summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/tools/clang/lib/CodeGen/CGValue.h
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/tools/clang/lib/CodeGen/CGValue.h')
-rw-r--r--gnu/llvm/tools/clang/lib/CodeGen/CGValue.h632
1 files changed, 0 insertions, 632 deletions
diff --git a/gnu/llvm/tools/clang/lib/CodeGen/CGValue.h b/gnu/llvm/tools/clang/lib/CodeGen/CGValue.h
deleted file mode 100644
index da8a8efb840..00000000000
--- a/gnu/llvm/tools/clang/lib/CodeGen/CGValue.h
+++ /dev/null
@@ -1,632 +0,0 @@
-//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// These classes implement wrappers around llvm::Value in order to
-// fully represent the range of values for C L- and R- values.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
-#define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
-
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/Type.h"
-#include "Address.h"
-#include "CodeGenTBAA.h"
-
-namespace llvm {
- class Constant;
- class MDNode;
-}
-
-namespace clang {
-namespace CodeGen {
- class AggValueSlot;
- struct CGBitFieldInfo;
-
-/// RValue - This trivial value class is used to represent the result of an
-/// expression that is evaluated. It can be one of three things: either a
-/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
-/// address of an aggregate value in memory.
-class RValue {
- enum Flavor { Scalar, Complex, Aggregate };
-
- // The shift to make to an aggregate's alignment to make it look
- // like a pointer.
- enum { AggAlignShift = 4 };
-
- // Stores first value and flavor.
- llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
- // Stores second value and volatility.
- llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
-
-public:
- bool isScalar() const { return V1.getInt() == Scalar; }
- bool isComplex() const { return V1.getInt() == Complex; }
- bool isAggregate() const { return V1.getInt() == Aggregate; }
-
- bool isVolatileQualified() const { return V2.getInt(); }
-
- /// getScalarVal() - Return the Value* of this scalar value.
- llvm::Value *getScalarVal() const {
- assert(isScalar() && "Not a scalar!");
- return V1.getPointer();
- }
-
- /// getComplexVal - Return the real/imag components of this complex value.
- ///
- std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
- return std::make_pair(V1.getPointer(), V2.getPointer());
- }
-
- /// getAggregateAddr() - Return the Value* of the address of the aggregate.
- Address getAggregateAddress() const {
- assert(isAggregate() && "Not an aggregate!");
- auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
- return Address(V1.getPointer(), CharUnits::fromQuantity(align));
- }
- llvm::Value *getAggregatePointer() const {
- assert(isAggregate() && "Not an aggregate!");
- return V1.getPointer();
- }
-
- static RValue getIgnored() {
- // FIXME: should we make this a more explicit state?
- return get(nullptr);
- }
-
- static RValue get(llvm::Value *V) {
- RValue ER;
- ER.V1.setPointer(V);
- ER.V1.setInt(Scalar);
- ER.V2.setInt(false);
- return ER;
- }
- static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
- RValue ER;
- ER.V1.setPointer(V1);
- ER.V2.setPointer(V2);
- ER.V1.setInt(Complex);
- ER.V2.setInt(false);
- return ER;
- }
- static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
- return getComplex(C.first, C.second);
- }
- // FIXME: Aggregate rvalues need to retain information about whether they are
- // volatile or not. Remove default to find all places that probably get this
- // wrong.
- static RValue getAggregate(Address addr, bool isVolatile = false) {
- RValue ER;
- ER.V1.setPointer(addr.getPointer());
- ER.V1.setInt(Aggregate);
-
- auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
- ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
- ER.V2.setInt(isVolatile);
- return ER;
- }
-};
-
-/// Does an ARC strong l-value have precise lifetime?
-enum ARCPreciseLifetime_t {
- ARCImpreciseLifetime, ARCPreciseLifetime
-};
-
-/// The source of the alignment of an l-value; an expression of
-/// confidence in the alignment actually matching the estimate.
-enum class AlignmentSource {
- /// The l-value was an access to a declared entity or something
- /// equivalently strong, like the address of an array allocated by a
- /// language runtime.
- Decl,
-
- /// The l-value was considered opaque, so the alignment was
- /// determined from a type, but that type was an explicitly-aligned
- /// typedef.
- AttributedType,
-
- /// The l-value was considered opaque, so the alignment was
- /// determined from a type.
- Type
-};
-
-/// Given that the base address has the given alignment source, what's
-/// our confidence in the alignment of the field?
-static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
- // For now, we don't distinguish fields of opaque pointers from
- // top-level declarations, but maybe we should.
- return AlignmentSource::Decl;
-}
-
-class LValueBaseInfo {
- AlignmentSource AlignSource;
-
-public:
- explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
- : AlignSource(Source) {}
- AlignmentSource getAlignmentSource() const { return AlignSource; }
- void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
-
- void mergeForCast(const LValueBaseInfo &Info) {
- setAlignmentSource(Info.getAlignmentSource());
- }
-};
-
-/// LValue - This represents an lvalue references. Because C/C++ allow
-/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
-/// bitrange.
-class LValue {
- enum {
- Simple, // This is a normal l-value, use getAddress().
- VectorElt, // This is a vector element l-value (V[i]), use getVector*
- BitField, // This is a bitfield l-value, use getBitfield*.
- ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
- GlobalReg // This is a register l-value, use getGlobalReg()
- } LVType;
-
- llvm::Value *V;
-
- union {
- // Index into a vector subscript: V[i]
- llvm::Value *VectorIdx;
-
- // ExtVector element subset: V.xyx
- llvm::Constant *VectorElts;
-
- // BitField start bit and size
- const CGBitFieldInfo *BitFieldInfo;
- };
-
- QualType Type;
-
- // 'const' is unused here
- Qualifiers Quals;
-
- // The alignment to use when accessing this lvalue. (For vector elements,
- // this is the alignment of the whole vector.)
- unsigned Alignment;
-
- // objective-c's ivar
- bool Ivar:1;
-
- // objective-c's ivar is an array
- bool ObjIsArray:1;
-
- // LValue is non-gc'able for any reason, including being a parameter or local
- // variable.
- bool NonGC: 1;
-
- // Lvalue is a global reference of an objective-c object
- bool GlobalObjCRef : 1;
-
- // Lvalue is a thread local reference
- bool ThreadLocalRef : 1;
-
- // Lvalue has ARC imprecise lifetime. We store this inverted to try
- // to make the default bitfield pattern all-zeroes.
- bool ImpreciseLifetime : 1;
-
- // This flag shows if a nontemporal load/stores should be used when accessing
- // this lvalue.
- bool Nontemporal : 1;
-
- LValueBaseInfo BaseInfo;
- TBAAAccessInfo TBAAInfo;
-
- Expr *BaseIvarExp;
-
-private:
- void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
- LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
- assert((!Alignment.isZero() || Type->isIncompleteType()) &&
- "initializing l-value with zero alignment!");
- this->Type = Type;
- this->Quals = Quals;
- const unsigned MaxAlign = 1U << 31;
- this->Alignment = Alignment.getQuantity() <= MaxAlign
- ? Alignment.getQuantity()
- : MaxAlign;
- assert(this->Alignment == Alignment.getQuantity() &&
- "Alignment exceeds allowed max!");
- this->BaseInfo = BaseInfo;
- this->TBAAInfo = TBAAInfo;
-
- // Initialize Objective-C flags.
- this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
- this->ImpreciseLifetime = false;
- this->Nontemporal = false;
- this->ThreadLocalRef = false;
- this->BaseIvarExp = nullptr;
- }
-
-public:
- bool isSimple() const { return LVType == Simple; }
- bool isVectorElt() const { return LVType == VectorElt; }
- bool isBitField() const { return LVType == BitField; }
- bool isExtVectorElt() const { return LVType == ExtVectorElt; }
- bool isGlobalReg() const { return LVType == GlobalReg; }
-
- bool isVolatileQualified() const { return Quals.hasVolatile(); }
- bool isRestrictQualified() const { return Quals.hasRestrict(); }
- unsigned getVRQualifiers() const {
- return Quals.getCVRQualifiers() & ~Qualifiers::Const;
- }
-
- QualType getType() const { return Type; }
-
- Qualifiers::ObjCLifetime getObjCLifetime() const {
- return Quals.getObjCLifetime();
- }
-
- bool isObjCIvar() const { return Ivar; }
- void setObjCIvar(bool Value) { Ivar = Value; }
-
- bool isObjCArray() const { return ObjIsArray; }
- void setObjCArray(bool Value) { ObjIsArray = Value; }
-
- bool isNonGC () const { return NonGC; }
- void setNonGC(bool Value) { NonGC = Value; }
-
- bool isGlobalObjCRef() const { return GlobalObjCRef; }
- void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
-
- bool isThreadLocalRef() const { return ThreadLocalRef; }
- void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
-
- ARCPreciseLifetime_t isARCPreciseLifetime() const {
- return ARCPreciseLifetime_t(!ImpreciseLifetime);
- }
- void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
- ImpreciseLifetime = (value == ARCImpreciseLifetime);
- }
- bool isNontemporal() const { return Nontemporal; }
- void setNontemporal(bool Value) { Nontemporal = Value; }
-
- bool isObjCWeak() const {
- return Quals.getObjCGCAttr() == Qualifiers::Weak;
- }
- bool isObjCStrong() const {
- return Quals.getObjCGCAttr() == Qualifiers::Strong;
- }
-
- bool isVolatile() const {
- return Quals.hasVolatile();
- }
-
- Expr *getBaseIvarExp() const { return BaseIvarExp; }
- void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
-
- TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
- void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }
-
- const Qualifiers &getQuals() const { return Quals; }
- Qualifiers &getQuals() { return Quals; }
-
- LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
-
- CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
- void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
-
- LValueBaseInfo getBaseInfo() const { return BaseInfo; }
- void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
-
- // simple lvalue
- llvm::Value *getPointer() const {
- assert(isSimple());
- return V;
- }
- Address getAddress() const { return Address(getPointer(), getAlignment()); }
- void setAddress(Address address) {
- assert(isSimple());
- V = address.getPointer();
- Alignment = address.getAlignment().getQuantity();
- }
-
- // vector elt lvalue
- Address getVectorAddress() const {
- return Address(getVectorPointer(), getAlignment());
- }
- llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; }
- llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
-
- // extended vector elements.
- Address getExtVectorAddress() const {
- return Address(getExtVectorPointer(), getAlignment());
- }
- llvm::Value *getExtVectorPointer() const {
- assert(isExtVectorElt());
- return V;
- }
- llvm::Constant *getExtVectorElts() const {
- assert(isExtVectorElt());
- return VectorElts;
- }
-
- // bitfield lvalue
- Address getBitFieldAddress() const {
- return Address(getBitFieldPointer(), getAlignment());
- }
- llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
- const CGBitFieldInfo &getBitFieldInfo() const {
- assert(isBitField());
- return *BitFieldInfo;
- }
-
- // global register lvalue
- llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
-
- static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
- LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
- Qualifiers qs = type.getQualifiers();
- qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
-
- LValue R;
- R.LVType = Simple;
- assert(address.getPointer()->getType()->isPointerTy());
- R.V = address.getPointer();
- R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
- return R;
- }
-
- static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
- QualType type, LValueBaseInfo BaseInfo,
- TBAAAccessInfo TBAAInfo) {
- LValue R;
- R.LVType = VectorElt;
- R.V = vecAddress.getPointer();
- R.VectorIdx = Idx;
- R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
- BaseInfo, TBAAInfo);
- return R;
- }
-
- static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
- QualType type, LValueBaseInfo BaseInfo,
- TBAAAccessInfo TBAAInfo) {
- LValue R;
- R.LVType = ExtVectorElt;
- R.V = vecAddress.getPointer();
- R.VectorElts = Elts;
- R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
- BaseInfo, TBAAInfo);
- return R;
- }
-
- /// Create a new object to represent a bit-field access.
- ///
- /// \param Addr - The base address of the bit-field sequence this
- /// bit-field refers to.
- /// \param Info - The information describing how to perform the bit-field
- /// access.
- static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
- QualType type, LValueBaseInfo BaseInfo,
- TBAAAccessInfo TBAAInfo) {
- LValue R;
- R.LVType = BitField;
- R.V = Addr.getPointer();
- R.BitFieldInfo = &Info;
- R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
- TBAAInfo);
- return R;
- }
-
- static LValue MakeGlobalReg(Address Reg, QualType type) {
- LValue R;
- R.LVType = GlobalReg;
- R.V = Reg.getPointer();
- R.Initialize(type, type.getQualifiers(), Reg.getAlignment(),
- LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
- return R;
- }
-
- RValue asAggregateRValue() const {
- return RValue::getAggregate(getAddress(), isVolatileQualified());
- }
-};
-
-/// An aggregate value slot.
-class AggValueSlot {
- /// The address.
- llvm::Value *Addr;
-
- // Qualifiers
- Qualifiers Quals;
-
- unsigned Alignment;
-
- /// DestructedFlag - This is set to true if some external code is
- /// responsible for setting up a destructor for the slot. Otherwise
- /// the code which constructs it should push the appropriate cleanup.
- bool DestructedFlag : 1;
-
- /// ObjCGCFlag - This is set to true if writing to the memory in the
- /// slot might require calling an appropriate Objective-C GC
- /// barrier. The exact interaction here is unnecessarily mysterious.
- bool ObjCGCFlag : 1;
-
- /// ZeroedFlag - This is set to true if the memory in the slot is
- /// known to be zero before the assignment into it. This means that
- /// zero fields don't need to be set.
- bool ZeroedFlag : 1;
-
- /// AliasedFlag - This is set to true if the slot might be aliased
- /// and it's not undefined behavior to access it through such an
- /// alias. Note that it's always undefined behavior to access a C++
- /// object that's under construction through an alias derived from
- /// outside the construction process.
- ///
- /// This flag controls whether calls that produce the aggregate
- /// value may be evaluated directly into the slot, or whether they
- /// must be evaluated into an unaliased temporary and then memcpy'ed
- /// over. Since it's invalid in general to memcpy a non-POD C++
- /// object, it's important that this flag never be set when
- /// evaluating an expression which constructs such an object.
- bool AliasedFlag : 1;
-
- /// This is set to true if the tail padding of this slot might overlap
- /// another object that may have already been initialized (and whose
- /// value must be preserved by this initialization). If so, we may only
- /// store up to the dsize of the type. Otherwise we can widen stores to
- /// the size of the type.
- bool OverlapFlag : 1;
-
- /// If is set to true, sanitizer checks are already generated for this address
- /// or not required. For instance, if this address represents an object
- /// created in 'new' expression, sanitizer checks for memory is made as a part
- /// of 'operator new' emission and object constructor should not generate
- /// them.
- bool SanitizerCheckedFlag : 1;
-
-public:
- enum IsAliased_t { IsNotAliased, IsAliased };
- enum IsDestructed_t { IsNotDestructed, IsDestructed };
- enum IsZeroed_t { IsNotZeroed, IsZeroed };
- enum Overlap_t { DoesNotOverlap, MayOverlap };
- enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
- enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
-
- /// ignored - Returns an aggregate value slot indicating that the
- /// aggregate value is being ignored.
- static AggValueSlot ignored() {
- return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
- DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
- }
-
- /// forAddr - Make a slot for an aggregate value.
- ///
- /// \param quals - The qualifiers that dictate how the slot should
- /// be initialied. Only 'volatile' and the Objective-C lifetime
- /// qualifiers matter.
- ///
- /// \param isDestructed - true if something else is responsible
- /// for calling destructors on this object
- /// \param needsGC - true if the slot is potentially located
- /// somewhere that ObjC GC calls should be emitted for
- static AggValueSlot forAddr(Address addr,
- Qualifiers quals,
- IsDestructed_t isDestructed,
- NeedsGCBarriers_t needsGC,
- IsAliased_t isAliased,
- Overlap_t mayOverlap,
- IsZeroed_t isZeroed = IsNotZeroed,
- IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
- AggValueSlot AV;
- if (addr.isValid()) {
- AV.Addr = addr.getPointer();
- AV.Alignment = addr.getAlignment().getQuantity();
- } else {
- AV.Addr = nullptr;
- AV.Alignment = 0;
- }
- AV.Quals = quals;
- AV.DestructedFlag = isDestructed;
- AV.ObjCGCFlag = needsGC;
- AV.ZeroedFlag = isZeroed;
- AV.AliasedFlag = isAliased;
- AV.OverlapFlag = mayOverlap;
- AV.SanitizerCheckedFlag = isChecked;
- return AV;
- }
-
- static AggValueSlot forLValue(const LValue &LV,
- IsDestructed_t isDestructed,
- NeedsGCBarriers_t needsGC,
- IsAliased_t isAliased,
- Overlap_t mayOverlap,
- IsZeroed_t isZeroed = IsNotZeroed,
- IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
- return forAddr(LV.getAddress(), LV.getQuals(), isDestructed, needsGC,
- isAliased, mayOverlap, isZeroed, isChecked);
- }
-
- IsDestructed_t isExternallyDestructed() const {
- return IsDestructed_t(DestructedFlag);
- }
- void setExternallyDestructed(bool destructed = true) {
- DestructedFlag = destructed;
- }
-
- Qualifiers getQualifiers() const { return Quals; }
-
- bool isVolatile() const {
- return Quals.hasVolatile();
- }
-
- void setVolatile(bool flag) {
- if (flag)
- Quals.addVolatile();
- else
- Quals.removeVolatile();
- }
-
- Qualifiers::ObjCLifetime getObjCLifetime() const {
- return Quals.getObjCLifetime();
- }
-
- NeedsGCBarriers_t requiresGCollection() const {
- return NeedsGCBarriers_t(ObjCGCFlag);
- }
-
- llvm::Value *getPointer() const {
- return Addr;
- }
-
- Address getAddress() const {
- return Address(Addr, getAlignment());
- }
-
- bool isIgnored() const {
- return Addr == nullptr;
- }
-
- CharUnits getAlignment() const {
- return CharUnits::fromQuantity(Alignment);
- }
-
- IsAliased_t isPotentiallyAliased() const {
- return IsAliased_t(AliasedFlag);
- }
-
- Overlap_t mayOverlap() const {
- return Overlap_t(OverlapFlag);
- }
-
- bool isSanitizerChecked() const {
- return SanitizerCheckedFlag;
- }
-
- RValue asRValue() const {
- if (isIgnored()) {
- return RValue::getIgnored();
- } else {
- return RValue::getAggregate(getAddress(), isVolatile());
- }
- }
-
- void setZeroed(bool V = true) { ZeroedFlag = V; }
- IsZeroed_t isZeroed() const {
- return IsZeroed_t(ZeroedFlag);
- }
-
- /// Get the preferred size to use when storing a value to this slot. This
- /// is the type size unless that might overlap another object, in which
- /// case it's the dsize.
- CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
- return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first
- : Ctx.getTypeSizeInChars(Type);
- }
-};
-
-} // end namespace CodeGen
-} // end namespace clang
-
-#endif