diff options
Diffstat (limited to 'gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp')
| -rw-r--r-- | gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp | 960 |
1 files changed, 0 insertions, 960 deletions
diff --git a/gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp b/gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp deleted file mode 100644 index ffc72889858..00000000000 --- a/gnu/llvm/tools/clang/lib/Sema/SemaCUDA.cpp +++ /dev/null @@ -1,960 +0,0 @@ -//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -/// \file -/// This file implements semantic analysis for CUDA constructs. -/// -//===----------------------------------------------------------------------===// - -#include "clang/AST/ASTContext.h" -#include "clang/AST/Decl.h" -#include "clang/AST/ExprCXX.h" -#include "clang/Lex/Preprocessor.h" -#include "clang/Sema/Lookup.h" -#include "clang/Sema/Sema.h" -#include "clang/Sema/SemaDiagnostic.h" -#include "clang/Sema/SemaInternal.h" -#include "clang/Sema/Template.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/SmallVector.h" -using namespace clang; - -void Sema::PushForceCUDAHostDevice() { - assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); - ForceCUDAHostDeviceDepth++; -} - -bool Sema::PopForceCUDAHostDevice() { - assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); - if (ForceCUDAHostDeviceDepth == 0) - return false; - ForceCUDAHostDeviceDepth--; - return true; -} - -ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, - MultiExprArg ExecConfig, - SourceLocation GGGLoc) { - FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); - if (!ConfigDecl) - return ExprError( - Diag(LLLLoc, diag::err_undeclared_var_use) - << (getLangOpts().HIP ? "hipConfigureCall" : "cudaConfigureCall")); - QualType ConfigQTy = ConfigDecl->getType(); - - DeclRefExpr *ConfigDR = new (Context) - DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc); - MarkFunctionReferenced(LLLLoc, ConfigDecl); - - return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr, - /*IsExecConfig=*/true); -} - -Sema::CUDAFunctionTarget -Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) { - bool HasHostAttr = false; - bool HasDeviceAttr = false; - bool HasGlobalAttr = false; - bool HasInvalidTargetAttr = false; - for (const ParsedAttr &AL : Attrs) { - switch (AL.getKind()) { - case ParsedAttr::AT_CUDAGlobal: - HasGlobalAttr = true; - break; - case ParsedAttr::AT_CUDAHost: - HasHostAttr = true; - break; - case ParsedAttr::AT_CUDADevice: - HasDeviceAttr = true; - break; - case ParsedAttr::AT_CUDAInvalidTarget: - HasInvalidTargetAttr = true; - break; - default: - break; - } - } - - if (HasInvalidTargetAttr) - return CFT_InvalidTarget; - - if (HasGlobalAttr) - return CFT_Global; - - if (HasHostAttr && HasDeviceAttr) - return CFT_HostDevice; - - if (HasDeviceAttr) - return CFT_Device; - - return CFT_Host; -} - -template <typename A> -static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) { - return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) { - return isa<A>(Attribute) && - !(IgnoreImplicitAttr && Attribute->isImplicit()); - }); -} - -/// IdentifyCUDATarget - Determine the CUDA compilation target for this function -Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D, - bool IgnoreImplicitHDAttr) { - // Code that lives outside a function is run on the host. - if (D == nullptr) - return CFT_Host; - - if (D->hasAttr<CUDAInvalidTargetAttr>()) - return CFT_InvalidTarget; - - if (D->hasAttr<CUDAGlobalAttr>()) - return CFT_Global; - - if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) { - if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) - return CFT_HostDevice; - return CFT_Device; - } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) { - return CFT_Host; - } else if (D->isImplicit() && !IgnoreImplicitHDAttr) { - // Some implicit declarations (like intrinsic functions) are not marked. - // Set the most lenient target on them for maximal flexibility. - return CFT_HostDevice; - } - - return CFT_Host; -} - -// * CUDA Call preference table -// -// F - from, -// T - to -// Ph - preference in host mode -// Pd - preference in device mode -// H - handled in (x) -// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never. -// -// | F | T | Ph | Pd | H | -// |----+----+-----+-----+-----+ -// | d | d | N | N | (c) | -// | d | g | -- | -- | (a) | -// | d | h | -- | -- | (e) | -// | d | hd | HD | HD | (b) | -// | g | d | N | N | (c) | -// | g | g | -- | -- | (a) | -// | g | h | -- | -- | (e) | -// | g | hd | HD | HD | (b) | -// | h | d | -- | -- | (e) | -// | h | g | N | N | (c) | -// | h | h | N | N | (c) | -// | h | hd | HD | HD | (b) | -// | hd | d | WS | SS | (d) | -// | hd | g | SS | -- |(d/a)| -// | hd | h | SS | WS | (d) | -// | hd | hd | HD | HD | (b) | - -Sema::CUDAFunctionPreference -Sema::IdentifyCUDAPreference(const FunctionDecl *Caller, - const FunctionDecl *Callee) { - assert(Callee && "Callee must be valid."); - CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller); - CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee); - - // If one of the targets is invalid, the check always fails, no matter what - // the other target is. - if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget) - return CFP_Never; - - // (a) Can't call global from some contexts until we support CUDA's - // dynamic parallelism. - if (CalleeTarget == CFT_Global && - (CallerTarget == CFT_Global || CallerTarget == CFT_Device)) - return CFP_Never; - - // (b) Calling HostDevice is OK for everyone. - if (CalleeTarget == CFT_HostDevice) - return CFP_HostDevice; - - // (c) Best case scenarios - if (CalleeTarget == CallerTarget || - (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) || - (CallerTarget == CFT_Global && CalleeTarget == CFT_Device)) - return CFP_Native; - - // (d) HostDevice behavior depends on compilation mode. - if (CallerTarget == CFT_HostDevice) { - // It's OK to call a compilation-mode matching function from an HD one. - if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) || - (!getLangOpts().CUDAIsDevice && - (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))) - return CFP_SameSide; - - // Calls from HD to non-mode-matching functions (i.e., to host functions - // when compiling in device mode or to device functions when compiling in - // host mode) are allowed at the sema level, but eventually rejected if - // they're ever codegened. TODO: Reject said calls earlier. - return CFP_WrongSide; - } - - // (e) Calling across device/host boundary is not something you should do. - if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) || - (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) || - (CallerTarget == CFT_Global && CalleeTarget == CFT_Host)) - return CFP_Never; - - llvm_unreachable("All cases should've been handled by now."); -} - -void Sema::EraseUnwantedCUDAMatches( - const FunctionDecl *Caller, - SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) { - if (Matches.size() <= 1) - return; - - using Pair = std::pair<DeclAccessPair, FunctionDecl*>; - - // Gets the CUDA function preference for a call from Caller to Match. - auto GetCFP = [&](const Pair &Match) { - return IdentifyCUDAPreference(Caller, Match.second); - }; - - // Find the best call preference among the functions in Matches. - CUDAFunctionPreference BestCFP = GetCFP(*std::max_element( - Matches.begin(), Matches.end(), - [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); })); - - // Erase all functions with lower priority. - llvm::erase_if(Matches, - [&](const Pair &Match) { return GetCFP(Match) < BestCFP; }); -} - -/// When an implicitly-declared special member has to invoke more than one -/// base/field special member, conflicts may occur in the targets of these -/// members. For example, if one base's member __host__ and another's is -/// __device__, it's a conflict. -/// This function figures out if the given targets \param Target1 and -/// \param Target2 conflict, and if they do not it fills in -/// \param ResolvedTarget with a target that resolves for both calls. -/// \return true if there's a conflict, false otherwise. -static bool -resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1, - Sema::CUDAFunctionTarget Target2, - Sema::CUDAFunctionTarget *ResolvedTarget) { - // Only free functions and static member functions may be global. - assert(Target1 != Sema::CFT_Global); - assert(Target2 != Sema::CFT_Global); - - if (Target1 == Sema::CFT_HostDevice) { - *ResolvedTarget = Target2; - } else if (Target2 == Sema::CFT_HostDevice) { - *ResolvedTarget = Target1; - } else if (Target1 != Target2) { - return true; - } else { - *ResolvedTarget = Target1; - } - - return false; -} - -bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, - CXXSpecialMember CSM, - CXXMethodDecl *MemberDecl, - bool ConstRHS, - bool Diagnose) { - llvm::Optional<CUDAFunctionTarget> InferredTarget; - - // We're going to invoke special member lookup; mark that these special - // members are called from this one, and not from its caller. - ContextRAII MethodContext(*this, MemberDecl); - - // Look for special members in base classes that should be invoked from here. - // Infer the target of this member base on the ones it should call. - // Skip direct and indirect virtual bases for abstract classes. - llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases; - for (const auto &B : ClassDecl->bases()) { - if (!B.isVirtual()) { - Bases.push_back(&B); - } - } - - if (!ClassDecl->isAbstract()) { - for (const auto &VB : ClassDecl->vbases()) { - Bases.push_back(&VB); - } - } - - for (const auto *B : Bases) { - const RecordType *BaseType = B->getType()->getAs<RecordType>(); - if (!BaseType) { - continue; - } - - CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); - Sema::SpecialMemberOverloadResult SMOR = - LookupSpecialMember(BaseClassDecl, CSM, - /* ConstArg */ ConstRHS, - /* VolatileArg */ false, - /* RValueThis */ false, - /* ConstThis */ false, - /* VolatileThis */ false); - - if (!SMOR.getMethod()) - continue; - - CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod()); - if (!InferredTarget.hasValue()) { - InferredTarget = BaseMethodTarget; - } else { - bool ResolutionError = resolveCalleeCUDATargetConflict( - InferredTarget.getValue(), BaseMethodTarget, - InferredTarget.getPointer()); - if (ResolutionError) { - if (Diagnose) { - Diag(ClassDecl->getLocation(), - diag::note_implicit_member_target_infer_collision) - << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget; - } - MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); - return true; - } - } - } - - // Same as for bases, but now for special members of fields. - for (const auto *F : ClassDecl->fields()) { - if (F->isInvalidDecl()) { - continue; - } - - const RecordType *FieldType = - Context.getBaseElementType(F->getType())->getAs<RecordType>(); - if (!FieldType) { - continue; - } - - CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl()); - Sema::SpecialMemberOverloadResult SMOR = - LookupSpecialMember(FieldRecDecl, CSM, - /* ConstArg */ ConstRHS && !F->isMutable(), - /* VolatileArg */ false, - /* RValueThis */ false, - /* ConstThis */ false, - /* VolatileThis */ false); - - if (!SMOR.getMethod()) - continue; - - CUDAFunctionTarget FieldMethodTarget = - IdentifyCUDATarget(SMOR.getMethod()); - if (!InferredTarget.hasValue()) { - InferredTarget = FieldMethodTarget; - } else { - bool ResolutionError = resolveCalleeCUDATargetConflict( - InferredTarget.getValue(), FieldMethodTarget, - InferredTarget.getPointer()); - if (ResolutionError) { - if (Diagnose) { - Diag(ClassDecl->getLocation(), - diag::note_implicit_member_target_infer_collision) - << (unsigned)CSM << InferredTarget.getValue() - << FieldMethodTarget; - } - MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); - return true; - } - } - } - - if (InferredTarget.hasValue()) { - if (InferredTarget.getValue() == CFT_Device) { - MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); - } else if (InferredTarget.getValue() == CFT_Host) { - MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); - } else { - MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); - MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); - } - } else { - // If no target was inferred, mark this member as __host__ __device__; - // it's the least restrictive option that can be invoked from any target. - MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); - MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); - } - - return false; -} - -bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) { - if (!CD->isDefined() && CD->isTemplateInstantiation()) - InstantiateFunctionDefinition(Loc, CD->getFirstDecl()); - - // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered - // empty at a point in the translation unit, if it is either a - // trivial constructor - if (CD->isTrivial()) - return true; - - // ... or it satisfies all of the following conditions: - // The constructor function has been defined. - // The constructor function has no parameters, - // and the function body is an empty compound statement. - if (!(CD->hasTrivialBody() && CD->getNumParams() == 0)) - return false; - - // Its class has no virtual functions and no virtual base classes. - if (CD->getParent()->isDynamicClass()) - return false; - - // The only form of initializer allowed is an empty constructor. - // This will recursively check all base classes and member initializers - if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) { - if (const CXXConstructExpr *CE = - dyn_cast<CXXConstructExpr>(CI->getInit())) - return isEmptyCudaConstructor(Loc, CE->getConstructor()); - return false; - })) - return false; - - return true; -} - -bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) { - // No destructor -> no problem. - if (!DD) - return true; - - if (!DD->isDefined() && DD->isTemplateInstantiation()) - InstantiateFunctionDefinition(Loc, DD->getFirstDecl()); - - // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered - // empty at a point in the translation unit, if it is either a - // trivial constructor - if (DD->isTrivial()) - return true; - - // ... or it satisfies all of the following conditions: - // The destructor function has been defined. - // and the function body is an empty compound statement. - if (!DD->hasTrivialBody()) - return false; - - const CXXRecordDecl *ClassDecl = DD->getParent(); - - // Its class has no virtual functions and no virtual base classes. - if (ClassDecl->isDynamicClass()) - return false; - - // Only empty destructors are allowed. This will recursively check - // destructors for all base classes... - if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) { - if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl()) - return isEmptyCudaDestructor(Loc, RD->getDestructor()); - return true; - })) - return false; - - // ... and member fields. - if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) { - if (CXXRecordDecl *RD = Field->getType() - ->getBaseElementTypeUnsafe() - ->getAsCXXRecordDecl()) - return isEmptyCudaDestructor(Loc, RD->getDestructor()); - return true; - })) - return false; - - return true; -} - -void Sema::checkAllowedCUDAInitializer(VarDecl *VD) { - if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage()) - return; - const Expr *Init = VD->getInit(); - if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() || - VD->hasAttr<CUDASharedAttr>()) { - assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>()); - bool AllowedInit = false; - if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) - AllowedInit = - isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor()); - // We'll allow constant initializers even if it's a non-empty - // constructor according to CUDA rules. This deviates from NVCC, - // but allows us to handle things like constexpr constructors. - if (!AllowedInit && - (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) - AllowedInit = VD->getInit()->isConstantInitializer( - Context, VD->getType()->isReferenceType()); - - // Also make sure that destructor, if there is one, is empty. - if (AllowedInit) - if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl()) - AllowedInit = - isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor()); - - if (!AllowedInit) { - Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>() - ? diag::err_shared_var_init - : diag::err_dynamic_var_init) - << Init->getSourceRange(); - VD->setInvalidDecl(); - } - } else { - // This is a host-side global variable. Check that the initializer is - // callable from the host side. - const FunctionDecl *InitFn = nullptr; - if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) { - InitFn = CE->getConstructor(); - } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) { - InitFn = CE->getDirectCallee(); - } - if (InitFn) { - CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn); - if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) { - Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer) - << InitFnTarget << InitFn; - Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn; - VD->setInvalidDecl(); - } - } - } -} - -// With -fcuda-host-device-constexpr, an unattributed constexpr function is -// treated as implicitly __host__ __device__, unless: -// * it is a variadic function (device-side variadic functions are not -// allowed), or -// * a __device__ function with this signature was already declared, in which -// case in which case we output an error, unless the __device__ decl is in a -// system header, in which case we leave the constexpr function unattributed. -// -// In addition, all function decls are treated as __host__ __device__ when -// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a -// #pragma clang force_cuda_host_device_begin/end -// pair). -void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD, - const LookupResult &Previous) { - assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); - - if (ForceCUDAHostDeviceDepth > 0) { - if (!NewD->hasAttr<CUDAHostAttr>()) - NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); - if (!NewD->hasAttr<CUDADeviceAttr>()) - NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); - return; - } - - if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() || - NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() || - NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>()) - return; - - // Is D a __device__ function with the same signature as NewD, ignoring CUDA - // attributes? - auto IsMatchingDeviceFn = [&](NamedDecl *D) { - if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D)) - D = Using->getTargetDecl(); - FunctionDecl *OldD = D->getAsFunction(); - return OldD && OldD->hasAttr<CUDADeviceAttr>() && - !OldD->hasAttr<CUDAHostAttr>() && - !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false, - /* ConsiderCudaAttrs = */ false); - }; - auto It = llvm::find_if(Previous, IsMatchingDeviceFn); - if (It != Previous.end()) { - // We found a __device__ function with the same name and signature as NewD - // (ignoring CUDA attrs). This is an error unless that function is defined - // in a system header, in which case we simply return without making NewD - // host+device. - NamedDecl *Match = *It; - if (!getSourceManager().isInSystemHeader(Match->getLocation())) { - Diag(NewD->getLocation(), - diag::err_cuda_unattributed_constexpr_cannot_overload_device) - << NewD; - Diag(Match->getLocation(), - diag::note_cuda_conflicting_device_function_declared_here); - } - return; - } - - NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); - NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); -} - -// In CUDA, there are some constructs which may appear in semantically-valid -// code, but trigger errors if we ever generate code for the function in which -// they appear. Essentially every construct you're not allowed to use on the -// device falls into this category, because you are allowed to use these -// constructs in a __host__ __device__ function, but only if that function is -// never codegen'ed on the device. -// -// To handle semantic checking for these constructs, we keep track of the set of -// functions we know will be emitted, either because we could tell a priori that -// they would be emitted, or because they were transitively called by a -// known-emitted function. -// -// We also keep a partial call graph of which not-known-emitted functions call -// which other not-known-emitted functions. -// -// When we see something which is illegal if the current function is emitted -// (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or -// CheckCUDACall), we first check if the current function is known-emitted. If -// so, we immediately output the diagnostic. -// -// Otherwise, we "defer" the diagnostic. It sits in Sema::CUDADeferredDiags -// until we discover that the function is known-emitted, at which point we take -// it out of this map and emit the diagnostic. - -Sema::CUDADiagBuilder::CUDADiagBuilder(Kind K, SourceLocation Loc, - unsigned DiagID, FunctionDecl *Fn, - Sema &S) - : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn), - ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) { - switch (K) { - case K_Nop: - break; - case K_Immediate: - case K_ImmediateWithCallStack: - ImmediateDiag.emplace(S.Diag(Loc, DiagID)); - break; - case K_Deferred: - assert(Fn && "Must have a function to attach the deferred diag to."); - PartialDiag.emplace(S.PDiag(DiagID)); - break; - } -} - -// Print notes showing how we can reach FD starting from an a priori -// known-callable function. -static void EmitCallStackNotes(Sema &S, FunctionDecl *FD) { - auto FnIt = S.CUDAKnownEmittedFns.find(FD); - while (FnIt != S.CUDAKnownEmittedFns.end()) { - DiagnosticBuilder Builder( - S.Diags.Report(FnIt->second.Loc, diag::note_called_by)); - Builder << FnIt->second.FD; - Builder.setForceEmit(); - - FnIt = S.CUDAKnownEmittedFns.find(FnIt->second.FD); - } -} - -Sema::CUDADiagBuilder::~CUDADiagBuilder() { - if (ImmediateDiag) { - // Emit our diagnostic and, if it was a warning or error, output a callstack - // if Fn isn't a priori known-emitted. - bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel( - DiagID, Loc) >= DiagnosticsEngine::Warning; - ImmediateDiag.reset(); // Emit the immediate diag. - if (IsWarningOrError && ShowCallStack) - EmitCallStackNotes(S, Fn); - } else if (PartialDiag) { - assert(ShowCallStack && "Must always show call stack for deferred diags."); - S.CUDADeferredDiags[Fn].push_back({Loc, std::move(*PartialDiag)}); - } -} - -// Do we know that we will eventually codegen the given function? -static bool IsKnownEmitted(Sema &S, FunctionDecl *FD) { - // Templates are emitted when they're instantiated. - if (FD->isDependentContext()) - return false; - - // When compiling for device, host functions are never emitted. Similarly, - // when compiling for host, device and global functions are never emitted. - // (Technically, we do emit a host-side stub for global functions, but this - // doesn't count for our purposes here.) - Sema::CUDAFunctionTarget T = S.IdentifyCUDATarget(FD); - if (S.getLangOpts().CUDAIsDevice && T == Sema::CFT_Host) - return false; - if (!S.getLangOpts().CUDAIsDevice && - (T == Sema::CFT_Device || T == Sema::CFT_Global)) - return false; - - // Check whether this function is externally visible -- if so, it's - // known-emitted. - // - // We have to check the GVA linkage of the function's *definition* -- if we - // only have a declaration, we don't know whether or not the function will be - // emitted, because (say) the definition could include "inline". - FunctionDecl *Def = FD->getDefinition(); - - if (Def && - !isDiscardableGVALinkage(S.getASTContext().GetGVALinkageForFunction(Def))) - return true; - - // Otherwise, the function is known-emitted if it's in our set of - // known-emitted functions. - return S.CUDAKnownEmittedFns.count(FD) > 0; -} - -Sema::CUDADiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc, - unsigned DiagID) { - assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); - CUDADiagBuilder::Kind DiagKind = [&] { - switch (CurrentCUDATarget()) { - case CFT_Global: - case CFT_Device: - return CUDADiagBuilder::K_Immediate; - case CFT_HostDevice: - // An HD function counts as host code if we're compiling for host, and - // device code if we're compiling for device. Defer any errors in device - // mode until the function is known-emitted. - if (getLangOpts().CUDAIsDevice) { - return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext)) - ? CUDADiagBuilder::K_ImmediateWithCallStack - : CUDADiagBuilder::K_Deferred; - } - return CUDADiagBuilder::K_Nop; - - default: - return CUDADiagBuilder::K_Nop; - } - }(); - return CUDADiagBuilder(DiagKind, Loc, DiagID, - dyn_cast<FunctionDecl>(CurContext), *this); -} - -Sema::CUDADiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc, - unsigned DiagID) { - assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); - CUDADiagBuilder::Kind DiagKind = [&] { - switch (CurrentCUDATarget()) { - case CFT_Host: - return CUDADiagBuilder::K_Immediate; - case CFT_HostDevice: - // An HD function counts as host code if we're compiling for host, and - // device code if we're compiling for device. Defer any errors in device - // mode until the function is known-emitted. - if (getLangOpts().CUDAIsDevice) - return CUDADiagBuilder::K_Nop; - - return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext)) - ? CUDADiagBuilder::K_ImmediateWithCallStack - : CUDADiagBuilder::K_Deferred; - default: - return CUDADiagBuilder::K_Nop; - } - }(); - return CUDADiagBuilder(DiagKind, Loc, DiagID, - dyn_cast<FunctionDecl>(CurContext), *this); -} - -// Emit any deferred diagnostics for FD and erase them from the map in which -// they're stored. -static void EmitDeferredDiags(Sema &S, FunctionDecl *FD) { - auto It = S.CUDADeferredDiags.find(FD); - if (It == S.CUDADeferredDiags.end()) - return; - bool HasWarningOrError = false; - for (PartialDiagnosticAt &PDAt : It->second) { - const SourceLocation &Loc = PDAt.first; - const PartialDiagnostic &PD = PDAt.second; - HasWarningOrError |= S.getDiagnostics().getDiagnosticLevel( - PD.getDiagID(), Loc) >= DiagnosticsEngine::Warning; - DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID())); - Builder.setForceEmit(); - PD.Emit(Builder); - } - S.CUDADeferredDiags.erase(It); - - // FIXME: Should this be called after every warning/error emitted in the loop - // above, instead of just once per function? That would be consistent with - // how we handle immediate errors, but it also seems like a bit much. - if (HasWarningOrError) - EmitCallStackNotes(S, FD); -} - -// Indicate that this function (and thus everything it transtively calls) will -// be codegen'ed, and emit any deferred diagnostics on this function and its -// (transitive) callees. -static void MarkKnownEmitted(Sema &S, FunctionDecl *OrigCaller, - FunctionDecl *OrigCallee, SourceLocation OrigLoc) { - // Nothing to do if we already know that FD is emitted. - if (IsKnownEmitted(S, OrigCallee)) { - assert(!S.CUDACallGraph.count(OrigCallee)); - return; - } - - // We've just discovered that OrigCallee is known-emitted. Walk our call - // graph to see what else we can now discover also must be emitted. - - struct CallInfo { - FunctionDecl *Caller; - FunctionDecl *Callee; - SourceLocation Loc; - }; - llvm::SmallVector<CallInfo, 4> Worklist = {{OrigCaller, OrigCallee, OrigLoc}}; - llvm::SmallSet<CanonicalDeclPtr<FunctionDecl>, 4> Seen; - Seen.insert(OrigCallee); - while (!Worklist.empty()) { - CallInfo C = Worklist.pop_back_val(); - assert(!IsKnownEmitted(S, C.Callee) && - "Worklist should not contain known-emitted functions."); - S.CUDAKnownEmittedFns[C.Callee] = {C.Caller, C.Loc}; - EmitDeferredDiags(S, C.Callee); - - // If this is a template instantiation, explore its callgraph as well: - // Non-dependent calls are part of the template's callgraph, while dependent - // calls are part of to the instantiation's call graph. - if (auto *Templ = C.Callee->getPrimaryTemplate()) { - FunctionDecl *TemplFD = Templ->getAsFunction(); - if (!Seen.count(TemplFD) && !S.CUDAKnownEmittedFns.count(TemplFD)) { - Seen.insert(TemplFD); - Worklist.push_back( - {/* Caller = */ C.Caller, /* Callee = */ TemplFD, C.Loc}); - } - } - - // Add all functions called by Callee to our worklist. - auto CGIt = S.CUDACallGraph.find(C.Callee); - if (CGIt == S.CUDACallGraph.end()) - continue; - - for (std::pair<CanonicalDeclPtr<FunctionDecl>, SourceLocation> FDLoc : - CGIt->second) { - FunctionDecl *NewCallee = FDLoc.first; - SourceLocation CallLoc = FDLoc.second; - if (Seen.count(NewCallee) || IsKnownEmitted(S, NewCallee)) - continue; - Seen.insert(NewCallee); - Worklist.push_back( - {/* Caller = */ C.Callee, /* Callee = */ NewCallee, CallLoc}); - } - - // C.Callee is now known-emitted, so we no longer need to maintain its list - // of callees in CUDACallGraph. - S.CUDACallGraph.erase(CGIt); - } -} - -bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) { - assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); - assert(Callee && "Callee may not be null."); - // FIXME: Is bailing out early correct here? Should we instead assume that - // the caller is a global initializer? - FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); - if (!Caller) - return true; - - // If the caller is known-emitted, mark the callee as known-emitted. - // Otherwise, mark the call in our call graph so we can traverse it later. - bool CallerKnownEmitted = IsKnownEmitted(*this, Caller); - if (CallerKnownEmitted) { - // Host-side references to a __global__ function refer to the stub, so the - // function itself is never emitted and therefore should not be marked. - if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global) - MarkKnownEmitted(*this, Caller, Callee, Loc); - } else { - // If we have - // host fn calls kernel fn calls host+device, - // the HD function does not get instantiated on the host. We model this by - // omitting at the call to the kernel from the callgraph. This ensures - // that, when compiling for host, only HD functions actually called from the - // host get marked as known-emitted. - if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global) - CUDACallGraph[Caller].insert({Callee, Loc}); - } - - CUDADiagBuilder::Kind DiagKind = [&] { - switch (IdentifyCUDAPreference(Caller, Callee)) { - case CFP_Never: - return CUDADiagBuilder::K_Immediate; - case CFP_WrongSide: - assert(Caller && "WrongSide calls require a non-null caller"); - // If we know the caller will be emitted, we know this wrong-side call - // will be emitted, so it's an immediate error. Otherwise, defer the - // error until we know the caller is emitted. - return CallerKnownEmitted ? CUDADiagBuilder::K_ImmediateWithCallStack - : CUDADiagBuilder::K_Deferred; - default: - return CUDADiagBuilder::K_Nop; - } - }(); - - if (DiagKind == CUDADiagBuilder::K_Nop) - return true; - - // Avoid emitting this error twice for the same location. Using a hashtable - // like this is unfortunate, but because we must continue parsing as normal - // after encountering a deferred error, it's otherwise very tricky for us to - // ensure that we only emit this deferred error once. - if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second) - return true; - - CUDADiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this) - << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller); - CUDADiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl, - Caller, *this) - << Callee; - return DiagKind != CUDADiagBuilder::K_Immediate && - DiagKind != CUDADiagBuilder::K_ImmediateWithCallStack; -} - -void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) { - assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); - if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>()) - return; - FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext); - if (!CurFn) - return; - CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn); - if (Target == CFT_Global || Target == CFT_Device) { - Method->addAttr(CUDADeviceAttr::CreateImplicit(Context)); - } else if (Target == CFT_HostDevice) { - Method->addAttr(CUDADeviceAttr::CreateImplicit(Context)); - Method->addAttr(CUDAHostAttr::CreateImplicit(Context)); - } -} - -void Sema::checkCUDATargetOverload(FunctionDecl *NewFD, - const LookupResult &Previous) { - assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); - CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD); - for (NamedDecl *OldND : Previous) { - FunctionDecl *OldFD = OldND->getAsFunction(); - if (!OldFD) - continue; - - CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD); - // Don't allow HD and global functions to overload other functions with the - // same signature. We allow overloading based on CUDA attributes so that - // functions can have different implementations on the host and device, but - // HD/global functions "exist" in some sense on both the host and device, so - // should have the same implementation on both sides. - if (NewTarget != OldTarget && - ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) || - (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) && - !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false, - /* ConsiderCudaAttrs = */ false)) { - Diag(NewFD->getLocation(), diag::err_cuda_ovl_target) - << NewTarget << NewFD->getDeclName() << OldTarget << OldFD; - Diag(OldFD->getLocation(), diag::note_previous_declaration); - NewFD->setInvalidDecl(); - break; - } - } -} - -template <typename AttrTy> -static void copyAttrIfPresent(Sema &S, FunctionDecl *FD, - const FunctionDecl &TemplateFD) { - if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) { - AttrTy *Clone = Attribute->clone(S.Context); - Clone->setInherited(true); - FD->addAttr(Clone); - } -} - -void Sema::inheritCUDATargetAttrs(FunctionDecl *FD, - const FunctionTemplateDecl &TD) { - const FunctionDecl &TemplateFD = *TD.getTemplatedDecl(); - copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD); - copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD); - copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD); -} |
