diff options
Diffstat (limited to 'gnu/llvm/tools/clang/lib/CodeGen/CGValue.h')
| -rw-r--r-- | gnu/llvm/tools/clang/lib/CodeGen/CGValue.h | 632 |
1 files changed, 0 insertions, 632 deletions
diff --git a/gnu/llvm/tools/clang/lib/CodeGen/CGValue.h b/gnu/llvm/tools/clang/lib/CodeGen/CGValue.h deleted file mode 100644 index da8a8efb840..00000000000 --- a/gnu/llvm/tools/clang/lib/CodeGen/CGValue.h +++ /dev/null @@ -1,632 +0,0 @@ -//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// These classes implement wrappers around llvm::Value in order to -// fully represent the range of values for C L- and R- values. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H -#define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H - -#include "clang/AST/ASTContext.h" -#include "clang/AST/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/Type.h" -#include "Address.h" -#include "CodeGenTBAA.h" - -namespace llvm { - class Constant; - class MDNode; -} - -namespace clang { -namespace CodeGen { - class AggValueSlot; - struct CGBitFieldInfo; - -/// RValue - This trivial value class is used to represent the result of an -/// expression that is evaluated. It can be one of three things: either a -/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the -/// address of an aggregate value in memory. -class RValue { - enum Flavor { Scalar, Complex, Aggregate }; - - // The shift to make to an aggregate's alignment to make it look - // like a pointer. - enum { AggAlignShift = 4 }; - - // Stores first value and flavor. - llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; - // Stores second value and volatility. - llvm::PointerIntPair<llvm::Value *, 1, bool> V2; - -public: - bool isScalar() const { return V1.getInt() == Scalar; } - bool isComplex() const { return V1.getInt() == Complex; } - bool isAggregate() const { return V1.getInt() == Aggregate; } - - bool isVolatileQualified() const { return V2.getInt(); } - - /// getScalarVal() - Return the Value* of this scalar value. - llvm::Value *getScalarVal() const { - assert(isScalar() && "Not a scalar!"); - return V1.getPointer(); - } - - /// getComplexVal - Return the real/imag components of this complex value. - /// - std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { - return std::make_pair(V1.getPointer(), V2.getPointer()); - } - - /// getAggregateAddr() - Return the Value* of the address of the aggregate. - Address getAggregateAddress() const { - assert(isAggregate() && "Not an aggregate!"); - auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift; - return Address(V1.getPointer(), CharUnits::fromQuantity(align)); - } - llvm::Value *getAggregatePointer() const { - assert(isAggregate() && "Not an aggregate!"); - return V1.getPointer(); - } - - static RValue getIgnored() { - // FIXME: should we make this a more explicit state? - return get(nullptr); - } - - static RValue get(llvm::Value *V) { - RValue ER; - ER.V1.setPointer(V); - ER.V1.setInt(Scalar); - ER.V2.setInt(false); - return ER; - } - static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { - RValue ER; - ER.V1.setPointer(V1); - ER.V2.setPointer(V2); - ER.V1.setInt(Complex); - ER.V2.setInt(false); - return ER; - } - static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { - return getComplex(C.first, C.second); - } - // FIXME: Aggregate rvalues need to retain information about whether they are - // volatile or not. Remove default to find all places that probably get this - // wrong. - static RValue getAggregate(Address addr, bool isVolatile = false) { - RValue ER; - ER.V1.setPointer(addr.getPointer()); - ER.V1.setInt(Aggregate); - - auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity()); - ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift)); - ER.V2.setInt(isVolatile); - return ER; - } -}; - -/// Does an ARC strong l-value have precise lifetime? -enum ARCPreciseLifetime_t { - ARCImpreciseLifetime, ARCPreciseLifetime -}; - -/// The source of the alignment of an l-value; an expression of -/// confidence in the alignment actually matching the estimate. -enum class AlignmentSource { - /// The l-value was an access to a declared entity or something - /// equivalently strong, like the address of an array allocated by a - /// language runtime. - Decl, - - /// The l-value was considered opaque, so the alignment was - /// determined from a type, but that type was an explicitly-aligned - /// typedef. - AttributedType, - - /// The l-value was considered opaque, so the alignment was - /// determined from a type. - Type -}; - -/// Given that the base address has the given alignment source, what's -/// our confidence in the alignment of the field? -static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) { - // For now, we don't distinguish fields of opaque pointers from - // top-level declarations, but maybe we should. - return AlignmentSource::Decl; -} - -class LValueBaseInfo { - AlignmentSource AlignSource; - -public: - explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type) - : AlignSource(Source) {} - AlignmentSource getAlignmentSource() const { return AlignSource; } - void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; } - - void mergeForCast(const LValueBaseInfo &Info) { - setAlignmentSource(Info.getAlignmentSource()); - } -}; - -/// LValue - This represents an lvalue references. Because C/C++ allow -/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a -/// bitrange. -class LValue { - enum { - Simple, // This is a normal l-value, use getAddress(). - VectorElt, // This is a vector element l-value (V[i]), use getVector* - BitField, // This is a bitfield l-value, use getBitfield*. - ExtVectorElt, // This is an extended vector subset, use getExtVectorComp - GlobalReg // This is a register l-value, use getGlobalReg() - } LVType; - - llvm::Value *V; - - union { - // Index into a vector subscript: V[i] - llvm::Value *VectorIdx; - - // ExtVector element subset: V.xyx - llvm::Constant *VectorElts; - - // BitField start bit and size - const CGBitFieldInfo *BitFieldInfo; - }; - - QualType Type; - - // 'const' is unused here - Qualifiers Quals; - - // The alignment to use when accessing this lvalue. (For vector elements, - // this is the alignment of the whole vector.) - unsigned Alignment; - - // objective-c's ivar - bool Ivar:1; - - // objective-c's ivar is an array - bool ObjIsArray:1; - - // LValue is non-gc'able for any reason, including being a parameter or local - // variable. - bool NonGC: 1; - - // Lvalue is a global reference of an objective-c object - bool GlobalObjCRef : 1; - - // Lvalue is a thread local reference - bool ThreadLocalRef : 1; - - // Lvalue has ARC imprecise lifetime. We store this inverted to try - // to make the default bitfield pattern all-zeroes. - bool ImpreciseLifetime : 1; - - // This flag shows if a nontemporal load/stores should be used when accessing - // this lvalue. - bool Nontemporal : 1; - - LValueBaseInfo BaseInfo; - TBAAAccessInfo TBAAInfo; - - Expr *BaseIvarExp; - -private: - void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment, - LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { - assert((!Alignment.isZero() || Type->isIncompleteType()) && - "initializing l-value with zero alignment!"); - this->Type = Type; - this->Quals = Quals; - const unsigned MaxAlign = 1U << 31; - this->Alignment = Alignment.getQuantity() <= MaxAlign - ? Alignment.getQuantity() - : MaxAlign; - assert(this->Alignment == Alignment.getQuantity() && - "Alignment exceeds allowed max!"); - this->BaseInfo = BaseInfo; - this->TBAAInfo = TBAAInfo; - - // Initialize Objective-C flags. - this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; - this->ImpreciseLifetime = false; - this->Nontemporal = false; - this->ThreadLocalRef = false; - this->BaseIvarExp = nullptr; - } - -public: - bool isSimple() const { return LVType == Simple; } - bool isVectorElt() const { return LVType == VectorElt; } - bool isBitField() const { return LVType == BitField; } - bool isExtVectorElt() const { return LVType == ExtVectorElt; } - bool isGlobalReg() const { return LVType == GlobalReg; } - - bool isVolatileQualified() const { return Quals.hasVolatile(); } - bool isRestrictQualified() const { return Quals.hasRestrict(); } - unsigned getVRQualifiers() const { - return Quals.getCVRQualifiers() & ~Qualifiers::Const; - } - - QualType getType() const { return Type; } - - Qualifiers::ObjCLifetime getObjCLifetime() const { - return Quals.getObjCLifetime(); - } - - bool isObjCIvar() const { return Ivar; } - void setObjCIvar(bool Value) { Ivar = Value; } - - bool isObjCArray() const { return ObjIsArray; } - void setObjCArray(bool Value) { ObjIsArray = Value; } - - bool isNonGC () const { return NonGC; } - void setNonGC(bool Value) { NonGC = Value; } - - bool isGlobalObjCRef() const { return GlobalObjCRef; } - void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } - - bool isThreadLocalRef() const { return ThreadLocalRef; } - void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} - - ARCPreciseLifetime_t isARCPreciseLifetime() const { - return ARCPreciseLifetime_t(!ImpreciseLifetime); - } - void setARCPreciseLifetime(ARCPreciseLifetime_t value) { - ImpreciseLifetime = (value == ARCImpreciseLifetime); - } - bool isNontemporal() const { return Nontemporal; } - void setNontemporal(bool Value) { Nontemporal = Value; } - - bool isObjCWeak() const { - return Quals.getObjCGCAttr() == Qualifiers::Weak; - } - bool isObjCStrong() const { - return Quals.getObjCGCAttr() == Qualifiers::Strong; - } - - bool isVolatile() const { - return Quals.hasVolatile(); - } - - Expr *getBaseIvarExp() const { return BaseIvarExp; } - void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } - - TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; } - void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; } - - const Qualifiers &getQuals() const { return Quals; } - Qualifiers &getQuals() { return Quals; } - - LangAS getAddressSpace() const { return Quals.getAddressSpace(); } - - CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } - void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } - - LValueBaseInfo getBaseInfo() const { return BaseInfo; } - void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; } - - // simple lvalue - llvm::Value *getPointer() const { - assert(isSimple()); - return V; - } - Address getAddress() const { return Address(getPointer(), getAlignment()); } - void setAddress(Address address) { - assert(isSimple()); - V = address.getPointer(); - Alignment = address.getAlignment().getQuantity(); - } - - // vector elt lvalue - Address getVectorAddress() const { - return Address(getVectorPointer(), getAlignment()); - } - llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; } - llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } - - // extended vector elements. - Address getExtVectorAddress() const { - return Address(getExtVectorPointer(), getAlignment()); - } - llvm::Value *getExtVectorPointer() const { - assert(isExtVectorElt()); - return V; - } - llvm::Constant *getExtVectorElts() const { - assert(isExtVectorElt()); - return VectorElts; - } - - // bitfield lvalue - Address getBitFieldAddress() const { - return Address(getBitFieldPointer(), getAlignment()); - } - llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; } - const CGBitFieldInfo &getBitFieldInfo() const { - assert(isBitField()); - return *BitFieldInfo; - } - - // global register lvalue - llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } - - static LValue MakeAddr(Address address, QualType type, ASTContext &Context, - LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { - Qualifiers qs = type.getQualifiers(); - qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); - - LValue R; - R.LVType = Simple; - assert(address.getPointer()->getType()->isPointerTy()); - R.V = address.getPointer(); - R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo); - return R; - } - - static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx, - QualType type, LValueBaseInfo BaseInfo, - TBAAAccessInfo TBAAInfo) { - LValue R; - R.LVType = VectorElt; - R.V = vecAddress.getPointer(); - R.VectorIdx = Idx; - R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), - BaseInfo, TBAAInfo); - return R; - } - - static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts, - QualType type, LValueBaseInfo BaseInfo, - TBAAAccessInfo TBAAInfo) { - LValue R; - R.LVType = ExtVectorElt; - R.V = vecAddress.getPointer(); - R.VectorElts = Elts; - R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), - BaseInfo, TBAAInfo); - return R; - } - - /// Create a new object to represent a bit-field access. - /// - /// \param Addr - The base address of the bit-field sequence this - /// bit-field refers to. - /// \param Info - The information describing how to perform the bit-field - /// access. - static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info, - QualType type, LValueBaseInfo BaseInfo, - TBAAAccessInfo TBAAInfo) { - LValue R; - R.LVType = BitField; - R.V = Addr.getPointer(); - R.BitFieldInfo = &Info; - R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo, - TBAAInfo); - return R; - } - - static LValue MakeGlobalReg(Address Reg, QualType type) { - LValue R; - R.LVType = GlobalReg; - R.V = Reg.getPointer(); - R.Initialize(type, type.getQualifiers(), Reg.getAlignment(), - LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo()); - return R; - } - - RValue asAggregateRValue() const { - return RValue::getAggregate(getAddress(), isVolatileQualified()); - } -}; - -/// An aggregate value slot. -class AggValueSlot { - /// The address. - llvm::Value *Addr; - - // Qualifiers - Qualifiers Quals; - - unsigned Alignment; - - /// DestructedFlag - This is set to true if some external code is - /// responsible for setting up a destructor for the slot. Otherwise - /// the code which constructs it should push the appropriate cleanup. - bool DestructedFlag : 1; - - /// ObjCGCFlag - This is set to true if writing to the memory in the - /// slot might require calling an appropriate Objective-C GC - /// barrier. The exact interaction here is unnecessarily mysterious. - bool ObjCGCFlag : 1; - - /// ZeroedFlag - This is set to true if the memory in the slot is - /// known to be zero before the assignment into it. This means that - /// zero fields don't need to be set. - bool ZeroedFlag : 1; - - /// AliasedFlag - This is set to true if the slot might be aliased - /// and it's not undefined behavior to access it through such an - /// alias. Note that it's always undefined behavior to access a C++ - /// object that's under construction through an alias derived from - /// outside the construction process. - /// - /// This flag controls whether calls that produce the aggregate - /// value may be evaluated directly into the slot, or whether they - /// must be evaluated into an unaliased temporary and then memcpy'ed - /// over. Since it's invalid in general to memcpy a non-POD C++ - /// object, it's important that this flag never be set when - /// evaluating an expression which constructs such an object. - bool AliasedFlag : 1; - - /// This is set to true if the tail padding of this slot might overlap - /// another object that may have already been initialized (and whose - /// value must be preserved by this initialization). If so, we may only - /// store up to the dsize of the type. Otherwise we can widen stores to - /// the size of the type. - bool OverlapFlag : 1; - - /// If is set to true, sanitizer checks are already generated for this address - /// or not required. For instance, if this address represents an object - /// created in 'new' expression, sanitizer checks for memory is made as a part - /// of 'operator new' emission and object constructor should not generate - /// them. - bool SanitizerCheckedFlag : 1; - -public: - enum IsAliased_t { IsNotAliased, IsAliased }; - enum IsDestructed_t { IsNotDestructed, IsDestructed }; - enum IsZeroed_t { IsNotZeroed, IsZeroed }; - enum Overlap_t { DoesNotOverlap, MayOverlap }; - enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; - enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked }; - - /// ignored - Returns an aggregate value slot indicating that the - /// aggregate value is being ignored. - static AggValueSlot ignored() { - return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed, - DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap); - } - - /// forAddr - Make a slot for an aggregate value. - /// - /// \param quals - The qualifiers that dictate how the slot should - /// be initialied. Only 'volatile' and the Objective-C lifetime - /// qualifiers matter. - /// - /// \param isDestructed - true if something else is responsible - /// for calling destructors on this object - /// \param needsGC - true if the slot is potentially located - /// somewhere that ObjC GC calls should be emitted for - static AggValueSlot forAddr(Address addr, - Qualifiers quals, - IsDestructed_t isDestructed, - NeedsGCBarriers_t needsGC, - IsAliased_t isAliased, - Overlap_t mayOverlap, - IsZeroed_t isZeroed = IsNotZeroed, - IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { - AggValueSlot AV; - if (addr.isValid()) { - AV.Addr = addr.getPointer(); - AV.Alignment = addr.getAlignment().getQuantity(); - } else { - AV.Addr = nullptr; - AV.Alignment = 0; - } - AV.Quals = quals; - AV.DestructedFlag = isDestructed; - AV.ObjCGCFlag = needsGC; - AV.ZeroedFlag = isZeroed; - AV.AliasedFlag = isAliased; - AV.OverlapFlag = mayOverlap; - AV.SanitizerCheckedFlag = isChecked; - return AV; - } - - static AggValueSlot forLValue(const LValue &LV, - IsDestructed_t isDestructed, - NeedsGCBarriers_t needsGC, - IsAliased_t isAliased, - Overlap_t mayOverlap, - IsZeroed_t isZeroed = IsNotZeroed, - IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { - return forAddr(LV.getAddress(), LV.getQuals(), isDestructed, needsGC, - isAliased, mayOverlap, isZeroed, isChecked); - } - - IsDestructed_t isExternallyDestructed() const { - return IsDestructed_t(DestructedFlag); - } - void setExternallyDestructed(bool destructed = true) { - DestructedFlag = destructed; - } - - Qualifiers getQualifiers() const { return Quals; } - - bool isVolatile() const { - return Quals.hasVolatile(); - } - - void setVolatile(bool flag) { - if (flag) - Quals.addVolatile(); - else - Quals.removeVolatile(); - } - - Qualifiers::ObjCLifetime getObjCLifetime() const { - return Quals.getObjCLifetime(); - } - - NeedsGCBarriers_t requiresGCollection() const { - return NeedsGCBarriers_t(ObjCGCFlag); - } - - llvm::Value *getPointer() const { - return Addr; - } - - Address getAddress() const { - return Address(Addr, getAlignment()); - } - - bool isIgnored() const { - return Addr == nullptr; - } - - CharUnits getAlignment() const { - return CharUnits::fromQuantity(Alignment); - } - - IsAliased_t isPotentiallyAliased() const { - return IsAliased_t(AliasedFlag); - } - - Overlap_t mayOverlap() const { - return Overlap_t(OverlapFlag); - } - - bool isSanitizerChecked() const { - return SanitizerCheckedFlag; - } - - RValue asRValue() const { - if (isIgnored()) { - return RValue::getIgnored(); - } else { - return RValue::getAggregate(getAddress(), isVolatile()); - } - } - - void setZeroed(bool V = true) { ZeroedFlag = V; } - IsZeroed_t isZeroed() const { - return IsZeroed_t(ZeroedFlag); - } - - /// Get the preferred size to use when storing a value to this slot. This - /// is the type size unless that might overlap another object, in which - /// case it's the dsize. - CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const { - return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first - : Ctx.getTypeSizeInChars(Type); - } -}; - -} // end namespace CodeGen -} // end namespace clang - -#endif |
