diff options
Diffstat (limited to 'gnu/llvm/tools/clang/lib/CodeGen/CGCall.cpp')
| -rw-r--r-- | gnu/llvm/tools/clang/lib/CodeGen/CGCall.cpp | 4579 |
1 files changed, 0 insertions, 4579 deletions
diff --git a/gnu/llvm/tools/clang/lib/CodeGen/CGCall.cpp b/gnu/llvm/tools/clang/lib/CodeGen/CGCall.cpp deleted file mode 100644 index 8a3ae7511cf..00000000000 --- a/gnu/llvm/tools/clang/lib/CodeGen/CGCall.cpp +++ /dev/null @@ -1,4579 +0,0 @@ -//===--- CGCall.cpp - Encapsulate calling convention details --------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// These classes wrap the information about a call or function -// definition used to handle ABI compliancy. -// -//===----------------------------------------------------------------------===// - -#include "CGCall.h" -#include "ABIInfo.h" -#include "CGBlocks.h" -#include "CGCXXABI.h" -#include "CGCleanup.h" -#include "CodeGenFunction.h" -#include "CodeGenModule.h" -#include "TargetInfo.h" -#include "clang/AST/Decl.h" -#include "clang/AST/DeclCXX.h" -#include "clang/AST/DeclObjC.h" -#include "clang/Basic/CodeGenOptions.h" -#include "clang/Basic/TargetBuiltins.h" -#include "clang/Basic/TargetInfo.h" -#include "clang/CodeGen/CGFunctionInfo.h" -#include "clang/CodeGen/SwiftCallingConv.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -using namespace clang; -using namespace CodeGen; - -/***/ - -unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { - switch (CC) { - default: return llvm::CallingConv::C; - case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; - case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; - case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; - case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; - case CC_Win64: return llvm::CallingConv::Win64; - case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; - case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; - case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; - case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; - // TODO: Add support for __pascal to LLVM. - case CC_X86Pascal: return llvm::CallingConv::C; - // TODO: Add support for __vectorcall to LLVM. - case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; - case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; - case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; - case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); - case CC_PreserveMost: return llvm::CallingConv::PreserveMost; - case CC_PreserveAll: return llvm::CallingConv::PreserveAll; - case CC_Swift: return llvm::CallingConv::Swift; - } -} - -/// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR -/// qualification. -static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD, - const CXXMethodDecl *MD) { - QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); - if (MD) - RecTy = Context.getAddrSpaceQualType(RecTy, MD->getTypeQualifiers().getAddressSpace()); - return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); -} - -/// Returns the canonical formal type of the given C++ method. -static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { - return MD->getType()->getCanonicalTypeUnqualified() - .getAs<FunctionProtoType>(); -} - -/// Returns the "extra-canonicalized" return type, which discards -/// qualifiers on the return type. Codegen doesn't care about them, -/// and it makes ABI code a little easier to be able to assume that -/// all parameter and return types are top-level unqualified. -static CanQualType GetReturnType(QualType RetTy) { - return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); -} - -/// Arrange the argument and result information for a value of the given -/// unprototyped freestanding function type. -const CGFunctionInfo & -CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { - // When translating an unprototyped function type, always use a - // variadic type. - return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), - /*instanceMethod=*/false, - /*chainCall=*/false, None, - FTNP->getExtInfo(), {}, RequiredArgs(0)); -} - -static void addExtParameterInfosForCall( - llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, - const FunctionProtoType *proto, - unsigned prefixArgs, - unsigned totalArgs) { - assert(proto->hasExtParameterInfos()); - assert(paramInfos.size() <= prefixArgs); - assert(proto->getNumParams() + prefixArgs <= totalArgs); - - paramInfos.reserve(totalArgs); - - // Add default infos for any prefix args that don't already have infos. - paramInfos.resize(prefixArgs); - - // Add infos for the prototype. - for (const auto &ParamInfo : proto->getExtParameterInfos()) { - paramInfos.push_back(ParamInfo); - // pass_object_size params have no parameter info. - if (ParamInfo.hasPassObjectSize()) - paramInfos.emplace_back(); - } - - assert(paramInfos.size() <= totalArgs && - "Did we forget to insert pass_object_size args?"); - // Add default infos for the variadic and/or suffix arguments. - paramInfos.resize(totalArgs); -} - -/// Adds the formal parameters in FPT to the given prefix. If any parameter in -/// FPT has pass_object_size attrs, then we'll add parameters for those, too. -static void appendParameterTypes(const CodeGenTypes &CGT, - SmallVectorImpl<CanQualType> &prefix, - SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, - CanQual<FunctionProtoType> FPT) { - // Fast path: don't touch param info if we don't need to. - if (!FPT->hasExtParameterInfos()) { - assert(paramInfos.empty() && - "We have paramInfos, but the prototype doesn't?"); - prefix.append(FPT->param_type_begin(), FPT->param_type_end()); - return; - } - - unsigned PrefixSize = prefix.size(); - // In the vast majority of cases, we'll have precisely FPT->getNumParams() - // parameters; the only thing that can change this is the presence of - // pass_object_size. So, we preallocate for the common case. - prefix.reserve(prefix.size() + FPT->getNumParams()); - - auto ExtInfos = FPT->getExtParameterInfos(); - assert(ExtInfos.size() == FPT->getNumParams()); - for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { - prefix.push_back(FPT->getParamType(I)); - if (ExtInfos[I].hasPassObjectSize()) - prefix.push_back(CGT.getContext().getSizeType()); - } - - addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, - prefix.size()); -} - -/// Arrange the LLVM function layout for a value of the given function -/// type, on top of any implicit parameters already stored. -static const CGFunctionInfo & -arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, - SmallVectorImpl<CanQualType> &prefix, - CanQual<FunctionProtoType> FTP, - const FunctionDecl *FD) { - SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; - RequiredArgs Required = - RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); - // FIXME: Kill copy. - appendParameterTypes(CGT, prefix, paramInfos, FTP); - CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); - - return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, - /*chainCall=*/false, prefix, - FTP->getExtInfo(), paramInfos, - Required); -} - -/// Arrange the argument and result information for a value of the -/// given freestanding function type. -const CGFunctionInfo & -CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, - const FunctionDecl *FD) { - SmallVector<CanQualType, 16> argTypes; - return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, - FTP, FD); -} - -static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { - // Set the appropriate calling convention for the Function. - if (D->hasAttr<StdCallAttr>()) - return CC_X86StdCall; - - if (D->hasAttr<FastCallAttr>()) - return CC_X86FastCall; - - if (D->hasAttr<RegCallAttr>()) - return CC_X86RegCall; - - if (D->hasAttr<ThisCallAttr>()) - return CC_X86ThisCall; - - if (D->hasAttr<VectorCallAttr>()) - return CC_X86VectorCall; - - if (D->hasAttr<PascalAttr>()) - return CC_X86Pascal; - - if (PcsAttr *PCS = D->getAttr<PcsAttr>()) - return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); - - if (D->hasAttr<AArch64VectorPcsAttr>()) - return CC_AArch64VectorCall; - - if (D->hasAttr<IntelOclBiccAttr>()) - return CC_IntelOclBicc; - - if (D->hasAttr<MSABIAttr>()) - return IsWindows ? CC_C : CC_Win64; - - if (D->hasAttr<SysVABIAttr>()) - return IsWindows ? CC_X86_64SysV : CC_C; - - if (D->hasAttr<PreserveMostAttr>()) - return CC_PreserveMost; - - if (D->hasAttr<PreserveAllAttr>()) - return CC_PreserveAll; - - return CC_C; -} - -/// Arrange the argument and result information for a call to an -/// unknown C++ non-static member function of the given abstract type. -/// (Zero value of RD means we don't have any meaningful "this" argument type, -/// so fall back to a generic pointer type). -/// The member function must be an ordinary function, i.e. not a -/// constructor or destructor. -const CGFunctionInfo & -CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, - const FunctionProtoType *FTP, - const CXXMethodDecl *MD) { - SmallVector<CanQualType, 16> argTypes; - - // Add the 'this' pointer. - if (RD) - argTypes.push_back(GetThisType(Context, RD, MD)); - else - argTypes.push_back(Context.VoidPtrTy); - - return ::arrangeLLVMFunctionInfo( - *this, true, argTypes, - FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); -} - -/// Set calling convention for CUDA/HIP kernel. -static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, - const FunctionDecl *FD) { - if (FD->hasAttr<CUDAGlobalAttr>()) { - const FunctionType *FT = FTy->getAs<FunctionType>(); - CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); - FTy = FT->getCanonicalTypeUnqualified(); - } -} - -/// Arrange the argument and result information for a declaration or -/// definition of the given C++ non-static member function. The -/// member function must be an ordinary function, i.e. not a -/// constructor or destructor. -const CGFunctionInfo & -CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { - assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); - assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); - - CanQualType FT = GetFormalType(MD).getAs<Type>(); - setCUDAKernelCallingConvention(FT, CGM, MD); - auto prototype = FT.getAs<FunctionProtoType>(); - - if (MD->isInstance()) { - // The abstract case is perfectly fine. - const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); - return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); - } - - return arrangeFreeFunctionType(prototype, MD); -} - -bool CodeGenTypes::inheritingCtorHasParams( - const InheritedConstructor &Inherited, CXXCtorType Type) { - // Parameters are unnecessary if we're constructing a base class subobject - // and the inherited constructor lives in a virtual base. - return Type == Ctor_Complete || - !Inherited.getShadowDecl()->constructsVirtualBase() || - !Target.getCXXABI().hasConstructorVariants(); - } - -const CGFunctionInfo & -CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, - StructorType Type) { - - SmallVector<CanQualType, 16> argTypes; - SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; - argTypes.push_back(GetThisType(Context, MD->getParent(), MD)); - - bool PassParams = true; - - GlobalDecl GD; - if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { - GD = GlobalDecl(CD, toCXXCtorType(Type)); - - // A base class inheriting constructor doesn't get forwarded arguments - // needed to construct a virtual base (or base class thereof). - if (auto Inherited = CD->getInheritedConstructor()) - PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); - } else { - auto *DD = dyn_cast<CXXDestructorDecl>(MD); - GD = GlobalDecl(DD, toCXXDtorType(Type)); - } - - CanQual<FunctionProtoType> FTP = GetFormalType(MD); - - // Add the formal parameters. - if (PassParams) - appendParameterTypes(*this, argTypes, paramInfos, FTP); - - CGCXXABI::AddedStructorArgs AddedArgs = - TheCXXABI.buildStructorSignature(MD, Type, argTypes); - if (!paramInfos.empty()) { - // Note: prefix implies after the first param. - if (AddedArgs.Prefix) - paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, - FunctionProtoType::ExtParameterInfo{}); - if (AddedArgs.Suffix) - paramInfos.append(AddedArgs.Suffix, - FunctionProtoType::ExtParameterInfo{}); - } - - RequiredArgs required = - (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) - : RequiredArgs::All); - - FunctionType::ExtInfo extInfo = FTP->getExtInfo(); - CanQualType resultType = TheCXXABI.HasThisReturn(GD) - ? argTypes.front() - : TheCXXABI.hasMostDerivedReturn(GD) - ? CGM.getContext().VoidPtrTy - : Context.VoidTy; - return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, - /*chainCall=*/false, argTypes, extInfo, - paramInfos, required); -} - -static SmallVector<CanQualType, 16> -getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { - SmallVector<CanQualType, 16> argTypes; - for (auto &arg : args) - argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); - return argTypes; -} - -static SmallVector<CanQualType, 16> -getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { - SmallVector<CanQualType, 16> argTypes; - for (auto &arg : args) - argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); - return argTypes; -} - -static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> -getExtParameterInfosForCall(const FunctionProtoType *proto, - unsigned prefixArgs, unsigned totalArgs) { - llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; - if (proto->hasExtParameterInfos()) { - addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); - } - return result; -} - -/// Arrange a call to a C++ method, passing the given arguments. -/// -/// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` -/// parameter. -/// ExtraSuffixArgs is the number of ABI-specific args passed at the end of -/// args. -/// PassProtoArgs indicates whether `args` has args for the parameters in the -/// given CXXConstructorDecl. -const CGFunctionInfo & -CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, - const CXXConstructorDecl *D, - CXXCtorType CtorKind, - unsigned ExtraPrefixArgs, - unsigned ExtraSuffixArgs, - bool PassProtoArgs) { - // FIXME: Kill copy. - SmallVector<CanQualType, 16> ArgTypes; - for (const auto &Arg : args) - ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); - - // +1 for implicit this, which should always be args[0]. - unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; - - CanQual<FunctionProtoType> FPT = GetFormalType(D); - RequiredArgs Required = - RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); - GlobalDecl GD(D, CtorKind); - CanQualType ResultType = TheCXXABI.HasThisReturn(GD) - ? ArgTypes.front() - : TheCXXABI.hasMostDerivedReturn(GD) - ? CGM.getContext().VoidPtrTy - : Context.VoidTy; - - FunctionType::ExtInfo Info = FPT->getExtInfo(); - llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; - // If the prototype args are elided, we should only have ABI-specific args, - // which never have param info. - if (PassProtoArgs && FPT->hasExtParameterInfos()) { - // ABI-specific suffix arguments are treated the same as variadic arguments. - addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, - ArgTypes.size()); - } - return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, - /*chainCall=*/false, ArgTypes, Info, - ParamInfos, Required); -} - -/// Arrange the argument and result information for the declaration or -/// definition of the given function. -const CGFunctionInfo & -CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { - if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) - if (MD->isInstance()) - return arrangeCXXMethodDeclaration(MD); - - CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); - - assert(isa<FunctionType>(FTy)); - setCUDAKernelCallingConvention(FTy, CGM, FD); - - // When declaring a function without a prototype, always use a - // non-variadic type. - if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { - return arrangeLLVMFunctionInfo( - noProto->getReturnType(), /*instanceMethod=*/false, - /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); - } - - return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); -} - -/// Arrange the argument and result information for the declaration or -/// definition of an Objective-C method. -const CGFunctionInfo & -CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { - // It happens that this is the same as a call with no optional - // arguments, except also using the formal 'self' type. - return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); -} - -/// Arrange the argument and result information for the function type -/// through which to perform a send to the given Objective-C method, -/// using the given receiver type. The receiver type is not always -/// the 'self' type of the method or even an Objective-C pointer type. -/// This is *not* the right method for actually performing such a -/// message send, due to the possibility of optional arguments. -const CGFunctionInfo & -CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, - QualType receiverType) { - SmallVector<CanQualType, 16> argTys; - SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); - argTys.push_back(Context.getCanonicalParamType(receiverType)); - argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); - // FIXME: Kill copy? - for (const auto *I : MD->parameters()) { - argTys.push_back(Context.getCanonicalParamType(I->getType())); - auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( - I->hasAttr<NoEscapeAttr>()); - extParamInfos.push_back(extParamInfo); - } - - FunctionType::ExtInfo einfo; - bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); - einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); - - if (getContext().getLangOpts().ObjCAutoRefCount && - MD->hasAttr<NSReturnsRetainedAttr>()) - einfo = einfo.withProducesResult(true); - - RequiredArgs required = - (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); - - return arrangeLLVMFunctionInfo( - GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, - /*chainCall=*/false, argTys, einfo, extParamInfos, required); -} - -const CGFunctionInfo & -CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, - const CallArgList &args) { - auto argTypes = getArgTypesForCall(Context, args); - FunctionType::ExtInfo einfo; - - return arrangeLLVMFunctionInfo( - GetReturnType(returnType), /*instanceMethod=*/false, - /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); -} - -const CGFunctionInfo & -CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { - // FIXME: Do we need to handle ObjCMethodDecl? - const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); - - if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) - return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); - - if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) - return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); - - return arrangeFunctionDeclaration(FD); -} - -/// Arrange a thunk that takes 'this' as the first parameter followed by -/// varargs. Return a void pointer, regardless of the actual return type. -/// The body of the thunk will end in a musttail call to a function of the -/// correct type, and the caller will bitcast the function to the correct -/// prototype. -const CGFunctionInfo & -CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { - assert(MD->isVirtual() && "only methods have thunks"); - CanQual<FunctionProtoType> FTP = GetFormalType(MD); - CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) }; - return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, - /*chainCall=*/false, ArgTys, - FTP->getExtInfo(), {}, RequiredArgs(1)); -} - -const CGFunctionInfo & -CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, - CXXCtorType CT) { - assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); - - CanQual<FunctionProtoType> FTP = GetFormalType(CD); - SmallVector<CanQualType, 2> ArgTys; - const CXXRecordDecl *RD = CD->getParent(); - ArgTys.push_back(GetThisType(Context, RD, CD)); - if (CT == Ctor_CopyingClosure) - ArgTys.push_back(*FTP->param_type_begin()); - if (RD->getNumVBases() > 0) - ArgTys.push_back(Context.IntTy); - CallingConv CC = Context.getDefaultCallingConvention( - /*IsVariadic=*/false, /*IsCXXMethod=*/true); - return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, - /*chainCall=*/false, ArgTys, - FunctionType::ExtInfo(CC), {}, - RequiredArgs::All); -} - -/// Arrange a call as unto a free function, except possibly with an -/// additional number of formal parameters considered required. -static const CGFunctionInfo & -arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, - CodeGenModule &CGM, - const CallArgList &args, - const FunctionType *fnType, - unsigned numExtraRequiredArgs, - bool chainCall) { - assert(args.size() >= numExtraRequiredArgs); - - llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; - - // In most cases, there are no optional arguments. - RequiredArgs required = RequiredArgs::All; - - // If we have a variadic prototype, the required arguments are the - // extra prefix plus the arguments in the prototype. - if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { - if (proto->isVariadic()) - required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); - - if (proto->hasExtParameterInfos()) - addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, - args.size()); - - // If we don't have a prototype at all, but we're supposed to - // explicitly use the variadic convention for unprototyped calls, - // treat all of the arguments as required but preserve the nominal - // possibility of variadics. - } else if (CGM.getTargetCodeGenInfo() - .isNoProtoCallVariadic(args, - cast<FunctionNoProtoType>(fnType))) { - required = RequiredArgs(args.size()); - } - - // FIXME: Kill copy. - SmallVector<CanQualType, 16> argTypes; - for (const auto &arg : args) - argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); - return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), - /*instanceMethod=*/false, chainCall, - argTypes, fnType->getExtInfo(), paramInfos, - required); -} - -/// Figure out the rules for calling a function with the given formal -/// type using the given arguments. The arguments are necessary -/// because the function might be unprototyped, in which case it's -/// target-dependent in crazy ways. -const CGFunctionInfo & -CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, - const FunctionType *fnType, - bool chainCall) { - return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, - chainCall ? 1 : 0, chainCall); -} - -/// A block function is essentially a free function with an -/// extra implicit argument. -const CGFunctionInfo & -CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, - const FunctionType *fnType) { - return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, - /*chainCall=*/false); -} - -const CGFunctionInfo & -CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, - const FunctionArgList ¶ms) { - auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); - auto argTypes = getArgTypesForDeclaration(Context, params); - - return arrangeLLVMFunctionInfo( - GetReturnType(proto->getReturnType()), - /*instanceMethod*/ false, /*chainCall*/ false, argTypes, - proto->getExtInfo(), paramInfos, - RequiredArgs::forPrototypePlus(proto, 1, nullptr)); -} - -const CGFunctionInfo & -CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, - const CallArgList &args) { - // FIXME: Kill copy. - SmallVector<CanQualType, 16> argTypes; - for (const auto &Arg : args) - argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); - return arrangeLLVMFunctionInfo( - GetReturnType(resultType), /*instanceMethod=*/false, - /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), - /*paramInfos=*/ {}, RequiredArgs::All); -} - -const CGFunctionInfo & -CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, - const FunctionArgList &args) { - auto argTypes = getArgTypesForDeclaration(Context, args); - - return arrangeLLVMFunctionInfo( - GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, - argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); -} - -const CGFunctionInfo & -CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, - ArrayRef<CanQualType> argTypes) { - return arrangeLLVMFunctionInfo( - resultType, /*instanceMethod=*/false, /*chainCall=*/false, - argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); -} - -/// Arrange a call to a C++ method, passing the given arguments. -/// -/// numPrefixArgs is the number of ABI-specific prefix arguments we have. It -/// does not count `this`. -const CGFunctionInfo & -CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, - const FunctionProtoType *proto, - RequiredArgs required, - unsigned numPrefixArgs) { - assert(numPrefixArgs + 1 <= args.size() && - "Emitting a call with less args than the required prefix?"); - // Add one to account for `this`. It's a bit awkward here, but we don't count - // `this` in similar places elsewhere. - auto paramInfos = - getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); - - // FIXME: Kill copy. - auto argTypes = getArgTypesForCall(Context, args); - - FunctionType::ExtInfo info = proto->getExtInfo(); - return arrangeLLVMFunctionInfo( - GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, - /*chainCall=*/false, argTypes, info, paramInfos, required); -} - -const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { - return arrangeLLVMFunctionInfo( - getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, - None, FunctionType::ExtInfo(), {}, RequiredArgs::All); -} - -const CGFunctionInfo & -CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, - const CallArgList &args) { - assert(signature.arg_size() <= args.size()); - if (signature.arg_size() == args.size()) - return signature; - - SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; - auto sigParamInfos = signature.getExtParameterInfos(); - if (!sigParamInfos.empty()) { - paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); - paramInfos.resize(args.size()); - } - - auto argTypes = getArgTypesForCall(Context, args); - - assert(signature.getRequiredArgs().allowsOptionalArgs()); - return arrangeLLVMFunctionInfo(signature.getReturnType(), - signature.isInstanceMethod(), - signature.isChainCall(), - argTypes, - signature.getExtInfo(), - paramInfos, - signature.getRequiredArgs()); -} - -namespace clang { -namespace CodeGen { -void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); -} -} - -/// Arrange the argument and result information for an abstract value -/// of a given function type. This is the method which all of the -/// above functions ultimately defer to. -const CGFunctionInfo & -CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, - bool instanceMethod, - bool chainCall, - ArrayRef<CanQualType> argTypes, - FunctionType::ExtInfo info, - ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, - RequiredArgs required) { - assert(llvm::all_of(argTypes, - [](CanQualType T) { return T.isCanonicalAsParam(); })); - - // Lookup or create unique function info. - llvm::FoldingSetNodeID ID; - CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, - required, resultType, argTypes); - - void *insertPos = nullptr; - CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); - if (FI) - return *FI; - - unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); - - // Construct the function info. We co-allocate the ArgInfos. - FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, - paramInfos, resultType, argTypes, required); - FunctionInfos.InsertNode(FI, insertPos); - - bool inserted = FunctionsBeingProcessed.insert(FI).second; - (void)inserted; - assert(inserted && "Recursively being processed?"); - - // Compute ABI information. - if (CC == llvm::CallingConv::SPIR_KERNEL) { - // Force target independent argument handling for the host visible - // kernel functions. - computeSPIRKernelABIInfo(CGM, *FI); - } else if (info.getCC() == CC_Swift) { - swiftcall::computeABIInfo(CGM, *FI); - } else { - getABIInfo().computeInfo(*FI); - } - - // Loop over all of the computed argument and return value info. If any of - // them are direct or extend without a specified coerce type, specify the - // default now. - ABIArgInfo &retInfo = FI->getReturnInfo(); - if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) - retInfo.setCoerceToType(ConvertType(FI->getReturnType())); - - for (auto &I : FI->arguments()) - if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) - I.info.setCoerceToType(ConvertType(I.type)); - - bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; - assert(erased && "Not in set?"); - - return *FI; -} - -CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, - bool instanceMethod, - bool chainCall, - const FunctionType::ExtInfo &info, - ArrayRef<ExtParameterInfo> paramInfos, - CanQualType resultType, - ArrayRef<CanQualType> argTypes, - RequiredArgs required) { - assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); - - void *buffer = - operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( - argTypes.size() + 1, paramInfos.size())); - - CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); - FI->CallingConvention = llvmCC; - FI->EffectiveCallingConvention = llvmCC; - FI->ASTCallingConvention = info.getCC(); - FI->InstanceMethod = instanceMethod; - FI->ChainCall = chainCall; - FI->NoReturn = info.getNoReturn(); - FI->ReturnsRetained = info.getProducesResult(); - FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); - FI->NoCfCheck = info.getNoCfCheck(); - FI->Required = required; - FI->HasRegParm = info.getHasRegParm(); - FI->RegParm = info.getRegParm(); - FI->ArgStruct = nullptr; - FI->ArgStructAlign = 0; - FI->NumArgs = argTypes.size(); - FI->HasExtParameterInfos = !paramInfos.empty(); - FI->getArgsBuffer()[0].type = resultType; - for (unsigned i = 0, e = argTypes.size(); i != e; ++i) - FI->getArgsBuffer()[i + 1].type = argTypes[i]; - for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) - FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; - return FI; -} - -/***/ - -namespace { -// ABIArgInfo::Expand implementation. - -// Specifies the way QualType passed as ABIArgInfo::Expand is expanded. -struct TypeExpansion { - enum TypeExpansionKind { - // Elements of constant arrays are expanded recursively. - TEK_ConstantArray, - // Record fields are expanded recursively (but if record is a union, only - // the field with the largest size is expanded). - TEK_Record, - // For complex types, real and imaginary parts are expanded recursively. - TEK_Complex, - // All other types are not expandable. - TEK_None - }; - - const TypeExpansionKind Kind; - - TypeExpansion(TypeExpansionKind K) : Kind(K) {} - virtual ~TypeExpansion() {} -}; - -struct ConstantArrayExpansion : TypeExpansion { - QualType EltTy; - uint64_t NumElts; - - ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) - : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} - static bool classof(const TypeExpansion *TE) { - return TE->Kind == TEK_ConstantArray; - } -}; - -struct RecordExpansion : TypeExpansion { - SmallVector<const CXXBaseSpecifier *, 1> Bases; - - SmallVector<const FieldDecl *, 1> Fields; - - RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, - SmallVector<const FieldDecl *, 1> &&Fields) - : TypeExpansion(TEK_Record), Bases(std::move(Bases)), - Fields(std::move(Fields)) {} - static bool classof(const TypeExpansion *TE) { - return TE->Kind == TEK_Record; - } -}; - -struct ComplexExpansion : TypeExpansion { - QualType EltTy; - - ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} - static bool classof(const TypeExpansion *TE) { - return TE->Kind == TEK_Complex; - } -}; - -struct NoExpansion : TypeExpansion { - NoExpansion() : TypeExpansion(TEK_None) {} - static bool classof(const TypeExpansion *TE) { - return TE->Kind == TEK_None; - } -}; -} // namespace - -static std::unique_ptr<TypeExpansion> -getTypeExpansion(QualType Ty, const ASTContext &Context) { - if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { - return llvm::make_unique<ConstantArrayExpansion>( - AT->getElementType(), AT->getSize().getZExtValue()); - } - if (const RecordType *RT = Ty->getAs<RecordType>()) { - SmallVector<const CXXBaseSpecifier *, 1> Bases; - SmallVector<const FieldDecl *, 1> Fields; - const RecordDecl *RD = RT->getDecl(); - assert(!RD->hasFlexibleArrayMember() && - "Cannot expand structure with flexible array."); - if (RD->isUnion()) { - // Unions can be here only in degenerative cases - all the fields are same - // after flattening. Thus we have to use the "largest" field. - const FieldDecl *LargestFD = nullptr; - CharUnits UnionSize = CharUnits::Zero(); - - for (const auto *FD : RD->fields()) { - if (FD->isZeroLengthBitField(Context)) - continue; - assert(!FD->isBitField() && - "Cannot expand structure with bit-field members."); - CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); - if (UnionSize < FieldSize) { - UnionSize = FieldSize; - LargestFD = FD; - } - } - if (LargestFD) - Fields.push_back(LargestFD); - } else { - if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { - assert(!CXXRD->isDynamicClass() && - "cannot expand vtable pointers in dynamic classes"); - for (const CXXBaseSpecifier &BS : CXXRD->bases()) - Bases.push_back(&BS); - } - - for (const auto *FD : RD->fields()) { - if (FD->isZeroLengthBitField(Context)) - continue; - assert(!FD->isBitField() && - "Cannot expand structure with bit-field members."); - Fields.push_back(FD); - } - } - return llvm::make_unique<RecordExpansion>(std::move(Bases), - std::move(Fields)); - } - if (const ComplexType *CT = Ty->getAs<ComplexType>()) { - return llvm::make_unique<ComplexExpansion>(CT->getElementType()); - } - return llvm::make_unique<NoExpansion>(); -} - -static int getExpansionSize(QualType Ty, const ASTContext &Context) { - auto Exp = getTypeExpansion(Ty, Context); - if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { - return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); - } - if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { - int Res = 0; - for (auto BS : RExp->Bases) - Res += getExpansionSize(BS->getType(), Context); - for (auto FD : RExp->Fields) - Res += getExpansionSize(FD->getType(), Context); - return Res; - } - if (isa<ComplexExpansion>(Exp.get())) - return 2; - assert(isa<NoExpansion>(Exp.get())); - return 1; -} - -void -CodeGenTypes::getExpandedTypes(QualType Ty, - SmallVectorImpl<llvm::Type *>::iterator &TI) { - auto Exp = getTypeExpansion(Ty, Context); - if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { - for (int i = 0, n = CAExp->NumElts; i < n; i++) { - getExpandedTypes(CAExp->EltTy, TI); - } - } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { - for (auto BS : RExp->Bases) - getExpandedTypes(BS->getType(), TI); - for (auto FD : RExp->Fields) - getExpandedTypes(FD->getType(), TI); - } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { - llvm::Type *EltTy = ConvertType(CExp->EltTy); - *TI++ = EltTy; - *TI++ = EltTy; - } else { - assert(isa<NoExpansion>(Exp.get())); - *TI++ = ConvertType(Ty); - } -} - -static void forConstantArrayExpansion(CodeGenFunction &CGF, - ConstantArrayExpansion *CAE, - Address BaseAddr, - llvm::function_ref<void(Address)> Fn) { - CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); - CharUnits EltAlign = - BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); - - for (int i = 0, n = CAE->NumElts; i < n; i++) { - llvm::Value *EltAddr = - CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); - Fn(Address(EltAddr, EltAlign)); - } -} - -void CodeGenFunction::ExpandTypeFromArgs( - QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { - assert(LV.isSimple() && - "Unexpected non-simple lvalue during struct expansion."); - - auto Exp = getTypeExpansion(Ty, getContext()); - if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { - forConstantArrayExpansion(*this, CAExp, LV.getAddress(), - [&](Address EltAddr) { - LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); - ExpandTypeFromArgs(CAExp->EltTy, LV, AI); - }); - } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { - Address This = LV.getAddress(); - for (const CXXBaseSpecifier *BS : RExp->Bases) { - // Perform a single step derived-to-base conversion. - Address Base = - GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, - /*NullCheckValue=*/false, SourceLocation()); - LValue SubLV = MakeAddrLValue(Base, BS->getType()); - - // Recurse onto bases. - ExpandTypeFromArgs(BS->getType(), SubLV, AI); - } - for (auto FD : RExp->Fields) { - // FIXME: What are the right qualifiers here? - LValue SubLV = EmitLValueForFieldInitialization(LV, FD); - ExpandTypeFromArgs(FD->getType(), SubLV, AI); - } - } else if (isa<ComplexExpansion>(Exp.get())) { - auto realValue = *AI++; - auto imagValue = *AI++; - EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); - } else { - assert(isa<NoExpansion>(Exp.get())); - EmitStoreThroughLValue(RValue::get(*AI++), LV); - } -} - -void CodeGenFunction::ExpandTypeToArgs( - QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, - SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { - auto Exp = getTypeExpansion(Ty, getContext()); - if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { - Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() - : Arg.getKnownRValue().getAggregateAddress(); - forConstantArrayExpansion( - *this, CAExp, Addr, [&](Address EltAddr) { - CallArg EltArg = CallArg( - convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), - CAExp->EltTy); - ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, - IRCallArgPos); - }); - } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { - Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() - : Arg.getKnownRValue().getAggregateAddress(); - for (const CXXBaseSpecifier *BS : RExp->Bases) { - // Perform a single step derived-to-base conversion. - Address Base = - GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, - /*NullCheckValue=*/false, SourceLocation()); - CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); - - // Recurse onto bases. - ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, - IRCallArgPos); - } - - LValue LV = MakeAddrLValue(This, Ty); - for (auto FD : RExp->Fields) { - CallArg FldArg = - CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); - ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, - IRCallArgPos); - } - } else if (isa<ComplexExpansion>(Exp.get())) { - ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); - IRCallArgs[IRCallArgPos++] = CV.first; - IRCallArgs[IRCallArgPos++] = CV.second; - } else { - assert(isa<NoExpansion>(Exp.get())); - auto RV = Arg.getKnownRValue(); - assert(RV.isScalar() && - "Unexpected non-scalar rvalue during struct expansion."); - - // Insert a bitcast as needed. - llvm::Value *V = RV.getScalarVal(); - if (IRCallArgPos < IRFuncTy->getNumParams() && - V->getType() != IRFuncTy->getParamType(IRCallArgPos)) - V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); - - IRCallArgs[IRCallArgPos++] = V; - } -} - -/// Create a temporary allocation for the purposes of coercion. -static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, - CharUnits MinAlign) { - // Don't use an alignment that's worse than what LLVM would prefer. - auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); - CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); - - return CGF.CreateTempAlloca(Ty, Align); -} - -/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are -/// accessing some number of bytes out of it, try to gep into the struct to get -/// at its inner goodness. Dive as deep as possible without entering an element -/// with an in-memory size smaller than DstSize. -static Address -EnterStructPointerForCoercedAccess(Address SrcPtr, - llvm::StructType *SrcSTy, - uint64_t DstSize, CodeGenFunction &CGF) { - // We can't dive into a zero-element struct. - if (SrcSTy->getNumElements() == 0) return SrcPtr; - - llvm::Type *FirstElt = SrcSTy->getElementType(0); - - // If the first elt is at least as large as what we're looking for, or if the - // first element is the same size as the whole struct, we can enter it. The - // comparison must be made on the store size and not the alloca size. Using - // the alloca size may overstate the size of the load. - uint64_t FirstEltSize = - CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); - if (FirstEltSize < DstSize && - FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) - return SrcPtr; - - // GEP into the first element. - SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); - - // If the first element is a struct, recurse. - llvm::Type *SrcTy = SrcPtr.getElementType(); - if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) - return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); - - return SrcPtr; -} - -/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both -/// are either integers or pointers. This does a truncation of the value if it -/// is too large or a zero extension if it is too small. -/// -/// This behaves as if the value were coerced through memory, so on big-endian -/// targets the high bits are preserved in a truncation, while little-endian -/// targets preserve the low bits. -static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, - llvm::Type *Ty, - CodeGenFunction &CGF) { - if (Val->getType() == Ty) - return Val; - - if (isa<llvm::PointerType>(Val->getType())) { - // If this is Pointer->Pointer avoid conversion to and from int. - if (isa<llvm::PointerType>(Ty)) - return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); - - // Convert the pointer to an integer so we can play with its width. - Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); - } - - llvm::Type *DestIntTy = Ty; - if (isa<llvm::PointerType>(DestIntTy)) - DestIntTy = CGF.IntPtrTy; - - if (Val->getType() != DestIntTy) { - const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); - if (DL.isBigEndian()) { - // Preserve the high bits on big-endian targets. - // That is what memory coercion does. - uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); - uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); - - if (SrcSize > DstSize) { - Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); - Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); - } else { - Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); - Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); - } - } else { - // Little-endian targets preserve the low bits. No shifts required. - Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); - } - } - - if (isa<llvm::PointerType>(Ty)) - Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); - return Val; -} - - - -/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as -/// a pointer to an object of type \arg Ty, known to be aligned to -/// \arg SrcAlign bytes. -/// -/// This safely handles the case when the src type is smaller than the -/// destination type; in this situation the values of bits which not -/// present in the src are undefined. -static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, - CodeGenFunction &CGF) { - llvm::Type *SrcTy = Src.getElementType(); - - // If SrcTy and Ty are the same, just do a load. - if (SrcTy == Ty) - return CGF.Builder.CreateLoad(Src); - - uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); - - if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { - Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); - SrcTy = Src.getType()->getElementType(); - } - - uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); - - // If the source and destination are integer or pointer types, just do an - // extension or truncation to the desired type. - if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && - (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { - llvm::Value *Load = CGF.Builder.CreateLoad(Src); - return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); - } - - // If load is legal, just bitcast the src pointer. - if (SrcSize >= DstSize) { - // Generally SrcSize is never greater than DstSize, since this means we are - // losing bits. However, this can happen in cases where the structure has - // additional padding, for example due to a user specified alignment. - // - // FIXME: Assert that we aren't truncating non-padding bits when have access - // to that information. - Src = CGF.Builder.CreateBitCast(Src, - Ty->getPointerTo(Src.getAddressSpace())); - return CGF.Builder.CreateLoad(Src); - } - - // Otherwise do coercion through memory. This is stupid, but simple. - Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); - Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); - Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); - CGF.Builder.CreateMemCpy(Casted, SrcCasted, - llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), - false); - return CGF.Builder.CreateLoad(Tmp); -} - -// Function to store a first-class aggregate into memory. We prefer to -// store the elements rather than the aggregate to be more friendly to -// fast-isel. -// FIXME: Do we need to recurse here? -static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, - Address Dest, bool DestIsVolatile) { - // Prefer scalar stores to first-class aggregate stores. - if (llvm::StructType *STy = - dyn_cast<llvm::StructType>(Val->getType())) { - const llvm::StructLayout *Layout = - CGF.CGM.getDataLayout().getStructLayout(STy); - - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); - Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); - llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); - CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); - } - } else { - CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); - } -} - -/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, -/// where the source and destination may have different types. The -/// destination is known to be aligned to \arg DstAlign bytes. -/// -/// This safely handles the case when the src type is larger than the -/// destination type; the upper bits of the src will be lost. -static void CreateCoercedStore(llvm::Value *Src, - Address Dst, - bool DstIsVolatile, - CodeGenFunction &CGF) { - llvm::Type *SrcTy = Src->getType(); - llvm::Type *DstTy = Dst.getType()->getElementType(); - if (SrcTy == DstTy) { - CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); - return; - } - - uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); - - if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { - Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); - DstTy = Dst.getType()->getElementType(); - } - - // If the source and destination are integer or pointer types, just do an - // extension or truncation to the desired type. - if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && - (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { - Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); - CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); - return; - } - - uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); - - // If store is legal, just bitcast the src pointer. - if (SrcSize <= DstSize) { - Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); - BuildAggStore(CGF, Src, Dst, DstIsVolatile); - } else { - // Otherwise do coercion through memory. This is stupid, but - // simple. - - // Generally SrcSize is never greater than DstSize, since this means we are - // losing bits. However, this can happen in cases where the structure has - // additional padding, for example due to a user specified alignment. - // - // FIXME: Assert that we aren't truncating non-padding bits when have access - // to that information. - Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); - CGF.Builder.CreateStore(Src, Tmp); - Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); - Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); - CGF.Builder.CreateMemCpy(DstCasted, Casted, - llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), - false); - } -} - -static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, - const ABIArgInfo &info) { - if (unsigned offset = info.getDirectOffset()) { - addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); - addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, - CharUnits::fromQuantity(offset)); - addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); - } - return addr; -} - -namespace { - -/// Encapsulates information about the way function arguments from -/// CGFunctionInfo should be passed to actual LLVM IR function. -class ClangToLLVMArgMapping { - static const unsigned InvalidIndex = ~0U; - unsigned InallocaArgNo; - unsigned SRetArgNo; - unsigned TotalIRArgs; - - /// Arguments of LLVM IR function corresponding to single Clang argument. - struct IRArgs { - unsigned PaddingArgIndex; - // Argument is expanded to IR arguments at positions - // [FirstArgIndex, FirstArgIndex + NumberOfArgs). - unsigned FirstArgIndex; - unsigned NumberOfArgs; - - IRArgs() - : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), - NumberOfArgs(0) {} - }; - - SmallVector<IRArgs, 8> ArgInfo; - -public: - ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, - bool OnlyRequiredArgs = false) - : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), - ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { - construct(Context, FI, OnlyRequiredArgs); - } - - bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } - unsigned getInallocaArgNo() const { - assert(hasInallocaArg()); - return InallocaArgNo; - } - - bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } - unsigned getSRetArgNo() const { - assert(hasSRetArg()); - return SRetArgNo; - } - - unsigned totalIRArgs() const { return TotalIRArgs; } - - bool hasPaddingArg(unsigned ArgNo) const { - assert(ArgNo < ArgInfo.size()); - return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; - } - unsigned getPaddingArgNo(unsigned ArgNo) const { - assert(hasPaddingArg(ArgNo)); - return ArgInfo[ArgNo].PaddingArgIndex; - } - - /// Returns index of first IR argument corresponding to ArgNo, and their - /// quantity. - std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { - assert(ArgNo < ArgInfo.size()); - return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, - ArgInfo[ArgNo].NumberOfArgs); - } - -private: - void construct(const ASTContext &Context, const CGFunctionInfo &FI, - bool OnlyRequiredArgs); -}; - -void ClangToLLVMArgMapping::construct(const ASTContext &Context, - const CGFunctionInfo &FI, - bool OnlyRequiredArgs) { - unsigned IRArgNo = 0; - bool SwapThisWithSRet = false; - const ABIArgInfo &RetAI = FI.getReturnInfo(); - - if (RetAI.getKind() == ABIArgInfo::Indirect) { - SwapThisWithSRet = RetAI.isSRetAfterThis(); - SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; - } - - unsigned ArgNo = 0; - unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); - for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; - ++I, ++ArgNo) { - assert(I != FI.arg_end()); - QualType ArgType = I->type; - const ABIArgInfo &AI = I->info; - // Collect data about IR arguments corresponding to Clang argument ArgNo. - auto &IRArgs = ArgInfo[ArgNo]; - - if (AI.getPaddingType()) - IRArgs.PaddingArgIndex = IRArgNo++; - - switch (AI.getKind()) { - case ABIArgInfo::Extend: - case ABIArgInfo::Direct: { - // FIXME: handle sseregparm someday... - llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); - if (AI.isDirect() && AI.getCanBeFlattened() && STy) { - IRArgs.NumberOfArgs = STy->getNumElements(); - } else { - IRArgs.NumberOfArgs = 1; - } - break; - } - case ABIArgInfo::Indirect: - IRArgs.NumberOfArgs = 1; - break; - case ABIArgInfo::Ignore: - case ABIArgInfo::InAlloca: - // ignore and inalloca doesn't have matching LLVM parameters. - IRArgs.NumberOfArgs = 0; - break; - case ABIArgInfo::CoerceAndExpand: - IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); - break; - case ABIArgInfo::Expand: - IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); - break; - } - - if (IRArgs.NumberOfArgs > 0) { - IRArgs.FirstArgIndex = IRArgNo; - IRArgNo += IRArgs.NumberOfArgs; - } - - // Skip over the sret parameter when it comes second. We already handled it - // above. - if (IRArgNo == 1 && SwapThisWithSRet) - IRArgNo++; - } - assert(ArgNo == ArgInfo.size()); - - if (FI.usesInAlloca()) - InallocaArgNo = IRArgNo++; - - TotalIRArgs = IRArgNo; -} -} // namespace - -/***/ - -bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { - const auto &RI = FI.getReturnInfo(); - return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); -} - -bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { - return ReturnTypeUsesSRet(FI) && - getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); -} - -bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { - if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { - switch (BT->getKind()) { - default: - return false; - case BuiltinType::Float: - return getTarget().useObjCFPRetForRealType(TargetInfo::Float); - case BuiltinType::Double: - return getTarget().useObjCFPRetForRealType(TargetInfo::Double); - case BuiltinType::LongDouble: - return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); - } - } - - return false; -} - -bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { - if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { - if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { - if (BT->getKind() == BuiltinType::LongDouble) - return getTarget().useObjCFP2RetForComplexLongDouble(); - } - } - - return false; -} - -llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { - const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); - return GetFunctionType(FI); -} - -llvm::FunctionType * -CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { - - bool Inserted = FunctionsBeingProcessed.insert(&FI).second; - (void)Inserted; - assert(Inserted && "Recursively being processed?"); - - llvm::Type *resultType = nullptr; - const ABIArgInfo &retAI = FI.getReturnInfo(); - switch (retAI.getKind()) { - case ABIArgInfo::Expand: - llvm_unreachable("Invalid ABI kind for return argument"); - - case ABIArgInfo::Extend: - case ABIArgInfo::Direct: - resultType = retAI.getCoerceToType(); - break; - - case ABIArgInfo::InAlloca: - if (retAI.getInAllocaSRet()) { - // sret things on win32 aren't void, they return the sret pointer. - QualType ret = FI.getReturnType(); - llvm::Type *ty = ConvertType(ret); - unsigned addressSpace = Context.getTargetAddressSpace(ret); - resultType = llvm::PointerType::get(ty, addressSpace); - } else { - resultType = llvm::Type::getVoidTy(getLLVMContext()); - } - break; - - case ABIArgInfo::Indirect: - case ABIArgInfo::Ignore: - resultType = llvm::Type::getVoidTy(getLLVMContext()); - break; - - case ABIArgInfo::CoerceAndExpand: - resultType = retAI.getUnpaddedCoerceAndExpandType(); - break; - } - - ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); - SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); - - // Add type for sret argument. - if (IRFunctionArgs.hasSRetArg()) { - QualType Ret = FI.getReturnType(); - llvm::Type *Ty = ConvertType(Ret); - unsigned AddressSpace = Context.getTargetAddressSpace(Ret); - ArgTypes[IRFunctionArgs.getSRetArgNo()] = - llvm::PointerType::get(Ty, AddressSpace); - } - - // Add type for inalloca argument. - if (IRFunctionArgs.hasInallocaArg()) { - auto ArgStruct = FI.getArgStruct(); - assert(ArgStruct); - ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); - } - - // Add in all of the required arguments. - unsigned ArgNo = 0; - CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), - ie = it + FI.getNumRequiredArgs(); - for (; it != ie; ++it, ++ArgNo) { - const ABIArgInfo &ArgInfo = it->info; - - // Insert a padding type to ensure proper alignment. - if (IRFunctionArgs.hasPaddingArg(ArgNo)) - ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = - ArgInfo.getPaddingType(); - - unsigned FirstIRArg, NumIRArgs; - std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); - - switch (ArgInfo.getKind()) { - case ABIArgInfo::Ignore: - case ABIArgInfo::InAlloca: - assert(NumIRArgs == 0); - break; - - case ABIArgInfo::Indirect: { - assert(NumIRArgs == 1); - // indirect arguments are always on the stack, which is alloca addr space. - llvm::Type *LTy = ConvertTypeForMem(it->type); - ArgTypes[FirstIRArg] = LTy->getPointerTo( - CGM.getDataLayout().getAllocaAddrSpace()); - break; - } - - case ABIArgInfo::Extend: - case ABIArgInfo::Direct: { - // Fast-isel and the optimizer generally like scalar values better than - // FCAs, so we flatten them if this is safe to do for this argument. - llvm::Type *argType = ArgInfo.getCoerceToType(); - llvm::StructType *st = dyn_cast<llvm::StructType>(argType); - if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { - assert(NumIRArgs == st->getNumElements()); - for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) - ArgTypes[FirstIRArg + i] = st->getElementType(i); - } else { - assert(NumIRArgs == 1); - ArgTypes[FirstIRArg] = argType; - } - break; - } - - case ABIArgInfo::CoerceAndExpand: { - auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; - for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { - *ArgTypesIter++ = EltTy; - } - assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); - break; - } - - case ABIArgInfo::Expand: - auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; - getExpandedTypes(it->type, ArgTypesIter); - assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); - break; - } - } - - bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; - assert(Erased && "Not in set?"); - - return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); -} - -llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { - const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); - const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); - - if (!isFuncTypeConvertible(FPT)) - return llvm::StructType::get(getLLVMContext()); - - const CGFunctionInfo *Info; - if (isa<CXXDestructorDecl>(MD)) - Info = - &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); - else - Info = &arrangeCXXMethodDeclaration(MD); - return GetFunctionType(*Info); -} - -static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, - llvm::AttrBuilder &FuncAttrs, - const FunctionProtoType *FPT) { - if (!FPT) - return; - - if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && - FPT->isNothrow()) - FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); -} - -void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, - bool AttrOnCallSite, - llvm::AttrBuilder &FuncAttrs) { - // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. - if (!HasOptnone) { - if (CodeGenOpts.OptimizeSize) - FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); - if (CodeGenOpts.OptimizeSize == 2) - FuncAttrs.addAttribute(llvm::Attribute::MinSize); - } - - if (CodeGenOpts.DisableRedZone) - FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); - if (CodeGenOpts.IndirectTlsSegRefs) - FuncAttrs.addAttribute("indirect-tls-seg-refs"); - if (CodeGenOpts.NoImplicitFloat) - FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); - - if (AttrOnCallSite) { - // Attributes that should go on the call site only. - if (!CodeGenOpts.SimplifyLibCalls || - CodeGenOpts.isNoBuiltinFunc(Name.data())) - FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); - if (!CodeGenOpts.TrapFuncName.empty()) - FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); - } else { - // Attributes that should go on the function, but not the call site. - if (!CodeGenOpts.DisableFPElim) { - FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); - } else if (CodeGenOpts.OmitLeafFramePointer) { - FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); - FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); - } else { - FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); - FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); - } - - FuncAttrs.addAttribute("less-precise-fpmad", - llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); - - if (CodeGenOpts.NullPointerIsValid) - FuncAttrs.addAttribute("null-pointer-is-valid", "true"); - if (!CodeGenOpts.FPDenormalMode.empty()) - FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); - - FuncAttrs.addAttribute("no-trapping-math", - llvm::toStringRef(CodeGenOpts.NoTrappingMath)); - - // Strict (compliant) code is the default, so only add this attribute to - // indicate that we are trying to workaround a problem case. - if (!CodeGenOpts.StrictFloatCastOverflow) - FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); - - // TODO: Are these all needed? - // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. - FuncAttrs.addAttribute("no-infs-fp-math", - llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); - FuncAttrs.addAttribute("no-nans-fp-math", - llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); - FuncAttrs.addAttribute("unsafe-fp-math", - llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); - FuncAttrs.addAttribute("use-soft-float", - llvm::toStringRef(CodeGenOpts.SoftFloat)); - FuncAttrs.addAttribute("stack-protector-buffer-size", - llvm::utostr(CodeGenOpts.SSPBufferSize)); - FuncAttrs.addAttribute("no-signed-zeros-fp-math", - llvm::toStringRef(CodeGenOpts.NoSignedZeros)); - FuncAttrs.addAttribute( - "correctly-rounded-divide-sqrt-fp-math", - llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); - - if (getLangOpts().OpenCL) - FuncAttrs.addAttribute("denorms-are-zero", - llvm::toStringRef(CodeGenOpts.FlushDenorm)); - - // TODO: Reciprocal estimate codegen options should apply to instructions? - const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; - if (!Recips.empty()) - FuncAttrs.addAttribute("reciprocal-estimates", - llvm::join(Recips, ",")); - - if (!CodeGenOpts.PreferVectorWidth.empty() && - CodeGenOpts.PreferVectorWidth != "none") - FuncAttrs.addAttribute("prefer-vector-width", - CodeGenOpts.PreferVectorWidth); - - if (CodeGenOpts.StackRealignment) - FuncAttrs.addAttribute("stackrealign"); - if (CodeGenOpts.Backchain) - FuncAttrs.addAttribute("backchain"); - - // FIXME: The interaction of this attribute with the SLH command line flag - // has not been determined. - if (CodeGenOpts.SpeculativeLoadHardening) - FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); - } - - if (getLangOpts().assumeFunctionsAreConvergent()) { - // Conservatively, mark all functions and calls in CUDA and OpenCL as - // convergent (meaning, they may call an intrinsically convergent op, such - // as __syncthreads() / barrier(), and so can't have certain optimizations - // applied around them). LLVM will remove this attribute where it safely - // can. - FuncAttrs.addAttribute(llvm::Attribute::Convergent); - } - - if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { - // Exceptions aren't supported in CUDA device code. - FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); - - // Respect -fcuda-flush-denormals-to-zero. - if (CodeGenOpts.FlushDenorm) - FuncAttrs.addAttribute("nvptx-f32ftz", "true"); - } - - for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { - StringRef Var, Value; - std::tie(Var, Value) = Attr.split('='); - FuncAttrs.addAttribute(Var, Value); - } -} - -void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { - llvm::AttrBuilder FuncAttrs; - ConstructDefaultFnAttrList(F.getName(), - F.hasFnAttribute(llvm::Attribute::OptimizeNone), - /* AttrOnCallsite = */ false, FuncAttrs); - F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); -} - -void CodeGenModule::ConstructAttributeList( - StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, - llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { - llvm::AttrBuilder FuncAttrs; - llvm::AttrBuilder RetAttrs; - - CallingConv = FI.getEffectiveCallingConvention(); - if (FI.isNoReturn()) - FuncAttrs.addAttribute(llvm::Attribute::NoReturn); - - // If we have information about the function prototype, we can learn - // attributes from there. - AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, - CalleeInfo.getCalleeFunctionProtoType()); - - const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); - - bool HasOptnone = false; - // FIXME: handle sseregparm someday... - if (TargetDecl) { - if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) - FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); - if (TargetDecl->hasAttr<NoThrowAttr>()) - FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); - if (TargetDecl->hasAttr<NoReturnAttr>()) - FuncAttrs.addAttribute(llvm::Attribute::NoReturn); - if (TargetDecl->hasAttr<ColdAttr>()) - FuncAttrs.addAttribute(llvm::Attribute::Cold); - if (TargetDecl->hasAttr<NoDuplicateAttr>()) - FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); - if (TargetDecl->hasAttr<ConvergentAttr>()) - FuncAttrs.addAttribute(llvm::Attribute::Convergent); - if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) - FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); - - if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { - AddAttributesFromFunctionProtoType( - getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); - // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. - // These attributes are not inherited by overloads. - const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); - if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) - FuncAttrs.addAttribute(llvm::Attribute::NoReturn); - } - - // 'const', 'pure' and 'noalias' attributed functions are also nounwind. - if (TargetDecl->hasAttr<ConstAttr>()) { - FuncAttrs.addAttribute(llvm::Attribute::ReadNone); - FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); - } else if (TargetDecl->hasAttr<PureAttr>()) { - FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); - FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); - } else if (TargetDecl->hasAttr<NoAliasAttr>()) { - FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); - FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); - } - if (TargetDecl->hasAttr<RestrictAttr>()) - RetAttrs.addAttribute(llvm::Attribute::NoAlias); - if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && - !CodeGenOpts.NullPointerIsValid) - RetAttrs.addAttribute(llvm::Attribute::NonNull); - if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) - FuncAttrs.addAttribute("no_caller_saved_registers"); - if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) - FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); - - HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); - if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { - Optional<unsigned> NumElemsParam; - if (AllocSize->getNumElemsParam().isValid()) - NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); - FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), - NumElemsParam); - } - } - - ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); - - if (CodeGenOpts.EnableSegmentedStacks && - !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) - FuncAttrs.addAttribute("split-stack"); - - // Add NonLazyBind attribute to function declarations when -fno-plt - // is used. - if (TargetDecl && CodeGenOpts.NoPLT) { - if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { - if (!Fn->isDefined() && !AttrOnCallSite) { - FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); - } - } - } - - if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { - if (getLangOpts().OpenCLVersion <= 120) { - // OpenCL v1.2 Work groups are always uniform - FuncAttrs.addAttribute("uniform-work-group-size", "true"); - } else { - // OpenCL v2.0 Work groups may be whether uniform or not. - // '-cl-uniform-work-group-size' compile option gets a hint - // to the compiler that the global work-size be a multiple of - // the work-group size specified to clEnqueueNDRangeKernel - // (i.e. work groups are uniform). - FuncAttrs.addAttribute("uniform-work-group-size", - llvm::toStringRef(CodeGenOpts.UniformWGSize)); - } - } - - if (!AttrOnCallSite) { - bool DisableTailCalls = false; - - if (CodeGenOpts.DisableTailCalls) - DisableTailCalls = true; - else if (TargetDecl) { - if (TargetDecl->hasAttr<DisableTailCallsAttr>() || - TargetDecl->hasAttr<AnyX86InterruptAttr>()) - DisableTailCalls = true; - else if (CodeGenOpts.NoEscapingBlockTailCalls) { - if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) - if (!BD->doesNotEscape()) - DisableTailCalls = true; - } - } - - FuncAttrs.addAttribute("disable-tail-calls", - llvm::toStringRef(DisableTailCalls)); - GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); - - if (CodeGenOpts.ReturnProtector) - FuncAttrs.addAttribute("ret-protector"); - } - - ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); - - QualType RetTy = FI.getReturnType(); - const ABIArgInfo &RetAI = FI.getReturnInfo(); - switch (RetAI.getKind()) { - case ABIArgInfo::Extend: - if (RetAI.isSignExt()) - RetAttrs.addAttribute(llvm::Attribute::SExt); - else - RetAttrs.addAttribute(llvm::Attribute::ZExt); - LLVM_FALLTHROUGH; - case ABIArgInfo::Direct: - if (RetAI.getInReg()) - RetAttrs.addAttribute(llvm::Attribute::InReg); - break; - case ABIArgInfo::Ignore: - break; - - case ABIArgInfo::InAlloca: - case ABIArgInfo::Indirect: { - // inalloca and sret disable readnone and readonly - FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) - .removeAttribute(llvm::Attribute::ReadNone); - break; - } - - case ABIArgInfo::CoerceAndExpand: - break; - - case ABIArgInfo::Expand: - llvm_unreachable("Invalid ABI kind for return argument"); - } - - if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { - QualType PTy = RefTy->getPointeeType(); - if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) - RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) - .getQuantity()); - else if (getContext().getTargetAddressSpace(PTy) == 0 && - !CodeGenOpts.NullPointerIsValid) - RetAttrs.addAttribute(llvm::Attribute::NonNull); - } - - bool hasUsedSRet = false; - SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); - - // Attach attributes to sret. - if (IRFunctionArgs.hasSRetArg()) { - llvm::AttrBuilder SRETAttrs; - if (!RetAI.getSuppressSRet()) - SRETAttrs.addAttribute(llvm::Attribute::StructRet); - hasUsedSRet = true; - if (RetAI.getInReg()) - SRETAttrs.addAttribute(llvm::Attribute::InReg); - ArgAttrs[IRFunctionArgs.getSRetArgNo()] = - llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); - } - - // Attach attributes to inalloca argument. - if (IRFunctionArgs.hasInallocaArg()) { - llvm::AttrBuilder Attrs; - Attrs.addAttribute(llvm::Attribute::InAlloca); - ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = - llvm::AttributeSet::get(getLLVMContext(), Attrs); - } - - unsigned ArgNo = 0; - for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), - E = FI.arg_end(); - I != E; ++I, ++ArgNo) { - QualType ParamType = I->type; - const ABIArgInfo &AI = I->info; - llvm::AttrBuilder Attrs; - - // Add attribute for padding argument, if necessary. - if (IRFunctionArgs.hasPaddingArg(ArgNo)) { - if (AI.getPaddingInReg()) { - ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = - llvm::AttributeSet::get( - getLLVMContext(), - llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); - } - } - - // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we - // have the corresponding parameter variable. It doesn't make - // sense to do it here because parameters are so messed up. - switch (AI.getKind()) { - case ABIArgInfo::Extend: - if (AI.isSignExt()) - Attrs.addAttribute(llvm::Attribute::SExt); - else - Attrs.addAttribute(llvm::Attribute::ZExt); - LLVM_FALLTHROUGH; - case ABIArgInfo::Direct: - if (ArgNo == 0 && FI.isChainCall()) - Attrs.addAttribute(llvm::Attribute::Nest); - else if (AI.getInReg()) - Attrs.addAttribute(llvm::Attribute::InReg); - break; - - case ABIArgInfo::Indirect: { - if (AI.getInReg()) - Attrs.addAttribute(llvm::Attribute::InReg); - - if (AI.getIndirectByVal()) - Attrs.addAttribute(llvm::Attribute::ByVal); - - CharUnits Align = AI.getIndirectAlign(); - - // In a byval argument, it is important that the required - // alignment of the type is honored, as LLVM might be creating a - // *new* stack object, and needs to know what alignment to give - // it. (Sometimes it can deduce a sensible alignment on its own, - // but not if clang decides it must emit a packed struct, or the - // user specifies increased alignment requirements.) - // - // This is different from indirect *not* byval, where the object - // exists already, and the align attribute is purely - // informative. - assert(!Align.isZero()); - - // For now, only add this when we have a byval argument. - // TODO: be less lazy about updating test cases. - if (AI.getIndirectByVal()) - Attrs.addAlignmentAttr(Align.getQuantity()); - - // byval disables readnone and readonly. - FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) - .removeAttribute(llvm::Attribute::ReadNone); - break; - } - case ABIArgInfo::Ignore: - case ABIArgInfo::Expand: - case ABIArgInfo::CoerceAndExpand: - break; - - case ABIArgInfo::InAlloca: - // inalloca disables readnone and readonly. - FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) - .removeAttribute(llvm::Attribute::ReadNone); - continue; - } - - if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { - QualType PTy = RefTy->getPointeeType(); - if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) - Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) - .getQuantity()); - else if (getContext().getTargetAddressSpace(PTy) == 0 && - !CodeGenOpts.NullPointerIsValid) - Attrs.addAttribute(llvm::Attribute::NonNull); - } - - switch (FI.getExtParameterInfo(ArgNo).getABI()) { - case ParameterABI::Ordinary: - break; - - case ParameterABI::SwiftIndirectResult: { - // Add 'sret' if we haven't already used it for something, but - // only if the result is void. - if (!hasUsedSRet && RetTy->isVoidType()) { - Attrs.addAttribute(llvm::Attribute::StructRet); - hasUsedSRet = true; - } - - // Add 'noalias' in either case. - Attrs.addAttribute(llvm::Attribute::NoAlias); - - // Add 'dereferenceable' and 'alignment'. - auto PTy = ParamType->getPointeeType(); - if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { - auto info = getContext().getTypeInfoInChars(PTy); - Attrs.addDereferenceableAttr(info.first.getQuantity()); - Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), - info.second.getQuantity())); - } - break; - } - - case ParameterABI::SwiftErrorResult: - Attrs.addAttribute(llvm::Attribute::SwiftError); - break; - - case ParameterABI::SwiftContext: - Attrs.addAttribute(llvm::Attribute::SwiftSelf); - break; - } - - if (FI.getExtParameterInfo(ArgNo).isNoEscape()) - Attrs.addAttribute(llvm::Attribute::NoCapture); - - if (Attrs.hasAttributes()) { - unsigned FirstIRArg, NumIRArgs; - std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); - for (unsigned i = 0; i < NumIRArgs; i++) - ArgAttrs[FirstIRArg + i] = - llvm::AttributeSet::get(getLLVMContext(), Attrs); - } - } - assert(ArgNo == FI.arg_size()); - - AttrList = llvm::AttributeList::get( - getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), - llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); -} - -/// An argument came in as a promoted argument; demote it back to its -/// declared type. -static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, - const VarDecl *var, - llvm::Value *value) { - llvm::Type *varType = CGF.ConvertType(var->getType()); - - // This can happen with promotions that actually don't change the - // underlying type, like the enum promotions. - if (value->getType() == varType) return value; - - assert((varType->isIntegerTy() || varType->isFloatingPointTy()) - && "unexpected promotion type"); - - if (isa<llvm::IntegerType>(varType)) - return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); - - return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); -} - -/// Returns the attribute (either parameter attribute, or function -/// attribute), which declares argument ArgNo to be non-null. -static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, - QualType ArgType, unsigned ArgNo) { - // FIXME: __attribute__((nonnull)) can also be applied to: - // - references to pointers, where the pointee is known to be - // nonnull (apparently a Clang extension) - // - transparent unions containing pointers - // In the former case, LLVM IR cannot represent the constraint. In - // the latter case, we have no guarantee that the transparent union - // is in fact passed as a pointer. - if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) - return nullptr; - // First, check attribute on parameter itself. - if (PVD) { - if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) - return ParmNNAttr; - } - // Check function attributes. - if (!FD) - return nullptr; - for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { - if (NNAttr->isNonNull(ArgNo)) - return NNAttr; - } - return nullptr; -} - -namespace { - struct CopyBackSwiftError final : EHScopeStack::Cleanup { - Address Temp; - Address Arg; - CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} - void Emit(CodeGenFunction &CGF, Flags flags) override { - llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); - CGF.Builder.CreateStore(errorValue, Arg); - } - }; -} - -void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, - llvm::Function *Fn, - const FunctionArgList &Args) { - if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) - // Naked functions don't have prologues. - return; - - // If this is an implicit-return-zero function, go ahead and - // initialize the return value. TODO: it might be nice to have - // a more general mechanism for this that didn't require synthesized - // return statements. - if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { - if (FD->hasImplicitReturnZero()) { - QualType RetTy = FD->getReturnType().getUnqualifiedType(); - llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); - llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); - Builder.CreateStore(Zero, ReturnValue); - } - } - - // FIXME: We no longer need the types from FunctionArgList; lift up and - // simplify. - - ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); - // Flattened function arguments. - SmallVector<llvm::Value *, 16> FnArgs; - FnArgs.reserve(IRFunctionArgs.totalIRArgs()); - for (auto &Arg : Fn->args()) { - FnArgs.push_back(&Arg); - } - assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); - - // If we're using inalloca, all the memory arguments are GEPs off of the last - // parameter, which is a pointer to the complete memory area. - Address ArgStruct = Address::invalid(); - const llvm::StructLayout *ArgStructLayout = nullptr; - if (IRFunctionArgs.hasInallocaArg()) { - ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); - ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], - FI.getArgStructAlignment()); - - assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); - } - - // Name the struct return parameter. - if (IRFunctionArgs.hasSRetArg()) { - auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); - AI->setName("agg.result"); - AI->addAttr(llvm::Attribute::NoAlias); - } - - // Track if we received the parameter as a pointer (indirect, byval, or - // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it - // into a local alloca for us. - SmallVector<ParamValue, 16> ArgVals; - ArgVals.reserve(Args.size()); - - // Create a pointer value for every parameter declaration. This usually - // entails copying one or more LLVM IR arguments into an alloca. Don't push - // any cleanups or do anything that might unwind. We do that separately, so - // we can push the cleanups in the correct order for the ABI. - assert(FI.arg_size() == Args.size() && - "Mismatch between function signature & arguments."); - unsigned ArgNo = 0; - CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); - for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); - i != e; ++i, ++info_it, ++ArgNo) { - const VarDecl *Arg = *i; - const ABIArgInfo &ArgI = info_it->info; - - bool isPromoted = - isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); - // We are converting from ABIArgInfo type to VarDecl type directly, unless - // the parameter is promoted. In this case we convert to - // CGFunctionInfo::ArgInfo type with subsequent argument demotion. - QualType Ty = isPromoted ? info_it->type : Arg->getType(); - assert(hasScalarEvaluationKind(Ty) == - hasScalarEvaluationKind(Arg->getType())); - - unsigned FirstIRArg, NumIRArgs; - std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); - - switch (ArgI.getKind()) { - case ABIArgInfo::InAlloca: { - assert(NumIRArgs == 0); - auto FieldIndex = ArgI.getInAllocaFieldIndex(); - CharUnits FieldOffset = - CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); - Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, - Arg->getName()); - ArgVals.push_back(ParamValue::forIndirect(V)); - break; - } - - case ABIArgInfo::Indirect: { - assert(NumIRArgs == 1); - Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); - - if (!hasScalarEvaluationKind(Ty)) { - // Aggregates and complex variables are accessed by reference. All we - // need to do is realign the value, if requested. - Address V = ParamAddr; - if (ArgI.getIndirectRealign()) { - Address AlignedTemp = CreateMemTemp(Ty, "coerce"); - - // Copy from the incoming argument pointer to the temporary with the - // appropriate alignment. - // - // FIXME: We should have a common utility for generating an aggregate - // copy. - CharUnits Size = getContext().getTypeSizeInChars(Ty); - auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); - Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); - Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); - Builder.CreateMemCpy(Dst, Src, SizeVal, false); - V = AlignedTemp; - } - ArgVals.push_back(ParamValue::forIndirect(V)); - } else { - // Load scalar value from indirect argument. - llvm::Value *V = - EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); - - if (isPromoted) - V = emitArgumentDemotion(*this, Arg, V); - ArgVals.push_back(ParamValue::forDirect(V)); - } - break; - } - - case ABIArgInfo::Extend: - case ABIArgInfo::Direct: { - - // If we have the trivial case, handle it with no muss and fuss. - if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && - ArgI.getCoerceToType() == ConvertType(Ty) && - ArgI.getDirectOffset() == 0) { - assert(NumIRArgs == 1); - llvm::Value *V = FnArgs[FirstIRArg]; - auto AI = cast<llvm::Argument>(V); - - if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { - if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), - PVD->getFunctionScopeIndex()) && - !CGM.getCodeGenOpts().NullPointerIsValid) - AI->addAttr(llvm::Attribute::NonNull); - - QualType OTy = PVD->getOriginalType(); - if (const auto *ArrTy = - getContext().getAsConstantArrayType(OTy)) { - // A C99 array parameter declaration with the static keyword also - // indicates dereferenceability, and if the size is constant we can - // use the dereferenceable attribute (which requires the size in - // bytes). - if (ArrTy->getSizeModifier() == ArrayType::Static) { - QualType ETy = ArrTy->getElementType(); - uint64_t ArrSize = ArrTy->getSize().getZExtValue(); - if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && - ArrSize) { - llvm::AttrBuilder Attrs; - Attrs.addDereferenceableAttr( - getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); - AI->addAttrs(Attrs); - } else if (getContext().getTargetAddressSpace(ETy) == 0 && - !CGM.getCodeGenOpts().NullPointerIsValid) { - AI->addAttr(llvm::Attribute::NonNull); - } - } - } else if (const auto *ArrTy = - getContext().getAsVariableArrayType(OTy)) { - // For C99 VLAs with the static keyword, we don't know the size so - // we can't use the dereferenceable attribute, but in addrspace(0) - // we know that it must be nonnull. - if (ArrTy->getSizeModifier() == VariableArrayType::Static && - !getContext().getTargetAddressSpace(ArrTy->getElementType()) && - !CGM.getCodeGenOpts().NullPointerIsValid) - AI->addAttr(llvm::Attribute::NonNull); - } - - const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); - if (!AVAttr) - if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) - AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); - if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { - // If alignment-assumption sanitizer is enabled, we do *not* add - // alignment attribute here, but emit normal alignment assumption, - // so the UBSAN check could function. - llvm::Value *AlignmentValue = - EmitScalarExpr(AVAttr->getAlignment()); - llvm::ConstantInt *AlignmentCI = - cast<llvm::ConstantInt>(AlignmentValue); - unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), - +llvm::Value::MaximumAlignment); - AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); - } - } - - if (Arg->getType().isRestrictQualified()) - AI->addAttr(llvm::Attribute::NoAlias); - - // LLVM expects swifterror parameters to be used in very restricted - // ways. Copy the value into a less-restricted temporary. - if (FI.getExtParameterInfo(ArgNo).getABI() - == ParameterABI::SwiftErrorResult) { - QualType pointeeTy = Ty->getPointeeType(); - assert(pointeeTy->isPointerType()); - Address temp = - CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); - Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); - llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); - Builder.CreateStore(incomingErrorValue, temp); - V = temp.getPointer(); - - // Push a cleanup to copy the value back at the end of the function. - // The convention does not guarantee that the value will be written - // back if the function exits with an unwind exception. - EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); - } - - // Ensure the argument is the correct type. - if (V->getType() != ArgI.getCoerceToType()) - V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); - - if (isPromoted) - V = emitArgumentDemotion(*this, Arg, V); - - // Because of merging of function types from multiple decls it is - // possible for the type of an argument to not match the corresponding - // type in the function type. Since we are codegening the callee - // in here, add a cast to the argument type. - llvm::Type *LTy = ConvertType(Arg->getType()); - if (V->getType() != LTy) - V = Builder.CreateBitCast(V, LTy); - - ArgVals.push_back(ParamValue::forDirect(V)); - break; - } - - Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), - Arg->getName()); - - // Pointer to store into. - Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); - - // Fast-isel and the optimizer generally like scalar values better than - // FCAs, so we flatten them if this is safe to do for this argument. - llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); - if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && - STy->getNumElements() > 1) { - auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); - uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); - llvm::Type *DstTy = Ptr.getElementType(); - uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); - - Address AddrToStoreInto = Address::invalid(); - if (SrcSize <= DstSize) { - AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); - } else { - AddrToStoreInto = - CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); - } - - assert(STy->getNumElements() == NumIRArgs); - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - auto AI = FnArgs[FirstIRArg + i]; - AI->setName(Arg->getName() + ".coerce" + Twine(i)); - auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); - Address EltPtr = - Builder.CreateStructGEP(AddrToStoreInto, i, Offset); - Builder.CreateStore(AI, EltPtr); - } - - if (SrcSize > DstSize) { - Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); - } - - } else { - // Simple case, just do a coerced store of the argument into the alloca. - assert(NumIRArgs == 1); - auto AI = FnArgs[FirstIRArg]; - AI->setName(Arg->getName() + ".coerce"); - CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); - } - - // Match to what EmitParmDecl is expecting for this type. - if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { - llvm::Value *V = - EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); - if (isPromoted) - V = emitArgumentDemotion(*this, Arg, V); - ArgVals.push_back(ParamValue::forDirect(V)); - } else { - ArgVals.push_back(ParamValue::forIndirect(Alloca)); - } - break; - } - - case ABIArgInfo::CoerceAndExpand: { - // Reconstruct into a temporary. - Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); - ArgVals.push_back(ParamValue::forIndirect(alloca)); - - auto coercionType = ArgI.getCoerceAndExpandType(); - alloca = Builder.CreateElementBitCast(alloca, coercionType); - auto layout = CGM.getDataLayout().getStructLayout(coercionType); - - unsigned argIndex = FirstIRArg; - for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { - llvm::Type *eltType = coercionType->getElementType(i); - if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) - continue; - - auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); - auto elt = FnArgs[argIndex++]; - Builder.CreateStore(elt, eltAddr); - } - assert(argIndex == FirstIRArg + NumIRArgs); - break; - } - - case ABIArgInfo::Expand: { - // If this structure was expanded into multiple arguments then - // we need to create a temporary and reconstruct it from the - // arguments. - Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); - LValue LV = MakeAddrLValue(Alloca, Ty); - ArgVals.push_back(ParamValue::forIndirect(Alloca)); - - auto FnArgIter = FnArgs.begin() + FirstIRArg; - ExpandTypeFromArgs(Ty, LV, FnArgIter); - assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); - for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { - auto AI = FnArgs[FirstIRArg + i]; - AI->setName(Arg->getName() + "." + Twine(i)); - } - break; - } - - case ABIArgInfo::Ignore: - assert(NumIRArgs == 0); - // Initialize the local variable appropriately. - if (!hasScalarEvaluationKind(Ty)) { - ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); - } else { - llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); - ArgVals.push_back(ParamValue::forDirect(U)); - } - break; - } - } - - if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { - for (int I = Args.size() - 1; I >= 0; --I) - EmitParmDecl(*Args[I], ArgVals[I], I + 1); - } else { - for (unsigned I = 0, E = Args.size(); I != E; ++I) - EmitParmDecl(*Args[I], ArgVals[I], I + 1); - } -} - -static void eraseUnusedBitCasts(llvm::Instruction *insn) { - while (insn->use_empty()) { - llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); - if (!bitcast) return; - - // This is "safe" because we would have used a ConstantExpr otherwise. - insn = cast<llvm::Instruction>(bitcast->getOperand(0)); - bitcast->eraseFromParent(); - } -} - -/// Try to emit a fused autorelease of a return result. -static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, - llvm::Value *result) { - // We must be immediately followed the cast. - llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); - if (BB->empty()) return nullptr; - if (&BB->back() != result) return nullptr; - - llvm::Type *resultType = result->getType(); - - // result is in a BasicBlock and is therefore an Instruction. - llvm::Instruction *generator = cast<llvm::Instruction>(result); - - SmallVector<llvm::Instruction *, 4> InstsToKill; - - // Look for: - // %generator = bitcast %type1* %generator2 to %type2* - while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { - // We would have emitted this as a constant if the operand weren't - // an Instruction. - generator = cast<llvm::Instruction>(bitcast->getOperand(0)); - - // Require the generator to be immediately followed by the cast. - if (generator->getNextNode() != bitcast) - return nullptr; - - InstsToKill.push_back(bitcast); - } - - // Look for: - // %generator = call i8* @objc_retain(i8* %originalResult) - // or - // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) - llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); - if (!call) return nullptr; - - bool doRetainAutorelease; - - if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { - doRetainAutorelease = true; - } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() - .objc_retainAutoreleasedReturnValue) { - doRetainAutorelease = false; - - // If we emitted an assembly marker for this call (and the - // ARCEntrypoints field should have been set if so), go looking - // for that call. If we can't find it, we can't do this - // optimization. But it should always be the immediately previous - // instruction, unless we needed bitcasts around the call. - if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { - llvm::Instruction *prev = call->getPrevNode(); - assert(prev); - if (isa<llvm::BitCastInst>(prev)) { - prev = prev->getPrevNode(); - assert(prev); - } - assert(isa<llvm::CallInst>(prev)); - assert(cast<llvm::CallInst>(prev)->getCalledValue() == - CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); - InstsToKill.push_back(prev); - } - } else { - return nullptr; - } - - result = call->getArgOperand(0); - InstsToKill.push_back(call); - - // Keep killing bitcasts, for sanity. Note that we no longer care - // about precise ordering as long as there's exactly one use. - while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { - if (!bitcast->hasOneUse()) break; - InstsToKill.push_back(bitcast); - result = bitcast->getOperand(0); - } - - // Delete all the unnecessary instructions, from latest to earliest. - for (auto *I : InstsToKill) - I->eraseFromParent(); - - // Do the fused retain/autorelease if we were asked to. - if (doRetainAutorelease) - result = CGF.EmitARCRetainAutoreleaseReturnValue(result); - - // Cast back to the result type. - return CGF.Builder.CreateBitCast(result, resultType); -} - -/// If this is a +1 of the value of an immutable 'self', remove it. -static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, - llvm::Value *result) { - // This is only applicable to a method with an immutable 'self'. - const ObjCMethodDecl *method = - dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); - if (!method) return nullptr; - const VarDecl *self = method->getSelfDecl(); - if (!self->getType().isConstQualified()) return nullptr; - - // Look for a retain call. - llvm::CallInst *retainCall = - dyn_cast<llvm::CallInst>(result->stripPointerCasts()); - if (!retainCall || - retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) - return nullptr; - - // Look for an ordinary load of 'self'. - llvm::Value *retainedValue = retainCall->getArgOperand(0); - llvm::LoadInst *load = - dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); - if (!load || load->isAtomic() || load->isVolatile() || - load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) - return nullptr; - - // Okay! Burn it all down. This relies for correctness on the - // assumption that the retain is emitted as part of the return and - // that thereafter everything is used "linearly". - llvm::Type *resultType = result->getType(); - eraseUnusedBitCasts(cast<llvm::Instruction>(result)); - assert(retainCall->use_empty()); - retainCall->eraseFromParent(); - eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); - - return CGF.Builder.CreateBitCast(load, resultType); -} - -/// Emit an ARC autorelease of the result of a function. -/// -/// \return the value to actually return from the function -static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, - llvm::Value *result) { - // If we're returning 'self', kill the initial retain. This is a - // heuristic attempt to "encourage correctness" in the really unfortunate - // case where we have a return of self during a dealloc and we desperately - // need to avoid the possible autorelease. - if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) - return self; - - // At -O0, try to emit a fused retain/autorelease. - if (CGF.shouldUseFusedARCCalls()) - if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) - return fused; - - return CGF.EmitARCAutoreleaseReturnValue(result); -} - -/// Heuristically search for a dominating store to the return-value slot. -static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { - // Check if a User is a store which pointerOperand is the ReturnValue. - // We are looking for stores to the ReturnValue, not for stores of the - // ReturnValue to some other location. - auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { - auto *SI = dyn_cast<llvm::StoreInst>(U); - if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) - return nullptr; - // These aren't actually possible for non-coerced returns, and we - // only care about non-coerced returns on this code path. - assert(!SI->isAtomic() && !SI->isVolatile()); - return SI; - }; - // If there are multiple uses of the return-value slot, just check - // for something immediately preceding the IP. Sometimes this can - // happen with how we generate implicit-returns; it can also happen - // with noreturn cleanups. - if (!CGF.ReturnValue.getPointer()->hasOneUse()) { - llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); - if (IP->empty()) return nullptr; - llvm::Instruction *I = &IP->back(); - - // Skip lifetime markers - for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), - IE = IP->rend(); - II != IE; ++II) { - if (llvm::IntrinsicInst *Intrinsic = - dyn_cast<llvm::IntrinsicInst>(&*II)) { - if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { - const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); - ++II; - if (II == IE) - break; - if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) - continue; - } - } - I = &*II; - break; - } - - return GetStoreIfValid(I); - } - - llvm::StoreInst *store = - GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); - if (!store) return nullptr; - - // Now do a first-and-dirty dominance check: just walk up the - // single-predecessors chain from the current insertion point. - llvm::BasicBlock *StoreBB = store->getParent(); - llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); - while (IP != StoreBB) { - if (!(IP = IP->getSinglePredecessor())) - return nullptr; - } - - // Okay, the store's basic block dominates the insertion point; we - // can do our thing. - return store; -} - -void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, - bool EmitRetDbgLoc, - SourceLocation EndLoc) { - if (FI.isNoReturn()) { - // Noreturn functions don't return. - EmitUnreachable(EndLoc); - return; - } - - if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { - // Naked functions don't have epilogues. - Builder.CreateUnreachable(); - return; - } - - // Functions with no result always return void. - if (!ReturnValue.isValid()) { - Builder.CreateRetVoid(); - return; - } - - llvm::DebugLoc RetDbgLoc; - llvm::Value *RV = nullptr; - QualType RetTy = FI.getReturnType(); - const ABIArgInfo &RetAI = FI.getReturnInfo(); - - switch (RetAI.getKind()) { - case ABIArgInfo::InAlloca: - // Aggregrates get evaluated directly into the destination. Sometimes we - // need to return the sret value in a register, though. - assert(hasAggregateEvaluationKind(RetTy)); - if (RetAI.getInAllocaSRet()) { - llvm::Function::arg_iterator EI = CurFn->arg_end(); - --EI; - llvm::Value *ArgStruct = &*EI; - llvm::Value *SRet = Builder.CreateStructGEP( - nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); - RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); - } - break; - - case ABIArgInfo::Indirect: { - auto AI = CurFn->arg_begin(); - if (RetAI.isSRetAfterThis()) - ++AI; - switch (getEvaluationKind(RetTy)) { - case TEK_Complex: { - ComplexPairTy RT = - EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); - EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), - /*isInit*/ true); - break; - } - case TEK_Aggregate: - // Do nothing; aggregrates get evaluated directly into the destination. - break; - case TEK_Scalar: - EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), - MakeNaturalAlignAddrLValue(&*AI, RetTy), - /*isInit*/ true); - break; - } - break; - } - - case ABIArgInfo::Extend: - case ABIArgInfo::Direct: - if (RetAI.getCoerceToType() == ConvertType(RetTy) && - RetAI.getDirectOffset() == 0) { - // The internal return value temp always will have pointer-to-return-type - // type, just do a load. - - // If there is a dominating store to ReturnValue, we can elide - // the load, zap the store, and usually zap the alloca. - if (llvm::StoreInst *SI = - findDominatingStoreToReturnValue(*this)) { - // Reuse the debug location from the store unless there is - // cleanup code to be emitted between the store and return - // instruction. - if (EmitRetDbgLoc && !AutoreleaseResult) - RetDbgLoc = SI->getDebugLoc(); - // Get the stored value and nuke the now-dead store. - RV = SI->getValueOperand(); - SI->eraseFromParent(); - - // If that was the only use of the return value, nuke it as well now. - auto returnValueInst = ReturnValue.getPointer(); - if (returnValueInst->use_empty()) { - if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { - alloca->eraseFromParent(); - ReturnValue = Address::invalid(); - } - } - - // Otherwise, we have to do a simple load. - } else { - RV = Builder.CreateLoad(ReturnValue); - } - } else { - // If the value is offset in memory, apply the offset now. - Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); - - RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); - } - - // In ARC, end functions that return a retainable type with a call - // to objc_autoreleaseReturnValue. - if (AutoreleaseResult) { -#ifndef NDEBUG - // Type::isObjCRetainabletype has to be called on a QualType that hasn't - // been stripped of the typedefs, so we cannot use RetTy here. Get the - // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from - // CurCodeDecl or BlockInfo. - QualType RT; - - if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) - RT = FD->getReturnType(); - else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) - RT = MD->getReturnType(); - else if (isa<BlockDecl>(CurCodeDecl)) - RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); - else - llvm_unreachable("Unexpected function/method type"); - - assert(getLangOpts().ObjCAutoRefCount && - !FI.isReturnsRetained() && - RT->isObjCRetainableType()); -#endif - RV = emitAutoreleaseOfResult(*this, RV); - } - - break; - - case ABIArgInfo::Ignore: - break; - - case ABIArgInfo::CoerceAndExpand: { - auto coercionType = RetAI.getCoerceAndExpandType(); - auto layout = CGM.getDataLayout().getStructLayout(coercionType); - - // Load all of the coerced elements out into results. - llvm::SmallVector<llvm::Value*, 4> results; - Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); - for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { - auto coercedEltType = coercionType->getElementType(i); - if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) - continue; - - auto eltAddr = Builder.CreateStructGEP(addr, i, layout); - auto elt = Builder.CreateLoad(eltAddr); - results.push_back(elt); - } - - // If we have one result, it's the single direct result type. - if (results.size() == 1) { - RV = results[0]; - - // Otherwise, we need to make a first-class aggregate. - } else { - // Construct a return type that lacks padding elements. - llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); - - RV = llvm::UndefValue::get(returnType); - for (unsigned i = 0, e = results.size(); i != e; ++i) { - RV = Builder.CreateInsertValue(RV, results[i], i); - } - } - break; - } - - case ABIArgInfo::Expand: - llvm_unreachable("Invalid ABI kind for return argument"); - } - - llvm::Instruction *Ret; - if (RV) { - EmitReturnValueCheck(RV); - Ret = Builder.CreateRet(RV); - } else { - Ret = Builder.CreateRetVoid(); - } - - if (RetDbgLoc) - Ret->setDebugLoc(std::move(RetDbgLoc)); -} - -void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { - // A current decl may not be available when emitting vtable thunks. - if (!CurCodeDecl) - return; - - ReturnsNonNullAttr *RetNNAttr = nullptr; - if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) - RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); - - if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) - return; - - // Prefer the returns_nonnull attribute if it's present. - SourceLocation AttrLoc; - SanitizerMask CheckKind; - SanitizerHandler Handler; - if (RetNNAttr) { - assert(!requiresReturnValueNullabilityCheck() && - "Cannot check nullability and the nonnull attribute"); - AttrLoc = RetNNAttr->getLocation(); - CheckKind = SanitizerKind::ReturnsNonnullAttribute; - Handler = SanitizerHandler::NonnullReturn; - } else { - if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) - if (auto *TSI = DD->getTypeSourceInfo()) - if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) - AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); - CheckKind = SanitizerKind::NullabilityReturn; - Handler = SanitizerHandler::NullabilityReturn; - } - - SanitizerScope SanScope(this); - - // Make sure the "return" source location is valid. If we're checking a - // nullability annotation, make sure the preconditions for the check are met. - llvm::BasicBlock *Check = createBasicBlock("nullcheck"); - llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); - llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); - llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); - if (requiresReturnValueNullabilityCheck()) - CanNullCheck = - Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); - Builder.CreateCondBr(CanNullCheck, Check, NoCheck); - EmitBlock(Check); - - // Now do the null check. - llvm::Value *Cond = Builder.CreateIsNotNull(RV); - llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; - llvm::Value *DynamicData[] = {SLocPtr}; - EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); - - EmitBlock(NoCheck); - -#ifndef NDEBUG - // The return location should not be used after the check has been emitted. - ReturnLocation = Address::invalid(); -#endif -} - -static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { - const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); - return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; -} - -static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, - QualType Ty) { - // FIXME: Generate IR in one pass, rather than going back and fixing up these - // placeholders. - llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); - llvm::Type *IRPtrTy = IRTy->getPointerTo(); - llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); - - // FIXME: When we generate this IR in one pass, we shouldn't need - // this win32-specific alignment hack. - CharUnits Align = CharUnits::fromQuantity(4); - Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); - - return AggValueSlot::forAddr(Address(Placeholder, Align), - Ty.getQualifiers(), - AggValueSlot::IsNotDestructed, - AggValueSlot::DoesNotNeedGCBarriers, - AggValueSlot::IsNotAliased, - AggValueSlot::DoesNotOverlap); -} - -void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, - const VarDecl *param, - SourceLocation loc) { - // StartFunction converted the ABI-lowered parameter(s) into a - // local alloca. We need to turn that into an r-value suitable - // for EmitCall. - Address local = GetAddrOfLocalVar(param); - - QualType type = param->getType(); - - if (isInAllocaArgument(CGM.getCXXABI(), type)) { - CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); - } - - // GetAddrOfLocalVar returns a pointer-to-pointer for references, - // but the argument needs to be the original pointer. - if (type->isReferenceType()) { - args.add(RValue::get(Builder.CreateLoad(local)), type); - - // In ARC, move out of consumed arguments so that the release cleanup - // entered by StartFunction doesn't cause an over-release. This isn't - // optimal -O0 code generation, but it should get cleaned up when - // optimization is enabled. This also assumes that delegate calls are - // performed exactly once for a set of arguments, but that should be safe. - } else if (getLangOpts().ObjCAutoRefCount && - param->hasAttr<NSConsumedAttr>() && - type->isObjCRetainableType()) { - llvm::Value *ptr = Builder.CreateLoad(local); - auto null = - llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); - Builder.CreateStore(null, local); - args.add(RValue::get(ptr), type); - - // For the most part, we just need to load the alloca, except that - // aggregate r-values are actually pointers to temporaries. - } else { - args.add(convertTempToRValue(local, type, loc), type); - } - - // Deactivate the cleanup for the callee-destructed param that was pushed. - if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && - type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && - type.isDestructedType()) { - EHScopeStack::stable_iterator cleanup = - CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); - assert(cleanup.isValid() && - "cleanup for callee-destructed param not recorded"); - // This unreachable is a temporary marker which will be removed later. - llvm::Instruction *isActive = Builder.CreateUnreachable(); - args.addArgCleanupDeactivation(cleanup, isActive); - } -} - -static bool isProvablyNull(llvm::Value *addr) { - return isa<llvm::ConstantPointerNull>(addr); -} - -/// Emit the actual writing-back of a writeback. -static void emitWriteback(CodeGenFunction &CGF, - const CallArgList::Writeback &writeback) { - const LValue &srcLV = writeback.Source; - Address srcAddr = srcLV.getAddress(); - assert(!isProvablyNull(srcAddr.getPointer()) && - "shouldn't have writeback for provably null argument"); - - llvm::BasicBlock *contBB = nullptr; - - // If the argument wasn't provably non-null, we need to null check - // before doing the store. - bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), - CGF.CGM.getDataLayout()); - if (!provablyNonNull) { - llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); - contBB = CGF.createBasicBlock("icr.done"); - - llvm::Value *isNull = - CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); - CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); - CGF.EmitBlock(writebackBB); - } - - // Load the value to writeback. - llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); - - // Cast it back, in case we're writing an id to a Foo* or something. - value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), - "icr.writeback-cast"); - - // Perform the writeback. - - // If we have a "to use" value, it's something we need to emit a use - // of. This has to be carefully threaded in: if it's done after the - // release it's potentially undefined behavior (and the optimizer - // will ignore it), and if it happens before the retain then the - // optimizer could move the release there. - if (writeback.ToUse) { - assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); - - // Retain the new value. No need to block-copy here: the block's - // being passed up the stack. - value = CGF.EmitARCRetainNonBlock(value); - - // Emit the intrinsic use here. - CGF.EmitARCIntrinsicUse(writeback.ToUse); - - // Load the old value (primitively). - llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); - - // Put the new value in place (primitively). - CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); - - // Release the old value. - CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); - - // Otherwise, we can just do a normal lvalue store. - } else { - CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); - } - - // Jump to the continuation block. - if (!provablyNonNull) - CGF.EmitBlock(contBB); -} - -static void emitWritebacks(CodeGenFunction &CGF, - const CallArgList &args) { - for (const auto &I : args.writebacks()) - emitWriteback(CGF, I); -} - -static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, - const CallArgList &CallArgs) { - ArrayRef<CallArgList::CallArgCleanup> Cleanups = - CallArgs.getCleanupsToDeactivate(); - // Iterate in reverse to increase the likelihood of popping the cleanup. - for (const auto &I : llvm::reverse(Cleanups)) { - CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); - I.IsActiveIP->eraseFromParent(); - } -} - -static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { - if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) - if (uop->getOpcode() == UO_AddrOf) - return uop->getSubExpr(); - return nullptr; -} - -/// Emit an argument that's being passed call-by-writeback. That is, -/// we are passing the address of an __autoreleased temporary; it -/// might be copy-initialized with the current value of the given -/// address, but it will definitely be copied out of after the call. -static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, - const ObjCIndirectCopyRestoreExpr *CRE) { - LValue srcLV; - - // Make an optimistic effort to emit the address as an l-value. - // This can fail if the argument expression is more complicated. - if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { - srcLV = CGF.EmitLValue(lvExpr); - - // Otherwise, just emit it as a scalar. - } else { - Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); - - QualType srcAddrType = - CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); - srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); - } - Address srcAddr = srcLV.getAddress(); - - // The dest and src types don't necessarily match in LLVM terms - // because of the crazy ObjC compatibility rules. - - llvm::PointerType *destType = - cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); - - // If the address is a constant null, just pass the appropriate null. - if (isProvablyNull(srcAddr.getPointer())) { - args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), - CRE->getType()); - return; - } - - // Create the temporary. - Address temp = CGF.CreateTempAlloca(destType->getElementType(), - CGF.getPointerAlign(), - "icr.temp"); - // Loading an l-value can introduce a cleanup if the l-value is __weak, - // and that cleanup will be conditional if we can't prove that the l-value - // isn't null, so we need to register a dominating point so that the cleanups - // system will make valid IR. - CodeGenFunction::ConditionalEvaluation condEval(CGF); - - // Zero-initialize it if we're not doing a copy-initialization. - bool shouldCopy = CRE->shouldCopy(); - if (!shouldCopy) { - llvm::Value *null = - llvm::ConstantPointerNull::get( - cast<llvm::PointerType>(destType->getElementType())); - CGF.Builder.CreateStore(null, temp); - } - - llvm::BasicBlock *contBB = nullptr; - llvm::BasicBlock *originBB = nullptr; - - // If the address is *not* known to be non-null, we need to switch. - llvm::Value *finalArgument; - - bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), - CGF.CGM.getDataLayout()); - if (provablyNonNull) { - finalArgument = temp.getPointer(); - } else { - llvm::Value *isNull = - CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); - - finalArgument = CGF.Builder.CreateSelect(isNull, - llvm::ConstantPointerNull::get(destType), - temp.getPointer(), "icr.argument"); - - // If we need to copy, then the load has to be conditional, which - // means we need control flow. - if (shouldCopy) { - originBB = CGF.Builder.GetInsertBlock(); - contBB = CGF.createBasicBlock("icr.cont"); - llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); - CGF.Builder.CreateCondBr(isNull, contBB, copyBB); - CGF.EmitBlock(copyBB); - condEval.begin(CGF); - } - } - - llvm::Value *valueToUse = nullptr; - - // Perform a copy if necessary. - if (shouldCopy) { - RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); - assert(srcRV.isScalar()); - - llvm::Value *src = srcRV.getScalarVal(); - src = CGF.Builder.CreateBitCast(src, destType->getElementType(), - "icr.cast"); - - // Use an ordinary store, not a store-to-lvalue. - CGF.Builder.CreateStore(src, temp); - - // If optimization is enabled, and the value was held in a - // __strong variable, we need to tell the optimizer that this - // value has to stay alive until we're doing the store back. - // This is because the temporary is effectively unretained, - // and so otherwise we can violate the high-level semantics. - if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && - srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { - valueToUse = src; - } - } - - // Finish the control flow if we needed it. - if (shouldCopy && !provablyNonNull) { - llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); - CGF.EmitBlock(contBB); - - // Make a phi for the value to intrinsically use. - if (valueToUse) { - llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, - "icr.to-use"); - phiToUse->addIncoming(valueToUse, copyBB); - phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), - originBB); - valueToUse = phiToUse; - } - - condEval.end(CGF); - } - - args.addWriteback(srcLV, temp, valueToUse); - args.add(RValue::get(finalArgument), CRE->getType()); -} - -void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { - assert(!StackBase); - - // Save the stack. - llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); - StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); -} - -void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { - if (StackBase) { - // Restore the stack after the call. - llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); - CGF.Builder.CreateCall(F, StackBase); - } -} - -void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, - SourceLocation ArgLoc, - AbstractCallee AC, - unsigned ParmNum) { - if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || - SanOpts.has(SanitizerKind::NullabilityArg))) - return; - - // The param decl may be missing in a variadic function. - auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; - unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; - - // Prefer the nonnull attribute if it's present. - const NonNullAttr *NNAttr = nullptr; - if (SanOpts.has(SanitizerKind::NonnullAttribute)) - NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); - - bool CanCheckNullability = false; - if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { - auto Nullability = PVD->getType()->getNullability(getContext()); - CanCheckNullability = Nullability && - *Nullability == NullabilityKind::NonNull && - PVD->getTypeSourceInfo(); - } - - if (!NNAttr && !CanCheckNullability) - return; - - SourceLocation AttrLoc; - SanitizerMask CheckKind; - SanitizerHandler Handler; - if (NNAttr) { - AttrLoc = NNAttr->getLocation(); - CheckKind = SanitizerKind::NonnullAttribute; - Handler = SanitizerHandler::NonnullArg; - } else { - AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); - CheckKind = SanitizerKind::NullabilityArg; - Handler = SanitizerHandler::NullabilityArg; - } - - SanitizerScope SanScope(this); - assert(RV.isScalar()); - llvm::Value *V = RV.getScalarVal(); - llvm::Value *Cond = - Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); - llvm::Constant *StaticData[] = { - EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), - llvm::ConstantInt::get(Int32Ty, ArgNo + 1), - }; - EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); -} - -void CodeGenFunction::EmitCallArgs( - CallArgList &Args, ArrayRef<QualType> ArgTypes, - llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, - AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { - assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); - - // We *have* to evaluate arguments from right to left in the MS C++ ABI, - // because arguments are destroyed left to right in the callee. As a special - // case, there are certain language constructs that require left-to-right - // evaluation, and in those cases we consider the evaluation order requirement - // to trump the "destruction order is reverse construction order" guarantee. - bool LeftToRight = - CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() - ? Order == EvaluationOrder::ForceLeftToRight - : Order != EvaluationOrder::ForceRightToLeft; - - auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, - RValue EmittedArg) { - if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) - return; - auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); - if (PS == nullptr) - return; - - const auto &Context = getContext(); - auto SizeTy = Context.getSizeType(); - auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); - assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); - llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, - EmittedArg.getScalarVal()); - Args.add(RValue::get(V), SizeTy); - // If we're emitting args in reverse, be sure to do so with - // pass_object_size, as well. - if (!LeftToRight) - std::swap(Args.back(), *(&Args.back() - 1)); - }; - - // Insert a stack save if we're going to need any inalloca args. - bool HasInAllocaArgs = false; - if (CGM.getTarget().getCXXABI().isMicrosoft()) { - for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); - I != E && !HasInAllocaArgs; ++I) - HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); - if (HasInAllocaArgs) { - assert(getTarget().getTriple().getArch() == llvm::Triple::x86); - Args.allocateArgumentMemory(*this); - } - } - - // Evaluate each argument in the appropriate order. - size_t CallArgsStart = Args.size(); - for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { - unsigned Idx = LeftToRight ? I : E - I - 1; - CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; - unsigned InitialArgSize = Args.size(); - // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of - // the argument and parameter match or the objc method is parameterized. - assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || - getContext().hasSameUnqualifiedType((*Arg)->getType(), - ArgTypes[Idx]) || - (isa<ObjCMethodDecl>(AC.getDecl()) && - isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && - "Argument and parameter types don't match"); - EmitCallArg(Args, *Arg, ArgTypes[Idx]); - // In particular, we depend on it being the last arg in Args, and the - // objectsize bits depend on there only being one arg if !LeftToRight. - assert(InitialArgSize + 1 == Args.size() && - "The code below depends on only adding one arg per EmitCallArg"); - (void)InitialArgSize; - // Since pointer argument are never emitted as LValue, it is safe to emit - // non-null argument check for r-value only. - if (!Args.back().hasLValue()) { - RValue RVArg = Args.back().getKnownRValue(); - EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, - ParamsToSkip + Idx); - // @llvm.objectsize should never have side-effects and shouldn't need - // destruction/cleanups, so we can safely "emit" it after its arg, - // regardless of right-to-leftness - MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); - } - } - - if (!LeftToRight) { - // Un-reverse the arguments we just evaluated so they match up with the LLVM - // IR function. - std::reverse(Args.begin() + CallArgsStart, Args.end()); - } -} - -namespace { - -struct DestroyUnpassedArg final : EHScopeStack::Cleanup { - DestroyUnpassedArg(Address Addr, QualType Ty) - : Addr(Addr), Ty(Ty) {} - - Address Addr; - QualType Ty; - - void Emit(CodeGenFunction &CGF, Flags flags) override { - QualType::DestructionKind DtorKind = Ty.isDestructedType(); - if (DtorKind == QualType::DK_cxx_destructor) { - const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); - assert(!Dtor->isTrivial()); - CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, - /*Delegating=*/false, Addr); - } else { - CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); - } - } -}; - -struct DisableDebugLocationUpdates { - CodeGenFunction &CGF; - bool disabledDebugInfo; - DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { - if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) - CGF.disableDebugInfo(); - } - ~DisableDebugLocationUpdates() { - if (disabledDebugInfo) - CGF.enableDebugInfo(); - } -}; - -} // end anonymous namespace - -RValue CallArg::getRValue(CodeGenFunction &CGF) const { - if (!HasLV) - return RV; - LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); - CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, - LV.isVolatile()); - IsUsed = true; - return RValue::getAggregate(Copy.getAddress()); -} - -void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { - LValue Dst = CGF.MakeAddrLValue(Addr, Ty); - if (!HasLV && RV.isScalar()) - CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); - else if (!HasLV && RV.isComplex()) - CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); - else { - auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); - LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); - // We assume that call args are never copied into subobjects. - CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, - HasLV ? LV.isVolatileQualified() - : RV.isVolatileQualified()); - } - IsUsed = true; -} - -void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, - QualType type) { - DisableDebugLocationUpdates Dis(*this, E); - if (const ObjCIndirectCopyRestoreExpr *CRE - = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { - assert(getLangOpts().ObjCAutoRefCount); - return emitWritebackArg(*this, args, CRE); - } - - assert(type->isReferenceType() == E->isGLValue() && - "reference binding to unmaterialized r-value!"); - - if (E->isGLValue()) { - assert(E->getObjectKind() == OK_Ordinary); - return args.add(EmitReferenceBindingToExpr(E), type); - } - - bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); - - // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. - // However, we still have to push an EH-only cleanup in case we unwind before - // we make it to the call. - if (HasAggregateEvalKind && - type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { - // If we're using inalloca, use the argument memory. Otherwise, use a - // temporary. - AggValueSlot Slot; - if (args.isUsingInAlloca()) - Slot = createPlaceholderSlot(*this, type); - else - Slot = CreateAggTemp(type, "agg.tmp"); - - bool DestroyedInCallee = true, NeedsEHCleanup = true; - if (const auto *RD = type->getAsCXXRecordDecl()) - DestroyedInCallee = RD->hasNonTrivialDestructor(); - else - NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); - - if (DestroyedInCallee) - Slot.setExternallyDestructed(); - - EmitAggExpr(E, Slot); - RValue RV = Slot.asRValue(); - args.add(RV, type); - - if (DestroyedInCallee && NeedsEHCleanup) { - // Create a no-op GEP between the placeholder and the cleanup so we can - // RAUW it successfully. It also serves as a marker of the first - // instruction where the cleanup is active. - pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), - type); - // This unreachable is a temporary marker which will be removed later. - llvm::Instruction *IsActive = Builder.CreateUnreachable(); - args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); - } - return; - } - - if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && - cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { - LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); - assert(L.isSimple()); - args.addUncopiedAggregate(L, type); - return; - } - - args.add(EmitAnyExprToTemp(E), type); -} - -QualType CodeGenFunction::getVarArgType(const Expr *Arg) { - // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC - // implicitly widens null pointer constants that are arguments to varargs - // functions to pointer-sized ints. - if (!getTarget().getTriple().isOSWindows()) - return Arg->getType(); - - if (Arg->getType()->isIntegerType() && - getContext().getTypeSize(Arg->getType()) < - getContext().getTargetInfo().getPointerWidth(0) && - Arg->isNullPointerConstant(getContext(), - Expr::NPC_ValueDependentIsNotNull)) { - return getContext().getIntPtrType(); - } - - return Arg->getType(); -} - -// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC -// optimizer it can aggressively ignore unwind edges. -void -CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { - if (CGM.getCodeGenOpts().OptimizationLevel != 0 && - !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) - Inst->setMetadata("clang.arc.no_objc_arc_exceptions", - CGM.getNoObjCARCExceptionsMetadata()); -} - -/// Emits a call to the given no-arguments nounwind runtime function. -llvm::CallInst * -CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, - const llvm::Twine &name) { - return EmitNounwindRuntimeCall(callee, None, name); -} - -/// Emits a call to the given nounwind runtime function. -llvm::CallInst * -CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, - ArrayRef<llvm::Value*> args, - const llvm::Twine &name) { - llvm::CallInst *call = EmitRuntimeCall(callee, args, name); - call->setDoesNotThrow(); - return call; -} - -/// Emits a simple call (never an invoke) to the given no-arguments -/// runtime function. -llvm::CallInst * -CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, - const llvm::Twine &name) { - return EmitRuntimeCall(callee, None, name); -} - -// Calls which may throw must have operand bundles indicating which funclet -// they are nested within. -SmallVector<llvm::OperandBundleDef, 1> -CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { - SmallVector<llvm::OperandBundleDef, 1> BundleList; - // There is no need for a funclet operand bundle if we aren't inside a - // funclet. - if (!CurrentFuncletPad) - return BundleList; - - // Skip intrinsics which cannot throw. - auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); - if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) - return BundleList; - - BundleList.emplace_back("funclet", CurrentFuncletPad); - return BundleList; -} - -/// Emits a simple call (never an invoke) to the given runtime function. -llvm::CallInst * -CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, - ArrayRef<llvm::Value*> args, - const llvm::Twine &name) { - llvm::CallInst *call = - Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); - call->setCallingConv(getRuntimeCC()); - return call; -} - -/// Emits a call or invoke to the given noreturn runtime function. -void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, - ArrayRef<llvm::Value*> args) { - SmallVector<llvm::OperandBundleDef, 1> BundleList = - getBundlesForFunclet(callee); - - if (getInvokeDest()) { - llvm::InvokeInst *invoke = - Builder.CreateInvoke(callee, - getUnreachableBlock(), - getInvokeDest(), - args, - BundleList); - invoke->setDoesNotReturn(); - invoke->setCallingConv(getRuntimeCC()); - } else { - llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); - call->setDoesNotReturn(); - call->setCallingConv(getRuntimeCC()); - Builder.CreateUnreachable(); - } -} - -/// Emits a call or invoke instruction to the given nullary runtime function. -llvm::CallSite -CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, - const Twine &name) { - return EmitRuntimeCallOrInvoke(callee, None, name); -} - -/// Emits a call or invoke instruction to the given runtime function. -llvm::CallSite -CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, - ArrayRef<llvm::Value*> args, - const Twine &name) { - llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); - callSite.setCallingConv(getRuntimeCC()); - return callSite; -} - -/// Emits a call or invoke instruction to the given function, depending -/// on the current state of the EH stack. -llvm::CallSite -CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, - ArrayRef<llvm::Value *> Args, - const Twine &Name) { - llvm::BasicBlock *InvokeDest = getInvokeDest(); - SmallVector<llvm::OperandBundleDef, 1> BundleList = - getBundlesForFunclet(Callee); - - llvm::Instruction *Inst; - if (!InvokeDest) - Inst = Builder.CreateCall(Callee, Args, BundleList, Name); - else { - llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); - Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, - Name); - EmitBlock(ContBB); - } - - // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC - // optimizer it can aggressively ignore unwind edges. - if (CGM.getLangOpts().ObjCAutoRefCount) - AddObjCARCExceptionMetadata(Inst); - - return llvm::CallSite(Inst); -} - -void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, - llvm::Value *New) { - DeferredReplacements.push_back(std::make_pair(Old, New)); -} - -RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, - const CGCallee &Callee, - ReturnValueSlot ReturnValue, - const CallArgList &CallArgs, - llvm::Instruction **callOrInvoke, - SourceLocation Loc) { - // FIXME: We no longer need the types from CallArgs; lift up and simplify. - - assert(Callee.isOrdinary() || Callee.isVirtual()); - - // Handle struct-return functions by passing a pointer to the - // location that we would like to return into. - QualType RetTy = CallInfo.getReturnType(); - const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); - - llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); - - // 1. Set up the arguments. - - // If we're using inalloca, insert the allocation after the stack save. - // FIXME: Do this earlier rather than hacking it in here! - Address ArgMemory = Address::invalid(); - const llvm::StructLayout *ArgMemoryLayout = nullptr; - if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { - const llvm::DataLayout &DL = CGM.getDataLayout(); - ArgMemoryLayout = DL.getStructLayout(ArgStruct); - llvm::Instruction *IP = CallArgs.getStackBase(); - llvm::AllocaInst *AI; - if (IP) { - IP = IP->getNextNode(); - AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), - "argmem", IP); - } else { - AI = CreateTempAlloca(ArgStruct, "argmem"); - } - auto Align = CallInfo.getArgStructAlignment(); - AI->setAlignment(Align.getQuantity()); - AI->setUsedWithInAlloca(true); - assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); - ArgMemory = Address(AI, Align); - } - - // Helper function to drill into the inalloca allocation. - auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { - auto FieldOffset = - CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); - return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); - }; - - ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); - SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); - - // If the call returns a temporary with struct return, create a temporary - // alloca to hold the result, unless one is given to us. - Address SRetPtr = Address::invalid(); - Address SRetAlloca = Address::invalid(); - llvm::Value *UnusedReturnSizePtr = nullptr; - if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { - if (!ReturnValue.isNull()) { - SRetPtr = ReturnValue.getValue(); - } else { - SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); - if (HaveInsertPoint() && ReturnValue.isUnused()) { - uint64_t size = - CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); - UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); - } - } - if (IRFunctionArgs.hasSRetArg()) { - IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); - } else if (RetAI.isInAlloca()) { - Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); - Builder.CreateStore(SRetPtr.getPointer(), Addr); - } - } - - Address swiftErrorTemp = Address::invalid(); - Address swiftErrorArg = Address::invalid(); - - // Translate all of the arguments as necessary to match the IR lowering. - assert(CallInfo.arg_size() == CallArgs.size() && - "Mismatch between function signature & arguments."); - unsigned ArgNo = 0; - CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); - for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); - I != E; ++I, ++info_it, ++ArgNo) { - const ABIArgInfo &ArgInfo = info_it->info; - - // Insert a padding argument to ensure proper alignment. - if (IRFunctionArgs.hasPaddingArg(ArgNo)) - IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = - llvm::UndefValue::get(ArgInfo.getPaddingType()); - - unsigned FirstIRArg, NumIRArgs; - std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); - - switch (ArgInfo.getKind()) { - case ABIArgInfo::InAlloca: { - assert(NumIRArgs == 0); - assert(getTarget().getTriple().getArch() == llvm::Triple::x86); - if (I->isAggregate()) { - // Replace the placeholder with the appropriate argument slot GEP. - Address Addr = I->hasLValue() - ? I->getKnownLValue().getAddress() - : I->getKnownRValue().getAggregateAddress(); - llvm::Instruction *Placeholder = - cast<llvm::Instruction>(Addr.getPointer()); - CGBuilderTy::InsertPoint IP = Builder.saveIP(); - Builder.SetInsertPoint(Placeholder); - Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); - Builder.restoreIP(IP); - deferPlaceholderReplacement(Placeholder, Addr.getPointer()); - } else { - // Store the RValue into the argument struct. - Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); - unsigned AS = Addr.getType()->getPointerAddressSpace(); - llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); - // There are some cases where a trivial bitcast is not avoidable. The - // definition of a type later in a translation unit may change it's type - // from {}* to (%struct.foo*)*. - if (Addr.getType() != MemType) - Addr = Builder.CreateBitCast(Addr, MemType); - I->copyInto(*this, Addr); - } - break; - } - - case ABIArgInfo::Indirect: { - assert(NumIRArgs == 1); - if (!I->isAggregate()) { - // Make a temporary alloca to pass the argument. - Address Addr = CreateMemTempWithoutCast( - I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); - IRCallArgs[FirstIRArg] = Addr.getPointer(); - - I->copyInto(*this, Addr); - } else { - // We want to avoid creating an unnecessary temporary+copy here; - // however, we need one in three cases: - // 1. If the argument is not byval, and we are required to copy the - // source. (This case doesn't occur on any common architecture.) - // 2. If the argument is byval, RV is not sufficiently aligned, and - // we cannot force it to be sufficiently aligned. - // 3. If the argument is byval, but RV is not located in default - // or alloca address space. - Address Addr = I->hasLValue() - ? I->getKnownLValue().getAddress() - : I->getKnownRValue().getAggregateAddress(); - llvm::Value *V = Addr.getPointer(); - CharUnits Align = ArgInfo.getIndirectAlign(); - const llvm::DataLayout *TD = &CGM.getDataLayout(); - - assert((FirstIRArg >= IRFuncTy->getNumParams() || - IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == - TD->getAllocaAddrSpace()) && - "indirect argument must be in alloca address space"); - - bool NeedCopy = false; - - if (Addr.getAlignment() < Align && - llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < - Align.getQuantity()) { - NeedCopy = true; - } else if (I->hasLValue()) { - auto LV = I->getKnownLValue(); - auto AS = LV.getAddressSpace(); - - if ((!ArgInfo.getIndirectByVal() && - (LV.getAlignment() >= - getContext().getTypeAlignInChars(I->Ty)))) { - NeedCopy = true; - } - if (!getLangOpts().OpenCL) { - if ((ArgInfo.getIndirectByVal() && - (AS != LangAS::Default && - AS != CGM.getASTAllocaAddressSpace()))) { - NeedCopy = true; - } - } - // For OpenCL even if RV is located in default or alloca address space - // we don't want to perform address space cast for it. - else if ((ArgInfo.getIndirectByVal() && - Addr.getType()->getAddressSpace() != IRFuncTy-> - getParamType(FirstIRArg)->getPointerAddressSpace())) { - NeedCopy = true; - } - } - - if (NeedCopy) { - // Create an aligned temporary, and copy to it. - Address AI = CreateMemTempWithoutCast( - I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); - IRCallArgs[FirstIRArg] = AI.getPointer(); - I->copyInto(*this, AI); - } else { - // Skip the extra memcpy call. - auto *T = V->getType()->getPointerElementType()->getPointerTo( - CGM.getDataLayout().getAllocaAddrSpace()); - IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( - *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, - true); - } - } - break; - } - - case ABIArgInfo::Ignore: - assert(NumIRArgs == 0); - break; - - case ABIArgInfo::Extend: - case ABIArgInfo::Direct: { - if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && - ArgInfo.getCoerceToType() == ConvertType(info_it->type) && - ArgInfo.getDirectOffset() == 0) { - assert(NumIRArgs == 1); - llvm::Value *V; - if (!I->isAggregate()) - V = I->getKnownRValue().getScalarVal(); - else - V = Builder.CreateLoad( - I->hasLValue() ? I->getKnownLValue().getAddress() - : I->getKnownRValue().getAggregateAddress()); - - // Implement swifterror by copying into a new swifterror argument. - // We'll write back in the normal path out of the call. - if (CallInfo.getExtParameterInfo(ArgNo).getABI() - == ParameterABI::SwiftErrorResult) { - assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); - - QualType pointeeTy = I->Ty->getPointeeType(); - swiftErrorArg = - Address(V, getContext().getTypeAlignInChars(pointeeTy)); - - swiftErrorTemp = - CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); - V = swiftErrorTemp.getPointer(); - cast<llvm::AllocaInst>(V)->setSwiftError(true); - - llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); - Builder.CreateStore(errorValue, swiftErrorTemp); - } - - // We might have to widen integers, but we should never truncate. - if (ArgInfo.getCoerceToType() != V->getType() && - V->getType()->isIntegerTy()) - V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); - - // If the argument doesn't match, perform a bitcast to coerce it. This - // can happen due to trivial type mismatches. - if (FirstIRArg < IRFuncTy->getNumParams() && - V->getType() != IRFuncTy->getParamType(FirstIRArg)) - V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); - - IRCallArgs[FirstIRArg] = V; - break; - } - - // FIXME: Avoid the conversion through memory if possible. - Address Src = Address::invalid(); - if (!I->isAggregate()) { - Src = CreateMemTemp(I->Ty, "coerce"); - I->copyInto(*this, Src); - } else { - Src = I->hasLValue() ? I->getKnownLValue().getAddress() - : I->getKnownRValue().getAggregateAddress(); - } - - // If the value is offset in memory, apply the offset now. - Src = emitAddressAtOffset(*this, Src, ArgInfo); - - // Fast-isel and the optimizer generally like scalar values better than - // FCAs, so we flatten them if this is safe to do for this argument. - llvm::StructType *STy = - dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); - if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { - llvm::Type *SrcTy = Src.getType()->getElementType(); - uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); - uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); - - // If the source type is smaller than the destination type of the - // coerce-to logic, copy the source value into a temp alloca the size - // of the destination type to allow loading all of it. The bits past - // the source value are left undef. - if (SrcSize < DstSize) { - Address TempAlloca - = CreateTempAlloca(STy, Src.getAlignment(), - Src.getName() + ".coerce"); - Builder.CreateMemCpy(TempAlloca, Src, SrcSize); - Src = TempAlloca; - } else { - Src = Builder.CreateBitCast(Src, - STy->getPointerTo(Src.getAddressSpace())); - } - - auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); - assert(NumIRArgs == STy->getNumElements()); - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); - Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); - llvm::Value *LI = Builder.CreateLoad(EltPtr); - IRCallArgs[FirstIRArg + i] = LI; - } - } else { - // In the simple case, just pass the coerced loaded value. - assert(NumIRArgs == 1); - IRCallArgs[FirstIRArg] = - CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); - } - - break; - } - - case ABIArgInfo::CoerceAndExpand: { - auto coercionType = ArgInfo.getCoerceAndExpandType(); - auto layout = CGM.getDataLayout().getStructLayout(coercionType); - - llvm::Value *tempSize = nullptr; - Address addr = Address::invalid(); - Address AllocaAddr = Address::invalid(); - if (I->isAggregate()) { - addr = I->hasLValue() ? I->getKnownLValue().getAddress() - : I->getKnownRValue().getAggregateAddress(); - - } else { - RValue RV = I->getKnownRValue(); - assert(RV.isScalar()); // complex should always just be direct - - llvm::Type *scalarType = RV.getScalarVal()->getType(); - auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); - auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); - - // Materialize to a temporary. - addr = CreateTempAlloca(RV.getScalarVal()->getType(), - CharUnits::fromQuantity(std::max( - layout->getAlignment(), scalarAlign)), - "tmp", - /*ArraySize=*/nullptr, &AllocaAddr); - tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); - - Builder.CreateStore(RV.getScalarVal(), addr); - } - - addr = Builder.CreateElementBitCast(addr, coercionType); - - unsigned IRArgPos = FirstIRArg; - for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { - llvm::Type *eltType = coercionType->getElementType(i); - if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; - Address eltAddr = Builder.CreateStructGEP(addr, i, layout); - llvm::Value *elt = Builder.CreateLoad(eltAddr); - IRCallArgs[IRArgPos++] = elt; - } - assert(IRArgPos == FirstIRArg + NumIRArgs); - - if (tempSize) { - EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); - } - - break; - } - - case ABIArgInfo::Expand: - unsigned IRArgPos = FirstIRArg; - ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); - assert(IRArgPos == FirstIRArg + NumIRArgs); - break; - } - } - - const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); - llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); - - // If we're using inalloca, set up that argument. - if (ArgMemory.isValid()) { - llvm::Value *Arg = ArgMemory.getPointer(); - if (CallInfo.isVariadic()) { - // When passing non-POD arguments by value to variadic functions, we will - // end up with a variadic prototype and an inalloca call site. In such - // cases, we can't do any parameter mismatch checks. Give up and bitcast - // the callee. - unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); - auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); - CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); - } else { - llvm::Type *LastParamTy = - IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); - if (Arg->getType() != LastParamTy) { -#ifndef NDEBUG - // Assert that these structs have equivalent element types. - llvm::StructType *FullTy = CallInfo.getArgStruct(); - llvm::StructType *DeclaredTy = cast<llvm::StructType>( - cast<llvm::PointerType>(LastParamTy)->getElementType()); - assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); - for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), - DE = DeclaredTy->element_end(), - FI = FullTy->element_begin(); - DI != DE; ++DI, ++FI) - assert(*DI == *FI); -#endif - Arg = Builder.CreateBitCast(Arg, LastParamTy); - } - } - assert(IRFunctionArgs.hasInallocaArg()); - IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; - } - - // 2. Prepare the function pointer. - - // If the callee is a bitcast of a non-variadic function to have a - // variadic function pointer type, check to see if we can remove the - // bitcast. This comes up with unprototyped functions. - // - // This makes the IR nicer, but more importantly it ensures that we - // can inline the function at -O0 if it is marked always_inline. - auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { - llvm::FunctionType *CalleeFT = - cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); - if (!CalleeFT->isVarArg()) - return Ptr; - - llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); - if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) - return Ptr; - - llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); - if (!OrigFn) - return Ptr; - - llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); - - // If the original type is variadic, or if any of the component types - // disagree, we cannot remove the cast. - if (OrigFT->isVarArg() || - OrigFT->getNumParams() != CalleeFT->getNumParams() || - OrigFT->getReturnType() != CalleeFT->getReturnType()) - return Ptr; - - for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) - if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) - return Ptr; - - return OrigFn; - }; - CalleePtr = simplifyVariadicCallee(CalleePtr); - - // 3. Perform the actual call. - - // Deactivate any cleanups that we're supposed to do immediately before - // the call. - if (!CallArgs.getCleanupsToDeactivate().empty()) - deactivateArgCleanupsBeforeCall(*this, CallArgs); - - // Assert that the arguments we computed match up. The IR verifier - // will catch this, but this is a common enough source of problems - // during IRGen changes that it's way better for debugging to catch - // it ourselves here. -#ifndef NDEBUG - assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); - for (unsigned i = 0; i < IRCallArgs.size(); ++i) { - // Inalloca argument can have different type. - if (IRFunctionArgs.hasInallocaArg() && - i == IRFunctionArgs.getInallocaArgNo()) - continue; - if (i < IRFuncTy->getNumParams()) - assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); - } -#endif - - // Update the largest vector width if any arguments have vector types. - for (unsigned i = 0; i < IRCallArgs.size(); ++i) { - if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) - LargestVectorWidth = std::max(LargestVectorWidth, - VT->getPrimitiveSizeInBits()); - } - - // Compute the calling convention and attributes. - unsigned CallingConv; - llvm::AttributeList Attrs; - CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, - Callee.getAbstractInfo(), Attrs, CallingConv, - /*AttrOnCallSite=*/true); - - // Apply some call-site-specific attributes. - // TODO: work this into building the attribute set. - - // Apply always_inline to all calls within flatten functions. - // FIXME: should this really take priority over __try, below? - if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && - !(Callee.getAbstractInfo().getCalleeDecl().getDecl() && - Callee.getAbstractInfo() - .getCalleeDecl() - .getDecl() - ->hasAttr<NoInlineAttr>())) { - Attrs = - Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, - llvm::Attribute::AlwaysInline); - } - - // Disable inlining inside SEH __try blocks. - if (isSEHTryScope()) { - Attrs = - Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, - llvm::Attribute::NoInline); - } - - // Decide whether to use a call or an invoke. - bool CannotThrow; - if (currentFunctionUsesSEHTry()) { - // SEH cares about asynchronous exceptions, so everything can "throw." - CannotThrow = false; - } else if (isCleanupPadScope() && - EHPersonality::get(*this).isMSVCXXPersonality()) { - // The MSVC++ personality will implicitly terminate the program if an - // exception is thrown during a cleanup outside of a try/catch. - // We don't need to model anything in IR to get this behavior. - CannotThrow = true; - } else { - // Otherwise, nounwind call sites will never throw. - CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, - llvm::Attribute::NoUnwind); - } - - // If we made a temporary, be sure to clean up after ourselves. Note that we - // can't depend on being inside of an ExprWithCleanups, so we need to manually - // pop this cleanup later on. Being eager about this is OK, since this - // temporary is 'invisible' outside of the callee. - if (UnusedReturnSizePtr) - pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, - UnusedReturnSizePtr); - - llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); - - SmallVector<llvm::OperandBundleDef, 1> BundleList = - getBundlesForFunclet(CalleePtr); - - // Emit the actual call/invoke instruction. - llvm::CallSite CS; - if (!InvokeDest) { - CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); - } else { - llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); - CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, - BundleList); - EmitBlock(Cont); - } - llvm::Instruction *CI = CS.getInstruction(); - if (callOrInvoke) - *callOrInvoke = CI; - - // Apply the attributes and calling convention. - CS.setAttributes(Attrs); - CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); - - // Apply various metadata. - - if (!CI->getType()->isVoidTy()) - CI->setName("call"); - - // Update largest vector width from the return type. - if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) - LargestVectorWidth = std::max(LargestVectorWidth, - VT->getPrimitiveSizeInBits()); - - // Insert instrumentation or attach profile metadata at indirect call sites. - // For more details, see the comment before the definition of - // IPVK_IndirectCallTarget in InstrProfData.inc. - if (!CS.getCalledFunction()) - PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, - CI, CalleePtr); - - // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC - // optimizer it can aggressively ignore unwind edges. - if (CGM.getLangOpts().ObjCAutoRefCount) - AddObjCARCExceptionMetadata(CI); - - // Suppress tail calls if requested. - if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { - const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); - if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) - Call->setTailCallKind(llvm::CallInst::TCK_NoTail); - } - - // 4. Finish the call. - - // If the call doesn't return, finish the basic block and clear the - // insertion point; this allows the rest of IRGen to discard - // unreachable code. - if (CS.doesNotReturn()) { - if (UnusedReturnSizePtr) - PopCleanupBlock(); - - // Strip away the noreturn attribute to better diagnose unreachable UB. - if (SanOpts.has(SanitizerKind::Unreachable)) { - if (auto *F = CS.getCalledFunction()) - F->removeFnAttr(llvm::Attribute::NoReturn); - CS.removeAttribute(llvm::AttributeList::FunctionIndex, - llvm::Attribute::NoReturn); - } - - EmitUnreachable(Loc); - Builder.ClearInsertionPoint(); - - // FIXME: For now, emit a dummy basic block because expr emitters in - // generally are not ready to handle emitting expressions at unreachable - // points. - EnsureInsertPoint(); - - // Return a reasonable RValue. - return GetUndefRValue(RetTy); - } - - // Perform the swifterror writeback. - if (swiftErrorTemp.isValid()) { - llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); - Builder.CreateStore(errorResult, swiftErrorArg); - } - - // Emit any call-associated writebacks immediately. Arguably this - // should happen after any return-value munging. - if (CallArgs.hasWritebacks()) - emitWritebacks(*this, CallArgs); - - // The stack cleanup for inalloca arguments has to run out of the normal - // lexical order, so deactivate it and run it manually here. - CallArgs.freeArgumentMemory(*this); - - // Extract the return value. - RValue Ret = [&] { - switch (RetAI.getKind()) { - case ABIArgInfo::CoerceAndExpand: { - auto coercionType = RetAI.getCoerceAndExpandType(); - auto layout = CGM.getDataLayout().getStructLayout(coercionType); - - Address addr = SRetPtr; - addr = Builder.CreateElementBitCast(addr, coercionType); - - assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); - bool requiresExtract = isa<llvm::StructType>(CI->getType()); - - unsigned unpaddedIndex = 0; - for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { - llvm::Type *eltType = coercionType->getElementType(i); - if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; - Address eltAddr = Builder.CreateStructGEP(addr, i, layout); - llvm::Value *elt = CI; - if (requiresExtract) - elt = Builder.CreateExtractValue(elt, unpaddedIndex++); - else - assert(unpaddedIndex == 0); - Builder.CreateStore(elt, eltAddr); - } - // FALLTHROUGH - LLVM_FALLTHROUGH; - } - - case ABIArgInfo::InAlloca: - case ABIArgInfo::Indirect: { - RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); - if (UnusedReturnSizePtr) - PopCleanupBlock(); - return ret; - } - - case ABIArgInfo::Ignore: - // If we are ignoring an argument that had a result, make sure to - // construct the appropriate return value for our caller. - return GetUndefRValue(RetTy); - - case ABIArgInfo::Extend: - case ABIArgInfo::Direct: { - llvm::Type *RetIRTy = ConvertType(RetTy); - if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { - switch (getEvaluationKind(RetTy)) { - case TEK_Complex: { - llvm::Value *Real = Builder.CreateExtractValue(CI, 0); - llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); - return RValue::getComplex(std::make_pair(Real, Imag)); - } - case TEK_Aggregate: { - Address DestPtr = ReturnValue.getValue(); - bool DestIsVolatile = ReturnValue.isVolatile(); - - if (!DestPtr.isValid()) { - DestPtr = CreateMemTemp(RetTy, "agg.tmp"); - DestIsVolatile = false; - } - BuildAggStore(*this, CI, DestPtr, DestIsVolatile); - return RValue::getAggregate(DestPtr); - } - case TEK_Scalar: { - // If the argument doesn't match, perform a bitcast to coerce it. This - // can happen due to trivial type mismatches. - llvm::Value *V = CI; - if (V->getType() != RetIRTy) - V = Builder.CreateBitCast(V, RetIRTy); - return RValue::get(V); - } - } - llvm_unreachable("bad evaluation kind"); - } - - Address DestPtr = ReturnValue.getValue(); - bool DestIsVolatile = ReturnValue.isVolatile(); - - if (!DestPtr.isValid()) { - DestPtr = CreateMemTemp(RetTy, "coerce"); - DestIsVolatile = false; - } - - // If the value is offset in memory, apply the offset now. - Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); - CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); - - return convertTempToRValue(DestPtr, RetTy, SourceLocation()); - } - - case ABIArgInfo::Expand: - llvm_unreachable("Invalid ABI kind for return argument"); - } - - llvm_unreachable("Unhandled ABIArgInfo::Kind"); - } (); - - // Emit the assume_aligned check on the return value. - const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); - if (Ret.isScalar() && TargetDecl) { - if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { - llvm::Value *OffsetValue = nullptr; - if (const auto *Offset = AA->getOffset()) - OffsetValue = EmitScalarExpr(Offset); - - llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); - llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); - EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), - AlignmentCI->getZExtValue(), OffsetValue); - } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { - llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()] - .getRValue(*this) - .getScalarVal(); - EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), - AlignmentVal); - } - } - - return Ret; -} - -CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { - if (isVirtual()) { - const CallExpr *CE = getVirtualCallExpr(); - return CGF.CGM.getCXXABI().getVirtualFunctionPointer( - CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(), - CE ? CE->getBeginLoc() : SourceLocation()); - } - - return *this; -} - -/* VarArg handling */ - -Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { - VAListAddr = VE->isMicrosoftABI() - ? EmitMSVAListRef(VE->getSubExpr()) - : EmitVAListRef(VE->getSubExpr()); - QualType Ty = VE->getType(); - if (VE->isMicrosoftABI()) - return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); - return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); -} |
