summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/tools/clang/lib/Sema/SemaAccess.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/tools/clang/lib/Sema/SemaAccess.cpp')
-rw-r--r--gnu/llvm/tools/clang/lib/Sema/SemaAccess.cpp1948
1 files changed, 0 insertions, 1948 deletions
diff --git a/gnu/llvm/tools/clang/lib/Sema/SemaAccess.cpp b/gnu/llvm/tools/clang/lib/Sema/SemaAccess.cpp
deleted file mode 100644
index 69084589efe..00000000000
--- a/gnu/llvm/tools/clang/lib/Sema/SemaAccess.cpp
+++ /dev/null
@@ -1,1948 +0,0 @@
-//===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file provides Sema routines for C++ access control semantics.
-//
-//===----------------------------------------------------------------------===//
-
-#include "clang/Basic/Specifiers.h"
-#include "clang/Sema/SemaInternal.h"
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/CXXInheritance.h"
-#include "clang/AST/DeclCXX.h"
-#include "clang/AST/DeclFriend.h"
-#include "clang/AST/DeclObjC.h"
-#include "clang/AST/DependentDiagnostic.h"
-#include "clang/AST/ExprCXX.h"
-#include "clang/Sema/DelayedDiagnostic.h"
-#include "clang/Sema/Initialization.h"
-#include "clang/Sema/Lookup.h"
-
-using namespace clang;
-using namespace sema;
-
-/// A copy of Sema's enum without AR_delayed.
-enum AccessResult {
- AR_accessible,
- AR_inaccessible,
- AR_dependent
-};
-
-/// SetMemberAccessSpecifier - Set the access specifier of a member.
-/// Returns true on error (when the previous member decl access specifier
-/// is different from the new member decl access specifier).
-bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
- NamedDecl *PrevMemberDecl,
- AccessSpecifier LexicalAS) {
- if (!PrevMemberDecl) {
- // Use the lexical access specifier.
- MemberDecl->setAccess(LexicalAS);
- return false;
- }
-
- // C++ [class.access.spec]p3: When a member is redeclared its access
- // specifier must be same as its initial declaration.
- if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
- Diag(MemberDecl->getLocation(),
- diag::err_class_redeclared_with_different_access)
- << MemberDecl << LexicalAS;
- Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
- << PrevMemberDecl << PrevMemberDecl->getAccess();
-
- MemberDecl->setAccess(LexicalAS);
- return true;
- }
-
- MemberDecl->setAccess(PrevMemberDecl->getAccess());
- return false;
-}
-
-static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
- DeclContext *DC = D->getDeclContext();
-
- // This can only happen at top: enum decls only "publish" their
- // immediate members.
- if (isa<EnumDecl>(DC))
- DC = cast<EnumDecl>(DC)->getDeclContext();
-
- CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
- while (DeclaringClass->isAnonymousStructOrUnion())
- DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
- return DeclaringClass;
-}
-
-namespace {
-struct EffectiveContext {
- EffectiveContext() : Inner(nullptr), Dependent(false) {}
-
- explicit EffectiveContext(DeclContext *DC)
- : Inner(DC),
- Dependent(DC->isDependentContext()) {
-
- // C++11 [class.access.nest]p1:
- // A nested class is a member and as such has the same access
- // rights as any other member.
- // C++11 [class.access]p2:
- // A member of a class can also access all the names to which
- // the class has access. A local class of a member function
- // may access the same names that the member function itself
- // may access.
- // This almost implies that the privileges of nesting are transitive.
- // Technically it says nothing about the local classes of non-member
- // functions (which can gain privileges through friendship), but we
- // take that as an oversight.
- while (true) {
- // We want to add canonical declarations to the EC lists for
- // simplicity of checking, but we need to walk up through the
- // actual current DC chain. Otherwise, something like a local
- // extern or friend which happens to be the canonical
- // declaration will really mess us up.
-
- if (isa<CXXRecordDecl>(DC)) {
- CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
- Records.push_back(Record->getCanonicalDecl());
- DC = Record->getDeclContext();
- } else if (isa<FunctionDecl>(DC)) {
- FunctionDecl *Function = cast<FunctionDecl>(DC);
- Functions.push_back(Function->getCanonicalDecl());
- if (Function->getFriendObjectKind())
- DC = Function->getLexicalDeclContext();
- else
- DC = Function->getDeclContext();
- } else if (DC->isFileContext()) {
- break;
- } else {
- DC = DC->getParent();
- }
- }
- }
-
- bool isDependent() const { return Dependent; }
-
- bool includesClass(const CXXRecordDecl *R) const {
- R = R->getCanonicalDecl();
- return std::find(Records.begin(), Records.end(), R)
- != Records.end();
- }
-
- /// Retrieves the innermost "useful" context. Can be null if we're
- /// doing access-control without privileges.
- DeclContext *getInnerContext() const {
- return Inner;
- }
-
- typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
-
- DeclContext *Inner;
- SmallVector<FunctionDecl*, 4> Functions;
- SmallVector<CXXRecordDecl*, 4> Records;
- bool Dependent;
-};
-
-/// Like sema::AccessedEntity, but kindly lets us scribble all over
-/// it.
-struct AccessTarget : public AccessedEntity {
- AccessTarget(const AccessedEntity &Entity)
- : AccessedEntity(Entity) {
- initialize();
- }
-
- AccessTarget(ASTContext &Context,
- MemberNonce _,
- CXXRecordDecl *NamingClass,
- DeclAccessPair FoundDecl,
- QualType BaseObjectType)
- : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
- FoundDecl, BaseObjectType) {
- initialize();
- }
-
- AccessTarget(ASTContext &Context,
- BaseNonce _,
- CXXRecordDecl *BaseClass,
- CXXRecordDecl *DerivedClass,
- AccessSpecifier Access)
- : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
- Access) {
- initialize();
- }
-
- bool isInstanceMember() const {
- return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
- }
-
- bool hasInstanceContext() const {
- return HasInstanceContext;
- }
-
- class SavedInstanceContext {
- public:
- SavedInstanceContext(SavedInstanceContext &&S)
- : Target(S.Target), Has(S.Has) {
- S.Target = nullptr;
- }
- ~SavedInstanceContext() {
- if (Target)
- Target->HasInstanceContext = Has;
- }
-
- private:
- friend struct AccessTarget;
- explicit SavedInstanceContext(AccessTarget &Target)
- : Target(&Target), Has(Target.HasInstanceContext) {}
- AccessTarget *Target;
- bool Has;
- };
-
- SavedInstanceContext saveInstanceContext() {
- return SavedInstanceContext(*this);
- }
-
- void suppressInstanceContext() {
- HasInstanceContext = false;
- }
-
- const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
- assert(HasInstanceContext);
- if (CalculatedInstanceContext)
- return InstanceContext;
-
- CalculatedInstanceContext = true;
- DeclContext *IC = S.computeDeclContext(getBaseObjectType());
- InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
- : nullptr);
- return InstanceContext;
- }
-
- const CXXRecordDecl *getDeclaringClass() const {
- return DeclaringClass;
- }
-
- /// The "effective" naming class is the canonical non-anonymous
- /// class containing the actual naming class.
- const CXXRecordDecl *getEffectiveNamingClass() const {
- const CXXRecordDecl *namingClass = getNamingClass();
- while (namingClass->isAnonymousStructOrUnion())
- namingClass = cast<CXXRecordDecl>(namingClass->getParent());
- return namingClass->getCanonicalDecl();
- }
-
-private:
- void initialize() {
- HasInstanceContext = (isMemberAccess() &&
- !getBaseObjectType().isNull() &&
- getTargetDecl()->isCXXInstanceMember());
- CalculatedInstanceContext = false;
- InstanceContext = nullptr;
-
- if (isMemberAccess())
- DeclaringClass = FindDeclaringClass(getTargetDecl());
- else
- DeclaringClass = getBaseClass();
- DeclaringClass = DeclaringClass->getCanonicalDecl();
- }
-
- bool HasInstanceContext : 1;
- mutable bool CalculatedInstanceContext : 1;
- mutable const CXXRecordDecl *InstanceContext;
- const CXXRecordDecl *DeclaringClass;
-};
-
-}
-
-/// Checks whether one class might instantiate to the other.
-static bool MightInstantiateTo(const CXXRecordDecl *From,
- const CXXRecordDecl *To) {
- // Declaration names are always preserved by instantiation.
- if (From->getDeclName() != To->getDeclName())
- return false;
-
- const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
- const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
- if (FromDC == ToDC) return true;
- if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
-
- // Be conservative.
- return true;
-}
-
-/// Checks whether one class is derived from another, inclusively.
-/// Properly indicates when it couldn't be determined due to
-/// dependence.
-///
-/// This should probably be donated to AST or at least Sema.
-static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
- const CXXRecordDecl *Target) {
- assert(Derived->getCanonicalDecl() == Derived);
- assert(Target->getCanonicalDecl() == Target);
-
- if (Derived == Target) return AR_accessible;
-
- bool CheckDependent = Derived->isDependentContext();
- if (CheckDependent && MightInstantiateTo(Derived, Target))
- return AR_dependent;
-
- AccessResult OnFailure = AR_inaccessible;
- SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
-
- while (true) {
- if (Derived->isDependentContext() && !Derived->hasDefinition() &&
- !Derived->isLambda())
- return AR_dependent;
-
- for (const auto &I : Derived->bases()) {
- const CXXRecordDecl *RD;
-
- QualType T = I.getType();
- if (const RecordType *RT = T->getAs<RecordType>()) {
- RD = cast<CXXRecordDecl>(RT->getDecl());
- } else if (const InjectedClassNameType *IT
- = T->getAs<InjectedClassNameType>()) {
- RD = IT->getDecl();
- } else {
- assert(T->isDependentType() && "non-dependent base wasn't a record?");
- OnFailure = AR_dependent;
- continue;
- }
-
- RD = RD->getCanonicalDecl();
- if (RD == Target) return AR_accessible;
- if (CheckDependent && MightInstantiateTo(RD, Target))
- OnFailure = AR_dependent;
-
- Queue.push_back(RD);
- }
-
- if (Queue.empty()) break;
-
- Derived = Queue.pop_back_val();
- }
-
- return OnFailure;
-}
-
-
-static bool MightInstantiateTo(Sema &S, DeclContext *Context,
- DeclContext *Friend) {
- if (Friend == Context)
- return true;
-
- assert(!Friend->isDependentContext() &&
- "can't handle friends with dependent contexts here");
-
- if (!Context->isDependentContext())
- return false;
-
- if (Friend->isFileContext())
- return false;
-
- // TODO: this is very conservative
- return true;
-}
-
-// Asks whether the type in 'context' can ever instantiate to the type
-// in 'friend'.
-static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
- if (Friend == Context)
- return true;
-
- if (!Friend->isDependentType() && !Context->isDependentType())
- return false;
-
- // TODO: this is very conservative.
- return true;
-}
-
-static bool MightInstantiateTo(Sema &S,
- FunctionDecl *Context,
- FunctionDecl *Friend) {
- if (Context->getDeclName() != Friend->getDeclName())
- return false;
-
- if (!MightInstantiateTo(S,
- Context->getDeclContext(),
- Friend->getDeclContext()))
- return false;
-
- CanQual<FunctionProtoType> FriendTy
- = S.Context.getCanonicalType(Friend->getType())
- ->getAs<FunctionProtoType>();
- CanQual<FunctionProtoType> ContextTy
- = S.Context.getCanonicalType(Context->getType())
- ->getAs<FunctionProtoType>();
-
- // There isn't any way that I know of to add qualifiers
- // during instantiation.
- if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
- return false;
-
- if (FriendTy->getNumParams() != ContextTy->getNumParams())
- return false;
-
- if (!MightInstantiateTo(S, ContextTy->getReturnType(),
- FriendTy->getReturnType()))
- return false;
-
- for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
- if (!MightInstantiateTo(S, ContextTy->getParamType(I),
- FriendTy->getParamType(I)))
- return false;
-
- return true;
-}
-
-static bool MightInstantiateTo(Sema &S,
- FunctionTemplateDecl *Context,
- FunctionTemplateDecl *Friend) {
- return MightInstantiateTo(S,
- Context->getTemplatedDecl(),
- Friend->getTemplatedDecl());
-}
-
-static AccessResult MatchesFriend(Sema &S,
- const EffectiveContext &EC,
- const CXXRecordDecl *Friend) {
- if (EC.includesClass(Friend))
- return AR_accessible;
-
- if (EC.isDependent()) {
- for (const CXXRecordDecl *Context : EC.Records) {
- if (MightInstantiateTo(Context, Friend))
- return AR_dependent;
- }
- }
-
- return AR_inaccessible;
-}
-
-static AccessResult MatchesFriend(Sema &S,
- const EffectiveContext &EC,
- CanQualType Friend) {
- if (const RecordType *RT = Friend->getAs<RecordType>())
- return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
-
- // TODO: we can do better than this
- if (Friend->isDependentType())
- return AR_dependent;
-
- return AR_inaccessible;
-}
-
-/// Determines whether the given friend class template matches
-/// anything in the effective context.
-static AccessResult MatchesFriend(Sema &S,
- const EffectiveContext &EC,
- ClassTemplateDecl *Friend) {
- AccessResult OnFailure = AR_inaccessible;
-
- // Check whether the friend is the template of a class in the
- // context chain.
- for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
- I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
- CXXRecordDecl *Record = *I;
-
- // Figure out whether the current class has a template:
- ClassTemplateDecl *CTD;
-
- // A specialization of the template...
- if (isa<ClassTemplateSpecializationDecl>(Record)) {
- CTD = cast<ClassTemplateSpecializationDecl>(Record)
- ->getSpecializedTemplate();
-
- // ... or the template pattern itself.
- } else {
- CTD = Record->getDescribedClassTemplate();
- if (!CTD) continue;
- }
-
- // It's a match.
- if (Friend == CTD->getCanonicalDecl())
- return AR_accessible;
-
- // If the context isn't dependent, it can't be a dependent match.
- if (!EC.isDependent())
- continue;
-
- // If the template names don't match, it can't be a dependent
- // match.
- if (CTD->getDeclName() != Friend->getDeclName())
- continue;
-
- // If the class's context can't instantiate to the friend's
- // context, it can't be a dependent match.
- if (!MightInstantiateTo(S, CTD->getDeclContext(),
- Friend->getDeclContext()))
- continue;
-
- // Otherwise, it's a dependent match.
- OnFailure = AR_dependent;
- }
-
- return OnFailure;
-}
-
-/// Determines whether the given friend function matches anything in
-/// the effective context.
-static AccessResult MatchesFriend(Sema &S,
- const EffectiveContext &EC,
- FunctionDecl *Friend) {
- AccessResult OnFailure = AR_inaccessible;
-
- for (SmallVectorImpl<FunctionDecl*>::const_iterator
- I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
- if (Friend == *I)
- return AR_accessible;
-
- if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
- OnFailure = AR_dependent;
- }
-
- return OnFailure;
-}
-
-/// Determines whether the given friend function template matches
-/// anything in the effective context.
-static AccessResult MatchesFriend(Sema &S,
- const EffectiveContext &EC,
- FunctionTemplateDecl *Friend) {
- if (EC.Functions.empty()) return AR_inaccessible;
-
- AccessResult OnFailure = AR_inaccessible;
-
- for (SmallVectorImpl<FunctionDecl*>::const_iterator
- I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
-
- FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
- if (!FTD)
- FTD = (*I)->getDescribedFunctionTemplate();
- if (!FTD)
- continue;
-
- FTD = FTD->getCanonicalDecl();
-
- if (Friend == FTD)
- return AR_accessible;
-
- if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
- OnFailure = AR_dependent;
- }
-
- return OnFailure;
-}
-
-/// Determines whether the given friend declaration matches anything
-/// in the effective context.
-static AccessResult MatchesFriend(Sema &S,
- const EffectiveContext &EC,
- FriendDecl *FriendD) {
- // Whitelist accesses if there's an invalid or unsupported friend
- // declaration.
- if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
- return AR_accessible;
-
- if (TypeSourceInfo *T = FriendD->getFriendType())
- return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
-
- NamedDecl *Friend
- = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
-
- // FIXME: declarations with dependent or templated scope.
-
- if (isa<ClassTemplateDecl>(Friend))
- return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
-
- if (isa<FunctionTemplateDecl>(Friend))
- return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
-
- if (isa<CXXRecordDecl>(Friend))
- return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
-
- assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
- return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
-}
-
-static AccessResult GetFriendKind(Sema &S,
- const EffectiveContext &EC,
- const CXXRecordDecl *Class) {
- AccessResult OnFailure = AR_inaccessible;
-
- // Okay, check friends.
- for (auto *Friend : Class->friends()) {
- switch (MatchesFriend(S, EC, Friend)) {
- case AR_accessible:
- return AR_accessible;
-
- case AR_inaccessible:
- continue;
-
- case AR_dependent:
- OnFailure = AR_dependent;
- break;
- }
- }
-
- // That's it, give up.
- return OnFailure;
-}
-
-namespace {
-
-/// A helper class for checking for a friend which will grant access
-/// to a protected instance member.
-struct ProtectedFriendContext {
- Sema &S;
- const EffectiveContext &EC;
- const CXXRecordDecl *NamingClass;
- bool CheckDependent;
- bool EverDependent;
-
- /// The path down to the current base class.
- SmallVector<const CXXRecordDecl*, 20> CurPath;
-
- ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
- const CXXRecordDecl *InstanceContext,
- const CXXRecordDecl *NamingClass)
- : S(S), EC(EC), NamingClass(NamingClass),
- CheckDependent(InstanceContext->isDependentContext() ||
- NamingClass->isDependentContext()),
- EverDependent(false) {}
-
- /// Check classes in the current path for friendship, starting at
- /// the given index.
- bool checkFriendshipAlongPath(unsigned I) {
- assert(I < CurPath.size());
- for (unsigned E = CurPath.size(); I != E; ++I) {
- switch (GetFriendKind(S, EC, CurPath[I])) {
- case AR_accessible: return true;
- case AR_inaccessible: continue;
- case AR_dependent: EverDependent = true; continue;
- }
- }
- return false;
- }
-
- /// Perform a search starting at the given class.
- ///
- /// PrivateDepth is the index of the last (least derived) class
- /// along the current path such that a notional public member of
- /// the final class in the path would have access in that class.
- bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
- // If we ever reach the naming class, check the current path for
- // friendship. We can also stop recursing because we obviously
- // won't find the naming class there again.
- if (Cur == NamingClass)
- return checkFriendshipAlongPath(PrivateDepth);
-
- if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
- EverDependent = true;
-
- // Recurse into the base classes.
- for (const auto &I : Cur->bases()) {
- // If this is private inheritance, then a public member of the
- // base will not have any access in classes derived from Cur.
- unsigned BasePrivateDepth = PrivateDepth;
- if (I.getAccessSpecifier() == AS_private)
- BasePrivateDepth = CurPath.size() - 1;
-
- const CXXRecordDecl *RD;
-
- QualType T = I.getType();
- if (const RecordType *RT = T->getAs<RecordType>()) {
- RD = cast<CXXRecordDecl>(RT->getDecl());
- } else if (const InjectedClassNameType *IT
- = T->getAs<InjectedClassNameType>()) {
- RD = IT->getDecl();
- } else {
- assert(T->isDependentType() && "non-dependent base wasn't a record?");
- EverDependent = true;
- continue;
- }
-
- // Recurse. We don't need to clean up if this returns true.
- CurPath.push_back(RD);
- if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
- return true;
- CurPath.pop_back();
- }
-
- return false;
- }
-
- bool findFriendship(const CXXRecordDecl *Cur) {
- assert(CurPath.empty());
- CurPath.push_back(Cur);
- return findFriendship(Cur, 0);
- }
-};
-}
-
-/// Search for a class P that EC is a friend of, under the constraint
-/// InstanceContext <= P
-/// if InstanceContext exists, or else
-/// NamingClass <= P
-/// and with the additional restriction that a protected member of
-/// NamingClass would have some natural access in P, which implicitly
-/// imposes the constraint that P <= NamingClass.
-///
-/// This isn't quite the condition laid out in the standard.
-/// Instead of saying that a notional protected member of NamingClass
-/// would have to have some natural access in P, it says the actual
-/// target has to have some natural access in P, which opens up the
-/// possibility that the target (which is not necessarily a member
-/// of NamingClass) might be more accessible along some path not
-/// passing through it. That's really a bad idea, though, because it
-/// introduces two problems:
-/// - Most importantly, it breaks encapsulation because you can
-/// access a forbidden base class's members by directly subclassing
-/// it elsewhere.
-/// - It also makes access substantially harder to compute because it
-/// breaks the hill-climbing algorithm: knowing that the target is
-/// accessible in some base class would no longer let you change
-/// the question solely to whether the base class is accessible,
-/// because the original target might have been more accessible
-/// because of crazy subclassing.
-/// So we don't implement that.
-static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
- const CXXRecordDecl *InstanceContext,
- const CXXRecordDecl *NamingClass) {
- assert(InstanceContext == nullptr ||
- InstanceContext->getCanonicalDecl() == InstanceContext);
- assert(NamingClass->getCanonicalDecl() == NamingClass);
-
- // If we don't have an instance context, our constraints give us
- // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
- // This is just the usual friendship check.
- if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
-
- ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
- if (PRC.findFriendship(InstanceContext)) return AR_accessible;
- if (PRC.EverDependent) return AR_dependent;
- return AR_inaccessible;
-}
-
-static AccessResult HasAccess(Sema &S,
- const EffectiveContext &EC,
- const CXXRecordDecl *NamingClass,
- AccessSpecifier Access,
- const AccessTarget &Target) {
- assert(NamingClass->getCanonicalDecl() == NamingClass &&
- "declaration should be canonicalized before being passed here");
-
- if (Access == AS_public) return AR_accessible;
- assert(Access == AS_private || Access == AS_protected);
-
- AccessResult OnFailure = AR_inaccessible;
-
- for (EffectiveContext::record_iterator
- I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
- // All the declarations in EC have been canonicalized, so pointer
- // equality from this point on will work fine.
- const CXXRecordDecl *ECRecord = *I;
-
- // [B2] and [M2]
- if (Access == AS_private) {
- if (ECRecord == NamingClass)
- return AR_accessible;
-
- if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
- OnFailure = AR_dependent;
-
- // [B3] and [M3]
- } else {
- assert(Access == AS_protected);
- switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
- case AR_accessible: break;
- case AR_inaccessible: continue;
- case AR_dependent: OnFailure = AR_dependent; continue;
- }
-
- // C++ [class.protected]p1:
- // An additional access check beyond those described earlier in
- // [class.access] is applied when a non-static data member or
- // non-static member function is a protected member of its naming
- // class. As described earlier, access to a protected member is
- // granted because the reference occurs in a friend or member of
- // some class C. If the access is to form a pointer to member,
- // the nested-name-specifier shall name C or a class derived from
- // C. All other accesses involve a (possibly implicit) object
- // expression. In this case, the class of the object expression
- // shall be C or a class derived from C.
- //
- // We interpret this as a restriction on [M3].
-
- // In this part of the code, 'C' is just our context class ECRecord.
-
- // These rules are different if we don't have an instance context.
- if (!Target.hasInstanceContext()) {
- // If it's not an instance member, these restrictions don't apply.
- if (!Target.isInstanceMember()) return AR_accessible;
-
- // If it's an instance member, use the pointer-to-member rule
- // that the naming class has to be derived from the effective
- // context.
-
- // Emulate a MSVC bug where the creation of pointer-to-member
- // to protected member of base class is allowed but only from
- // static member functions.
- if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
- if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
- if (MD->isStatic()) return AR_accessible;
-
- // Despite the standard's confident wording, there is a case
- // where you can have an instance member that's neither in a
- // pointer-to-member expression nor in a member access: when
- // it names a field in an unevaluated context that can't be an
- // implicit member. Pending clarification, we just apply the
- // same naming-class restriction here.
- // FIXME: we're probably not correctly adding the
- // protected-member restriction when we retroactively convert
- // an expression to being evaluated.
-
- // We know that ECRecord derives from NamingClass. The
- // restriction says to check whether NamingClass derives from
- // ECRecord, but that's not really necessary: two distinct
- // classes can't be recursively derived from each other. So
- // along this path, we just need to check whether the classes
- // are equal.
- if (NamingClass == ECRecord) return AR_accessible;
-
- // Otherwise, this context class tells us nothing; on to the next.
- continue;
- }
-
- assert(Target.isInstanceMember());
-
- const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
- if (!InstanceContext) {
- OnFailure = AR_dependent;
- continue;
- }
-
- switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
- case AR_accessible: return AR_accessible;
- case AR_inaccessible: continue;
- case AR_dependent: OnFailure = AR_dependent; continue;
- }
- }
- }
-
- // [M3] and [B3] say that, if the target is protected in N, we grant
- // access if the access occurs in a friend or member of some class P
- // that's a subclass of N and where the target has some natural
- // access in P. The 'member' aspect is easy to handle because P
- // would necessarily be one of the effective-context records, and we
- // address that above. The 'friend' aspect is completely ridiculous
- // to implement because there are no restrictions at all on P
- // *unless* the [class.protected] restriction applies. If it does,
- // however, we should ignore whether the naming class is a friend,
- // and instead rely on whether any potential P is a friend.
- if (Access == AS_protected && Target.isInstanceMember()) {
- // Compute the instance context if possible.
- const CXXRecordDecl *InstanceContext = nullptr;
- if (Target.hasInstanceContext()) {
- InstanceContext = Target.resolveInstanceContext(S);
- if (!InstanceContext) return AR_dependent;
- }
-
- switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
- case AR_accessible: return AR_accessible;
- case AR_inaccessible: return OnFailure;
- case AR_dependent: return AR_dependent;
- }
- llvm_unreachable("impossible friendship kind");
- }
-
- switch (GetFriendKind(S, EC, NamingClass)) {
- case AR_accessible: return AR_accessible;
- case AR_inaccessible: return OnFailure;
- case AR_dependent: return AR_dependent;
- }
-
- // Silence bogus warnings
- llvm_unreachable("impossible friendship kind");
-}
-
-/// Finds the best path from the naming class to the declaring class,
-/// taking friend declarations into account.
-///
-/// C++0x [class.access.base]p5:
-/// A member m is accessible at the point R when named in class N if
-/// [M1] m as a member of N is public, or
-/// [M2] m as a member of N is private, and R occurs in a member or
-/// friend of class N, or
-/// [M3] m as a member of N is protected, and R occurs in a member or
-/// friend of class N, or in a member or friend of a class P
-/// derived from N, where m as a member of P is public, private,
-/// or protected, or
-/// [M4] there exists a base class B of N that is accessible at R, and
-/// m is accessible at R when named in class B.
-///
-/// C++0x [class.access.base]p4:
-/// A base class B of N is accessible at R, if
-/// [B1] an invented public member of B would be a public member of N, or
-/// [B2] R occurs in a member or friend of class N, and an invented public
-/// member of B would be a private or protected member of N, or
-/// [B3] R occurs in a member or friend of a class P derived from N, and an
-/// invented public member of B would be a private or protected member
-/// of P, or
-/// [B4] there exists a class S such that B is a base class of S accessible
-/// at R and S is a base class of N accessible at R.
-///
-/// Along a single inheritance path we can restate both of these
-/// iteratively:
-///
-/// First, we note that M1-4 are equivalent to B1-4 if the member is
-/// treated as a notional base of its declaring class with inheritance
-/// access equivalent to the member's access. Therefore we need only
-/// ask whether a class B is accessible from a class N in context R.
-///
-/// Let B_1 .. B_n be the inheritance path in question (i.e. where
-/// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
-/// B_i). For i in 1..n, we will calculate ACAB(i), the access to the
-/// closest accessible base in the path:
-/// Access(a, b) = (* access on the base specifier from a to b *)
-/// Merge(a, forbidden) = forbidden
-/// Merge(a, private) = forbidden
-/// Merge(a, b) = min(a,b)
-/// Accessible(c, forbidden) = false
-/// Accessible(c, private) = (R is c) || IsFriend(c, R)
-/// Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
-/// Accessible(c, public) = true
-/// ACAB(n) = public
-/// ACAB(i) =
-/// let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
-/// if Accessible(B_i, AccessToBase) then public else AccessToBase
-///
-/// B is an accessible base of N at R iff ACAB(1) = public.
-///
-/// \param FinalAccess the access of the "final step", or AS_public if
-/// there is no final step.
-/// \return null if friendship is dependent
-static CXXBasePath *FindBestPath(Sema &S,
- const EffectiveContext &EC,
- AccessTarget &Target,
- AccessSpecifier FinalAccess,
- CXXBasePaths &Paths) {
- // Derive the paths to the desired base.
- const CXXRecordDecl *Derived = Target.getNamingClass();
- const CXXRecordDecl *Base = Target.getDeclaringClass();
-
- // FIXME: fail correctly when there are dependent paths.
- bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
- Paths);
- assert(isDerived && "derived class not actually derived from base");
- (void) isDerived;
-
- CXXBasePath *BestPath = nullptr;
-
- assert(FinalAccess != AS_none && "forbidden access after declaring class");
-
- bool AnyDependent = false;
-
- // Derive the friend-modified access along each path.
- for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
- PI != PE; ++PI) {
- AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
-
- // Walk through the path backwards.
- AccessSpecifier PathAccess = FinalAccess;
- CXXBasePath::iterator I = PI->end(), E = PI->begin();
- while (I != E) {
- --I;
-
- assert(PathAccess != AS_none);
-
- // If the declaration is a private member of a base class, there
- // is no level of friendship in derived classes that can make it
- // accessible.
- if (PathAccess == AS_private) {
- PathAccess = AS_none;
- break;
- }
-
- const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
-
- AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
- PathAccess = std::max(PathAccess, BaseAccess);
-
- switch (HasAccess(S, EC, NC, PathAccess, Target)) {
- case AR_inaccessible: break;
- case AR_accessible:
- PathAccess = AS_public;
-
- // Future tests are not against members and so do not have
- // instance context.
- Target.suppressInstanceContext();
- break;
- case AR_dependent:
- AnyDependent = true;
- goto Next;
- }
- }
-
- // Note that we modify the path's Access field to the
- // friend-modified access.
- if (BestPath == nullptr || PathAccess < BestPath->Access) {
- BestPath = &*PI;
- BestPath->Access = PathAccess;
-
- // Short-circuit if we found a public path.
- if (BestPath->Access == AS_public)
- return BestPath;
- }
-
- Next: ;
- }
-
- assert((!BestPath || BestPath->Access != AS_public) &&
- "fell out of loop with public path");
-
- // We didn't find a public path, but at least one path was subject
- // to dependent friendship, so delay the check.
- if (AnyDependent)
- return nullptr;
-
- return BestPath;
-}
-
-/// Given that an entity has protected natural access, check whether
-/// access might be denied because of the protected member access
-/// restriction.
-///
-/// \return true if a note was emitted
-static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
- AccessTarget &Target) {
- // Only applies to instance accesses.
- if (!Target.isInstanceMember())
- return false;
-
- assert(Target.isMemberAccess());
-
- const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
-
- for (EffectiveContext::record_iterator
- I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
- const CXXRecordDecl *ECRecord = *I;
- switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
- case AR_accessible: break;
- case AR_inaccessible: continue;
- case AR_dependent: continue;
- }
-
- // The effective context is a subclass of the declaring class.
- // Check whether the [class.protected] restriction is limiting
- // access.
-
- // To get this exactly right, this might need to be checked more
- // holistically; it's not necessarily the case that gaining
- // access here would grant us access overall.
-
- NamedDecl *D = Target.getTargetDecl();
-
- // If we don't have an instance context, [class.protected] says the
- // naming class has to equal the context class.
- if (!Target.hasInstanceContext()) {
- // If it does, the restriction doesn't apply.
- if (NamingClass == ECRecord) continue;
-
- // TODO: it would be great to have a fixit here, since this is
- // such an obvious error.
- S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
- << S.Context.getTypeDeclType(ECRecord);
- return true;
- }
-
- const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
- assert(InstanceContext && "diagnosing dependent access");
-
- switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
- case AR_accessible: continue;
- case AR_dependent: continue;
- case AR_inaccessible:
- break;
- }
-
- // Okay, the restriction seems to be what's limiting us.
-
- // Use a special diagnostic for constructors and destructors.
- if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
- (isa<FunctionTemplateDecl>(D) &&
- isa<CXXConstructorDecl>(
- cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
- return S.Diag(D->getLocation(),
- diag::note_access_protected_restricted_ctordtor)
- << isa<CXXDestructorDecl>(D->getAsFunction());
- }
-
- // Otherwise, use the generic diagnostic.
- return S.Diag(D->getLocation(),
- diag::note_access_protected_restricted_object)
- << S.Context.getTypeDeclType(ECRecord);
- }
-
- return false;
-}
-
-/// We are unable to access a given declaration due to its direct
-/// access control; diagnose that.
-static void diagnoseBadDirectAccess(Sema &S,
- const EffectiveContext &EC,
- AccessTarget &entity) {
- assert(entity.isMemberAccess());
- NamedDecl *D = entity.getTargetDecl();
-
- if (D->getAccess() == AS_protected &&
- TryDiagnoseProtectedAccess(S, EC, entity))
- return;
-
- // Find an original declaration.
- while (D->isOutOfLine()) {
- NamedDecl *PrevDecl = nullptr;
- if (VarDecl *VD = dyn_cast<VarDecl>(D))
- PrevDecl = VD->getPreviousDecl();
- else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
- PrevDecl = FD->getPreviousDecl();
- else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
- PrevDecl = TND->getPreviousDecl();
- else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
- if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
- break;
- PrevDecl = TD->getPreviousDecl();
- }
- if (!PrevDecl) break;
- D = PrevDecl;
- }
-
- CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
- Decl *ImmediateChild;
- if (D->getDeclContext() == DeclaringClass)
- ImmediateChild = D;
- else {
- DeclContext *DC = D->getDeclContext();
- while (DC->getParent() != DeclaringClass)
- DC = DC->getParent();
- ImmediateChild = cast<Decl>(DC);
- }
-
- // Check whether there's an AccessSpecDecl preceding this in the
- // chain of the DeclContext.
- bool isImplicit = true;
- for (const auto *I : DeclaringClass->decls()) {
- if (I == ImmediateChild) break;
- if (isa<AccessSpecDecl>(I)) {
- isImplicit = false;
- break;
- }
- }
-
- S.Diag(D->getLocation(), diag::note_access_natural)
- << (unsigned) (D->getAccess() == AS_protected)
- << isImplicit;
-}
-
-/// Diagnose the path which caused the given declaration or base class
-/// to become inaccessible.
-static void DiagnoseAccessPath(Sema &S,
- const EffectiveContext &EC,
- AccessTarget &entity) {
- // Save the instance context to preserve invariants.
- AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
-
- // This basically repeats the main algorithm but keeps some more
- // information.
-
- // The natural access so far.
- AccessSpecifier accessSoFar = AS_public;
-
- // Check whether we have special rights to the declaring class.
- if (entity.isMemberAccess()) {
- NamedDecl *D = entity.getTargetDecl();
- accessSoFar = D->getAccess();
- const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
-
- switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
- // If the declaration is accessible when named in its declaring
- // class, then we must be constrained by the path.
- case AR_accessible:
- accessSoFar = AS_public;
- entity.suppressInstanceContext();
- break;
-
- case AR_inaccessible:
- if (accessSoFar == AS_private ||
- declaringClass == entity.getEffectiveNamingClass())
- return diagnoseBadDirectAccess(S, EC, entity);
- break;
-
- case AR_dependent:
- llvm_unreachable("cannot diagnose dependent access");
- }
- }
-
- CXXBasePaths paths;
- CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
- assert(path.Access != AS_public);
-
- CXXBasePath::iterator i = path.end(), e = path.begin();
- CXXBasePath::iterator constrainingBase = i;
- while (i != e) {
- --i;
-
- assert(accessSoFar != AS_none && accessSoFar != AS_private);
-
- // Is the entity accessible when named in the deriving class, as
- // modified by the base specifier?
- const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
- const CXXBaseSpecifier *base = i->Base;
-
- // If the access to this base is worse than the access we have to
- // the declaration, remember it.
- AccessSpecifier baseAccess = base->getAccessSpecifier();
- if (baseAccess > accessSoFar) {
- constrainingBase = i;
- accessSoFar = baseAccess;
- }
-
- switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
- case AR_inaccessible: break;
- case AR_accessible:
- accessSoFar = AS_public;
- entity.suppressInstanceContext();
- constrainingBase = nullptr;
- break;
- case AR_dependent:
- llvm_unreachable("cannot diagnose dependent access");
- }
-
- // If this was private inheritance, but we don't have access to
- // the deriving class, we're done.
- if (accessSoFar == AS_private) {
- assert(baseAccess == AS_private);
- assert(constrainingBase == i);
- break;
- }
- }
-
- // If we don't have a constraining base, the access failure must be
- // due to the original declaration.
- if (constrainingBase == path.end())
- return diagnoseBadDirectAccess(S, EC, entity);
-
- // We're constrained by inheritance, but we want to say
- // "declared private here" if we're diagnosing a hierarchy
- // conversion and this is the final step.
- unsigned diagnostic;
- if (entity.isMemberAccess() ||
- constrainingBase + 1 != path.end()) {
- diagnostic = diag::note_access_constrained_by_path;
- } else {
- diagnostic = diag::note_access_natural;
- }
-
- const CXXBaseSpecifier *base = constrainingBase->Base;
-
- S.Diag(base->getSourceRange().getBegin(), diagnostic)
- << base->getSourceRange()
- << (base->getAccessSpecifier() == AS_protected)
- << (base->getAccessSpecifierAsWritten() == AS_none);
-
- if (entity.isMemberAccess())
- S.Diag(entity.getTargetDecl()->getLocation(),
- diag::note_member_declared_at);
-}
-
-static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
- const EffectiveContext &EC,
- AccessTarget &Entity) {
- const CXXRecordDecl *NamingClass = Entity.getNamingClass();
- const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
- NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
-
- S.Diag(Loc, Entity.getDiag())
- << (Entity.getAccess() == AS_protected)
- << (D ? D->getDeclName() : DeclarationName())
- << S.Context.getTypeDeclType(NamingClass)
- << S.Context.getTypeDeclType(DeclaringClass);
- DiagnoseAccessPath(S, EC, Entity);
-}
-
-/// MSVC has a bug where if during an using declaration name lookup,
-/// the declaration found is unaccessible (private) and that declaration
-/// was bring into scope via another using declaration whose target
-/// declaration is accessible (public) then no error is generated.
-/// Example:
-/// class A {
-/// public:
-/// int f();
-/// };
-/// class B : public A {
-/// private:
-/// using A::f;
-/// };
-/// class C : public B {
-/// private:
-/// using B::f;
-/// };
-///
-/// Here, B::f is private so this should fail in Standard C++, but
-/// because B::f refers to A::f which is public MSVC accepts it.
-static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
- SourceLocation AccessLoc,
- AccessTarget &Entity) {
- if (UsingShadowDecl *Shadow =
- dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
- const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
- if (Entity.getTargetDecl()->getAccess() == AS_private &&
- (OrigDecl->getAccess() == AS_public ||
- OrigDecl->getAccess() == AS_protected)) {
- S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
- << Shadow->getUsingDecl()->getQualifiedNameAsString()
- << OrigDecl->getQualifiedNameAsString();
- return true;
- }
- }
- return false;
-}
-
-/// Determines whether the accessed entity is accessible. Public members
-/// have been weeded out by this point.
-static AccessResult IsAccessible(Sema &S,
- const EffectiveContext &EC,
- AccessTarget &Entity) {
- // Determine the actual naming class.
- const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
-
- AccessSpecifier UnprivilegedAccess = Entity.getAccess();
- assert(UnprivilegedAccess != AS_public && "public access not weeded out");
-
- // Before we try to recalculate access paths, try to white-list
- // accesses which just trade in on the final step, i.e. accesses
- // which don't require [M4] or [B4]. These are by far the most
- // common forms of privileged access.
- if (UnprivilegedAccess != AS_none) {
- switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
- case AR_dependent:
- // This is actually an interesting policy decision. We don't
- // *have* to delay immediately here: we can do the full access
- // calculation in the hope that friendship on some intermediate
- // class will make the declaration accessible non-dependently.
- // But that's not cheap, and odds are very good (note: assertion
- // made without data) that the friend declaration will determine
- // access.
- return AR_dependent;
-
- case AR_accessible: return AR_accessible;
- case AR_inaccessible: break;
- }
- }
-
- AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
-
- // We lower member accesses to base accesses by pretending that the
- // member is a base class of its declaring class.
- AccessSpecifier FinalAccess;
-
- if (Entity.isMemberAccess()) {
- // Determine if the declaration is accessible from EC when named
- // in its declaring class.
- NamedDecl *Target = Entity.getTargetDecl();
- const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
-
- FinalAccess = Target->getAccess();
- switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
- case AR_accessible:
- // Target is accessible at EC when named in its declaring class.
- // We can now hill-climb and simply check whether the declaring
- // class is accessible as a base of the naming class. This is
- // equivalent to checking the access of a notional public
- // member with no instance context.
- FinalAccess = AS_public;
- Entity.suppressInstanceContext();
- break;
- case AR_inaccessible: break;
- case AR_dependent: return AR_dependent; // see above
- }
-
- if (DeclaringClass == NamingClass)
- return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
- } else {
- FinalAccess = AS_public;
- }
-
- assert(Entity.getDeclaringClass() != NamingClass);
-
- // Append the declaration's access if applicable.
- CXXBasePaths Paths;
- CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
- if (!Path)
- return AR_dependent;
-
- assert(Path->Access <= UnprivilegedAccess &&
- "access along best path worse than direct?");
- if (Path->Access == AS_public)
- return AR_accessible;
- return AR_inaccessible;
-}
-
-static void DelayDependentAccess(Sema &S,
- const EffectiveContext &EC,
- SourceLocation Loc,
- const AccessTarget &Entity) {
- assert(EC.isDependent() && "delaying non-dependent access");
- DeclContext *DC = EC.getInnerContext();
- assert(DC->isDependentContext() && "delaying non-dependent access");
- DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
- Loc,
- Entity.isMemberAccess(),
- Entity.getAccess(),
- Entity.getTargetDecl(),
- Entity.getNamingClass(),
- Entity.getBaseObjectType(),
- Entity.getDiag());
-}
-
-/// Checks access to an entity from the given effective context.
-static AccessResult CheckEffectiveAccess(Sema &S,
- const EffectiveContext &EC,
- SourceLocation Loc,
- AccessTarget &Entity) {
- assert(Entity.getAccess() != AS_public && "called for public access!");
-
- switch (IsAccessible(S, EC, Entity)) {
- case AR_dependent:
- DelayDependentAccess(S, EC, Loc, Entity);
- return AR_dependent;
-
- case AR_inaccessible:
- if (S.getLangOpts().MSVCCompat &&
- IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
- return AR_accessible;
- if (!Entity.isQuiet())
- DiagnoseBadAccess(S, Loc, EC, Entity);
- return AR_inaccessible;
-
- case AR_accessible:
- return AR_accessible;
- }
-
- // silence unnecessary warning
- llvm_unreachable("invalid access result");
-}
-
-static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
- AccessTarget &Entity) {
- // If the access path is public, it's accessible everywhere.
- if (Entity.getAccess() == AS_public)
- return Sema::AR_accessible;
-
- // If we're currently parsing a declaration, we may need to delay
- // access control checking, because our effective context might be
- // different based on what the declaration comes out as.
- //
- // For example, we might be parsing a declaration with a scope
- // specifier, like this:
- // A::private_type A::foo() { ... }
- //
- // Or we might be parsing something that will turn out to be a friend:
- // void foo(A::private_type);
- // void B::foo(A::private_type);
- if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
- S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
- return Sema::AR_delayed;
- }
-
- EffectiveContext EC(S.CurContext);
- switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
- case AR_accessible: return Sema::AR_accessible;
- case AR_inaccessible: return Sema::AR_inaccessible;
- case AR_dependent: return Sema::AR_dependent;
- }
- llvm_unreachable("invalid access result");
-}
-
-void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
- // Access control for names used in the declarations of functions
- // and function templates should normally be evaluated in the context
- // of the declaration, just in case it's a friend of something.
- // However, this does not apply to local extern declarations.
-
- DeclContext *DC = D->getDeclContext();
- if (D->isLocalExternDecl()) {
- DC = D->getLexicalDeclContext();
- } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
- DC = FN;
- } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
- DC = cast<DeclContext>(TD->getTemplatedDecl());
- }
-
- EffectiveContext EC(DC);
-
- AccessTarget Target(DD.getAccessData());
-
- if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
- DD.Triggered = true;
-}
-
-void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
- const MultiLevelTemplateArgumentList &TemplateArgs) {
- SourceLocation Loc = DD.getAccessLoc();
- AccessSpecifier Access = DD.getAccess();
-
- Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
- TemplateArgs);
- if (!NamingD) return;
- Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
- TemplateArgs);
- if (!TargetD) return;
-
- if (DD.isAccessToMember()) {
- CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
- NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
- QualType BaseObjectType = DD.getAccessBaseObjectType();
- if (!BaseObjectType.isNull()) {
- BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
- DeclarationName());
- if (BaseObjectType.isNull()) return;
- }
-
- AccessTarget Entity(Context,
- AccessTarget::Member,
- NamingClass,
- DeclAccessPair::make(TargetDecl, Access),
- BaseObjectType);
- Entity.setDiag(DD.getDiagnostic());
- CheckAccess(*this, Loc, Entity);
- } else {
- AccessTarget Entity(Context,
- AccessTarget::Base,
- cast<CXXRecordDecl>(TargetD),
- cast<CXXRecordDecl>(NamingD),
- Access);
- Entity.setDiag(DD.getDiagnostic());
- CheckAccess(*this, Loc, Entity);
- }
-}
-
-Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
- DeclAccessPair Found) {
- if (!getLangOpts().AccessControl ||
- !E->getNamingClass() ||
- Found.getAccess() == AS_public)
- return AR_accessible;
-
- AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
- Found, QualType());
- Entity.setDiag(diag::err_access) << E->getSourceRange();
-
- return CheckAccess(*this, E->getNameLoc(), Entity);
-}
-
-/// Perform access-control checking on a previously-unresolved member
-/// access which has now been resolved to a member.
-Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
- DeclAccessPair Found) {
- if (!getLangOpts().AccessControl ||
- Found.getAccess() == AS_public)
- return AR_accessible;
-
- QualType BaseType = E->getBaseType();
- if (E->isArrow())
- BaseType = BaseType->getAs<PointerType>()->getPointeeType();
-
- AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
- Found, BaseType);
- Entity.setDiag(diag::err_access) << E->getSourceRange();
-
- return CheckAccess(*this, E->getMemberLoc(), Entity);
-}
-
-/// Is the given special member function accessible for the purposes of
-/// deciding whether to define a special member function as deleted?
-bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
- AccessSpecifier access,
- QualType objectType) {
- // Fast path.
- if (access == AS_public || !getLangOpts().AccessControl) return true;
-
- AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
- DeclAccessPair::make(decl, access), objectType);
-
- // Suppress diagnostics.
- entity.setDiag(PDiag());
-
- switch (CheckAccess(*this, SourceLocation(), entity)) {
- case AR_accessible: return true;
- case AR_inaccessible: return false;
- case AR_dependent: llvm_unreachable("dependent for =delete computation");
- case AR_delayed: llvm_unreachable("cannot delay =delete computation");
- }
- llvm_unreachable("bad access result");
-}
-
-Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
- CXXDestructorDecl *Dtor,
- const PartialDiagnostic &PDiag,
- QualType ObjectTy) {
- if (!getLangOpts().AccessControl)
- return AR_accessible;
-
- // There's never a path involved when checking implicit destructor access.
- AccessSpecifier Access = Dtor->getAccess();
- if (Access == AS_public)
- return AR_accessible;
-
- CXXRecordDecl *NamingClass = Dtor->getParent();
- if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
-
- AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
- DeclAccessPair::make(Dtor, Access),
- ObjectTy);
- Entity.setDiag(PDiag); // TODO: avoid copy
-
- return CheckAccess(*this, Loc, Entity);
-}
-
-/// Checks access to a constructor.
-Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
- CXXConstructorDecl *Constructor,
- DeclAccessPair Found,
- const InitializedEntity &Entity,
- bool IsCopyBindingRefToTemp) {
- if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
- return AR_accessible;
-
- PartialDiagnostic PD(PDiag());
- switch (Entity.getKind()) {
- default:
- PD = PDiag(IsCopyBindingRefToTemp
- ? diag::ext_rvalue_to_reference_access_ctor
- : diag::err_access_ctor);
-
- break;
-
- case InitializedEntity::EK_Base:
- PD = PDiag(diag::err_access_base_ctor);
- PD << Entity.isInheritedVirtualBase()
- << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
- break;
-
- case InitializedEntity::EK_Member: {
- const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
- PD = PDiag(diag::err_access_field_ctor);
- PD << Field->getType() << getSpecialMember(Constructor);
- break;
- }
-
- case InitializedEntity::EK_LambdaCapture: {
- StringRef VarName = Entity.getCapturedVarName();
- PD = PDiag(diag::err_access_lambda_capture);
- PD << VarName << Entity.getType() << getSpecialMember(Constructor);
- break;
- }
-
- }
-
- return CheckConstructorAccess(UseLoc, Constructor, Found, Entity, PD);
-}
-
-/// Checks access to a constructor.
-Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
- CXXConstructorDecl *Constructor,
- DeclAccessPair Found,
- const InitializedEntity &Entity,
- const PartialDiagnostic &PD) {
- if (!getLangOpts().AccessControl ||
- Found.getAccess() == AS_public)
- return AR_accessible;
-
- CXXRecordDecl *NamingClass = Constructor->getParent();
-
- // Initializing a base sub-object is an instance method call on an
- // object of the derived class. Otherwise, we have an instance method
- // call on an object of the constructed type.
- //
- // FIXME: If we have a parent, we're initializing the base class subobject
- // in aggregate initialization. It's not clear whether the object class
- // should be the base class or the derived class in that case.
- CXXRecordDecl *ObjectClass;
- if ((Entity.getKind() == InitializedEntity::EK_Base ||
- Entity.getKind() == InitializedEntity::EK_Delegating) &&
- !Entity.getParent()) {
- ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
- } else if (auto *Shadow =
- dyn_cast<ConstructorUsingShadowDecl>(Found.getDecl())) {
- // If we're using an inheriting constructor to construct an object,
- // the object class is the derived class, not the base class.
- ObjectClass = Shadow->getParent();
- } else {
- ObjectClass = NamingClass;
- }
-
- AccessTarget AccessEntity(
- Context, AccessTarget::Member, NamingClass,
- DeclAccessPair::make(Constructor, Found.getAccess()),
- Context.getTypeDeclType(ObjectClass));
- AccessEntity.setDiag(PD);
-
- return CheckAccess(*this, UseLoc, AccessEntity);
-}
-
-/// Checks access to an overloaded operator new or delete.
-Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
- SourceRange PlacementRange,
- CXXRecordDecl *NamingClass,
- DeclAccessPair Found,
- bool Diagnose) {
- if (!getLangOpts().AccessControl ||
- !NamingClass ||
- Found.getAccess() == AS_public)
- return AR_accessible;
-
- AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
- QualType());
- if (Diagnose)
- Entity.setDiag(diag::err_access)
- << PlacementRange;
-
- return CheckAccess(*this, OpLoc, Entity);
-}
-
-/// Checks access to a member.
-Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
- CXXRecordDecl *NamingClass,
- DeclAccessPair Found) {
- if (!getLangOpts().AccessControl ||
- !NamingClass ||
- Found.getAccess() == AS_public)
- return AR_accessible;
-
- AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
- Found, QualType());
-
- return CheckAccess(*this, UseLoc, Entity);
-}
-
-/// Checks implicit access to a member in a structured binding.
-Sema::AccessResult
-Sema::CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
- CXXRecordDecl *DecomposedClass,
- DeclAccessPair Field) {
- if (!getLangOpts().AccessControl ||
- Field.getAccess() == AS_public)
- return AR_accessible;
-
- AccessTarget Entity(Context, AccessTarget::Member, DecomposedClass, Field,
- Context.getRecordType(DecomposedClass));
- Entity.setDiag(diag::err_decomp_decl_inaccessible_field);
-
- return CheckAccess(*this, UseLoc, Entity);
-}
-
-/// Checks access to an overloaded member operator, including
-/// conversion operators.
-Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
- Expr *ObjectExpr,
- Expr *ArgExpr,
- DeclAccessPair Found) {
- if (!getLangOpts().AccessControl ||
- Found.getAccess() == AS_public)
- return AR_accessible;
-
- const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
- CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
-
- AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
- ObjectExpr->getType());
- Entity.setDiag(diag::err_access)
- << ObjectExpr->getSourceRange()
- << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
-
- return CheckAccess(*this, OpLoc, Entity);
-}
-
-/// Checks access to the target of a friend declaration.
-Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
- assert(isa<CXXMethodDecl>(target->getAsFunction()));
-
- // Friendship lookup is a redeclaration lookup, so there's never an
- // inheritance path modifying access.
- AccessSpecifier access = target->getAccess();
-
- if (!getLangOpts().AccessControl || access == AS_public)
- return AR_accessible;
-
- CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
-
- AccessTarget entity(Context, AccessTarget::Member,
- cast<CXXRecordDecl>(target->getDeclContext()),
- DeclAccessPair::make(target, access),
- /*no instance context*/ QualType());
- entity.setDiag(diag::err_access_friend_function)
- << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
- : method->getNameInfo().getSourceRange());
-
- // We need to bypass delayed-diagnostics because we might be called
- // while the ParsingDeclarator is active.
- EffectiveContext EC(CurContext);
- switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
- case ::AR_accessible: return Sema::AR_accessible;
- case ::AR_inaccessible: return Sema::AR_inaccessible;
- case ::AR_dependent: return Sema::AR_dependent;
- }
- llvm_unreachable("invalid access result");
-}
-
-Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
- DeclAccessPair Found) {
- if (!getLangOpts().AccessControl ||
- Found.getAccess() == AS_none ||
- Found.getAccess() == AS_public)
- return AR_accessible;
-
- OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
- CXXRecordDecl *NamingClass = Ovl->getNamingClass();
-
- AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
- /*no instance context*/ QualType());
- Entity.setDiag(diag::err_access)
- << Ovl->getSourceRange();
-
- return CheckAccess(*this, Ovl->getNameLoc(), Entity);
-}
-
-/// Checks access for a hierarchy conversion.
-///
-/// \param ForceCheck true if this check should be performed even if access
-/// control is disabled; some things rely on this for semantics
-/// \param ForceUnprivileged true if this check should proceed as if the
-/// context had no special privileges
-Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
- QualType Base,
- QualType Derived,
- const CXXBasePath &Path,
- unsigned DiagID,
- bool ForceCheck,
- bool ForceUnprivileged) {
- if (!ForceCheck && !getLangOpts().AccessControl)
- return AR_accessible;
-
- if (Path.Access == AS_public)
- return AR_accessible;
-
- CXXRecordDecl *BaseD, *DerivedD;
- BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
- DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
-
- AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
- Path.Access);
- if (DiagID)
- Entity.setDiag(DiagID) << Derived << Base;
-
- if (ForceUnprivileged) {
- switch (CheckEffectiveAccess(*this, EffectiveContext(),
- AccessLoc, Entity)) {
- case ::AR_accessible: return Sema::AR_accessible;
- case ::AR_inaccessible: return Sema::AR_inaccessible;
- case ::AR_dependent: return Sema::AR_dependent;
- }
- llvm_unreachable("unexpected result from CheckEffectiveAccess");
- }
- return CheckAccess(*this, AccessLoc, Entity);
-}
-
-/// Checks access to all the declarations in the given result set.
-void Sema::CheckLookupAccess(const LookupResult &R) {
- assert(getLangOpts().AccessControl
- && "performing access check without access control");
- assert(R.getNamingClass() && "performing access check without naming class");
-
- for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
- if (I.getAccess() != AS_public) {
- AccessTarget Entity(Context, AccessedEntity::Member,
- R.getNamingClass(), I.getPair(),
- R.getBaseObjectType());
- Entity.setDiag(diag::err_access);
- CheckAccess(*this, R.getNameLoc(), Entity);
- }
- }
-}
-
-/// Checks access to Target from the given class. The check will take access
-/// specifiers into account, but no member access expressions and such.
-///
-/// \param Target the declaration to check if it can be accessed
-/// \param NamingClass the class in which the lookup was started.
-/// \param BaseType type of the left side of member access expression.
-/// \p BaseType and \p NamingClass are used for C++ access control.
-/// Depending on the lookup case, they should be set to the following:
-/// - lhs.target (member access without a qualifier):
-/// \p BaseType and \p NamingClass are both the type of 'lhs'.
-/// - lhs.X::target (member access with a qualifier):
-/// BaseType is the type of 'lhs', NamingClass is 'X'
-/// - X::target (qualified lookup without member access):
-/// BaseType is null, NamingClass is 'X'.
-/// - target (unqualified lookup).
-/// BaseType is null, NamingClass is the parent class of 'target'.
-/// \return true if the Target is accessible from the Class, false otherwise.
-bool Sema::IsSimplyAccessible(NamedDecl *Target, CXXRecordDecl *NamingClass,
- QualType BaseType) {
- // Perform the C++ accessibility checks first.
- if (Target->isCXXClassMember() && NamingClass) {
- if (!getLangOpts().CPlusPlus)
- return false;
- // The unprivileged access is AS_none as we don't know how the member was
- // accessed, which is described by the access in DeclAccessPair.
- // `IsAccessible` will examine the actual access of Target (i.e.
- // Decl->getAccess()) when calculating the access.
- AccessTarget Entity(Context, AccessedEntity::Member, NamingClass,
- DeclAccessPair::make(Target, AS_none), BaseType);
- EffectiveContext EC(CurContext);
- return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
- }
-
- if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Target)) {
- // @public and @package ivars are always accessible.
- if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
- Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
- return true;
-
- // If we are inside a class or category implementation, determine the
- // interface we're in.
- ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
- if (ObjCMethodDecl *MD = getCurMethodDecl())
- ClassOfMethodDecl = MD->getClassInterface();
- else if (FunctionDecl *FD = getCurFunctionDecl()) {
- if (ObjCImplDecl *Impl
- = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
- if (ObjCImplementationDecl *IMPD
- = dyn_cast<ObjCImplementationDecl>(Impl))
- ClassOfMethodDecl = IMPD->getClassInterface();
- else if (ObjCCategoryImplDecl* CatImplClass
- = dyn_cast<ObjCCategoryImplDecl>(Impl))
- ClassOfMethodDecl = CatImplClass->getClassInterface();
- }
- }
-
- // If we're not in an interface, this ivar is inaccessible.
- if (!ClassOfMethodDecl)
- return false;
-
- // If we're inside the same interface that owns the ivar, we're fine.
- if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
- return true;
-
- // If the ivar is private, it's inaccessible.
- if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
- return false;
-
- return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
- }
-
- return true;
-}