diff options
Diffstat (limited to 'gnu/llvm/lib/Transforms/Vectorize/VPlan.h')
| -rw-r--r-- | gnu/llvm/lib/Transforms/Vectorize/VPlan.h | 1194 |
1 files changed, 1194 insertions, 0 deletions
diff --git a/gnu/llvm/lib/Transforms/Vectorize/VPlan.h b/gnu/llvm/lib/Transforms/Vectorize/VPlan.h new file mode 100644 index 00000000000..2ccabfd6af2 --- /dev/null +++ b/gnu/llvm/lib/Transforms/Vectorize/VPlan.h @@ -0,0 +1,1194 @@ +//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This file contains the declarations of the Vectorization Plan base classes: +/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual +/// VPBlockBase, together implementing a Hierarchical CFG; +/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be +/// treated as proper graphs for generic algorithms; +/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained +/// within VPBasicBlocks; +/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned +/// instruction; +/// 5. The VPlan class holding a candidate for vectorization; +/// 6. The VPlanPrinter class providing a way to print a plan in dot format; +/// These are documented in docs/VectorizationPlan.rst. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H +#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H + +#include "VPlanValue.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Twine.h" +#include "llvm/ADT/ilist.h" +#include "llvm/ADT/ilist_node.h" +#include "llvm/IR/IRBuilder.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <map> +#include <string> + +// The (re)use of existing LoopVectorize classes is subject to future VPlan +// refactoring. +namespace { +class LoopVectorizationLegality; +class LoopVectorizationCostModel; +} // namespace + +namespace llvm { + +class BasicBlock; +class DominatorTree; +class InnerLoopVectorizer; +class InterleaveGroup; +class LoopInfo; +class raw_ostream; +class Value; +class VPBasicBlock; +class VPRegionBlock; + +/// In what follows, the term "input IR" refers to code that is fed into the +/// vectorizer whereas the term "output IR" refers to code that is generated by +/// the vectorizer. + +/// VPIteration represents a single point in the iteration space of the output +/// (vectorized and/or unrolled) IR loop. +struct VPIteration { + /// in [0..UF) + unsigned Part; + + /// in [0..VF) + unsigned Lane; +}; + +/// This is a helper struct for maintaining vectorization state. It's used for +/// mapping values from the original loop to their corresponding values in +/// the new loop. Two mappings are maintained: one for vectorized values and +/// one for scalarized values. Vectorized values are represented with UF +/// vector values in the new loop, and scalarized values are represented with +/// UF x VF scalar values in the new loop. UF and VF are the unroll and +/// vectorization factors, respectively. +/// +/// Entries can be added to either map with setVectorValue and setScalarValue, +/// which assert that an entry was not already added before. If an entry is to +/// replace an existing one, call resetVectorValue and resetScalarValue. This is +/// currently needed to modify the mapped values during "fix-up" operations that +/// occur once the first phase of widening is complete. These operations include +/// type truncation and the second phase of recurrence widening. +/// +/// Entries from either map can be retrieved using the getVectorValue and +/// getScalarValue functions, which assert that the desired value exists. +struct VectorizerValueMap { + friend struct VPTransformState; + +private: + /// The unroll factor. Each entry in the vector map contains UF vector values. + unsigned UF; + + /// The vectorization factor. Each entry in the scalar map contains UF x VF + /// scalar values. + unsigned VF; + + /// The vector and scalar map storage. We use std::map and not DenseMap + /// because insertions to DenseMap invalidate its iterators. + using VectorParts = SmallVector<Value *, 2>; + using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; + std::map<Value *, VectorParts> VectorMapStorage; + std::map<Value *, ScalarParts> ScalarMapStorage; + +public: + /// Construct an empty map with the given unroll and vectorization factors. + VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} + + /// \return True if the map has any vector entry for \p Key. + bool hasAnyVectorValue(Value *Key) const { + return VectorMapStorage.count(Key); + } + + /// \return True if the map has a vector entry for \p Key and \p Part. + bool hasVectorValue(Value *Key, unsigned Part) const { + assert(Part < UF && "Queried Vector Part is too large."); + if (!hasAnyVectorValue(Key)) + return false; + const VectorParts &Entry = VectorMapStorage.find(Key)->second; + assert(Entry.size() == UF && "VectorParts has wrong dimensions."); + return Entry[Part] != nullptr; + } + + /// \return True if the map has any scalar entry for \p Key. + bool hasAnyScalarValue(Value *Key) const { + return ScalarMapStorage.count(Key); + } + + /// \return True if the map has a scalar entry for \p Key and \p Instance. + bool hasScalarValue(Value *Key, const VPIteration &Instance) const { + assert(Instance.Part < UF && "Queried Scalar Part is too large."); + assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); + if (!hasAnyScalarValue(Key)) + return false; + const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; + assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); + assert(Entry[Instance.Part].size() == VF && + "ScalarParts has wrong dimensions."); + return Entry[Instance.Part][Instance.Lane] != nullptr; + } + + /// Retrieve the existing vector value that corresponds to \p Key and + /// \p Part. + Value *getVectorValue(Value *Key, unsigned Part) { + assert(hasVectorValue(Key, Part) && "Getting non-existent value."); + return VectorMapStorage[Key][Part]; + } + + /// Retrieve the existing scalar value that corresponds to \p Key and + /// \p Instance. + Value *getScalarValue(Value *Key, const VPIteration &Instance) { + assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); + return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; + } + + /// Set a vector value associated with \p Key and \p Part. Assumes such a + /// value is not already set. If it is, use resetVectorValue() instead. + void setVectorValue(Value *Key, unsigned Part, Value *Vector) { + assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); + if (!VectorMapStorage.count(Key)) { + VectorParts Entry(UF); + VectorMapStorage[Key] = Entry; + } + VectorMapStorage[Key][Part] = Vector; + } + + /// Set a scalar value associated with \p Key and \p Instance. Assumes such a + /// value is not already set. + void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { + assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); + if (!ScalarMapStorage.count(Key)) { + ScalarParts Entry(UF); + // TODO: Consider storing uniform values only per-part, as they occupy + // lane 0 only, keeping the other VF-1 redundant entries null. + for (unsigned Part = 0; Part < UF; ++Part) + Entry[Part].resize(VF, nullptr); + ScalarMapStorage[Key] = Entry; + } + ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; + } + + /// Reset the vector value associated with \p Key for the given \p Part. + /// This function can be used to update values that have already been + /// vectorized. This is the case for "fix-up" operations including type + /// truncation and the second phase of recurrence vectorization. + void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { + assert(hasVectorValue(Key, Part) && "Vector value not set for part"); + VectorMapStorage[Key][Part] = Vector; + } + + /// Reset the scalar value associated with \p Key for \p Part and \p Lane. + /// This function can be used to update values that have already been + /// scalarized. This is the case for "fix-up" operations including scalar phi + /// nodes for scalarized and predicated instructions. + void resetScalarValue(Value *Key, const VPIteration &Instance, + Value *Scalar) { + assert(hasScalarValue(Key, Instance) && + "Scalar value not set for part and lane"); + ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; + } +}; + +/// This class is used to enable the VPlan to invoke a method of ILV. This is +/// needed until the method is refactored out of ILV and becomes reusable. +struct VPCallback { + virtual ~VPCallback() {} + virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0; +}; + +/// VPTransformState holds information passed down when "executing" a VPlan, +/// needed for generating the output IR. +struct VPTransformState { + VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, + IRBuilder<> &Builder, VectorizerValueMap &ValueMap, + InnerLoopVectorizer *ILV, VPCallback &Callback) + : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), + ValueMap(ValueMap), ILV(ILV), Callback(Callback) {} + + /// The chosen Vectorization and Unroll Factors of the loop being vectorized. + unsigned VF; + unsigned UF; + + /// Hold the indices to generate specific scalar instructions. Null indicates + /// that all instances are to be generated, using either scalar or vector + /// instructions. + Optional<VPIteration> Instance; + + struct DataState { + /// A type for vectorized values in the new loop. Each value from the + /// original loop, when vectorized, is represented by UF vector values in + /// the new unrolled loop, where UF is the unroll factor. + typedef SmallVector<Value *, 2> PerPartValuesTy; + + DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; + } Data; + + /// Get the generated Value for a given VPValue and a given Part. Note that + /// as some Defs are still created by ILV and managed in its ValueMap, this + /// method will delegate the call to ILV in such cases in order to provide + /// callers a consistent API. + /// \see set. + Value *get(VPValue *Def, unsigned Part) { + // If Values have been set for this Def return the one relevant for \p Part. + if (Data.PerPartOutput.count(Def)) + return Data.PerPartOutput[Def][Part]; + // Def is managed by ILV: bring the Values from ValueMap. + return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); + } + + /// Set the generated Value for a given VPValue and a given Part. + void set(VPValue *Def, Value *V, unsigned Part) { + if (!Data.PerPartOutput.count(Def)) { + DataState::PerPartValuesTy Entry(UF); + Data.PerPartOutput[Def] = Entry; + } + Data.PerPartOutput[Def][Part] = V; + } + + /// Hold state information used when constructing the CFG of the output IR, + /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. + struct CFGState { + /// The previous VPBasicBlock visited. Initially set to null. + VPBasicBlock *PrevVPBB = nullptr; + + /// The previous IR BasicBlock created or used. Initially set to the new + /// header BasicBlock. + BasicBlock *PrevBB = nullptr; + + /// The last IR BasicBlock in the output IR. Set to the new latch + /// BasicBlock, used for placing the newly created BasicBlocks. + BasicBlock *LastBB = nullptr; + + /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case + /// of replication, maps the BasicBlock of the last replica created. + SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; + + CFGState() = default; + } CFG; + + /// Hold a pointer to LoopInfo to register new basic blocks in the loop. + LoopInfo *LI; + + /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. + DominatorTree *DT; + + /// Hold a reference to the IRBuilder used to generate output IR code. + IRBuilder<> &Builder; + + /// Hold a reference to the Value state information used when generating the + /// Values of the output IR. + VectorizerValueMap &ValueMap; + + /// Hold a reference to a mapping between VPValues in VPlan and original + /// Values they correspond to. + VPValue2ValueTy VPValue2Value; + + /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. + InnerLoopVectorizer *ILV; + + VPCallback &Callback; +}; + +/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. +/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. +class VPBlockBase { +private: + const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). + + /// An optional name for the block. + std::string Name; + + /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if + /// it is a topmost VPBlockBase. + VPRegionBlock *Parent = nullptr; + + /// List of predecessor blocks. + SmallVector<VPBlockBase *, 1> Predecessors; + + /// List of successor blocks. + SmallVector<VPBlockBase *, 1> Successors; + + /// Add \p Successor as the last successor to this block. + void appendSuccessor(VPBlockBase *Successor) { + assert(Successor && "Cannot add nullptr successor!"); + Successors.push_back(Successor); + } + + /// Add \p Predecessor as the last predecessor to this block. + void appendPredecessor(VPBlockBase *Predecessor) { + assert(Predecessor && "Cannot add nullptr predecessor!"); + Predecessors.push_back(Predecessor); + } + + /// Remove \p Predecessor from the predecessors of this block. + void removePredecessor(VPBlockBase *Predecessor) { + auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); + assert(Pos && "Predecessor does not exist"); + Predecessors.erase(Pos); + } + + /// Remove \p Successor from the successors of this block. + void removeSuccessor(VPBlockBase *Successor) { + auto Pos = std::find(Successors.begin(), Successors.end(), Successor); + assert(Pos && "Successor does not exist"); + Successors.erase(Pos); + } + +protected: + VPBlockBase(const unsigned char SC, const std::string &N) + : SubclassID(SC), Name(N) {} + +public: + /// An enumeration for keeping track of the concrete subclass of VPBlockBase + /// that are actually instantiated. Values of this enumeration are kept in the + /// SubclassID field of the VPBlockBase objects. They are used for concrete + /// type identification. + using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; + + using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; + + virtual ~VPBlockBase() = default; + + const std::string &getName() const { return Name; } + + void setName(const Twine &newName) { Name = newName.str(); } + + /// \return an ID for the concrete type of this object. + /// This is used to implement the classof checks. This should not be used + /// for any other purpose, as the values may change as LLVM evolves. + unsigned getVPBlockID() const { return SubclassID; } + + const VPRegionBlock *getParent() const { return Parent; } + + void setParent(VPRegionBlock *P) { Parent = P; } + + /// \return the VPBasicBlock that is the entry of this VPBlockBase, + /// recursively, if the latter is a VPRegionBlock. Otherwise, if this + /// VPBlockBase is a VPBasicBlock, it is returned. + const VPBasicBlock *getEntryBasicBlock() const; + VPBasicBlock *getEntryBasicBlock(); + + /// \return the VPBasicBlock that is the exit of this VPBlockBase, + /// recursively, if the latter is a VPRegionBlock. Otherwise, if this + /// VPBlockBase is a VPBasicBlock, it is returned. + const VPBasicBlock *getExitBasicBlock() const; + VPBasicBlock *getExitBasicBlock(); + + const VPBlocksTy &getSuccessors() const { return Successors; } + VPBlocksTy &getSuccessors() { return Successors; } + + const VPBlocksTy &getPredecessors() const { return Predecessors; } + VPBlocksTy &getPredecessors() { return Predecessors; } + + /// \return the successor of this VPBlockBase if it has a single successor. + /// Otherwise return a null pointer. + VPBlockBase *getSingleSuccessor() const { + return (Successors.size() == 1 ? *Successors.begin() : nullptr); + } + + /// \return the predecessor of this VPBlockBase if it has a single + /// predecessor. Otherwise return a null pointer. + VPBlockBase *getSinglePredecessor() const { + return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); + } + + /// An Enclosing Block of a block B is any block containing B, including B + /// itself. \return the closest enclosing block starting from "this", which + /// has successors. \return the root enclosing block if all enclosing blocks + /// have no successors. + VPBlockBase *getEnclosingBlockWithSuccessors(); + + /// \return the closest enclosing block starting from "this", which has + /// predecessors. \return the root enclosing block if all enclosing blocks + /// have no predecessors. + VPBlockBase *getEnclosingBlockWithPredecessors(); + + /// \return the successors either attached directly to this VPBlockBase or, if + /// this VPBlockBase is the exit block of a VPRegionBlock and has no + /// successors of its own, search recursively for the first enclosing + /// VPRegionBlock that has successors and return them. If no such + /// VPRegionBlock exists, return the (empty) successors of the topmost + /// VPBlockBase reached. + const VPBlocksTy &getHierarchicalSuccessors() { + return getEnclosingBlockWithSuccessors()->getSuccessors(); + } + + /// \return the hierarchical successor of this VPBlockBase if it has a single + /// hierarchical successor. Otherwise return a null pointer. + VPBlockBase *getSingleHierarchicalSuccessor() { + return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); + } + + /// \return the predecessors either attached directly to this VPBlockBase or, + /// if this VPBlockBase is the entry block of a VPRegionBlock and has no + /// predecessors of its own, search recursively for the first enclosing + /// VPRegionBlock that has predecessors and return them. If no such + /// VPRegionBlock exists, return the (empty) predecessors of the topmost + /// VPBlockBase reached. + const VPBlocksTy &getHierarchicalPredecessors() { + return getEnclosingBlockWithPredecessors()->getPredecessors(); + } + + /// \return the hierarchical predecessor of this VPBlockBase if it has a + /// single hierarchical predecessor. Otherwise return a null pointer. + VPBlockBase *getSingleHierarchicalPredecessor() { + return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); + } + + /// Sets a given VPBlockBase \p Successor as the single successor and \return + /// \p Successor. The parent of this Block is copied to be the parent of + /// \p Successor. + VPBlockBase *setOneSuccessor(VPBlockBase *Successor) { + assert(Successors.empty() && "Setting one successor when others exist."); + appendSuccessor(Successor); + Successor->appendPredecessor(this); + Successor->Parent = Parent; + return Successor; + } + + /// Sets two given VPBlockBases \p IfTrue and \p IfFalse to be the two + /// successors. The parent of this Block is copied to be the parent of both + /// \p IfTrue and \p IfFalse. + void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { + assert(Successors.empty() && "Setting two successors when others exist."); + appendSuccessor(IfTrue); + appendSuccessor(IfFalse); + IfTrue->appendPredecessor(this); + IfFalse->appendPredecessor(this); + IfTrue->Parent = Parent; + IfFalse->Parent = Parent; + } + + void disconnectSuccessor(VPBlockBase *Successor) { + assert(Successor && "Successor to disconnect is null."); + removeSuccessor(Successor); + Successor->removePredecessor(this); + } + + /// The method which generates the output IR that correspond to this + /// VPBlockBase, thereby "executing" the VPlan. + virtual void execute(struct VPTransformState *State) = 0; + + /// Delete all blocks reachable from a given VPBlockBase, inclusive. + static void deleteCFG(VPBlockBase *Entry); +}; + +/// VPRecipeBase is a base class modeling a sequence of one or more output IR +/// instructions. +class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> { + friend VPBasicBlock; + +private: + const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). + + /// Each VPRecipe belongs to a single VPBasicBlock. + VPBasicBlock *Parent = nullptr; + +public: + /// An enumeration for keeping track of the concrete subclass of VPRecipeBase + /// that is actually instantiated. Values of this enumeration are kept in the + /// SubclassID field of the VPRecipeBase objects. They are used for concrete + /// type identification. + using VPRecipeTy = enum { + VPBlendSC, + VPBranchOnMaskSC, + VPInstructionSC, + VPInterleaveSC, + VPPredInstPHISC, + VPReplicateSC, + VPWidenIntOrFpInductionSC, + VPWidenMemoryInstructionSC, + VPWidenPHISC, + VPWidenSC, + }; + + VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} + virtual ~VPRecipeBase() = default; + + /// \return an ID for the concrete type of this object. + /// This is used to implement the classof checks. This should not be used + /// for any other purpose, as the values may change as LLVM evolves. + unsigned getVPRecipeID() const { return SubclassID; } + + /// \return the VPBasicBlock which this VPRecipe belongs to. + VPBasicBlock *getParent() { return Parent; } + const VPBasicBlock *getParent() const { return Parent; } + + /// The method which generates the output IR instructions that correspond to + /// this VPRecipe, thereby "executing" the VPlan. + virtual void execute(struct VPTransformState &State) = 0; + + /// Each recipe prints itself. + virtual void print(raw_ostream &O, const Twine &Indent) const = 0; +}; + +/// This is a concrete Recipe that models a single VPlan-level instruction. +/// While as any Recipe it may generate a sequence of IR instructions when +/// executed, these instructions would always form a single-def expression as +/// the VPInstruction is also a single def-use vertex. +class VPInstruction : public VPUser, public VPRecipeBase { +public: + /// VPlan opcodes, extending LLVM IR with idiomatics instructions. + enum { Not = Instruction::OtherOpsEnd + 1 }; + +private: + typedef unsigned char OpcodeTy; + OpcodeTy Opcode; + + /// Utility method serving execute(): generates a single instance of the + /// modeled instruction. + void generateInstruction(VPTransformState &State, unsigned Part); + +public: + VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) + : VPUser(VPValue::VPInstructionSC, Operands), + VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPValue *V) { + return V->getVPValueID() == VPValue::VPInstructionSC; + } + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *R) { + return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC; + } + + unsigned getOpcode() const { return Opcode; } + + /// Generate the instruction. + /// TODO: We currently execute only per-part unless a specific instance is + /// provided. + void execute(VPTransformState &State) override; + + /// Print the Recipe. + void print(raw_ostream &O, const Twine &Indent) const override; + + /// Print the VPInstruction. + void print(raw_ostream &O) const; +}; + +/// VPWidenRecipe is a recipe for producing a copy of vector type for each +/// Instruction in its ingredients independently, in order. This recipe covers +/// most of the traditional vectorization cases where each ingredient transforms +/// into a vectorized version of itself. +class VPWidenRecipe : public VPRecipeBase { +private: + /// Hold the ingredients by pointing to their original BasicBlock location. + BasicBlock::iterator Begin; + BasicBlock::iterator End; + +public: + VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { + End = I->getIterator(); + Begin = End++; + } + + ~VPWidenRecipe() override = default; + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *V) { + return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; + } + + /// Produce widened copies of all Ingredients. + void execute(VPTransformState &State) override; + + /// Augment the recipe to include Instr, if it lies at its End. + bool appendInstruction(Instruction *Instr) { + if (End != Instr->getIterator()) + return false; + End++; + return true; + } + + /// Print the recipe. + void print(raw_ostream &O, const Twine &Indent) const override; +}; + +/// A recipe for handling phi nodes of integer and floating-point inductions, +/// producing their vector and scalar values. +class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { +private: + PHINode *IV; + TruncInst *Trunc; + +public: + VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) + : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} + ~VPWidenIntOrFpInductionRecipe() override = default; + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *V) { + return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; + } + + /// Generate the vectorized and scalarized versions of the phi node as + /// needed by their users. + void execute(VPTransformState &State) override; + + /// Print the recipe. + void print(raw_ostream &O, const Twine &Indent) const override; +}; + +/// A recipe for handling all phi nodes except for integer and FP inductions. +class VPWidenPHIRecipe : public VPRecipeBase { +private: + PHINode *Phi; + +public: + VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} + ~VPWidenPHIRecipe() override = default; + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *V) { + return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; + } + + /// Generate the phi/select nodes. + void execute(VPTransformState &State) override; + + /// Print the recipe. + void print(raw_ostream &O, const Twine &Indent) const override; +}; + +/// A recipe for vectorizing a phi-node as a sequence of mask-based select +/// instructions. +class VPBlendRecipe : public VPRecipeBase { +private: + PHINode *Phi; + + /// The blend operation is a User of a mask, if not null. + std::unique_ptr<VPUser> User; + +public: + VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks) + : VPRecipeBase(VPBlendSC), Phi(Phi) { + assert((Phi->getNumIncomingValues() == 1 || + Phi->getNumIncomingValues() == Masks.size()) && + "Expected the same number of incoming values and masks"); + if (!Masks.empty()) + User.reset(new VPUser(Masks)); + } + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *V) { + return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; + } + + /// Generate the phi/select nodes. + void execute(VPTransformState &State) override; + + /// Print the recipe. + void print(raw_ostream &O, const Twine &Indent) const override; +}; + +/// VPInterleaveRecipe is a recipe for transforming an interleave group of load +/// or stores into one wide load/store and shuffles. +class VPInterleaveRecipe : public VPRecipeBase { +private: + const InterleaveGroup *IG; + +public: + VPInterleaveRecipe(const InterleaveGroup *IG) + : VPRecipeBase(VPInterleaveSC), IG(IG) {} + ~VPInterleaveRecipe() override = default; + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *V) { + return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; + } + + /// Generate the wide load or store, and shuffles. + void execute(VPTransformState &State) override; + + /// Print the recipe. + void print(raw_ostream &O, const Twine &Indent) const override; + + const InterleaveGroup *getInterleaveGroup() { return IG; } +}; + +/// VPReplicateRecipe replicates a given instruction producing multiple scalar +/// copies of the original scalar type, one per lane, instead of producing a +/// single copy of widened type for all lanes. If the instruction is known to be +/// uniform only one copy, per lane zero, will be generated. +class VPReplicateRecipe : public VPRecipeBase { +private: + /// The instruction being replicated. + Instruction *Ingredient; + + /// Indicator if only a single replica per lane is needed. + bool IsUniform; + + /// Indicator if the replicas are also predicated. + bool IsPredicated; + + /// Indicator if the scalar values should also be packed into a vector. + bool AlsoPack; + +public: + VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) + : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), + IsPredicated(IsPredicated) { + // Retain the previous behavior of predicateInstructions(), where an + // insert-element of a predicated instruction got hoisted into the + // predicated basic block iff it was its only user. This is achieved by + // having predicated instructions also pack their values into a vector by + // default unless they have a replicated user which uses their scalar value. + AlsoPack = IsPredicated && !I->use_empty(); + } + + ~VPReplicateRecipe() override = default; + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *V) { + return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; + } + + /// Generate replicas of the desired Ingredient. Replicas will be generated + /// for all parts and lanes unless a specific part and lane are specified in + /// the \p State. + void execute(VPTransformState &State) override; + + void setAlsoPack(bool Pack) { AlsoPack = Pack; } + + /// Print the recipe. + void print(raw_ostream &O, const Twine &Indent) const override; +}; + +/// A recipe for generating conditional branches on the bits of a mask. +class VPBranchOnMaskRecipe : public VPRecipeBase { +private: + std::unique_ptr<VPUser> User; + +public: + VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { + if (BlockInMask) // nullptr means all-one mask. + User.reset(new VPUser({BlockInMask})); + } + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *V) { + return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; + } + + /// Generate the extraction of the appropriate bit from the block mask and the + /// conditional branch. + void execute(VPTransformState &State) override; + + /// Print the recipe. + void print(raw_ostream &O, const Twine &Indent) const override { + O << " +\n" << Indent << "\"BRANCH-ON-MASK "; + if (User) + O << *User->getOperand(0); + else + O << " All-One"; + O << "\\l\""; + } +}; + +/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when +/// control converges back from a Branch-on-Mask. The phi nodes are needed in +/// order to merge values that are set under such a branch and feed their uses. +/// The phi nodes can be scalar or vector depending on the users of the value. +/// This recipe works in concert with VPBranchOnMaskRecipe. +class VPPredInstPHIRecipe : public VPRecipeBase { +private: + Instruction *PredInst; + +public: + /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi + /// nodes after merging back from a Branch-on-Mask. + VPPredInstPHIRecipe(Instruction *PredInst) + : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} + ~VPPredInstPHIRecipe() override = default; + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *V) { + return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; + } + + /// Generates phi nodes for live-outs as needed to retain SSA form. + void execute(VPTransformState &State) override; + + /// Print the recipe. + void print(raw_ostream &O, const Twine &Indent) const override; +}; + +/// A Recipe for widening load/store operations. +/// TODO: We currently execute only per-part unless a specific instance is +/// provided. +class VPWidenMemoryInstructionRecipe : public VPRecipeBase { +private: + Instruction &Instr; + std::unique_ptr<VPUser> User; + +public: + VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask) + : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) { + if (Mask) // Create a VPInstruction to register as a user of the mask. + User.reset(new VPUser({Mask})); + } + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPRecipeBase *V) { + return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; + } + + /// Generate the wide load/store. + void execute(VPTransformState &State) override; + + /// Print the recipe. + void print(raw_ostream &O, const Twine &Indent) const override; +}; + +/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It +/// holds a sequence of zero or more VPRecipe's each representing a sequence of +/// output IR instructions. +class VPBasicBlock : public VPBlockBase { +public: + using RecipeListTy = iplist<VPRecipeBase>; + +private: + /// The VPRecipes held in the order of output instructions to generate. + RecipeListTy Recipes; + +public: + VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) + : VPBlockBase(VPBasicBlockSC, Name.str()) { + if (Recipe) + appendRecipe(Recipe); + } + + ~VPBasicBlock() override { Recipes.clear(); } + + /// Instruction iterators... + using iterator = RecipeListTy::iterator; + using const_iterator = RecipeListTy::const_iterator; + using reverse_iterator = RecipeListTy::reverse_iterator; + using const_reverse_iterator = RecipeListTy::const_reverse_iterator; + + //===--------------------------------------------------------------------===// + /// Recipe iterator methods + /// + inline iterator begin() { return Recipes.begin(); } + inline const_iterator begin() const { return Recipes.begin(); } + inline iterator end() { return Recipes.end(); } + inline const_iterator end() const { return Recipes.end(); } + + inline reverse_iterator rbegin() { return Recipes.rbegin(); } + inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } + inline reverse_iterator rend() { return Recipes.rend(); } + inline const_reverse_iterator rend() const { return Recipes.rend(); } + + inline size_t size() const { return Recipes.size(); } + inline bool empty() const { return Recipes.empty(); } + inline const VPRecipeBase &front() const { return Recipes.front(); } + inline VPRecipeBase &front() { return Recipes.front(); } + inline const VPRecipeBase &back() const { return Recipes.back(); } + inline VPRecipeBase &back() { return Recipes.back(); } + + /// \brief Returns a pointer to a member of the recipe list. + static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { + return &VPBasicBlock::Recipes; + } + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPBlockBase *V) { + return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; + } + + void insert(VPRecipeBase *Recipe, iterator InsertPt) { + assert(Recipe && "No recipe to append."); + assert(!Recipe->Parent && "Recipe already in VPlan"); + Recipe->Parent = this; + Recipes.insert(InsertPt, Recipe); + } + + /// Augment the existing recipes of a VPBasicBlock with an additional + /// \p Recipe as the last recipe. + void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } + + /// The method which generates the output IR instructions that correspond to + /// this VPBasicBlock, thereby "executing" the VPlan. + void execute(struct VPTransformState *State) override; + +private: + /// Create an IR BasicBlock to hold the output instructions generated by this + /// VPBasicBlock, and return it. Update the CFGState accordingly. + BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); +}; + +/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks +/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. +/// A VPRegionBlock may indicate that its contents are to be replicated several +/// times. This is designed to support predicated scalarization, in which a +/// scalar if-then code structure needs to be generated VF * UF times. Having +/// this replication indicator helps to keep a single model for multiple +/// candidate VF's. The actual replication takes place only once the desired VF +/// and UF have been determined. +class VPRegionBlock : public VPBlockBase { +private: + /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. + VPBlockBase *Entry; + + /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. + VPBlockBase *Exit; + + /// An indicator whether this region is to generate multiple replicated + /// instances of output IR corresponding to its VPBlockBases. + bool IsReplicator; + +public: + VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, + const std::string &Name = "", bool IsReplicator = false) + : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), + IsReplicator(IsReplicator) { + assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); + assert(Exit->getSuccessors().empty() && "Exit block has successors."); + Entry->setParent(this); + Exit->setParent(this); + } + + ~VPRegionBlock() override { + if (Entry) + deleteCFG(Entry); + } + + /// Method to support type inquiry through isa, cast, and dyn_cast. + static inline bool classof(const VPBlockBase *V) { + return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; + } + + const VPBlockBase *getEntry() const { return Entry; } + VPBlockBase *getEntry() { return Entry; } + + const VPBlockBase *getExit() const { return Exit; } + VPBlockBase *getExit() { return Exit; } + + /// An indicator whether this region is to generate multiple replicated + /// instances of output IR corresponding to its VPBlockBases. + bool isReplicator() const { return IsReplicator; } + + /// The method which generates the output IR instructions that correspond to + /// this VPRegionBlock, thereby "executing" the VPlan. + void execute(struct VPTransformState *State) override; +}; + +/// VPlan models a candidate for vectorization, encoding various decisions take +/// to produce efficient output IR, including which branches, basic-blocks and +/// output IR instructions to generate, and their cost. VPlan holds a +/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry +/// VPBlock. +class VPlan { + friend class VPlanPrinter; + +private: + /// Hold the single entry to the Hierarchical CFG of the VPlan. + VPBlockBase *Entry; + + /// Holds the VFs applicable to this VPlan. + SmallSet<unsigned, 2> VFs; + + /// Holds the name of the VPlan, for printing. + std::string Name; + + /// Holds a mapping between Values and their corresponding VPValue inside + /// VPlan. + Value2VPValueTy Value2VPValue; + +public: + VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} + + ~VPlan() { + if (Entry) + VPBlockBase::deleteCFG(Entry); + for (auto &MapEntry : Value2VPValue) + delete MapEntry.second; + } + + /// Generate the IR code for this VPlan. + void execute(struct VPTransformState *State); + + VPBlockBase *getEntry() { return Entry; } + const VPBlockBase *getEntry() const { return Entry; } + + VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } + + void addVF(unsigned VF) { VFs.insert(VF); } + + bool hasVF(unsigned VF) { return VFs.count(VF); } + + const std::string &getName() const { return Name; } + + void setName(const Twine &newName) { Name = newName.str(); } + + void addVPValue(Value *V) { + assert(V && "Trying to add a null Value to VPlan"); + assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); + Value2VPValue[V] = new VPValue(); + } + + VPValue *getVPValue(Value *V) { + assert(V && "Trying to get the VPValue of a null Value"); + assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); + return Value2VPValue[V]; + } + +private: + /// Add to the given dominator tree the header block and every new basic block + /// that was created between it and the latch block, inclusive. + static void updateDominatorTree(DominatorTree *DT, + BasicBlock *LoopPreHeaderBB, + BasicBlock *LoopLatchBB); +}; + +/// VPlanPrinter prints a given VPlan to a given output stream. The printing is +/// indented and follows the dot format. +class VPlanPrinter { + friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan); + friend inline raw_ostream &operator<<(raw_ostream &OS, + const struct VPlanIngredient &I); + +private: + raw_ostream &OS; + VPlan &Plan; + unsigned Depth; + unsigned TabWidth = 2; + std::string Indent; + unsigned BID = 0; + SmallDenseMap<const VPBlockBase *, unsigned> BlockID; + + VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {} + + /// Handle indentation. + void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } + + /// Print a given \p Block of the Plan. + void dumpBlock(const VPBlockBase *Block); + + /// Print the information related to the CFG edges going out of a given + /// \p Block, followed by printing the successor blocks themselves. + void dumpEdges(const VPBlockBase *Block); + + /// Print a given \p BasicBlock, including its VPRecipes, followed by printing + /// its successor blocks. + void dumpBasicBlock(const VPBasicBlock *BasicBlock); + + /// Print a given \p Region of the Plan. + void dumpRegion(const VPRegionBlock *Region); + + unsigned getOrCreateBID(const VPBlockBase *Block) { + return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; + } + + const Twine getOrCreateName(const VPBlockBase *Block); + + const Twine getUID(const VPBlockBase *Block); + + /// Print the information related to a CFG edge between two VPBlockBases. + void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, + const Twine &Label); + + void dump(); + + static void printAsIngredient(raw_ostream &O, Value *V); +}; + +struct VPlanIngredient { + Value *V; + + VPlanIngredient(Value *V) : V(V) {} +}; + +inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { + VPlanPrinter::printAsIngredient(OS, I.V); + return OS; +} + +inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) { + VPlanPrinter Printer(OS, Plan); + Printer.dump(); + return OS; +} + +//===--------------------------------------------------------------------===// +// GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs // +//===--------------------------------------------------------------------===// + +// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a +// graph of VPBlockBase nodes... + +template <> struct GraphTraits<VPBlockBase *> { + using NodeRef = VPBlockBase *; + using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; + + static NodeRef getEntryNode(NodeRef N) { return N; } + + static inline ChildIteratorType child_begin(NodeRef N) { + return N->getSuccessors().begin(); + } + + static inline ChildIteratorType child_end(NodeRef N) { + return N->getSuccessors().end(); + } +}; + +template <> struct GraphTraits<const VPBlockBase *> { + using NodeRef = const VPBlockBase *; + using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; + + static NodeRef getEntryNode(NodeRef N) { return N; } + + static inline ChildIteratorType child_begin(NodeRef N) { + return N->getSuccessors().begin(); + } + + static inline ChildIteratorType child_end(NodeRef N) { + return N->getSuccessors().end(); + } +}; + +// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a +// graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order +// for a VPBlockBase is considered to be when traversing the predecessors of a +// VPBlockBase instead of its successors. +template <> struct GraphTraits<Inverse<VPBlockBase *>> { + using NodeRef = VPBlockBase *; + using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; + + static Inverse<VPBlockBase *> getEntryNode(Inverse<VPBlockBase *> B) { + return B; + } + + static inline ChildIteratorType child_begin(NodeRef N) { + return N->getPredecessors().begin(); + } + + static inline ChildIteratorType child_end(NodeRef N) { + return N->getPredecessors().end(); + } +}; + +} // end namespace llvm + +#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
