diff options
Diffstat (limited to 'gnu/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp')
| -rw-r--r-- | gnu/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp | 2273 |
1 files changed, 0 insertions, 2273 deletions
diff --git a/gnu/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp b/gnu/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp deleted file mode 100644 index 884ce96859c..00000000000 --- a/gnu/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp +++ /dev/null @@ -1,2273 +0,0 @@ -//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This contains code dealing with code generation of C++ expressions -// -//===----------------------------------------------------------------------===// - -#include "CodeGenFunction.h" -#include "CGCUDARuntime.h" -#include "CGCXXABI.h" -#include "CGDebugInfo.h" -#include "CGObjCRuntime.h" -#include "ConstantEmitter.h" -#include "clang/Basic/CodeGenOptions.h" -#include "clang/CodeGen/CGFunctionInfo.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Intrinsics.h" - -using namespace clang; -using namespace CodeGen; - -namespace { -struct MemberCallInfo { - RequiredArgs ReqArgs; - // Number of prefix arguments for the call. Ignores the `this` pointer. - unsigned PrefixSize; -}; -} - -static MemberCallInfo -commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, - llvm::Value *This, llvm::Value *ImplicitParam, - QualType ImplicitParamTy, const CallExpr *CE, - CallArgList &Args, CallArgList *RtlArgs) { - assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || - isa<CXXOperatorCallExpr>(CE)); - assert(MD->isInstance() && - "Trying to emit a member or operator call expr on a static method!"); - ASTContext &C = CGF.getContext(); - - // Push the this ptr. - const CXXRecordDecl *RD = - CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); - Args.add(RValue::get(This), - RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy); - - // If there is an implicit parameter (e.g. VTT), emit it. - if (ImplicitParam) { - Args.add(RValue::get(ImplicitParam), ImplicitParamTy); - } - - const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); - RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); - unsigned PrefixSize = Args.size() - 1; - - // And the rest of the call args. - if (RtlArgs) { - // Special case: if the caller emitted the arguments right-to-left already - // (prior to emitting the *this argument), we're done. This happens for - // assignment operators. - Args.addFrom(*RtlArgs); - } else if (CE) { - // Special case: skip first argument of CXXOperatorCall (it is "this"). - unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; - CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), - CE->getDirectCallee()); - } else { - assert( - FPT->getNumParams() == 0 && - "No CallExpr specified for function with non-zero number of arguments"); - } - return {required, PrefixSize}; -} - -RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( - const CXXMethodDecl *MD, const CGCallee &Callee, - ReturnValueSlot ReturnValue, - llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, - const CallExpr *CE, CallArgList *RtlArgs) { - const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); - CallArgList Args; - MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( - *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); - auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( - Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); - return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, - CE ? CE->getExprLoc() : SourceLocation()); -} - -RValue CodeGenFunction::EmitCXXDestructorCall( - const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This, - llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, - StructorType Type) { - CallArgList Args; - commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, - ImplicitParamTy, CE, Args, nullptr); - return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), - Callee, ReturnValueSlot(), Args); -} - -RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( - const CXXPseudoDestructorExpr *E) { - QualType DestroyedType = E->getDestroyedType(); - if (DestroyedType.hasStrongOrWeakObjCLifetime()) { - // Automatic Reference Counting: - // If the pseudo-expression names a retainable object with weak or - // strong lifetime, the object shall be released. - Expr *BaseExpr = E->getBase(); - Address BaseValue = Address::invalid(); - Qualifiers BaseQuals; - - // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. - if (E->isArrow()) { - BaseValue = EmitPointerWithAlignment(BaseExpr); - const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); - BaseQuals = PTy->getPointeeType().getQualifiers(); - } else { - LValue BaseLV = EmitLValue(BaseExpr); - BaseValue = BaseLV.getAddress(); - QualType BaseTy = BaseExpr->getType(); - BaseQuals = BaseTy.getQualifiers(); - } - - switch (DestroyedType.getObjCLifetime()) { - case Qualifiers::OCL_None: - case Qualifiers::OCL_ExplicitNone: - case Qualifiers::OCL_Autoreleasing: - break; - - case Qualifiers::OCL_Strong: - EmitARCRelease(Builder.CreateLoad(BaseValue, - DestroyedType.isVolatileQualified()), - ARCPreciseLifetime); - break; - - case Qualifiers::OCL_Weak: - EmitARCDestroyWeak(BaseValue); - break; - } - } else { - // C++ [expr.pseudo]p1: - // The result shall only be used as the operand for the function call - // operator (), and the result of such a call has type void. The only - // effect is the evaluation of the postfix-expression before the dot or - // arrow. - EmitIgnoredExpr(E->getBase()); - } - - return RValue::get(nullptr); -} - -static CXXRecordDecl *getCXXRecord(const Expr *E) { - QualType T = E->getType(); - if (const PointerType *PTy = T->getAs<PointerType>()) - T = PTy->getPointeeType(); - const RecordType *Ty = T->castAs<RecordType>(); - return cast<CXXRecordDecl>(Ty->getDecl()); -} - -// Note: This function also emit constructor calls to support a MSVC -// extensions allowing explicit constructor function call. -RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, - ReturnValueSlot ReturnValue) { - const Expr *callee = CE->getCallee()->IgnoreParens(); - - if (isa<BinaryOperator>(callee)) - return EmitCXXMemberPointerCallExpr(CE, ReturnValue); - - const MemberExpr *ME = cast<MemberExpr>(callee); - const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); - - if (MD->isStatic()) { - // The method is static, emit it as we would a regular call. - CGCallee callee = - CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); - return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, - ReturnValue); - } - - bool HasQualifier = ME->hasQualifier(); - NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; - bool IsArrow = ME->isArrow(); - const Expr *Base = ME->getBase(); - - return EmitCXXMemberOrOperatorMemberCallExpr( - CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); -} - -RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( - const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, - bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, - const Expr *Base) { - assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); - - // Compute the object pointer. - bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; - - const CXXMethodDecl *DevirtualizedMethod = nullptr; - if (CanUseVirtualCall && - MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { - const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); - DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); - assert(DevirtualizedMethod); - const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); - const Expr *Inner = Base->ignoreParenBaseCasts(); - if (DevirtualizedMethod->getReturnType().getCanonicalType() != - MD->getReturnType().getCanonicalType()) - // If the return types are not the same, this might be a case where more - // code needs to run to compensate for it. For example, the derived - // method might return a type that inherits form from the return - // type of MD and has a prefix. - // For now we just avoid devirtualizing these covariant cases. - DevirtualizedMethod = nullptr; - else if (getCXXRecord(Inner) == DevirtualizedClass) - // If the class of the Inner expression is where the dynamic method - // is defined, build the this pointer from it. - Base = Inner; - else if (getCXXRecord(Base) != DevirtualizedClass) { - // If the method is defined in a class that is not the best dynamic - // one or the one of the full expression, we would have to build - // a derived-to-base cast to compute the correct this pointer, but - // we don't have support for that yet, so do a virtual call. - DevirtualizedMethod = nullptr; - } - } - - // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment - // operator before the LHS. - CallArgList RtlArgStorage; - CallArgList *RtlArgs = nullptr; - if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { - if (OCE->isAssignmentOp()) { - RtlArgs = &RtlArgStorage; - EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), - drop_begin(CE->arguments(), 1), CE->getDirectCallee(), - /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); - } - } - - LValue This; - if (IsArrow) { - LValueBaseInfo BaseInfo; - TBAAAccessInfo TBAAInfo; - Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); - This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); - } else { - This = EmitLValue(Base); - } - - - if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { - if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); - if (isa<CXXConstructorDecl>(MD) && - cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) - return RValue::get(nullptr); - - if (!MD->getParent()->mayInsertExtraPadding()) { - if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { - // We don't like to generate the trivial copy/move assignment operator - // when it isn't necessary; just produce the proper effect here. - LValue RHS = isa<CXXOperatorCallExpr>(CE) - ? MakeNaturalAlignAddrLValue( - (*RtlArgs)[0].getRValue(*this).getScalarVal(), - (*(CE->arg_begin() + 1))->getType()) - : EmitLValue(*CE->arg_begin()); - EmitAggregateAssign(This, RHS, CE->getType()); - return RValue::get(This.getPointer()); - } - - if (isa<CXXConstructorDecl>(MD) && - cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { - // Trivial move and copy ctor are the same. - assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); - const Expr *Arg = *CE->arg_begin(); - LValue RHS = EmitLValue(Arg); - LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType()); - // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's - // constructing a new complete object of type Ctor. - EmitAggregateCopy(Dest, RHS, Arg->getType(), - AggValueSlot::DoesNotOverlap); - return RValue::get(This.getPointer()); - } - llvm_unreachable("unknown trivial member function"); - } - } - - // Compute the function type we're calling. - const CXXMethodDecl *CalleeDecl = - DevirtualizedMethod ? DevirtualizedMethod : MD; - const CGFunctionInfo *FInfo = nullptr; - if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) - FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( - Dtor, StructorType::Complete); - else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) - FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( - Ctor, StructorType::Complete); - else - FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); - - llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); - - // C++11 [class.mfct.non-static]p2: - // If a non-static member function of a class X is called for an object that - // is not of type X, or of a type derived from X, the behavior is undefined. - SourceLocation CallLoc; - ASTContext &C = getContext(); - if (CE) - CallLoc = CE->getExprLoc(); - - SanitizerSet SkippedChecks; - if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { - auto *IOA = CMCE->getImplicitObjectArgument(); - bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); - if (IsImplicitObjectCXXThis) - SkippedChecks.set(SanitizerKind::Alignment, true); - if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) - SkippedChecks.set(SanitizerKind::Null, true); - } - EmitTypeCheck( - isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall - : CodeGenFunction::TCK_MemberCall, - CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()), - /*Alignment=*/CharUnits::Zero(), SkippedChecks); - - // FIXME: Uses of 'MD' past this point need to be audited. We may need to use - // 'CalleeDecl' instead. - - // C++ [class.virtual]p12: - // Explicit qualification with the scope operator (5.1) suppresses the - // virtual call mechanism. - // - // We also don't emit a virtual call if the base expression has a record type - // because then we know what the type is. - bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; - - if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { - assert(CE->arg_begin() == CE->arg_end() && - "Destructor shouldn't have explicit parameters"); - assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); - if (UseVirtualCall) { - CGM.getCXXABI().EmitVirtualDestructorCall( - *this, Dtor, Dtor_Complete, This.getAddress(), - cast<CXXMemberCallExpr>(CE)); - } else { - CGCallee Callee; - if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) - Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); - else if (!DevirtualizedMethod) - Callee = CGCallee::forDirect( - CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty), - GlobalDecl(Dtor, Dtor_Complete)); - else { - const CXXDestructorDecl *DDtor = - cast<CXXDestructorDecl>(DevirtualizedMethod); - Callee = CGCallee::forDirect( - CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty), - GlobalDecl(DDtor, Dtor_Complete)); - } - EmitCXXMemberOrOperatorCall( - CalleeDecl, Callee, ReturnValue, This.getPointer(), - /*ImplicitParam=*/nullptr, QualType(), CE, nullptr); - } - return RValue::get(nullptr); - } - - CGCallee Callee; - if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { - Callee = CGCallee::forDirect( - CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty), - GlobalDecl(Ctor, Ctor_Complete)); - } else if (UseVirtualCall) { - Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); - } else { - if (SanOpts.has(SanitizerKind::CFINVCall) && - MD->getParent()->isDynamicClass()) { - llvm::Value *VTable; - const CXXRecordDecl *RD; - std::tie(VTable, RD) = - CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(), - MD->getParent()); - EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); - } - - if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) - Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); - else if (!DevirtualizedMethod) - Callee = - CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); - else { - Callee = - CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), - GlobalDecl(DevirtualizedMethod)); - } - } - - if (MD->isVirtual()) { - Address NewThisAddr = - CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( - *this, CalleeDecl, This.getAddress(), UseVirtualCall); - This.setAddress(NewThisAddr); - } - - return EmitCXXMemberOrOperatorCall( - CalleeDecl, Callee, ReturnValue, This.getPointer(), - /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); -} - -RValue -CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, - ReturnValueSlot ReturnValue) { - const BinaryOperator *BO = - cast<BinaryOperator>(E->getCallee()->IgnoreParens()); - const Expr *BaseExpr = BO->getLHS(); - const Expr *MemFnExpr = BO->getRHS(); - - const MemberPointerType *MPT = - MemFnExpr->getType()->castAs<MemberPointerType>(); - - const FunctionProtoType *FPT = - MPT->getPointeeType()->castAs<FunctionProtoType>(); - const CXXRecordDecl *RD = - cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); - - // Emit the 'this' pointer. - Address This = Address::invalid(); - if (BO->getOpcode() == BO_PtrMemI) - This = EmitPointerWithAlignment(BaseExpr); - else - This = EmitLValue(BaseExpr).getAddress(); - - EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), - QualType(MPT->getClass(), 0)); - - // Get the member function pointer. - llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); - - // Ask the ABI to load the callee. Note that This is modified. - llvm::Value *ThisPtrForCall = nullptr; - CGCallee Callee = - CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, - ThisPtrForCall, MemFnPtr, MPT); - - CallArgList Args; - - QualType ThisType = - getContext().getPointerType(getContext().getTagDeclType(RD)); - - // Push the this ptr. - Args.add(RValue::get(ThisPtrForCall), ThisType); - - RequiredArgs required = - RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); - - // And the rest of the call args - EmitCallArgs(Args, FPT, E->arguments()); - return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, - /*PrefixSize=*/0), - Callee, ReturnValue, Args, nullptr, E->getExprLoc()); -} - -RValue -CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, - const CXXMethodDecl *MD, - ReturnValueSlot ReturnValue) { - assert(MD->isInstance() && - "Trying to emit a member call expr on a static method!"); - return EmitCXXMemberOrOperatorMemberCallExpr( - E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, - /*IsArrow=*/false, E->getArg(0)); -} - -RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, - ReturnValueSlot ReturnValue) { - return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); -} - -static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, - Address DestPtr, - const CXXRecordDecl *Base) { - if (Base->isEmpty()) - return; - - DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); - - const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); - CharUnits NVSize = Layout.getNonVirtualSize(); - - // We cannot simply zero-initialize the entire base sub-object if vbptrs are - // present, they are initialized by the most derived class before calling the - // constructor. - SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; - Stores.emplace_back(CharUnits::Zero(), NVSize); - - // Each store is split by the existence of a vbptr. - CharUnits VBPtrWidth = CGF.getPointerSize(); - std::vector<CharUnits> VBPtrOffsets = - CGF.CGM.getCXXABI().getVBPtrOffsets(Base); - for (CharUnits VBPtrOffset : VBPtrOffsets) { - // Stop before we hit any virtual base pointers located in virtual bases. - if (VBPtrOffset >= NVSize) - break; - std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); - CharUnits LastStoreOffset = LastStore.first; - CharUnits LastStoreSize = LastStore.second; - - CharUnits SplitBeforeOffset = LastStoreOffset; - CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; - assert(!SplitBeforeSize.isNegative() && "negative store size!"); - if (!SplitBeforeSize.isZero()) - Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); - - CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; - CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; - assert(!SplitAfterSize.isNegative() && "negative store size!"); - if (!SplitAfterSize.isZero()) - Stores.emplace_back(SplitAfterOffset, SplitAfterSize); - } - - // If the type contains a pointer to data member we can't memset it to zero. - // Instead, create a null constant and copy it to the destination. - // TODO: there are other patterns besides zero that we can usefully memset, - // like -1, which happens to be the pattern used by member-pointers. - // TODO: isZeroInitializable can be over-conservative in the case where a - // virtual base contains a member pointer. - llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); - if (!NullConstantForBase->isNullValue()) { - llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( - CGF.CGM.getModule(), NullConstantForBase->getType(), - /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, - NullConstantForBase, Twine()); - - CharUnits Align = std::max(Layout.getNonVirtualAlignment(), - DestPtr.getAlignment()); - NullVariable->setAlignment(Align.getQuantity()); - - Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); - - // Get and call the appropriate llvm.memcpy overload. - for (std::pair<CharUnits, CharUnits> Store : Stores) { - CharUnits StoreOffset = Store.first; - CharUnits StoreSize = Store.second; - llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); - CGF.Builder.CreateMemCpy( - CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), - CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), - StoreSizeVal); - } - - // Otherwise, just memset the whole thing to zero. This is legal - // because in LLVM, all default initializers (other than the ones we just - // handled above) are guaranteed to have a bit pattern of all zeros. - } else { - for (std::pair<CharUnits, CharUnits> Store : Stores) { - CharUnits StoreOffset = Store.first; - CharUnits StoreSize = Store.second; - llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); - CGF.Builder.CreateMemSet( - CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), - CGF.Builder.getInt8(0), StoreSizeVal); - } - } -} - -void -CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, - AggValueSlot Dest) { - assert(!Dest.isIgnored() && "Must have a destination!"); - const CXXConstructorDecl *CD = E->getConstructor(); - - // If we require zero initialization before (or instead of) calling the - // constructor, as can be the case with a non-user-provided default - // constructor, emit the zero initialization now, unless destination is - // already zeroed. - if (E->requiresZeroInitialization() && !Dest.isZeroed()) { - switch (E->getConstructionKind()) { - case CXXConstructExpr::CK_Delegating: - case CXXConstructExpr::CK_Complete: - EmitNullInitialization(Dest.getAddress(), E->getType()); - break; - case CXXConstructExpr::CK_VirtualBase: - case CXXConstructExpr::CK_NonVirtualBase: - EmitNullBaseClassInitialization(*this, Dest.getAddress(), - CD->getParent()); - break; - } - } - - // If this is a call to a trivial default constructor, do nothing. - if (CD->isTrivial() && CD->isDefaultConstructor()) - return; - - // Elide the constructor if we're constructing from a temporary. - // The temporary check is required because Sema sets this on NRVO - // returns. - if (getLangOpts().ElideConstructors && E->isElidable()) { - assert(getContext().hasSameUnqualifiedType(E->getType(), - E->getArg(0)->getType())); - if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { - EmitAggExpr(E->getArg(0), Dest); - return; - } - } - - if (const ArrayType *arrayType - = getContext().getAsArrayType(E->getType())) { - EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, - Dest.isSanitizerChecked()); - } else { - CXXCtorType Type = Ctor_Complete; - bool ForVirtualBase = false; - bool Delegating = false; - - switch (E->getConstructionKind()) { - case CXXConstructExpr::CK_Delegating: - // We should be emitting a constructor; GlobalDecl will assert this - Type = CurGD.getCtorType(); - Delegating = true; - break; - - case CXXConstructExpr::CK_Complete: - Type = Ctor_Complete; - break; - - case CXXConstructExpr::CK_VirtualBase: - ForVirtualBase = true; - LLVM_FALLTHROUGH; - - case CXXConstructExpr::CK_NonVirtualBase: - Type = Ctor_Base; - } - - // Call the constructor. - EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, - Dest.getAddress(), E, Dest.mayOverlap(), - Dest.isSanitizerChecked()); - } -} - -void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, - const Expr *Exp) { - if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) - Exp = E->getSubExpr(); - assert(isa<CXXConstructExpr>(Exp) && - "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); - const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); - const CXXConstructorDecl *CD = E->getConstructor(); - RunCleanupsScope Scope(*this); - - // If we require zero initialization before (or instead of) calling the - // constructor, as can be the case with a non-user-provided default - // constructor, emit the zero initialization now. - // FIXME. Do I still need this for a copy ctor synthesis? - if (E->requiresZeroInitialization()) - EmitNullInitialization(Dest, E->getType()); - - assert(!getContext().getAsConstantArrayType(E->getType()) - && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); - EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); -} - -static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, - const CXXNewExpr *E) { - if (!E->isArray()) - return CharUnits::Zero(); - - // No cookie is required if the operator new[] being used is the - // reserved placement operator new[]. - if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) - return CharUnits::Zero(); - - return CGF.CGM.getCXXABI().GetArrayCookieSize(E); -} - -static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, - const CXXNewExpr *e, - unsigned minElements, - llvm::Value *&numElements, - llvm::Value *&sizeWithoutCookie) { - QualType type = e->getAllocatedType(); - - if (!e->isArray()) { - CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); - sizeWithoutCookie - = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); - return sizeWithoutCookie; - } - - // The width of size_t. - unsigned sizeWidth = CGF.SizeTy->getBitWidth(); - - // Figure out the cookie size. - llvm::APInt cookieSize(sizeWidth, - CalculateCookiePadding(CGF, e).getQuantity()); - - // Emit the array size expression. - // We multiply the size of all dimensions for NumElements. - // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. - numElements = - ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType()); - if (!numElements) - numElements = CGF.EmitScalarExpr(e->getArraySize()); - assert(isa<llvm::IntegerType>(numElements->getType())); - - // The number of elements can be have an arbitrary integer type; - // essentially, we need to multiply it by a constant factor, add a - // cookie size, and verify that the result is representable as a - // size_t. That's just a gloss, though, and it's wrong in one - // important way: if the count is negative, it's an error even if - // the cookie size would bring the total size >= 0. - bool isSigned - = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); - llvm::IntegerType *numElementsType - = cast<llvm::IntegerType>(numElements->getType()); - unsigned numElementsWidth = numElementsType->getBitWidth(); - - // Compute the constant factor. - llvm::APInt arraySizeMultiplier(sizeWidth, 1); - while (const ConstantArrayType *CAT - = CGF.getContext().getAsConstantArrayType(type)) { - type = CAT->getElementType(); - arraySizeMultiplier *= CAT->getSize(); - } - - CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); - llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); - typeSizeMultiplier *= arraySizeMultiplier; - - // This will be a size_t. - llvm::Value *size; - - // If someone is doing 'new int[42]' there is no need to do a dynamic check. - // Don't bloat the -O0 code. - if (llvm::ConstantInt *numElementsC = - dyn_cast<llvm::ConstantInt>(numElements)) { - const llvm::APInt &count = numElementsC->getValue(); - - bool hasAnyOverflow = false; - - // If 'count' was a negative number, it's an overflow. - if (isSigned && count.isNegative()) - hasAnyOverflow = true; - - // We want to do all this arithmetic in size_t. If numElements is - // wider than that, check whether it's already too big, and if so, - // overflow. - else if (numElementsWidth > sizeWidth && - numElementsWidth - sizeWidth > count.countLeadingZeros()) - hasAnyOverflow = true; - - // Okay, compute a count at the right width. - llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); - - // If there is a brace-initializer, we cannot allocate fewer elements than - // there are initializers. If we do, that's treated like an overflow. - if (adjustedCount.ult(minElements)) - hasAnyOverflow = true; - - // Scale numElements by that. This might overflow, but we don't - // care because it only overflows if allocationSize does, too, and - // if that overflows then we shouldn't use this. - numElements = llvm::ConstantInt::get(CGF.SizeTy, - adjustedCount * arraySizeMultiplier); - - // Compute the size before cookie, and track whether it overflowed. - bool overflow; - llvm::APInt allocationSize - = adjustedCount.umul_ov(typeSizeMultiplier, overflow); - hasAnyOverflow |= overflow; - - // Add in the cookie, and check whether it's overflowed. - if (cookieSize != 0) { - // Save the current size without a cookie. This shouldn't be - // used if there was overflow. - sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); - - allocationSize = allocationSize.uadd_ov(cookieSize, overflow); - hasAnyOverflow |= overflow; - } - - // On overflow, produce a -1 so operator new will fail. - if (hasAnyOverflow) { - size = llvm::Constant::getAllOnesValue(CGF.SizeTy); - } else { - size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); - } - - // Otherwise, we might need to use the overflow intrinsics. - } else { - // There are up to five conditions we need to test for: - // 1) if isSigned, we need to check whether numElements is negative; - // 2) if numElementsWidth > sizeWidth, we need to check whether - // numElements is larger than something representable in size_t; - // 3) if minElements > 0, we need to check whether numElements is smaller - // than that. - // 4) we need to compute - // sizeWithoutCookie := numElements * typeSizeMultiplier - // and check whether it overflows; and - // 5) if we need a cookie, we need to compute - // size := sizeWithoutCookie + cookieSize - // and check whether it overflows. - - llvm::Value *hasOverflow = nullptr; - - // If numElementsWidth > sizeWidth, then one way or another, we're - // going to have to do a comparison for (2), and this happens to - // take care of (1), too. - if (numElementsWidth > sizeWidth) { - llvm::APInt threshold(numElementsWidth, 1); - threshold <<= sizeWidth; - - llvm::Value *thresholdV - = llvm::ConstantInt::get(numElementsType, threshold); - - hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); - numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); - - // Otherwise, if we're signed, we want to sext up to size_t. - } else if (isSigned) { - if (numElementsWidth < sizeWidth) - numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); - - // If there's a non-1 type size multiplier, then we can do the - // signedness check at the same time as we do the multiply - // because a negative number times anything will cause an - // unsigned overflow. Otherwise, we have to do it here. But at least - // in this case, we can subsume the >= minElements check. - if (typeSizeMultiplier == 1) - hasOverflow = CGF.Builder.CreateICmpSLT(numElements, - llvm::ConstantInt::get(CGF.SizeTy, minElements)); - - // Otherwise, zext up to size_t if necessary. - } else if (numElementsWidth < sizeWidth) { - numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); - } - - assert(numElements->getType() == CGF.SizeTy); - - if (minElements) { - // Don't allow allocation of fewer elements than we have initializers. - if (!hasOverflow) { - hasOverflow = CGF.Builder.CreateICmpULT(numElements, - llvm::ConstantInt::get(CGF.SizeTy, minElements)); - } else if (numElementsWidth > sizeWidth) { - // The other existing overflow subsumes this check. - // We do an unsigned comparison, since any signed value < -1 is - // taken care of either above or below. - hasOverflow = CGF.Builder.CreateOr(hasOverflow, - CGF.Builder.CreateICmpULT(numElements, - llvm::ConstantInt::get(CGF.SizeTy, minElements))); - } - } - - size = numElements; - - // Multiply by the type size if necessary. This multiplier - // includes all the factors for nested arrays. - // - // This step also causes numElements to be scaled up by the - // nested-array factor if necessary. Overflow on this computation - // can be ignored because the result shouldn't be used if - // allocation fails. - if (typeSizeMultiplier != 1) { - llvm::Value *umul_with_overflow - = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); - - llvm::Value *tsmV = - llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); - llvm::Value *result = - CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); - - llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); - if (hasOverflow) - hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); - else - hasOverflow = overflowed; - - size = CGF.Builder.CreateExtractValue(result, 0); - - // Also scale up numElements by the array size multiplier. - if (arraySizeMultiplier != 1) { - // If the base element type size is 1, then we can re-use the - // multiply we just did. - if (typeSize.isOne()) { - assert(arraySizeMultiplier == typeSizeMultiplier); - numElements = size; - - // Otherwise we need a separate multiply. - } else { - llvm::Value *asmV = - llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); - numElements = CGF.Builder.CreateMul(numElements, asmV); - } - } - } else { - // numElements doesn't need to be scaled. - assert(arraySizeMultiplier == 1); - } - - // Add in the cookie size if necessary. - if (cookieSize != 0) { - sizeWithoutCookie = size; - - llvm::Value *uadd_with_overflow - = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); - - llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); - llvm::Value *result = - CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); - - llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); - if (hasOverflow) - hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); - else - hasOverflow = overflowed; - - size = CGF.Builder.CreateExtractValue(result, 0); - } - - // If we had any possibility of dynamic overflow, make a select to - // overwrite 'size' with an all-ones value, which should cause - // operator new to throw. - if (hasOverflow) - size = CGF.Builder.CreateSelect(hasOverflow, - llvm::Constant::getAllOnesValue(CGF.SizeTy), - size); - } - - if (cookieSize == 0) - sizeWithoutCookie = size; - else - assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); - - return size; -} - -static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, - QualType AllocType, Address NewPtr, - AggValueSlot::Overlap_t MayOverlap) { - // FIXME: Refactor with EmitExprAsInit. - switch (CGF.getEvaluationKind(AllocType)) { - case TEK_Scalar: - CGF.EmitScalarInit(Init, nullptr, - CGF.MakeAddrLValue(NewPtr, AllocType), false); - return; - case TEK_Complex: - CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), - /*isInit*/ true); - return; - case TEK_Aggregate: { - AggValueSlot Slot - = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), - AggValueSlot::IsDestructed, - AggValueSlot::DoesNotNeedGCBarriers, - AggValueSlot::IsNotAliased, - MayOverlap, AggValueSlot::IsNotZeroed, - AggValueSlot::IsSanitizerChecked); - CGF.EmitAggExpr(Init, Slot); - return; - } - } - llvm_unreachable("bad evaluation kind"); -} - -void CodeGenFunction::EmitNewArrayInitializer( - const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, - Address BeginPtr, llvm::Value *NumElements, - llvm::Value *AllocSizeWithoutCookie) { - // If we have a type with trivial initialization and no initializer, - // there's nothing to do. - if (!E->hasInitializer()) - return; - - Address CurPtr = BeginPtr; - - unsigned InitListElements = 0; - - const Expr *Init = E->getInitializer(); - Address EndOfInit = Address::invalid(); - QualType::DestructionKind DtorKind = ElementType.isDestructedType(); - EHScopeStack::stable_iterator Cleanup; - llvm::Instruction *CleanupDominator = nullptr; - - CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); - CharUnits ElementAlign = - BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); - - // Attempt to perform zero-initialization using memset. - auto TryMemsetInitialization = [&]() -> bool { - // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, - // we can initialize with a memset to -1. - if (!CGM.getTypes().isZeroInitializable(ElementType)) - return false; - - // Optimization: since zero initialization will just set the memory - // to all zeroes, generate a single memset to do it in one shot. - - // Subtract out the size of any elements we've already initialized. - auto *RemainingSize = AllocSizeWithoutCookie; - if (InitListElements) { - // We know this can't overflow; we check this when doing the allocation. - auto *InitializedSize = llvm::ConstantInt::get( - RemainingSize->getType(), - getContext().getTypeSizeInChars(ElementType).getQuantity() * - InitListElements); - RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); - } - - // Create the memset. - Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); - return true; - }; - - // If the initializer is an initializer list, first do the explicit elements. - if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { - // Initializing from a (braced) string literal is a special case; the init - // list element does not initialize a (single) array element. - if (ILE->isStringLiteralInit()) { - // Initialize the initial portion of length equal to that of the string - // literal. The allocation must be for at least this much; we emitted a - // check for that earlier. - AggValueSlot Slot = - AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), - AggValueSlot::IsDestructed, - AggValueSlot::DoesNotNeedGCBarriers, - AggValueSlot::IsNotAliased, - AggValueSlot::DoesNotOverlap, - AggValueSlot::IsNotZeroed, - AggValueSlot::IsSanitizerChecked); - EmitAggExpr(ILE->getInit(0), Slot); - - // Move past these elements. - InitListElements = - cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) - ->getSize().getZExtValue(); - CurPtr = - Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), - Builder.getSize(InitListElements), - "string.init.end"), - CurPtr.getAlignment().alignmentAtOffset(InitListElements * - ElementSize)); - - // Zero out the rest, if any remain. - llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); - if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { - bool OK = TryMemsetInitialization(); - (void)OK; - assert(OK && "couldn't memset character type?"); - } - return; - } - - InitListElements = ILE->getNumInits(); - - // If this is a multi-dimensional array new, we will initialize multiple - // elements with each init list element. - QualType AllocType = E->getAllocatedType(); - if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( - AllocType->getAsArrayTypeUnsafe())) { - ElementTy = ConvertTypeForMem(AllocType); - CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); - InitListElements *= getContext().getConstantArrayElementCount(CAT); - } - - // Enter a partial-destruction Cleanup if necessary. - if (needsEHCleanup(DtorKind)) { - // In principle we could tell the Cleanup where we are more - // directly, but the control flow can get so varied here that it - // would actually be quite complex. Therefore we go through an - // alloca. - EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), - "array.init.end"); - CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); - pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, - ElementType, ElementAlign, - getDestroyer(DtorKind)); - Cleanup = EHStack.stable_begin(); - } - - CharUnits StartAlign = CurPtr.getAlignment(); - for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { - // Tell the cleanup that it needs to destroy up to this - // element. TODO: some of these stores can be trivially - // observed to be unnecessary. - if (EndOfInit.isValid()) { - auto FinishedPtr = - Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); - Builder.CreateStore(FinishedPtr, EndOfInit); - } - // FIXME: If the last initializer is an incomplete initializer list for - // an array, and we have an array filler, we can fold together the two - // initialization loops. - StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), - ILE->getInit(i)->getType(), CurPtr, - AggValueSlot::DoesNotOverlap); - CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), - Builder.getSize(1), - "array.exp.next"), - StartAlign.alignmentAtOffset((i + 1) * ElementSize)); - } - - // The remaining elements are filled with the array filler expression. - Init = ILE->getArrayFiller(); - - // Extract the initializer for the individual array elements by pulling - // out the array filler from all the nested initializer lists. This avoids - // generating a nested loop for the initialization. - while (Init && Init->getType()->isConstantArrayType()) { - auto *SubILE = dyn_cast<InitListExpr>(Init); - if (!SubILE) - break; - assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); - Init = SubILE->getArrayFiller(); - } - - // Switch back to initializing one base element at a time. - CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); - } - - // If all elements have already been initialized, skip any further - // initialization. - llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); - if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { - // If there was a Cleanup, deactivate it. - if (CleanupDominator) - DeactivateCleanupBlock(Cleanup, CleanupDominator); - return; - } - - assert(Init && "have trailing elements to initialize but no initializer"); - - // If this is a constructor call, try to optimize it out, and failing that - // emit a single loop to initialize all remaining elements. - if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { - CXXConstructorDecl *Ctor = CCE->getConstructor(); - if (Ctor->isTrivial()) { - // If new expression did not specify value-initialization, then there - // is no initialization. - if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) - return; - - if (TryMemsetInitialization()) - return; - } - - // Store the new Cleanup position for irregular Cleanups. - // - // FIXME: Share this cleanup with the constructor call emission rather than - // having it create a cleanup of its own. - if (EndOfInit.isValid()) - Builder.CreateStore(CurPtr.getPointer(), EndOfInit); - - // Emit a constructor call loop to initialize the remaining elements. - if (InitListElements) - NumElements = Builder.CreateSub( - NumElements, - llvm::ConstantInt::get(NumElements->getType(), InitListElements)); - EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, - /*NewPointerIsChecked*/true, - CCE->requiresZeroInitialization()); - return; - } - - // If this is value-initialization, we can usually use memset. - ImplicitValueInitExpr IVIE(ElementType); - if (isa<ImplicitValueInitExpr>(Init)) { - if (TryMemsetInitialization()) - return; - - // Switch to an ImplicitValueInitExpr for the element type. This handles - // only one case: multidimensional array new of pointers to members. In - // all other cases, we already have an initializer for the array element. - Init = &IVIE; - } - - // At this point we should have found an initializer for the individual - // elements of the array. - assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && - "got wrong type of element to initialize"); - - // If we have an empty initializer list, we can usually use memset. - if (auto *ILE = dyn_cast<InitListExpr>(Init)) - if (ILE->getNumInits() == 0 && TryMemsetInitialization()) - return; - - // If we have a struct whose every field is value-initialized, we can - // usually use memset. - if (auto *ILE = dyn_cast<InitListExpr>(Init)) { - if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { - if (RType->getDecl()->isStruct()) { - unsigned NumElements = 0; - if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) - NumElements = CXXRD->getNumBases(); - for (auto *Field : RType->getDecl()->fields()) - if (!Field->isUnnamedBitfield()) - ++NumElements; - // FIXME: Recurse into nested InitListExprs. - if (ILE->getNumInits() == NumElements) - for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) - if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) - --NumElements; - if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) - return; - } - } - } - - // Create the loop blocks. - llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); - llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); - llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); - - // Find the end of the array, hoisted out of the loop. - llvm::Value *EndPtr = - Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); - - // If the number of elements isn't constant, we have to now check if there is - // anything left to initialize. - if (!ConstNum) { - llvm::Value *IsEmpty = - Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); - Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); - } - - // Enter the loop. - EmitBlock(LoopBB); - - // Set up the current-element phi. - llvm::PHINode *CurPtrPhi = - Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); - CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); - - CurPtr = Address(CurPtrPhi, ElementAlign); - - // Store the new Cleanup position for irregular Cleanups. - if (EndOfInit.isValid()) - Builder.CreateStore(CurPtr.getPointer(), EndOfInit); - - // Enter a partial-destruction Cleanup if necessary. - if (!CleanupDominator && needsEHCleanup(DtorKind)) { - pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), - ElementType, ElementAlign, - getDestroyer(DtorKind)); - Cleanup = EHStack.stable_begin(); - CleanupDominator = Builder.CreateUnreachable(); - } - - // Emit the initializer into this element. - StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, - AggValueSlot::DoesNotOverlap); - - // Leave the Cleanup if we entered one. - if (CleanupDominator) { - DeactivateCleanupBlock(Cleanup, CleanupDominator); - CleanupDominator->eraseFromParent(); - } - - // Advance to the next element by adjusting the pointer type as necessary. - llvm::Value *NextPtr = - Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, - "array.next"); - - // Check whether we've gotten to the end of the array and, if so, - // exit the loop. - llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); - Builder.CreateCondBr(IsEnd, ContBB, LoopBB); - CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); - - EmitBlock(ContBB); -} - -static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, - QualType ElementType, llvm::Type *ElementTy, - Address NewPtr, llvm::Value *NumElements, - llvm::Value *AllocSizeWithoutCookie) { - ApplyDebugLocation DL(CGF, E); - if (E->isArray()) - CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, - AllocSizeWithoutCookie); - else if (const Expr *Init = E->getInitializer()) - StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, - AggValueSlot::DoesNotOverlap); -} - -/// Emit a call to an operator new or operator delete function, as implicitly -/// created by new-expressions and delete-expressions. -static RValue EmitNewDeleteCall(CodeGenFunction &CGF, - const FunctionDecl *CalleeDecl, - const FunctionProtoType *CalleeType, - const CallArgList &Args) { - llvm::Instruction *CallOrInvoke; - llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); - CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); - RValue RV = - CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( - Args, CalleeType, /*chainCall=*/false), - Callee, ReturnValueSlot(), Args, &CallOrInvoke); - - /// C++1y [expr.new]p10: - /// [In a new-expression,] an implementation is allowed to omit a call - /// to a replaceable global allocation function. - /// - /// We model such elidable calls with the 'builtin' attribute. - llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); - if (CalleeDecl->isReplaceableGlobalAllocationFunction() && - Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { - // FIXME: Add addAttribute to CallSite. - if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) - CI->addAttribute(llvm::AttributeList::FunctionIndex, - llvm::Attribute::Builtin); - else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) - II->addAttribute(llvm::AttributeList::FunctionIndex, - llvm::Attribute::Builtin); - else - llvm_unreachable("unexpected kind of call instruction"); - } - - return RV; -} - -RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, - const CallExpr *TheCall, - bool IsDelete) { - CallArgList Args; - EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments()); - // Find the allocation or deallocation function that we're calling. - ASTContext &Ctx = getContext(); - DeclarationName Name = Ctx.DeclarationNames - .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); - - for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) - if (auto *FD = dyn_cast<FunctionDecl>(Decl)) - if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) - return EmitNewDeleteCall(*this, FD, Type, Args); - llvm_unreachable("predeclared global operator new/delete is missing"); -} - -namespace { -/// The parameters to pass to a usual operator delete. -struct UsualDeleteParams { - bool DestroyingDelete = false; - bool Size = false; - bool Alignment = false; -}; -} - -static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { - UsualDeleteParams Params; - - const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); - auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); - - // The first argument is always a void*. - ++AI; - - // The next parameter may be a std::destroying_delete_t. - if (FD->isDestroyingOperatorDelete()) { - Params.DestroyingDelete = true; - assert(AI != AE); - ++AI; - } - - // Figure out what other parameters we should be implicitly passing. - if (AI != AE && (*AI)->isIntegerType()) { - Params.Size = true; - ++AI; - } - - if (AI != AE && (*AI)->isAlignValT()) { - Params.Alignment = true; - ++AI; - } - - assert(AI == AE && "unexpected usual deallocation function parameter"); - return Params; -} - -namespace { - /// A cleanup to call the given 'operator delete' function upon abnormal - /// exit from a new expression. Templated on a traits type that deals with - /// ensuring that the arguments dominate the cleanup if necessary. - template<typename Traits> - class CallDeleteDuringNew final : public EHScopeStack::Cleanup { - /// Type used to hold llvm::Value*s. - typedef typename Traits::ValueTy ValueTy; - /// Type used to hold RValues. - typedef typename Traits::RValueTy RValueTy; - struct PlacementArg { - RValueTy ArgValue; - QualType ArgType; - }; - - unsigned NumPlacementArgs : 31; - unsigned PassAlignmentToPlacementDelete : 1; - const FunctionDecl *OperatorDelete; - ValueTy Ptr; - ValueTy AllocSize; - CharUnits AllocAlign; - - PlacementArg *getPlacementArgs() { - return reinterpret_cast<PlacementArg *>(this + 1); - } - - public: - static size_t getExtraSize(size_t NumPlacementArgs) { - return NumPlacementArgs * sizeof(PlacementArg); - } - - CallDeleteDuringNew(size_t NumPlacementArgs, - const FunctionDecl *OperatorDelete, ValueTy Ptr, - ValueTy AllocSize, bool PassAlignmentToPlacementDelete, - CharUnits AllocAlign) - : NumPlacementArgs(NumPlacementArgs), - PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), - OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), - AllocAlign(AllocAlign) {} - - void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { - assert(I < NumPlacementArgs && "index out of range"); - getPlacementArgs()[I] = {Arg, Type}; - } - - void Emit(CodeGenFunction &CGF, Flags flags) override { - const FunctionProtoType *FPT = - OperatorDelete->getType()->getAs<FunctionProtoType>(); - CallArgList DeleteArgs; - - // The first argument is always a void* (or C* for a destroying operator - // delete for class type C). - DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); - - // Figure out what other parameters we should be implicitly passing. - UsualDeleteParams Params; - if (NumPlacementArgs) { - // A placement deallocation function is implicitly passed an alignment - // if the placement allocation function was, but is never passed a size. - Params.Alignment = PassAlignmentToPlacementDelete; - } else { - // For a non-placement new-expression, 'operator delete' can take a - // size and/or an alignment if it has the right parameters. - Params = getUsualDeleteParams(OperatorDelete); - } - - assert(!Params.DestroyingDelete && - "should not call destroying delete in a new-expression"); - - // The second argument can be a std::size_t (for non-placement delete). - if (Params.Size) - DeleteArgs.add(Traits::get(CGF, AllocSize), - CGF.getContext().getSizeType()); - - // The next (second or third) argument can be a std::align_val_t, which - // is an enum whose underlying type is std::size_t. - // FIXME: Use the right type as the parameter type. Note that in a call - // to operator delete(size_t, ...), we may not have it available. - if (Params.Alignment) - DeleteArgs.add(RValue::get(llvm::ConstantInt::get( - CGF.SizeTy, AllocAlign.getQuantity())), - CGF.getContext().getSizeType()); - - // Pass the rest of the arguments, which must match exactly. - for (unsigned I = 0; I != NumPlacementArgs; ++I) { - auto Arg = getPlacementArgs()[I]; - DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); - } - - // Call 'operator delete'. - EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); - } - }; -} - -/// Enter a cleanup to call 'operator delete' if the initializer in a -/// new-expression throws. -static void EnterNewDeleteCleanup(CodeGenFunction &CGF, - const CXXNewExpr *E, - Address NewPtr, - llvm::Value *AllocSize, - CharUnits AllocAlign, - const CallArgList &NewArgs) { - unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; - - // If we're not inside a conditional branch, then the cleanup will - // dominate and we can do the easier (and more efficient) thing. - if (!CGF.isInConditionalBranch()) { - struct DirectCleanupTraits { - typedef llvm::Value *ValueTy; - typedef RValue RValueTy; - static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } - static RValue get(CodeGenFunction &, RValueTy V) { return V; } - }; - - typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; - - DirectCleanup *Cleanup = CGF.EHStack - .pushCleanupWithExtra<DirectCleanup>(EHCleanup, - E->getNumPlacementArgs(), - E->getOperatorDelete(), - NewPtr.getPointer(), - AllocSize, - E->passAlignment(), - AllocAlign); - for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { - auto &Arg = NewArgs[I + NumNonPlacementArgs]; - Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); - } - - return; - } - - // Otherwise, we need to save all this stuff. - DominatingValue<RValue>::saved_type SavedNewPtr = - DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); - DominatingValue<RValue>::saved_type SavedAllocSize = - DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); - - struct ConditionalCleanupTraits { - typedef DominatingValue<RValue>::saved_type ValueTy; - typedef DominatingValue<RValue>::saved_type RValueTy; - static RValue get(CodeGenFunction &CGF, ValueTy V) { - return V.restore(CGF); - } - }; - typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; - - ConditionalCleanup *Cleanup = CGF.EHStack - .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, - E->getNumPlacementArgs(), - E->getOperatorDelete(), - SavedNewPtr, - SavedAllocSize, - E->passAlignment(), - AllocAlign); - for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { - auto &Arg = NewArgs[I + NumNonPlacementArgs]; - Cleanup->setPlacementArg( - I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); - } - - CGF.initFullExprCleanup(); -} - -llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { - // The element type being allocated. - QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); - - // 1. Build a call to the allocation function. - FunctionDecl *allocator = E->getOperatorNew(); - - // If there is a brace-initializer, cannot allocate fewer elements than inits. - unsigned minElements = 0; - if (E->isArray() && E->hasInitializer()) { - const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); - if (ILE && ILE->isStringLiteralInit()) - minElements = - cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) - ->getSize().getZExtValue(); - else if (ILE) - minElements = ILE->getNumInits(); - } - - llvm::Value *numElements = nullptr; - llvm::Value *allocSizeWithoutCookie = nullptr; - llvm::Value *allocSize = - EmitCXXNewAllocSize(*this, E, minElements, numElements, - allocSizeWithoutCookie); - CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); - - // Emit the allocation call. If the allocator is a global placement - // operator, just "inline" it directly. - Address allocation = Address::invalid(); - CallArgList allocatorArgs; - if (allocator->isReservedGlobalPlacementOperator()) { - assert(E->getNumPlacementArgs() == 1); - const Expr *arg = *E->placement_arguments().begin(); - - LValueBaseInfo BaseInfo; - allocation = EmitPointerWithAlignment(arg, &BaseInfo); - - // The pointer expression will, in many cases, be an opaque void*. - // In these cases, discard the computed alignment and use the - // formal alignment of the allocated type. - if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) - allocation = Address(allocation.getPointer(), allocAlign); - - // Set up allocatorArgs for the call to operator delete if it's not - // the reserved global operator. - if (E->getOperatorDelete() && - !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { - allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); - allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); - } - - } else { - const FunctionProtoType *allocatorType = - allocator->getType()->castAs<FunctionProtoType>(); - unsigned ParamsToSkip = 0; - - // The allocation size is the first argument. - QualType sizeType = getContext().getSizeType(); - allocatorArgs.add(RValue::get(allocSize), sizeType); - ++ParamsToSkip; - - if (allocSize != allocSizeWithoutCookie) { - CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. - allocAlign = std::max(allocAlign, cookieAlign); - } - - // The allocation alignment may be passed as the second argument. - if (E->passAlignment()) { - QualType AlignValT = sizeType; - if (allocatorType->getNumParams() > 1) { - AlignValT = allocatorType->getParamType(1); - assert(getContext().hasSameUnqualifiedType( - AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), - sizeType) && - "wrong type for alignment parameter"); - ++ParamsToSkip; - } else { - // Corner case, passing alignment to 'operator new(size_t, ...)'. - assert(allocator->isVariadic() && "can't pass alignment to allocator"); - } - allocatorArgs.add( - RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), - AlignValT); - } - - // FIXME: Why do we not pass a CalleeDecl here? - EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), - /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); - - RValue RV = - EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); - - // If this was a call to a global replaceable allocation function that does - // not take an alignment argument, the allocator is known to produce - // storage that's suitably aligned for any object that fits, up to a known - // threshold. Otherwise assume it's suitably aligned for the allocated type. - CharUnits allocationAlign = allocAlign; - if (!E->passAlignment() && - allocator->isReplaceableGlobalAllocationFunction()) { - unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( - Target.getNewAlign(), getContext().getTypeSize(allocType))); - allocationAlign = std::max( - allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); - } - - allocation = Address(RV.getScalarVal(), allocationAlign); - } - - // Emit a null check on the allocation result if the allocation - // function is allowed to return null (because it has a non-throwing - // exception spec or is the reserved placement new) and we have an - // interesting initializer will be running sanitizers on the initialization. - bool nullCheck = E->shouldNullCheckAllocation() && - (!allocType.isPODType(getContext()) || E->hasInitializer() || - sanitizePerformTypeCheck()); - - llvm::BasicBlock *nullCheckBB = nullptr; - llvm::BasicBlock *contBB = nullptr; - - // The null-check means that the initializer is conditionally - // evaluated. - ConditionalEvaluation conditional(*this); - - if (nullCheck) { - conditional.begin(*this); - - nullCheckBB = Builder.GetInsertBlock(); - llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); - contBB = createBasicBlock("new.cont"); - - llvm::Value *isNull = - Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); - Builder.CreateCondBr(isNull, contBB, notNullBB); - EmitBlock(notNullBB); - } - - // If there's an operator delete, enter a cleanup to call it if an - // exception is thrown. - EHScopeStack::stable_iterator operatorDeleteCleanup; - llvm::Instruction *cleanupDominator = nullptr; - if (E->getOperatorDelete() && - !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { - EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, - allocatorArgs); - operatorDeleteCleanup = EHStack.stable_begin(); - cleanupDominator = Builder.CreateUnreachable(); - } - - assert((allocSize == allocSizeWithoutCookie) == - CalculateCookiePadding(*this, E).isZero()); - if (allocSize != allocSizeWithoutCookie) { - assert(E->isArray()); - allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, - numElements, - E, allocType); - } - - llvm::Type *elementTy = ConvertTypeForMem(allocType); - Address result = Builder.CreateElementBitCast(allocation, elementTy); - - // Passing pointer through launder.invariant.group to avoid propagation of - // vptrs information which may be included in previous type. - // To not break LTO with different optimizations levels, we do it regardless - // of optimization level. - if (CGM.getCodeGenOpts().StrictVTablePointers && - allocator->isReservedGlobalPlacementOperator()) - result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()), - result.getAlignment()); - - // Emit sanitizer checks for pointer value now, so that in the case of an - // array it was checked only once and not at each constructor call. - EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, - E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), - result.getPointer(), allocType); - - EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, - allocSizeWithoutCookie); - if (E->isArray()) { - // NewPtr is a pointer to the base element type. If we're - // allocating an array of arrays, we'll need to cast back to the - // array pointer type. - llvm::Type *resultType = ConvertTypeForMem(E->getType()); - if (result.getType() != resultType) - result = Builder.CreateBitCast(result, resultType); - } - - // Deactivate the 'operator delete' cleanup if we finished - // initialization. - if (operatorDeleteCleanup.isValid()) { - DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); - cleanupDominator->eraseFromParent(); - } - - llvm::Value *resultPtr = result.getPointer(); - if (nullCheck) { - conditional.end(*this); - - llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); - EmitBlock(contBB); - - llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); - PHI->addIncoming(resultPtr, notNullBB); - PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), - nullCheckBB); - - resultPtr = PHI; - } - - return resultPtr; -} - -void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, - llvm::Value *Ptr, QualType DeleteTy, - llvm::Value *NumElements, - CharUnits CookieSize) { - assert((!NumElements && CookieSize.isZero()) || - DeleteFD->getOverloadedOperator() == OO_Array_Delete); - - const FunctionProtoType *DeleteFTy = - DeleteFD->getType()->getAs<FunctionProtoType>(); - - CallArgList DeleteArgs; - - auto Params = getUsualDeleteParams(DeleteFD); - auto ParamTypeIt = DeleteFTy->param_type_begin(); - - // Pass the pointer itself. - QualType ArgTy = *ParamTypeIt++; - llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); - DeleteArgs.add(RValue::get(DeletePtr), ArgTy); - - // Pass the std::destroying_delete tag if present. - if (Params.DestroyingDelete) { - QualType DDTag = *ParamTypeIt++; - // Just pass an 'undef'. We expect the tag type to be an empty struct. - auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag)); - DeleteArgs.add(RValue::get(V), DDTag); - } - - // Pass the size if the delete function has a size_t parameter. - if (Params.Size) { - QualType SizeType = *ParamTypeIt++; - CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); - llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), - DeleteTypeSize.getQuantity()); - - // For array new, multiply by the number of elements. - if (NumElements) - Size = Builder.CreateMul(Size, NumElements); - - // If there is a cookie, add the cookie size. - if (!CookieSize.isZero()) - Size = Builder.CreateAdd( - Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); - - DeleteArgs.add(RValue::get(Size), SizeType); - } - - // Pass the alignment if the delete function has an align_val_t parameter. - if (Params.Alignment) { - QualType AlignValType = *ParamTypeIt++; - CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits( - getContext().getTypeAlignIfKnown(DeleteTy)); - llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), - DeleteTypeAlign.getQuantity()); - DeleteArgs.add(RValue::get(Align), AlignValType); - } - - assert(ParamTypeIt == DeleteFTy->param_type_end() && - "unknown parameter to usual delete function"); - - // Emit the call to delete. - EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); -} - -namespace { - /// Calls the given 'operator delete' on a single object. - struct CallObjectDelete final : EHScopeStack::Cleanup { - llvm::Value *Ptr; - const FunctionDecl *OperatorDelete; - QualType ElementType; - - CallObjectDelete(llvm::Value *Ptr, - const FunctionDecl *OperatorDelete, - QualType ElementType) - : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} - - void Emit(CodeGenFunction &CGF, Flags flags) override { - CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); - } - }; -} - -void -CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, - llvm::Value *CompletePtr, - QualType ElementType) { - EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, - OperatorDelete, ElementType); -} - -/// Emit the code for deleting a single object with a destroying operator -/// delete. If the element type has a non-virtual destructor, Ptr has already -/// been converted to the type of the parameter of 'operator delete'. Otherwise -/// Ptr points to an object of the static type. -static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, - const CXXDeleteExpr *DE, Address Ptr, - QualType ElementType) { - auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); - if (Dtor && Dtor->isVirtual()) - CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, - Dtor); - else - CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); -} - -/// Emit the code for deleting a single object. -static void EmitObjectDelete(CodeGenFunction &CGF, - const CXXDeleteExpr *DE, - Address Ptr, - QualType ElementType) { - // C++11 [expr.delete]p3: - // If the static type of the object to be deleted is different from its - // dynamic type, the static type shall be a base class of the dynamic type - // of the object to be deleted and the static type shall have a virtual - // destructor or the behavior is undefined. - CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, - DE->getExprLoc(), Ptr.getPointer(), - ElementType); - - const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); - assert(!OperatorDelete->isDestroyingOperatorDelete()); - - // Find the destructor for the type, if applicable. If the - // destructor is virtual, we'll just emit the vcall and return. - const CXXDestructorDecl *Dtor = nullptr; - if (const RecordType *RT = ElementType->getAs<RecordType>()) { - CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); - if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { - Dtor = RD->getDestructor(); - - if (Dtor->isVirtual()) { - CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, - Dtor); - return; - } - } - } - - // Make sure that we call delete even if the dtor throws. - // This doesn't have to a conditional cleanup because we're going - // to pop it off in a second. - CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, - Ptr.getPointer(), - OperatorDelete, ElementType); - - if (Dtor) - CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, - /*ForVirtualBase=*/false, - /*Delegating=*/false, - Ptr); - else if (auto Lifetime = ElementType.getObjCLifetime()) { - switch (Lifetime) { - case Qualifiers::OCL_None: - case Qualifiers::OCL_ExplicitNone: - case Qualifiers::OCL_Autoreleasing: - break; - - case Qualifiers::OCL_Strong: - CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); - break; - - case Qualifiers::OCL_Weak: - CGF.EmitARCDestroyWeak(Ptr); - break; - } - } - - CGF.PopCleanupBlock(); -} - -namespace { - /// Calls the given 'operator delete' on an array of objects. - struct CallArrayDelete final : EHScopeStack::Cleanup { - llvm::Value *Ptr; - const FunctionDecl *OperatorDelete; - llvm::Value *NumElements; - QualType ElementType; - CharUnits CookieSize; - - CallArrayDelete(llvm::Value *Ptr, - const FunctionDecl *OperatorDelete, - llvm::Value *NumElements, - QualType ElementType, - CharUnits CookieSize) - : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), - ElementType(ElementType), CookieSize(CookieSize) {} - - void Emit(CodeGenFunction &CGF, Flags flags) override { - CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, - CookieSize); - } - }; -} - -/// Emit the code for deleting an array of objects. -static void EmitArrayDelete(CodeGenFunction &CGF, - const CXXDeleteExpr *E, - Address deletedPtr, - QualType elementType) { - llvm::Value *numElements = nullptr; - llvm::Value *allocatedPtr = nullptr; - CharUnits cookieSize; - CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, - numElements, allocatedPtr, cookieSize); - - assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); - - // Make sure that we call delete even if one of the dtors throws. - const FunctionDecl *operatorDelete = E->getOperatorDelete(); - CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, - allocatedPtr, operatorDelete, - numElements, elementType, - cookieSize); - - // Destroy the elements. - if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { - assert(numElements && "no element count for a type with a destructor!"); - - CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); - CharUnits elementAlign = - deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); - - llvm::Value *arrayBegin = deletedPtr.getPointer(); - llvm::Value *arrayEnd = - CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); - - // Note that it is legal to allocate a zero-length array, and we - // can never fold the check away because the length should always - // come from a cookie. - CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, - CGF.getDestroyer(dtorKind), - /*checkZeroLength*/ true, - CGF.needsEHCleanup(dtorKind)); - } - - // Pop the cleanup block. - CGF.PopCleanupBlock(); -} - -void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { - const Expr *Arg = E->getArgument(); - Address Ptr = EmitPointerWithAlignment(Arg); - - // Null check the pointer. - llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); - llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); - - llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); - - Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); - EmitBlock(DeleteNotNull); - - QualType DeleteTy = E->getDestroyedType(); - - // A destroying operator delete overrides the entire operation of the - // delete expression. - if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { - EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); - EmitBlock(DeleteEnd); - return; - } - - // We might be deleting a pointer to array. If so, GEP down to the - // first non-array element. - // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) - if (DeleteTy->isConstantArrayType()) { - llvm::Value *Zero = Builder.getInt32(0); - SmallVector<llvm::Value*,8> GEP; - - GEP.push_back(Zero); // point at the outermost array - - // For each layer of array type we're pointing at: - while (const ConstantArrayType *Arr - = getContext().getAsConstantArrayType(DeleteTy)) { - // 1. Unpeel the array type. - DeleteTy = Arr->getElementType(); - - // 2. GEP to the first element of the array. - GEP.push_back(Zero); - } - - Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), - Ptr.getAlignment()); - } - - assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); - - if (E->isArrayForm()) { - EmitArrayDelete(*this, E, Ptr, DeleteTy); - } else { - EmitObjectDelete(*this, E, Ptr, DeleteTy); - } - - EmitBlock(DeleteEnd); -} - -static bool isGLValueFromPointerDeref(const Expr *E) { - E = E->IgnoreParens(); - - if (const auto *CE = dyn_cast<CastExpr>(E)) { - if (!CE->getSubExpr()->isGLValue()) - return false; - return isGLValueFromPointerDeref(CE->getSubExpr()); - } - - if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) - return isGLValueFromPointerDeref(OVE->getSourceExpr()); - - if (const auto *BO = dyn_cast<BinaryOperator>(E)) - if (BO->getOpcode() == BO_Comma) - return isGLValueFromPointerDeref(BO->getRHS()); - - if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) - return isGLValueFromPointerDeref(ACO->getTrueExpr()) || - isGLValueFromPointerDeref(ACO->getFalseExpr()); - - // C++11 [expr.sub]p1: - // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) - if (isa<ArraySubscriptExpr>(E)) - return true; - - if (const auto *UO = dyn_cast<UnaryOperator>(E)) - if (UO->getOpcode() == UO_Deref) - return true; - - return false; -} - -static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, - llvm::Type *StdTypeInfoPtrTy) { - // Get the vtable pointer. - Address ThisPtr = CGF.EmitLValue(E).getAddress(); - - QualType SrcRecordTy = E->getType(); - - // C++ [class.cdtor]p4: - // If the operand of typeid refers to the object under construction or - // destruction and the static type of the operand is neither the constructor - // or destructor’s class nor one of its bases, the behavior is undefined. - CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), - ThisPtr.getPointer(), SrcRecordTy); - - // C++ [expr.typeid]p2: - // If the glvalue expression is obtained by applying the unary * operator to - // a pointer and the pointer is a null pointer value, the typeid expression - // throws the std::bad_typeid exception. - // - // However, this paragraph's intent is not clear. We choose a very generous - // interpretation which implores us to consider comma operators, conditional - // operators, parentheses and other such constructs. - if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( - isGLValueFromPointerDeref(E), SrcRecordTy)) { - llvm::BasicBlock *BadTypeidBlock = - CGF.createBasicBlock("typeid.bad_typeid"); - llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); - - llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); - CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); - - CGF.EmitBlock(BadTypeidBlock); - CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); - CGF.EmitBlock(EndBlock); - } - - return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, - StdTypeInfoPtrTy); -} - -llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { - llvm::Type *StdTypeInfoPtrTy = - ConvertType(E->getType())->getPointerTo(); - - if (E->isTypeOperand()) { - llvm::Constant *TypeInfo = - CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); - return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); - } - - // C++ [expr.typeid]p2: - // When typeid is applied to a glvalue expression whose type is a - // polymorphic class type, the result refers to a std::type_info object - // representing the type of the most derived object (that is, the dynamic - // type) to which the glvalue refers. - if (E->isPotentiallyEvaluated()) - return EmitTypeidFromVTable(*this, E->getExprOperand(), - StdTypeInfoPtrTy); - - QualType OperandTy = E->getExprOperand()->getType(); - return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), - StdTypeInfoPtrTy); -} - -static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, - QualType DestTy) { - llvm::Type *DestLTy = CGF.ConvertType(DestTy); - if (DestTy->isPointerType()) - return llvm::Constant::getNullValue(DestLTy); - - /// C++ [expr.dynamic.cast]p9: - /// A failed cast to reference type throws std::bad_cast - if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) - return nullptr; - - CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); - return llvm::UndefValue::get(DestLTy); -} - -llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, - const CXXDynamicCastExpr *DCE) { - CGM.EmitExplicitCastExprType(DCE, this); - QualType DestTy = DCE->getTypeAsWritten(); - - QualType SrcTy = DCE->getSubExpr()->getType(); - - // C++ [expr.dynamic.cast]p7: - // If T is "pointer to cv void," then the result is a pointer to the most - // derived object pointed to by v. - const PointerType *DestPTy = DestTy->getAs<PointerType>(); - - bool isDynamicCastToVoid; - QualType SrcRecordTy; - QualType DestRecordTy; - if (DestPTy) { - isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); - SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); - DestRecordTy = DestPTy->getPointeeType(); - } else { - isDynamicCastToVoid = false; - SrcRecordTy = SrcTy; - DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); - } - - // C++ [class.cdtor]p5: - // If the operand of the dynamic_cast refers to the object under - // construction or destruction and the static type of the operand is not a - // pointer to or object of the constructor or destructor’s own class or one - // of its bases, the dynamic_cast results in undefined behavior. - EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), - SrcRecordTy); - - if (DCE->isAlwaysNull()) - if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) - return T; - - assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); - - // C++ [expr.dynamic.cast]p4: - // If the value of v is a null pointer value in the pointer case, the result - // is the null pointer value of type T. - bool ShouldNullCheckSrcValue = - CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), - SrcRecordTy); - - llvm::BasicBlock *CastNull = nullptr; - llvm::BasicBlock *CastNotNull = nullptr; - llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); - - if (ShouldNullCheckSrcValue) { - CastNull = createBasicBlock("dynamic_cast.null"); - CastNotNull = createBasicBlock("dynamic_cast.notnull"); - - llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); - Builder.CreateCondBr(IsNull, CastNull, CastNotNull); - EmitBlock(CastNotNull); - } - - llvm::Value *Value; - if (isDynamicCastToVoid) { - Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, - DestTy); - } else { - assert(DestRecordTy->isRecordType() && - "destination type must be a record type!"); - Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, - DestTy, DestRecordTy, CastEnd); - CastNotNull = Builder.GetInsertBlock(); - } - - if (ShouldNullCheckSrcValue) { - EmitBranch(CastEnd); - - EmitBlock(CastNull); - EmitBranch(CastEnd); - } - - EmitBlock(CastEnd); - - if (ShouldNullCheckSrcValue) { - llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); - PHI->addIncoming(Value, CastNotNull); - PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); - - Value = PHI; - } - - return Value; -} - -void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { - LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); - - CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); - for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), - e = E->capture_init_end(); - i != e; ++i, ++CurField) { - // Emit initialization - LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); - if (CurField->hasCapturedVLAType()) { - auto VAT = CurField->getCapturedVLAType(); - EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); - } else { - EmitInitializerForField(*CurField, LV, *i); - } - } -} |
