on the right preserves AllSameOpcodeRight + return false; + if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { + // We have a match and may want to commute, but first check if there is + // not also a match on the existing operands on the Left to preserve + // AllSameOpcodeLeft, i.e. preserve the original order if possible. + // (FIXME: why do we care?) + if (AllSameOpcodeLeft && ILeft && + cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) + return false; + return true; + } + } + // Symmetrically handle Left side. + if (AllSameOpcodeLeft) { + unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); + if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) + return false; + if (IRight && LeftPrevOpcode == IRight->getOpcode()) + return true; + } + return false; +} + +void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, + SmallVectorImpl<Value *> &Left, + SmallVectorImpl<Value *> &Right) { + + if (VL.size()) { + // Peel the first iteration out of the loop since there's nothing + // interesting to do anyway and it simplifies the checks in the loop. + auto VLeft = cast<Instruction>(VL[0])->getOperand(0); + auto VRight = cast<Instruction>(VL[0])->getOperand(1); + if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) + // Favor having instruction to the right. FIXME: why? + std::swap(VLeft, VRight); + Left.push_back(VLeft); + Right.push_back(VRight); + } + + // Keep track if we have instructions with all the same opcode on one side. + bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); + bool AllSameOpcodeRight = isa<Instruction>(Right[0]); + // Keep track if we have one side with all the same value (broadcast). + bool SplatLeft = true; + bool SplatRight = true; + + for (unsigned i = 1, e = VL.size(); i != e; ++i) { + Instruction *I = cast<Instruction>(VL[i]); + assert(I->isCommutative() && "Can only process commutative instruction"); + // Commute to favor either a splat or maximizing having the same opcodes on + // one side. + if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, + AllSameOpcodeRight, SplatLeft, SplatRight)) { + Left.push_back(I->getOperand(1)); + Right.push_back(I->getOperand(0)); + } else { + Left.push_back(I->getOperand(0)); + Right.push_back(I->getOperand(1)); + } + // Update Splat* and AllSameOpcode* after the insertion. + SplatRight = SplatRight && (Right[i - 1] == Right[i]); + SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); + AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && + (cast<Instruction>(Left[i - 1])->getOpcode() == + cast<Instruction>(Left[i])->getOpcode()); + AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && + (cast<Instruction>(Right[i - 1])->getOpcode() == + cast<Instruction>(Right[i])->getOpcode()); + } + + // If one operand end up being broadcast, return this operand order. + if (SplatRight || SplatLeft) + return; + + const DataLayout &DL = F->getParent()->getDataLayout(); + + // Finally check if we can get longer vectorizable chain by reordering + // without breaking the good operand order detected above. + // E.g. If we have something like- + // load a[0] load b[0] + // load b[1] load a[1] + // load a[2] load b[2] + // load a[3] load b[3] + // Reordering the second load b[1] load a[1] would allow us to vectorize + // this code and we still retain AllSameOpcode property. + // FIXME: This load reordering might break AllSameOpcode in some rare cases + // such as- + // add a[0],c[0] load b[0] + // add a[1],c[2] load b[1] + // b[2] load b[2] + // add a[3],c[3] load b[3] + for (unsigned j = 0; j < VL.size() - 1; ++j) { + if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { + if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { + if (isConsecutiveAccess(L, L1, DL)) { + std::swap(Left[j + 1], Right[j + 1]); + continue; + } + } + } + if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { + if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { + if (isConsecutiveAccess(L, L1, DL)) { + std::swap(Left[j + 1], Right[j + 1]); + continue; + } + } + } + // else unchanged + } +} + +void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { + Instruction *VL0 = cast<Instruction>(VL[0]); + BasicBlock::iterator NextInst(VL0); + ++NextInst; + Builder.SetInsertPoint(VL0->getParent(), NextInst); + Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); +} + +Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { + Value *Vec = UndefValue::get(Ty); + // Generate the 'InsertElement' instruction. + for (unsigned i = 0; i < Ty->getNumElements(); ++i) { + Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); + if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { + GatherSeq.insert(Insrt); + CSEBlocks.insert(Insrt->getParent()); + + // Add to our 'need-to-extract' list. + if (ScalarToTreeEntry.count(VL[i])) { + int Idx = ScalarToTreeEntry[VL[i]]; + TreeEntry *E = &VectorizableTree[Idx]; + // Find which lane we need to extract. + int FoundLane = -1; + for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { + // Is this the lane of the scalar that we are looking for ? + if (E->Scalars[Lane] == VL[i]) { + FoundLane = Lane; + break; + } + } + assert(FoundLane >= 0 && "Could not find the correct lane"); + ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); + } + } + } + + return Vec; +} + +Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { + SmallDenseMap<Value*, int>::const_iterator Entry + = ScalarToTreeEntry.find(VL[0]); + if (Entry != ScalarToTreeEntry.end()) { + int Idx = Entry->second; + const TreeEntry *En = &VectorizableTree[Idx]; + if (En->isSame(VL) && En->VectorizedValue) + return En->VectorizedValue; + } + return nullptr; +} + +Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { + if (ScalarToTreeEntry.count(VL[0])) { + int Idx = ScalarToTreeEntry[VL[0]]; + TreeEntry *E = &VectorizableTree[Idx]; + if (E->isSame(VL)) + return vectorizeTree(E); + } + + Type *ScalarTy = VL[0]->getType(); + if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) + ScalarTy = SI->getValueOperand()->getType(); + VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); + + return Gather(VL, VecTy); +} + +Value *BoUpSLP::vectorizeTree(TreeEntry *E) { + IRBuilder<>::InsertPointGuard Guard(Builder); + + if (E->VectorizedValue) { + DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); + return E->VectorizedValue; + } + + Instruction *VL0 = cast<Instruction>(E->Scalars[0]); + Type *ScalarTy = VL0->getType(); + if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) + ScalarTy = SI->getValueOperand()->getType(); + VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); + + if (E->NeedToGather) { + setInsertPointAfterBundle(E->Scalars); + return Gather(E->Scalars, VecTy); + } + + const DataLayout &DL = F->getParent()->getDataLayout(); + unsigned Opcode = getSameOpcode(E->Scalars); + + switch (Opcode) { + case Instruction::PHI: { + PHINode *PH = dyn_cast<PHINode>(VL0); + Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); + Builder.SetCurrentDebugLocation(PH->getDebugLoc()); + PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); + E->VectorizedValue = NewPhi; + + // PHINodes may have multiple entries from the same block. We want to + // visit every block once. + SmallSet<BasicBlock*, 4> VisitedBBs; + + for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { + ValueList Operands; + BasicBlock *IBB = PH->getIncomingBlock(i); + + if (!VisitedBBs.insert(IBB).second) { + NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); + continue; + } + + // Prepare the operand vector. + for (Value *V : E->Scalars) + Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); + + Builder.SetInsertPoint(IBB->getTerminator()); + Builder.SetCurrentDebugLocation(PH->getDebugLoc()); + Value *Vec = vectorizeTree(Operands); + NewPhi->addIncoming(Vec, IBB); + } + + assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && + "Invalid number of incoming values"); + return NewPhi; + } + + case Instruction::ExtractElement: { + if (CanReuseExtract(E->Scalars)) { + Value *V = VL0->getOperand(0); + E->VectorizedValue = V; + return V; + } + return Gather(E->Scalars, VecTy); + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + ValueList INVL; + for (Value *V : E->Scalars) + INVL.push_back(cast<Instruction>(V)->getOperand(0)); + + setInsertPointAfterBundle(E->Scalars); + + Value *InVec = vectorizeTree(INVL); + + if (Value *V = alreadyVectorized(E->Scalars)) + return V; + + CastInst *CI = dyn_cast<CastInst>(VL0); + Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::FCmp: + case Instruction::ICmp: { + ValueList LHSV, RHSV; + for (Value *V : E->Scalars) { + LHSV.push_back(cast<Instruction>(V)->getOperand(0)); + RHSV.push_back(cast<Instruction>(V)->getOperand(1)); + } + + setInsertPointAfterBundle(E->Scalars); + + Value *L = vectorizeTree(LHSV); + Value *R = vectorizeTree(RHSV); + + if (Value *V = alreadyVectorized(E->Scalars)) + return V; + + CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); + Value *V; + if (Opcode == Instruction::FCmp) + V = Builder.CreateFCmp(P0, L, R); + else + V = Builder.CreateICmp(P0, L, R); + + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::Select: { + ValueList TrueVec, FalseVec, CondVec; + for (Value *V : E->Scalars) { + CondVec.push_back(cast<Instruction>(V)->getOperand(0)); + TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); + FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); + } + + setInsertPointAfterBundle(E->Scalars); + + Value *Cond = vectorizeTree(CondVec); + Value *True = vectorizeTree(TrueVec); + Value *False = vectorizeTree(FalseVec); + + if (Value *V = alreadyVectorized(E->Scalars)) + return V; + + Value *V = Builder.CreateSelect(Cond, True, False); + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + ValueList LHSVL, RHSVL; + if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) + reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); + else + for (Value *V : E->Scalars) { + LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); + RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); + } + + setInsertPointAfterBundle(E->Scalars); + + Value *LHS = vectorizeTree(LHSVL); + Value *RHS = vectorizeTree(RHSVL); + + if (LHS == RHS && isa<Instruction>(LHS)) { + assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); + } + + if (Value *V = alreadyVectorized(E->Scalars)) + return V; + + BinaryOperator *BinOp = cast<BinaryOperator>(VL0); + Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); + E->VectorizedValue = V; + propagateIRFlags(E->VectorizedValue, E->Scalars); + ++NumVectorInstructions; + + if (Instruction *I = dyn_cast<Instruction>(V)) + return propagateMetadata(I, E->Scalars); + + return V; + } + case Instruction::Load: { + // Loads are inserted at the head of the tree because we don't want to + // sink them all the way down past store instructions. + setInsertPointAfterBundle(E->Scalars); + + LoadInst *LI = cast<LoadInst>(VL0); + Type *ScalarLoadTy = LI->getType(); + unsigned AS = LI->getPointerAddressSpace(); + + Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), + VecTy->getPointerTo(AS)); + + // The pointer operand uses an in-tree scalar so we add the new BitCast to + // ExternalUses list to make sure that an extract will be generated in the + // future. + if (ScalarToTreeEntry.count(LI->getPointerOperand())) + ExternalUses.push_back( + ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); + + unsigned Alignment = LI->getAlignment(); + LI = Builder.CreateLoad(VecPtr); + if (!Alignment) { + Alignment = DL.getABITypeAlignment(ScalarLoadTy); + } + LI->setAlignment(Alignment); + E->VectorizedValue = LI; + ++NumVectorInstructions; + return propagateMetadata(LI, E->Scalars); + } + case Instruction::Store: { + StoreInst *SI = cast<StoreInst>(VL0); + unsigned Alignment = SI->getAlignment(); + unsigned AS = SI->getPointerAddressSpace(); + + ValueList ValueOp; + for (Value *V : E->Scalars) + ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); + + setInsertPointAfterBundle(E->Scalars); + + Value *VecValue = vectorizeTree(ValueOp); + Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), + VecTy->getPointerTo(AS)); + StoreInst *S = Builder.CreateStore(VecValue, VecPtr); + + // The pointer operand uses an in-tree scalar so we add the new BitCast to + // ExternalUses list to make sure that an extract will be generated in the + // future. + if (ScalarToTreeEntry.count(SI->getPointerOperand())) + ExternalUses.push_back( + ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); + + if (!Alignment) { + Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType()); + } + S->setAlignment(Alignment); + E->VectorizedValue = S; + ++NumVectorInstructions; + return propagateMetadata(S, E->Scalars); + } + case Instruction::GetElementPtr: { + setInsertPointAfterBundle(E->Scalars); + + ValueList Op0VL; + for (Value *V : E->Scalars) + Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); + + Value *Op0 = vectorizeTree(Op0VL); + + std::vector<Value *> OpVecs; + for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; + ++j) { + ValueList OpVL; + for (Value *V : E->Scalars) + OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); + + Value *OpVec = vectorizeTree(OpVL); + OpVecs.push_back(OpVec); + } + + Value *V = Builder.CreateGEP( + cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); + E->VectorizedValue = V; + ++NumVectorInstructions; + + if (Instruction *I = dyn_cast<Instruction>(V)) + return propagateMetadata(I, E->Scalars); + + return V; + } + case Instruction::Call: { + CallInst *CI = cast<CallInst>(VL0); + setInsertPointAfterBundle(E->Scalars); + Function *FI; + Intrinsic::ID IID = Intrinsic::not_intrinsic; + Value *ScalarArg = nullptr; + if (CI && (FI = CI->getCalledFunction())) { + IID = FI->getIntrinsicID(); + } + std::vector<Value *> OpVecs; + for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { + ValueList OpVL; + // ctlz,cttz and powi are special intrinsics whose second argument is + // a scalar. This argument should not be vectorized. + if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { + CallInst *CEI = cast<CallInst>(E->Scalars[0]); + ScalarArg = CEI->getArgOperand(j); + OpVecs.push_back(CEI->getArgOperand(j)); + continue; + } + for (Value *V : E->Scalars) { + CallInst *CEI = cast<CallInst>(V); + OpVL.push_back(CEI->getArgOperand(j)); + } + + Value *OpVec = vectorizeTree(OpVL); + DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); + OpVecs.push_back(OpVec); + } + + Module *M = F->getParent(); + Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; + Function *CF = Intrinsic::getDeclaration(M, ID, Tys); + Value *V = Builder.CreateCall(CF, OpVecs); + + // The scalar argument uses an in-tree scalar so we add the new vectorized + // call to ExternalUses list to make sure that an extract will be + // generated in the future. + if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) + ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); + + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::ShuffleVector: { + ValueList LHSVL, RHSVL; + assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); + reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); + setInsertPointAfterBundle(E->Scalars); + + Value *LHS = vectorizeTree(LHSVL); + Value *RHS = vectorizeTree(RHSVL); + + if (Value *V = alreadyVectorized(E->Scalars)) + return V; + + // Create a vector of LHS op1 RHS + BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); + Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); + + // Create a vector of LHS op2 RHS + Instruction *VL1 = cast<Instruction>(E->Scalars[1]); + BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); + Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); + + // Create shuffle to take alternate operations from the vector. + // Also, gather up odd and even scalar ops to propagate IR flags to + // each vector operation. + ValueList OddScalars, EvenScalars; + unsigned e = E->Scalars.size(); + SmallVector<Constant *, 8> Mask(e); + for (unsigned i = 0; i < e; ++i) { + if (i & 1) { + Mask[i] = Builder.getInt32(e + i); + OddScalars.push_back(E->Scalars[i]); + } else { + Mask[i] = Builder.getInt32(i); + EvenScalars.push_back(E->Scalars[i]); + } + } + + Value *ShuffleMask = ConstantVector::get(Mask); + propagateIRFlags(V0, EvenScalars); + propagateIRFlags(V1, OddScalars); + + Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); + E->VectorizedValue = V; + ++NumVectorInstructions; + if (Instruction *I = dyn_cast<Instruction>(V)) + return propagateMetadata(I, E->Scalars); + + return V; + } + default: + llvm_unreachable("unknown inst"); + } + return nullptr; +} + +Value *BoUpSLP::vectorizeTree() { + + // All blocks must be scheduled before any instructions are inserted. + for (auto &BSIter : BlocksSchedules) { + scheduleBlock(BSIter.second.get()); + } + + Builder.SetInsertPoint(&F->getEntryBlock().front()); + vectorizeTree(&VectorizableTree[0]); + + DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); + + // Extract all of the elements with the external uses. + for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); + it != e; ++it) { + Value *Scalar = it->Scalar; + llvm::User *User = it->User; + + // Skip users that we already RAUW. This happens when one instruction + // has multiple uses of the same value. + if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == + Scalar->user_end()) + continue; + assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); + + int Idx = ScalarToTreeEntry[Scalar]; + TreeEntry *E = &VectorizableTree[Idx]; + assert(!E->NeedToGather && "Extracting from a gather list"); + + Value *Vec = E->VectorizedValue; + assert(Vec && "Can't find vectorizable value"); + + Value *Lane = Builder.getInt32(it->Lane); + // Generate extracts for out-of-tree users. + // Find the insertion point for the extractelement lane. + if (isa<Instruction>(Vec)){ + if (PHINode *PH = dyn_cast<PHINode>(User)) { + for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { + if (PH->getIncomingValue(i) == Scalar) { + Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); + Value *Ex = Builder.CreateExtractElement(Vec, Lane); + CSEBlocks.insert(PH->getIncomingBlock(i)); + PH->setOperand(i, Ex); + } + } + } else { + Builder.SetInsertPoint(cast<Instruction>(User)); + Value *Ex = Builder.CreateExtractElement(Vec, Lane); + CSEBlocks.insert(cast<Instruction>(User)->getParent()); + User->replaceUsesOfWith(Scalar, Ex); + } + } else { + Builder.SetInsertPoint(&F->getEntryBlock().front()); + Value *Ex = Builder.CreateExtractElement(Vec, Lane); + CSEBlocks.insert(&F->getEntryBlock()); + User->replaceUsesOfWith(Scalar, Ex); + } + + DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); + } + + // For each vectorized value: + for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { + TreeEntry *Entry = &VectorizableTree[EIdx]; + + // For each lane: + for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { + Value *Scalar = Entry->Scalars[Lane]; + // No need to handle users of gathered values. + if (Entry->NeedToGather) + continue; + + assert(Entry->VectorizedValue && "Can't find vectorizable value"); + + Type *Ty = Scalar->getType(); + if (!Ty->isVoidTy()) { +#ifndef NDEBUG + for (User *U : Scalar->users()) { + DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); + + assert((ScalarToTreeEntry.count(U) || + // It is legal to replace users in the ignorelist by undef. + (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != + UserIgnoreList.end())) && + "Replacing out-of-tree value with undef"); + } +#endif + Value *Undef = UndefValue::get(Ty); + Scalar->replaceAllUsesWith(Undef); + } + DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); + eraseInstruction(cast<Instruction>(Scalar)); + } + } + + Builder.ClearInsertionPoint(); + + return VectorizableTree[0].VectorizedValue; +} + +void BoUpSLP::optimizeGatherSequence() { + DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() + << " gather sequences instructions.\n"); + // LICM InsertElementInst sequences. + for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), + e = GatherSeq.end(); it != e; ++it) { + InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); + + if (!Insert) + continue; + + // Check if this block is inside a loop. + Loop *L = LI->getLoopFor(Insert->getParent()); + if (!L) + continue; + + // Check if it has a preheader. + BasicBlock *PreHeader = L->getLoopPreheader(); + if (!PreHeader) + continue; + + // If the vector or the element that we insert into it are + // instructions that are defined in this basic block then we can't + // hoist this instruction. + Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); + Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); + if (CurrVec && L->contains(CurrVec)) + continue; + if (NewElem && L->contains(NewElem)) + continue; + + // We can hoist this instruction. Move it to the pre-header. + Insert->moveBefore(PreHeader->getTerminator()); + } + + // Make a list of all reachable blocks in our CSE queue. + SmallVector<const DomTreeNode *, 8> CSEWorkList; + CSEWorkList.reserve(CSEBlocks.size()); + for (BasicBlock *BB : CSEBlocks) + if (DomTreeNode *N = DT->getNode(BB)) { + assert(DT->isReachableFromEntry(N)); + CSEWorkList.push_back(N); + } + + // Sort blocks by domination. This ensures we visit a block after all blocks + // dominating it are visited. + std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), + [this](const DomTreeNode *A, const DomTreeNode *B) { + return DT->properlyDominates(A, B); + }); + + // Perform O(N^2) search over the gather sequences and merge identical + // instructions. TODO: We can further optimize this scan if we split the + // instructions into different buckets based on the insert lane. + SmallVector<Instruction *, 16> Visited; + for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { + assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && + "Worklist not sorted properly!"); + BasicBlock *BB = (*I)->getBlock(); + // For all instructions in blocks containing gather sequences: + for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { + Instruction *In = &*it++; + if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) + continue; + + // Check if we can replace this instruction with any of the + // visited instructions. + for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), + ve = Visited.end(); + v != ve; ++v) { + if (In->isIdenticalTo(*v) && + DT->dominates((*v)->getParent(), In->getParent())) { + In->replaceAllUsesWith(*v); + eraseInstruction(In); + In = nullptr; + break; + } + } + if (In) { + assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); + Visited.push_back(In); + } + } + } + CSEBlocks.clear(); + GatherSeq.clear(); +} + +// Groups the instructions to a bundle (which is then a single scheduling entity) +// and schedules instructions until the bundle gets ready. +bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, + BoUpSLP *SLP) { + if (isa<PHINode>(VL[0])) + return true; + + // Initialize the instruction bundle. + Instruction *OldScheduleEnd = ScheduleEnd; + ScheduleData *PrevInBundle = nullptr; + ScheduleData *Bundle = nullptr; + bool ReSchedule = false; + DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); + + // Make sure that the scheduling region contains all + // instructions of the bundle. + for (Value *V : VL) { + if (!extendSchedulingRegion(V)) + return false; + } + + for (Value *V : VL) { + ScheduleData *BundleMember = getScheduleData(V); + assert(BundleMember && + "no ScheduleData for bundle member (maybe not in same basic block)"); + if (BundleMember->IsScheduled) { + // A bundle member was scheduled as single instruction before and now + // needs to be scheduled as part of the bundle. We just get rid of the + // existing schedule. + DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember + << " was already scheduled\n"); + ReSchedule = true; + } + assert(BundleMember->isSchedulingEntity() && + "bundle member already part of other bundle"); + if (PrevInBundle) { + PrevInBundle->NextInBundle = BundleMember; + } else { + Bundle = BundleMember; + } + BundleMember->UnscheduledDepsInBundle = 0; + Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; + + // Group the instructions to a bundle. + BundleMember->FirstInBundle = Bundle; + PrevInBundle = BundleMember; + } + if (ScheduleEnd != OldScheduleEnd) { + // The scheduling region got new instructions at the lower end (or it is a + // new region for the first bundle). This makes it necessary to + // recalculate all dependencies. + // It is seldom that this needs to be done a second time after adding the + // initial bundle to the region. + for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { + ScheduleData *SD = getScheduleData(I); + SD->clearDependencies(); + } + ReSchedule = true; + } + if (ReSchedule) { + resetSchedule(); + initialFillReadyList(ReadyInsts); + } + + DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " + << BB->getName() << "\n"); + + calculateDependencies(Bundle, true, SLP); + + // Now try to schedule the new bundle. As soon as the bundle is "ready" it + // means that there are no cyclic dependencies and we can schedule it. + // Note that's important that we don't "schedule" the bundle yet (see + // cancelScheduling). + while (!Bundle->isReady() && !ReadyInsts.empty()) { + + ScheduleData *pickedSD = ReadyInsts.back(); + ReadyInsts.pop_back(); + + if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { + schedule(pickedSD, ReadyInsts); + } + } + if (!Bundle->isReady()) { + cancelScheduling(VL); + return false; + } + return true; +} + +void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { + if (isa<PHINode>(VL[0])) + return; + + ScheduleData *Bundle = getScheduleData(VL[0]); + DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); + assert(!Bundle->IsScheduled && + "Can't cancel bundle which is already scheduled"); + assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && + "tried to unbundle something which is not a bundle"); + + // Un-bundle: make single instructions out of the bundle. + ScheduleData *BundleMember = Bundle; + while (BundleMember) { + assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); + BundleMember->FirstInBundle = BundleMember; + ScheduleData *Next = BundleMember->NextInBundle; + BundleMember->NextInBundle = nullptr; + BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; + if (BundleMember->UnscheduledDepsInBundle == 0) { + ReadyInsts.insert(BundleMember); + } + BundleMember = Next; + } +} + +bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { + if (getScheduleData(V)) + return true; + Instruction *I = dyn_cast<Instruction>(V); + assert(I && "bundle member must be an instruction"); + assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); + if (!ScheduleStart) { + // It's the first instruction in the new region. + initScheduleData(I, I->getNextNode(), nullptr, nullptr); + ScheduleStart = I; + ScheduleEnd = I->getNextNode(); + assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); + DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); + return true; + } + // Search up and down at the same time, because we don't know if the new + // instruction is above or below the existing scheduling region. + BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); + BasicBlock::reverse_iterator UpperEnd = BB->rend(); + BasicBlock::iterator DownIter(ScheduleEnd); + BasicBlock::iterator LowerEnd = BB->end(); + for (;;) { + if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { + DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); + return false; + } + + if (UpIter != UpperEnd) { + if (&*UpIter == I) { + initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); + ScheduleStart = I; + DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); + return true; + } + UpIter++; + } + if (DownIter != LowerEnd) { + if (&*DownIter == I) { + initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, + nullptr); + ScheduleEnd = I->getNextNode(); + assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); + DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); + return true; + } + DownIter++; + } + assert((UpIter != UpperEnd || DownIter != LowerEnd) && + "instruction not found in block"); + } + return true; +} + +void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, + Instruction *ToI, + ScheduleData *PrevLoadStore, + ScheduleData *NextLoadStore) { + ScheduleData *CurrentLoadStore = PrevLoadStore; + for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { + ScheduleData *SD = ScheduleDataMap[I]; + if (!SD) { + // Allocate a new ScheduleData for the instruction. + if (ChunkPos >= ChunkSize) { + ScheduleDataChunks.push_back( + llvm::make_unique<ScheduleData[]>(ChunkSize)); + ChunkPos = 0; + } + SD = &(ScheduleDataChunks.back()[ChunkPos++]); + ScheduleDataMap[I] = SD; + SD->Inst = I; + } + assert(!isInSchedulingRegion(SD) && + "new ScheduleData already in scheduling region"); + SD->init(SchedulingRegionID); + + if (I->mayReadOrWriteMemory()) { + // Update the linked list of memory accessing instructions. + if (CurrentLoadStore) { + CurrentLoadStore->NextLoadStore = SD; + } else { + FirstLoadStoreInRegion = SD; + } + CurrentLoadStore = SD; + } + } + if (NextLoadStore) { + if (CurrentLoadStore) + CurrentLoadStore->NextLoadStore = NextLoadStore; + } else { + LastLoadStoreInRegion = CurrentLoadStore; + } +} + +void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, + bool InsertInReadyList, + BoUpSLP *SLP) { + assert(SD->isSchedulingEntity()); + + SmallVector<ScheduleData *, 10> WorkList; + WorkList.push_back(SD); + + while (!WorkList.empty()) { + ScheduleData *SD = WorkList.back(); + WorkList.pop_back(); + + ScheduleData *BundleMember = SD; + while (BundleMember) { + assert(isInSchedulingRegion(BundleMember)); + if (!BundleMember->hasValidDependencies()) { + + DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); + BundleMember->Dependencies = 0; + BundleMember->resetUnscheduledDeps(); + + // Handle def-use chain dependencies. + for (User *U : BundleMember->Inst->users()) { + if (isa<Instruction>(U)) { + ScheduleData *UseSD = getScheduleData(U); + if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { + BundleMember->Dependencies++; + ScheduleData *DestBundle = UseSD->FirstInBundle; + if (!DestBundle->IsScheduled) { + BundleMember->incrementUnscheduledDeps(1); + } + if (!DestBundle->hasValidDependencies()) { + WorkList.push_back(DestBundle); + } + } + } else { + // I'm not sure if this can ever happen. But we need to be safe. + // This lets the instruction/bundle never be scheduled and + // eventually disable vectorization. + BundleMember->Dependencies++; + BundleMember->incrementUnscheduledDeps(1); + } + } + + // Handle the memory dependencies. + ScheduleData *DepDest = BundleMember->NextLoadStore; + if (DepDest) { + Instruction *SrcInst = BundleMember->Inst; + MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); + bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); + unsigned numAliased = 0; + unsigned DistToSrc = 1; + + while (DepDest) { + assert(isInSchedulingRegion(DepDest)); + + // We have two limits to reduce the complexity: + // 1) AliasedCheckLimit: It's a small limit to reduce calls to + // SLP->isAliased (which is the expensive part in this loop). + // 2) MaxMemDepDistance: It's for very large blocks and it aborts + // the whole loop (even if the loop is fast, it's quadratic). + // It's important for the loop break condition (see below) to + // check this limit even between two read-only instructions. + if (DistToSrc >= MaxMemDepDistance || + ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && + (numAliased >= AliasedCheckLimit || + SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { + + // We increment the counter only if the locations are aliased + // (instead of counting all alias checks). This gives a better + // balance between reduced runtime and accurate dependencies. + numAliased++; + + DepDest->MemoryDependencies.push_back(BundleMember); + BundleMember->Dependencies++; + ScheduleData *DestBundle = DepDest->FirstInBundle; + if (!DestBundle->IsScheduled) { + BundleMember->incrementUnscheduledDeps(1); + } + if (!DestBundle->hasValidDependencies()) { + WorkList.push_back(DestBundle); + } + } + DepDest = DepDest->NextLoadStore; + + // Example, explaining the loop break condition: Let's assume our + // starting instruction is i0 and MaxMemDepDistance = 3. + // + // +--------v--v--v + // i0,i1,i2,i3,i4,i5,i6,i7,i8 + // +--------^--^--^ + // + // MaxMemDepDistance let us stop alias-checking at i3 and we add + // dependencies from i0 to i3,i4,.. (even if they are not aliased). + // Previously we already added dependencies from i3 to i6,i7,i8 + // (because of MaxMemDepDistance). As we added a dependency from + // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 + // and we can abort this loop at i6. + if (DistToSrc >= 2 * MaxMemDepDistance) + break; + DistToSrc++; + } + } + } + BundleMember = BundleMember->NextInBundle; + } + if (InsertInReadyList && SD->isReady()) { + ReadyInsts.push_back(SD); + DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); + } + } +} + +void BoUpSLP::BlockScheduling::resetSchedule() { + assert(ScheduleStart && + "tried to reset schedule on block which has not been scheduled"); + for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { + ScheduleData *SD = getScheduleData(I); + assert(isInSchedulingRegion(SD)); + SD->IsScheduled = false; + SD->resetUnscheduledDeps(); + } + ReadyInsts.clear(); +} + +void BoUpSLP::scheduleBlock(BlockScheduling *BS) { + + if (!BS->ScheduleStart) + return; + + DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); + + BS->resetSchedule(); + + // For the real scheduling we use a more sophisticated ready-list: it is + // sorted by the original instruction location. This lets the final schedule + // be as close as possible to the original instruction order. + struct ScheduleDataCompare { + bool operator()(ScheduleData *SD1, ScheduleData *SD2) { + return SD2->SchedulingPriority < SD1->SchedulingPriority; + } + }; + std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; + + // Ensure that all dependency data is updated and fill the ready-list with + // initial instructions. + int Idx = 0; + int NumToSchedule = 0; + for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; + I = I->getNextNode()) { + ScheduleData *SD = BS->getScheduleData(I); + assert( + SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && + "scheduler and vectorizer have different opinion on what is a bundle"); + SD->FirstInBundle->SchedulingPriority = Idx++; + if (SD->isSchedulingEntity()) { + BS->calculateDependencies(SD, false, this); + NumToSchedule++; + } + } + BS->initialFillReadyList(ReadyInsts); + + Instruction *LastScheduledInst = BS->ScheduleEnd; + + // Do the "real" scheduling. + while (!ReadyInsts.empty()) { + ScheduleData *picked = *ReadyInsts.begin(); + ReadyInsts.erase(ReadyInsts.begin()); + + // Move the scheduled instruction(s) to their dedicated places, if not + // there yet. + ScheduleData *BundleMember = picked; + while (BundleMember) { + Instruction *pickedInst = BundleMember->Inst; + if (LastScheduledInst->getNextNode() != pickedInst) { + BS->BB->getInstList().remove(pickedInst); + BS->BB->getInstList().insert(LastScheduledInst->getIterator(), + pickedInst); + } + LastScheduledInst = pickedInst; + BundleMember = BundleMember->NextInBundle; + } + + BS->schedule(picked, ReadyInsts); + NumToSchedule--; + } + assert(NumToSchedule == 0 && "could not schedule all instructions"); + + // Avoid duplicate scheduling of the block. + BS->ScheduleStart = nullptr; +} + +/// The SLPVectorizer Pass. +struct SLPVectorizer : public FunctionPass { + typedef SmallVector<StoreInst *, 8> StoreList; + typedef MapVector<Value *, StoreList> StoreListMap; + + /// Pass identification, replacement for typeid + static char ID; + + explicit SLPVectorizer() : FunctionPass(ID) { + initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); + } + + ScalarEvolution *SE; + TargetTransformInfo *TTI; + TargetLibraryInfo *TLI; + AliasAnalysis *AA; + LoopInfo *LI; + DominatorTree *DT; + AssumptionCache *AC; + + bool runOnFunction(Function &F) override { + if (skipOptnoneFunction(F)) + return false; + + SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); + TLI = TLIP ? &TLIP->getTLI() : nullptr; + AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + + StoreRefs.clear(); + bool Changed = false; + + // If the target claims to have no vector registers don't attempt + // vectorization. + if (!TTI->getNumberOfRegisters(true)) + return false; + + // Use the vector register size specified by the target unless overridden + // by a command-line option. + // TODO: It would be better to limit the vectorization factor based on + // data type rather than just register size. For example, x86 AVX has + // 256-bit registers, but it does not support integer operations + // at that width (that requires AVX2). + if (MaxVectorRegSizeOption.getNumOccurrences()) + MaxVecRegSize = MaxVectorRegSizeOption; + else + MaxVecRegSize = TTI->getRegisterBitWidth(true); + + // Don't vectorize when the attribute NoImplicitFloat is used. + if (F.hasFnAttribute(Attribute::NoImplicitFloat)) + return false; + + DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); + + // Use the bottom up slp vectorizer to construct chains that start with + // store instructions. + BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC); + + // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to + // delete instructions. + + // Scan the blocks in the function in post order. + for (auto BB : post_order(&F.getEntryBlock())) { + // Vectorize trees that end at stores. + if (unsigned count = collectStores(BB, R)) { + (void)count; + DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); + Changed |= vectorizeStoreChains(R); + } + + // Vectorize trees that end at reductions. + Changed |= vectorizeChainsInBlock(BB, R); + } + + if (Changed) { + R.optimizeGatherSequence(); + DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); + DEBUG(verifyFunction(F)); + } + return Changed; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + FunctionPass::getAnalysisUsage(AU); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addPreserved<LoopInfoWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<AAResultsWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.setPreservesCFG(); + } + +private: + + /// \brief Collect memory references and sort them according to their base + /// object. We sort the stores to their base objects to reduce the cost of the + /// quadratic search on the stores. TODO: We can further reduce this cost + /// if we flush the chain creation every time we run into a memory barrier. + unsigned collectStores(BasicBlock *BB, BoUpSLP &R); + + /// \brief Try to vectorize a chain that starts at two arithmetic instrs. + bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); + + /// \brief Try to vectorize a list of operands. + /// \@param BuildVector A list of users to ignore for the purpose of + /// scheduling and that don't need extracting. + /// \returns true if a value was vectorized. + bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, + ArrayRef<Value *> BuildVector = None, + bool allowReorder = false); + + /// \brief Try to vectorize a chain that may start at the operands of \V; + bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); + + /// \brief Vectorize the stores that were collected in StoreRefs. + bool vectorizeStoreChains(BoUpSLP &R); + + /// \brief Scan the basic block and look for patterns that are likely to start + /// a vectorization chain. + bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); + + bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, + BoUpSLP &R, unsigned VecRegSize); + + bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, + BoUpSLP &R); +private: + StoreListMap StoreRefs; + unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. +}; + +/// \brief Check that the Values in the slice in VL array are still existent in +/// the WeakVH array. +/// Vectorization of part of the VL array may cause later values in the VL array +/// to become invalid. We track when this has happened in the WeakVH array. +static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, + unsigned SliceBegin, unsigned SliceSize) { + VL = VL.slice(SliceBegin, SliceSize); + VH = VH.slice(SliceBegin, SliceSize); + return !std::equal(VL.begin(), VL.end(), VH.begin()); +} + +bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, + int CostThreshold, BoUpSLP &R, + unsigned VecRegSize) { + unsigned ChainLen = Chain.size(); + DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen + << "\n"); + Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); + auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout(); + unsigned Sz = DL.getTypeSizeInBits(StoreTy); + unsigned VF = VecRegSize / Sz; + + if (!isPowerOf2_32(Sz) || VF < 2) + return false; + + // Keep track of values that were deleted by vectorizing in the loop below. + SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); + + bool Changed = false; + // Look for profitable vectorizable trees at all offsets, starting at zero. + for (unsigned i = 0, e = ChainLen; i < e; ++i) { + if (i + VF > e) + break; + + // Check that a previous iteration of this loop did not delete the Value. + if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) + continue; + + DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i + << "\n"); + ArrayRef<Value *> Operands = Chain.slice(i, VF); + + R.buildTree(Operands); + + int Cost = R.getTreeCost(); + + DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); + if (Cost < CostThreshold) { + DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); + R.vectorizeTree(); + + // Move to the next bundle. + i += VF - 1; + Changed = true; + } + } + + return Changed; +} + +bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, + int costThreshold, BoUpSLP &R) { + SetVector<StoreInst *> Heads, Tails; + SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; + + // We may run into multiple chains that merge into a single chain. We mark the + // stores that we vectorized so that we don't visit the same store twice. + BoUpSLP::ValueSet VectorizedStores; + bool Changed = false; + + // Do a quadratic search on all of the given stores and find + // all of the pairs of stores that follow each other. + SmallVector<unsigned, 16> IndexQueue; + for (unsigned i = 0, e = Stores.size(); i < e; ++i) { + const DataLayout &DL = Stores[i]->getModule()->getDataLayout(); + IndexQueue.clear(); + // If a store has multiple consecutive store candidates, search Stores + // array according to the sequence: from i+1 to e, then from i-1 to 0. + // This is because usually pairing with immediate succeeding or preceding + // candidate create the best chance to find slp vectorization opportunity. + unsigned j = 0; + for (j = i + 1; j < e; ++j) + IndexQueue.push_back(j); + for (j = i; j > 0; --j) + IndexQueue.push_back(j - 1); + + for (auto &k : IndexQueue) { + if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) { + Tails.insert(Stores[k]); + Heads.insert(Stores[i]); + ConsecutiveChain[Stores[i]] = Stores[k]; + break; + } + } + } + + // For stores that start but don't end a link in the chain: + for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); + it != e; ++it) { + if (Tails.count(*it)) + continue; + + // We found a store instr that starts a chain. Now follow the chain and try + // to vectorize it. + BoUpSLP::ValueList Operands; + StoreInst *I = *it; + // Collect the chain into a list. + while (Tails.count(I) || Heads.count(I)) { + if (VectorizedStores.count(I)) + break; + Operands.push_back(I); + // Move to the next value in the chain. + I = ConsecutiveChain[I]; + } + + // FIXME: Is division-by-2 the correct step? Should we assert that the + // register size is a power-of-2? + for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) { + if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { + // Mark the vectorized stores so that we don't vectorize them again. + VectorizedStores.insert(Operands.begin(), Operands.end()); + Changed = true; + break; + } + } + } + + return Changed; +} + + +unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { + unsigned count = 0; + StoreRefs.clear(); + const DataLayout &DL = BB->getModule()->getDataLayout(); + for (Instruction &I : *BB) { + StoreInst *SI = dyn_cast<StoreInst>(&I); + if (!SI) + continue; + + // Don't touch volatile stores. + if (!SI->isSimple()) + continue; + + // Check that the pointer points to scalars. + Type *Ty = SI->getValueOperand()->getType(); + if (!isValidElementType(Ty)) + continue; + + // Find the base pointer. + Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); + + // Save the store locations. + StoreRefs[Ptr].push_back(SI); + count++; + } + return count; +} + +bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { + if (!A || !B) + return false; + Value *VL[] = { A, B }; + return tryToVectorizeList(VL, R, None, true); +} + +bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, + ArrayRef<Value *> BuildVector, + bool allowReorder) { + if (VL.size() < 2) + return false; + + DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); + + // Check that all of the parts are scalar instructions of the same type. + Instruction *I0 = dyn_cast<Instruction>(VL[0]); + if (!I0) + return false; + + unsigned Opcode0 = I0->getOpcode(); + const DataLayout &DL = I0->getModule()->getDataLayout(); + + Type *Ty0 = I0->getType(); + unsigned Sz = DL.getTypeSizeInBits(Ty0); + // FIXME: Register size should be a parameter to this function, so we can + // try different vectorization factors. + unsigned VF = MinVecRegSize / Sz; + + for (Value *V : VL) { + Type *Ty = V->getType(); + if (!isValidElementType(Ty)) + return false; + Instruction *Inst = dyn_cast<Instruction>(V); + if (!Inst || Inst->getOpcode() != Opcode0) + return false; + } + + bool Changed = false; + + // Keep track of values that were deleted by vectorizing in the loop below. + SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); + + for (unsigned i = 0, e = VL.size(); i < e; ++i) { + unsigned OpsWidth = 0; + + if (i + VF > e) + OpsWidth = e - i; + else + OpsWidth = VF; + + if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) + break; + + // Check that a previous iteration of this loop did not delete the Value. + if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) + continue; + + DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " + << "\n"); + ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); + + ArrayRef<Value *> BuildVectorSlice; + if (!BuildVector.empty()) + BuildVectorSlice = BuildVector.slice(i, OpsWidth); + + R.buildTree(Ops, BuildVectorSlice); + // TODO: check if we can allow reordering also for other cases than + // tryToVectorizePair() + if (allowReorder && R.shouldReorder()) { + assert(Ops.size() == 2); + assert(BuildVectorSlice.empty()); + Value *ReorderedOps[] = { Ops[1], Ops[0] }; + R.buildTree(ReorderedOps, None); + } + int Cost = R.getTreeCost(); + + if (Cost < -SLPCostThreshold) { + DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); + Value *VectorizedRoot = R.vectorizeTree(); + + // Reconstruct the build vector by extracting the vectorized root. This + // way we handle the case where some elements of the vector are undefined. + // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) + if (!BuildVectorSlice.empty()) { + // The insert point is the last build vector instruction. The vectorized + // root will precede it. This guarantees that we get an instruction. The + // vectorized tree could have been constant folded. + Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); + unsigned VecIdx = 0; + for (auto &V : BuildVectorSlice) { + IRBuilder<true, NoFolder> Builder( + InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter)); + InsertElementInst *IE = cast<InsertElementInst>(V); + Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( + VectorizedRoot, Builder.getInt32(VecIdx++))); + IE->setOperand(1, Extract); + IE->removeFromParent(); + IE->insertAfter(Extract); + InsertAfter = IE; + } + } + // Move to the next bundle. + i += VF - 1; + Changed = true; + } + } + + return Changed; +} + +bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { + if (!V) + return false; + + // Try to vectorize V. + if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) + return true; + + BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); + BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); + // Try to skip B. + if (B && B->hasOneUse()) { + BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); + BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); + if (tryToVectorizePair(A, B0, R)) { + return true; + } + if (tryToVectorizePair(A, B1, R)) { + return true; + } + } + + // Try to skip A. + if (A && A->hasOneUse()) { + BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); + BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); + if (tryToVectorizePair(A0, B, R)) { + return true; + } + if (tryToVectorizePair(A1, B, R)) { + return true; + } + } + return 0; +} + +/// \brief Generate a shuffle mask to be used in a reduction tree. +/// +/// \param VecLen The length of the vector to be reduced. +/// \param NumEltsToRdx The number of elements that should be reduced in the +/// vector. +/// \param IsPairwise Whether the reduction is a pairwise or splitting +/// reduction. A pairwise reduction will generate a mask of +/// <0,2,...> or <1,3,..> while a splitting reduction will generate +/// <2,3, undef,undef> for a vector of 4 and NumElts = 2. +/// \param IsLeft True will generate a mask of even elements, odd otherwise. +static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, + bool IsPairwise, bool IsLeft, + IRBuilder<> &Builder) { + assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); + + SmallVector<Constant *, 32> ShuffleMask( + VecLen, UndefValue::get(Builder.getInt32Ty())); + + if (IsPairwise) + // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). + for (unsigned i = 0; i != NumEltsToRdx; ++i) + ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); + else + // Move the upper half of the vector to the lower half. + for (unsigned i = 0; i != NumEltsToRdx; ++i) + ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); + + return ConstantVector::get(ShuffleMask); +} + + +/// Model horizontal reductions. +/// +/// A horizontal reduction is a tree of reduction operations (currently add and +/// fadd) that has operations that can be put into a vector as its leaf. +/// For example, this tree: +/// +/// mul mul mul mul +/// \ / \ / +/// + + +/// \ / +/// + +/// This tree has "mul" as its reduced values and "+" as its reduction +/// operations. A reduction might be feeding into a store or a binary operation +/// feeding a phi. +/// ... +/// \ / +/// + +/// | +/// phi += +/// +/// Or: +/// ... +/// \ / +/// + +/// | +/// *p = +/// +class HorizontalReduction { + SmallVector<Value *, 16> ReductionOps; + SmallVector<Value *, 32> ReducedVals; + + BinaryOperator *ReductionRoot; + PHINode *ReductionPHI; + + /// The opcode of the reduction. + unsigned ReductionOpcode; + /// The opcode of the values we perform a reduction on. + unsigned ReducedValueOpcode; + /// Should we model this reduction as a pairwise reduction tree or a tree that + /// splits the vector in halves and adds those halves. + bool IsPairwiseReduction; + +public: + /// The width of one full horizontal reduction operation. + unsigned ReduxWidth; + + HorizontalReduction() + : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), + ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0) {} + + /// \brief Try to find a reduction tree. + bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { + assert((!Phi || + std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && + "Thi phi needs to use the binary operator"); + + // We could have a initial reductions that is not an add. + // r *= v1 + v2 + v3 + v4 + // In such a case start looking for a tree rooted in the first '+'. + if (Phi) { + if (B->getOperand(0) == Phi) { + Phi = nullptr; + B = dyn_cast<BinaryOperator>(B->getOperand(1)); + } else if (B->getOperand(1) == Phi) { + Phi = nullptr; + B = dyn_cast<BinaryOperator>(B->getOperand(0)); + } + } + + if (!B) + return false; + + Type *Ty = B->getType(); + if (!isValidElementType(Ty)) + return false; + + const DataLayout &DL = B->getModule()->getDataLayout(); + ReductionOpcode = B->getOpcode(); + ReducedValueOpcode = 0; + // FIXME: Register size should be a parameter to this function, so we can + // try different vectorization factors. + ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); + ReductionRoot = B; + ReductionPHI = Phi; + + if (ReduxWidth < 4) + return false; + + // We currently only support adds. + if (ReductionOpcode != Instruction::Add && + ReductionOpcode != Instruction::FAdd) + return false; + + // Post order traverse the reduction tree starting at B. We only handle true + // trees containing only binary operators or selects. + SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; + Stack.push_back(std::make_pair(B, 0)); + while (!Stack.empty()) { + Instruction *TreeN = Stack.back().first; + unsigned EdgeToVist = Stack.back().second++; + bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; + + // Only handle trees in the current basic block. + if (TreeN->getParent() != B->getParent()) + return false; + + // Each tree node needs to have one user except for the ultimate + // reduction. + if (!TreeN->hasOneUse() && TreeN != B) + return false; + + // Postorder vist. + if (EdgeToVist == 2 || IsReducedValue) { + if (IsReducedValue) { + // Make sure that the opcodes of the operations that we are going to + // reduce match. + if (!ReducedValueOpcode) + ReducedValueOpcode = TreeN->getOpcode(); + else if (ReducedValueOpcode != TreeN->getOpcode()) + return false; + ReducedVals.push_back(TreeN); + } else { + // We need to be able to reassociate the adds. + if (!TreeN->isAssociative()) + return false; + ReductionOps.push_back(TreeN); + } + // Retract. + Stack.pop_back(); + continue; + } + + // Visit left or right. + Value *NextV = TreeN->getOperand(EdgeToVist); + // We currently only allow BinaryOperator's and SelectInst's as reduction + // values in our tree. + if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV)) + Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0)); + else if (NextV != Phi) + return false; + } + return true; + } + + /// \brief Attempt to vectorize the tree found by + /// matchAssociativeReduction. + bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { + if (ReducedVals.empty()) + return false; + + unsigned NumReducedVals = ReducedVals.size(); + if (NumReducedVals < ReduxWidth) + return false; + + Value *VectorizedTree = nullptr; + IRBuilder<> Builder(ReductionRoot); + FastMathFlags Unsafe; + Unsafe.setUnsafeAlgebra(); + Builder.setFastMathFlags(Unsafe); + unsigned i = 0; + + for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { + V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); + + // Estimate cost. + int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); + if (Cost >= -SLPCostThreshold) + break; + + DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost + << ". (HorRdx)\n"); + + // Vectorize a tree. + DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); + Value *VectorizedRoot = V.vectorizeTree(); + + // Emit a reduction. + Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); + if (VectorizedTree) { + Builder.SetCurrentDebugLocation(Loc); + VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, + ReducedSubTree, "bin.rdx"); + } else + VectorizedTree = ReducedSubTree; + } + + if (VectorizedTree) { + // Finish the reduction. + for (; i < NumReducedVals; ++i) { + Builder.SetCurrentDebugLocation( + cast<Instruction>(ReducedVals[i])->getDebugLoc()); + VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, + ReducedVals[i]); + } + // Update users. + if (ReductionPHI) { + assert(ReductionRoot && "Need a reduction operation"); + ReductionRoot->setOperand(0, VectorizedTree); + ReductionRoot->setOperand(1, ReductionPHI); + } else + ReductionRoot->replaceAllUsesWith(VectorizedTree); + } + return VectorizedTree != nullptr; + } + + unsigned numReductionValues() const { + return ReducedVals.size(); + } + +private: + /// \brief Calculate the cost of a reduction. + int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { + Type *ScalarTy = FirstReducedVal->getType(); + Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); + + int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); + int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); + + IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; + int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; + + int ScalarReduxCost = + ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); + + DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost + << " for reduction that starts with " << *FirstReducedVal + << " (It is a " + << (IsPairwiseReduction ? "pairwise" : "splitting") + << " reduction)\n"); + + return VecReduxCost - ScalarReduxCost; + } + + static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, + Value *R, const Twine &Name = "") { + if (Opcode == Instruction::FAdd) + return Builder.CreateFAdd(L, R, Name); + return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); + } + + /// \brief Emit a horizontal reduction of the vectorized value. + Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { + assert(VectorizedValue && "Need to have a vectorized tree node"); + assert(isPowerOf2_32(ReduxWidth) && + "We only handle power-of-two reductions for now"); + + Value *TmpVec = VectorizedValue; + for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { + if (IsPairwiseReduction) { + Value *LeftMask = + createRdxShuffleMask(ReduxWidth, i, true, true, Builder); + Value *RightMask = + createRdxShuffleMask(ReduxWidth, i, true, false, Builder); + + Value *LeftShuf = Builder.CreateShuffleVector( + TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); + Value *RightShuf = Builder.CreateShuffleVector( + TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), + "rdx.shuf.r"); + TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, + "bin.rdx"); + } else { + Value *UpperHalf = + createRdxShuffleMask(ReduxWidth, i, false, false, Builder); + Value *Shuf = Builder.CreateShuffleVector( + TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); + TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); + } + } + + // The result is in the first element of the vector. + return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); + } +}; + +/// \brief Recognize construction of vectors like +/// %ra = insertelement <4 x float> undef, float %s0, i32 0 +/// %rb = insertelement <4 x float> %ra, float %s1, i32 1 +/// %rc = insertelement <4 x float> %rb, float %s2, i32 2 +/// %rd = insertelement <4 x float> %rc, float %s3, i32 3 +/// +/// Returns true if it matches +/// +static bool findBuildVector(InsertElementInst *FirstInsertElem, + SmallVectorImpl<Value *> &BuildVector, + SmallVectorImpl<Value *> &BuildVectorOpds) { + if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) + return false; + + InsertElementInst *IE = FirstInsertElem; + while (true) { + BuildVector.push_back(IE); + BuildVectorOpds.push_back(IE->getOperand(1)); + + if (IE->use_empty()) + return false; + + InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); + if (!NextUse) + return true; + + // If this isn't the final use, make sure the next insertelement is the only + // use. It's OK if the final constructed vector is used multiple times + if (!IE->hasOneUse()) + return false; + + IE = NextUse; + } + + return false; +} + +static bool PhiTypeSorterFunc(Value *V, Value *V2) { + return V->getType() < V2->getType(); +} + +/// \brief Try and get a reduction value from a phi node. +/// +/// Given a phi node \p P in a block \p ParentBB, consider possible reductions +/// if they come from either \p ParentBB or a containing loop latch. +/// +/// \returns A candidate reduction value if possible, or \code nullptr \endcode +/// if not possible. +static Value *getReductionValue(const DominatorTree *DT, PHINode *P, + BasicBlock *ParentBB, LoopInfo *LI) { + // There are situations where the reduction value is not dominated by the + // reduction phi. Vectorizing such cases has been reported to cause + // miscompiles. See PR25787. + auto DominatedReduxValue = [&](Value *R) { + return ( + dyn_cast<Instruction>(R) && + DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); + }; + + Value *Rdx = nullptr; + + // Return the incoming value if it comes from the same BB as the phi node. + if (P->getIncomingBlock(0) == ParentBB) { + Rdx = P->getIncomingValue(0); + } else if (P->getIncomingBlock(1) == ParentBB) { + Rdx = P->getIncomingValue(1); + } + + if (Rdx && DominatedReduxValue(Rdx)) + return Rdx; + + // Otherwise, check whether we have a loop latch to look at. + Loop *BBL = LI->getLoopFor(ParentBB); + if (!BBL) + return nullptr; + BasicBlock *BBLatch = BBL->getLoopLatch(); + if (!BBLatch) + return nullptr; + + // There is a loop latch, return the incoming value if it comes from + // that. This reduction pattern occassionaly turns up. + if (P->getIncomingBlock(0) == BBLatch) { + Rdx = P->getIncomingValue(0); + } else if (P->getIncomingBlock(1) == BBLatch) { + Rdx = P->getIncomingValue(1); + } + + if (Rdx && DominatedReduxValue(Rdx)) + return Rdx; + + return nullptr; +} + +/// \brief Attempt to reduce a horizontal reduction. +/// If it is legal to match a horizontal reduction feeding +/// the phi node P with reduction operators BI, then check if it +/// can be done. +/// \returns true if a horizontal reduction was matched and reduced. +/// \returns false if a horizontal reduction was not matched. +static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, + BoUpSLP &R, TargetTransformInfo *TTI) { + if (!ShouldVectorizeHor) + return false; + + HorizontalReduction HorRdx; + if (!HorRdx.matchAssociativeReduction(P, BI)) + return false; + + // If there is a sufficient number of reduction values, reduce + // to a nearby power-of-2. Can safely generate oversized + // vectors and rely on the backend to split them to legal sizes. + HorRdx.ReduxWidth = + std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); + + return HorRdx.tryToReduce(R, TTI); +} + +bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { + bool Changed = false; + SmallVector<Value *, 4> Incoming; + SmallSet<Value *, 16> VisitedInstrs; + + bool HaveVectorizedPhiNodes = true; + while (HaveVectorizedPhiNodes) { + HaveVectorizedPhiNodes = false; + + // Collect the incoming values from the PHIs. + Incoming.clear(); + for (Instruction &I : *BB) { + PHINode *P = dyn_cast<PHINode>(&I); + if (!P) + break; + + if (!VisitedInstrs.count(P)) + Incoming.push_back(P); + } + + // Sort by type. + std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); + + // Try to vectorize elements base on their type. + for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), + E = Incoming.end(); + IncIt != E;) { + + // Look for the next elements with the same type. + SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; + while (SameTypeIt != E && + (*SameTypeIt)->getType() == (*IncIt)->getType()) { + VisitedInstrs.insert(*SameTypeIt); + ++SameTypeIt; + } + + // Try to vectorize them. + unsigned NumElts = (SameTypeIt - IncIt); + DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); + if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { + // Success start over because instructions might have been changed. + HaveVectorizedPhiNodes = true; + Changed = true; + break; + } + + // Start over at the next instruction of a different type (or the end). + IncIt = SameTypeIt; + } + } + + VisitedInstrs.clear(); + + for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { + // We may go through BB multiple times so skip the one we have checked. + if (!VisitedInstrs.insert(&*it).second) + continue; + + if (isa<DbgInfoIntrinsic>(it)) + continue; + + // Try to vectorize reductions that use PHINodes. + if (PHINode *P = dyn_cast<PHINode>(it)) { + // Check that the PHI is a reduction PHI. + if (P->getNumIncomingValues() != 2) + return Changed; + + Value *Rdx = getReductionValue(DT, P, BB, LI); + + // Check if this is a Binary Operator. + BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); + if (!BI) + continue; + + // Try to match and vectorize a horizontal reduction. + if (canMatchHorizontalReduction(P, BI, R, TTI)) { + Changed = true; + it = BB->begin(); + e = BB->end(); + continue; + } + + Value *Inst = BI->getOperand(0); + if (Inst == P) + Inst = BI->getOperand(1); + + if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { + // We would like to start over since some instructions are deleted + // and the iterator may become invalid value. + Changed = true; + it = BB->begin(); + e = BB->end(); + continue; + } + + continue; + } + + if (ShouldStartVectorizeHorAtStore) + if (StoreInst *SI = dyn_cast<StoreInst>(it)) + if (BinaryOperator *BinOp = + dyn_cast<BinaryOperator>(SI->getValueOperand())) { + if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI) || + tryToVectorize(BinOp, R)) { + Changed = true; + it = BB->begin(); + e = BB->end(); + continue; + } + } + + // Try to vectorize horizontal reductions feeding into a return. + if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) + if (RI->getNumOperands() != 0) + if (BinaryOperator *BinOp = + dyn_cast<BinaryOperator>(RI->getOperand(0))) { + DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); + if (tryToVectorizePair(BinOp->getOperand(0), + BinOp->getOperand(1), R)) { + Changed = true; + it = BB->begin(); + e = BB->end(); + continue; + } + } + + // Try to vectorize trees that start at compare instructions. + if (CmpInst *CI = dyn_cast<CmpInst>(it)) { + if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { + Changed = true; + // We would like to start over since some instructions are deleted + // and the iterator may become invalid value. + it = BB->begin(); + e = BB->end(); + continue; + } + + for (int i = 0; i < 2; ++i) { + if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { + if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { + Changed = true; + // We would like to start over since some instructions are deleted + // and the iterator may become invalid value. + it = BB->begin(); + e = BB->end(); + break; + } + } + } + continue; + } + + // Try to vectorize trees that start at insertelement instructions. + if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { + SmallVector<Value *, 16> BuildVector; + SmallVector<Value *, 16> BuildVectorOpds; + if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) + continue; + + // Vectorize starting with the build vector operands ignoring the + // BuildVector instructions for the purpose of scheduling and user + // extraction. + if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { + Changed = true; + it = BB->begin(); + e = BB->end(); + } + + continue; + } + } + + return Changed; +} + +bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { + bool Changed = false; + // Attempt to sort and vectorize each of the store-groups. + for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); + it != e; ++it) { + if (it->second.size() < 2) + continue; + + DEBUG(dbgs() << "SLP: Analyzing a store chain of length " + << it->second.size() << ".\n"); + + // Process the stores in chunks of 16. + // TODO: The limit of 16 inhibits greater vectorization factors. + // For example, AVX2 supports v32i8. Increasing this limit, however, + // may cause a significant compile-time increase. + for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { + unsigned Len = std::min<unsigned>(CE - CI, 16); + Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), + -SLPCostThreshold, R); + } + } + return Changed; +} + +} // end anonymous namespace + +char SLPVectorizer::ID = 0; +static const char lv_name[] = "SLP Vectorizer"; +INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) + +namespace llvm { +Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } +} |
