summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/tools/lld/ELF/Target.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/tools/lld/ELF/Target.cpp')
-rw-r--r--gnu/llvm/tools/lld/ELF/Target.cpp2120
1 files changed, 2120 insertions, 0 deletions
diff --git a/gnu/llvm/tools/lld/ELF/Target.cpp b/gnu/llvm/tools/lld/ELF/Target.cpp
new file mode 100644
index 00000000000..0375eb96dc3
--- /dev/null
+++ b/gnu/llvm/tools/lld/ELF/Target.cpp
@@ -0,0 +1,2120 @@
+//===- Target.cpp ---------------------------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Machine-specific things, such as applying relocations, creation of
+// GOT or PLT entries, etc., are handled in this file.
+//
+// Refer the ELF spec for the single letter varaibles, S, A or P, used
+// in this file.
+//
+// Some functions defined in this file has "relaxTls" as part of their names.
+// They do peephole optimization for TLS variables by rewriting instructions.
+// They are not part of the ABI but optional optimization, so you can skip
+// them if you are not interested in how TLS variables are optimized.
+// See the following paper for the details.
+//
+// Ulrich Drepper, ELF Handling For Thread-Local Storage
+// http://www.akkadia.org/drepper/tls.pdf
+//
+//===----------------------------------------------------------------------===//
+
+#include "Target.h"
+#include "Error.h"
+#include "InputFiles.h"
+#include "OutputSections.h"
+#include "Symbols.h"
+#include "Thunks.h"
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/Object/ELF.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/ELF.h"
+
+using namespace llvm;
+using namespace llvm::object;
+using namespace llvm::support::endian;
+using namespace llvm::ELF;
+
+namespace lld {
+namespace elf {
+
+TargetInfo *Target;
+
+static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
+
+StringRef getRelName(uint32_t Type) {
+ return getELFRelocationTypeName(Config->EMachine, Type);
+}
+
+template <unsigned N> static void checkInt(int64_t V, uint32_t Type) {
+ if (!isInt<N>(V))
+ error("relocation " + getRelName(Type) + " out of range");
+}
+
+template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) {
+ if (!isUInt<N>(V))
+ error("relocation " + getRelName(Type) + " out of range");
+}
+
+template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) {
+ if (!isInt<N>(V) && !isUInt<N>(V))
+ error("relocation " + getRelName(Type) + " out of range");
+}
+
+template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) {
+ if ((V & (N - 1)) != 0)
+ error("improper alignment for relocation " + getRelName(Type));
+}
+
+static void errorDynRel(uint32_t Type) {
+ error("relocation " + getRelName(Type) +
+ " cannot be used against shared object; recompile with -fPIC.");
+}
+
+namespace {
+class X86TargetInfo final : public TargetInfo {
+public:
+ X86TargetInfo();
+ RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
+ uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
+ void writeGotPltHeader(uint8_t *Buf) const override;
+ uint32_t getDynRel(uint32_t Type) const override;
+ bool isTlsLocalDynamicRel(uint32_t Type) const override;
+ bool isTlsGlobalDynamicRel(uint32_t Type) const override;
+ bool isTlsInitialExecRel(uint32_t Type) const override;
+ void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
+ void writePltHeader(uint8_t *Buf) const override;
+ void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
+ int32_t Index, unsigned RelOff) const override;
+ void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+
+ RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
+ RelExpr Expr) const override;
+ void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+};
+
+template <class ELFT> class X86_64TargetInfo final : public TargetInfo {
+public:
+ X86_64TargetInfo();
+ RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
+ uint32_t getDynRel(uint32_t Type) const override;
+ bool isTlsLocalDynamicRel(uint32_t Type) const override;
+ bool isTlsGlobalDynamicRel(uint32_t Type) const override;
+ bool isTlsInitialExecRel(uint32_t Type) const override;
+ void writeGotPltHeader(uint8_t *Buf) const override;
+ void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
+ void writePltHeader(uint8_t *Buf) const override;
+ void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
+ int32_t Index, unsigned RelOff) const override;
+ void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+
+ RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
+ RelExpr Expr) const override;
+ void relaxGot(uint8_t *Loc, uint64_t Val) const override;
+ void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+
+private:
+ void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
+ uint8_t ModRm) const;
+};
+
+class PPCTargetInfo final : public TargetInfo {
+public:
+ PPCTargetInfo();
+ void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
+};
+
+class PPC64TargetInfo final : public TargetInfo {
+public:
+ PPC64TargetInfo();
+ RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
+ void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
+ int32_t Index, unsigned RelOff) const override;
+ void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+};
+
+class AArch64TargetInfo final : public TargetInfo {
+public:
+ AArch64TargetInfo();
+ RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
+ uint32_t getDynRel(uint32_t Type) const override;
+ bool isTlsInitialExecRel(uint32_t Type) const override;
+ void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
+ void writePltHeader(uint8_t *Buf) const override;
+ void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
+ int32_t Index, unsigned RelOff) const override;
+ bool usesOnlyLowPageBits(uint32_t Type) const override;
+ void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
+ RelExpr Expr) const override;
+ void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+};
+
+class AMDGPUTargetInfo final : public TargetInfo {
+public:
+ AMDGPUTargetInfo();
+ void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
+};
+
+class ARMTargetInfo final : public TargetInfo {
+public:
+ ARMTargetInfo();
+ RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
+ uint32_t getDynRel(uint32_t Type) const override;
+ uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
+ void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
+ void writePltHeader(uint8_t *Buf) const override;
+ void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
+ int32_t Index, unsigned RelOff) const override;
+ RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType,
+ const InputFile &File,
+ const SymbolBody &S) const override;
+ void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+};
+
+template <class ELFT> class MipsTargetInfo final : public TargetInfo {
+public:
+ MipsTargetInfo();
+ RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
+ uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
+ uint32_t getDynRel(uint32_t Type) const override;
+ bool isTlsLocalDynamicRel(uint32_t Type) const override;
+ bool isTlsGlobalDynamicRel(uint32_t Type) const override;
+ void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
+ void writePltHeader(uint8_t *Buf) const override;
+ void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
+ int32_t Index, unsigned RelOff) const override;
+ RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType,
+ const InputFile &File,
+ const SymbolBody &S) const override;
+ void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
+ bool usesOnlyLowPageBits(uint32_t Type) const override;
+};
+} // anonymous namespace
+
+TargetInfo *createTarget() {
+ switch (Config->EMachine) {
+ case EM_386:
+ return new X86TargetInfo();
+ case EM_AARCH64:
+ return new AArch64TargetInfo();
+ case EM_AMDGPU:
+ return new AMDGPUTargetInfo();
+ case EM_ARM:
+ return new ARMTargetInfo();
+ case EM_MIPS:
+ switch (Config->EKind) {
+ case ELF32LEKind:
+ return new MipsTargetInfo<ELF32LE>();
+ case ELF32BEKind:
+ return new MipsTargetInfo<ELF32BE>();
+ case ELF64LEKind:
+ return new MipsTargetInfo<ELF64LE>();
+ case ELF64BEKind:
+ return new MipsTargetInfo<ELF64BE>();
+ default:
+ fatal("unsupported MIPS target");
+ }
+ case EM_PPC:
+ return new PPCTargetInfo();
+ case EM_PPC64:
+ return new PPC64TargetInfo();
+ case EM_X86_64:
+ if (Config->EKind == ELF32LEKind)
+ return new X86_64TargetInfo<ELF32LE>();
+ return new X86_64TargetInfo<ELF64LE>();
+ }
+ fatal("unknown target machine");
+}
+
+TargetInfo::~TargetInfo() {}
+
+uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf,
+ uint32_t Type) const {
+ return 0;
+}
+
+bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; }
+
+RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
+ const InputFile &File,
+ const SymbolBody &S) const {
+ return Expr;
+}
+
+bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; }
+
+bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; }
+
+bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
+ return false;
+}
+
+RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
+ RelExpr Expr) const {
+ return Expr;
+}
+
+void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
+ llvm_unreachable("Should not have claimed to be relaxable");
+}
+
+void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ llvm_unreachable("Should not have claimed to be relaxable");
+}
+
+void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ llvm_unreachable("Should not have claimed to be relaxable");
+}
+
+void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ llvm_unreachable("Should not have claimed to be relaxable");
+}
+
+void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ llvm_unreachable("Should not have claimed to be relaxable");
+}
+
+X86TargetInfo::X86TargetInfo() {
+ CopyRel = R_386_COPY;
+ GotRel = R_386_GLOB_DAT;
+ PltRel = R_386_JUMP_SLOT;
+ IRelativeRel = R_386_IRELATIVE;
+ RelativeRel = R_386_RELATIVE;
+ TlsGotRel = R_386_TLS_TPOFF;
+ TlsModuleIndexRel = R_386_TLS_DTPMOD32;
+ TlsOffsetRel = R_386_TLS_DTPOFF32;
+ GotEntrySize = 4;
+ GotPltEntrySize = 4;
+ PltEntrySize = 16;
+ PltHeaderSize = 16;
+ TlsGdRelaxSkip = 2;
+}
+
+RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
+ switch (Type) {
+ default:
+ return R_ABS;
+ case R_386_TLS_GD:
+ return R_TLSGD;
+ case R_386_TLS_LDM:
+ return R_TLSLD;
+ case R_386_PLT32:
+ return R_PLT_PC;
+ case R_386_PC32:
+ return R_PC;
+ case R_386_GOTPC:
+ return R_GOTONLY_PC;
+ case R_386_TLS_IE:
+ return R_GOT;
+ case R_386_GOT32:
+ case R_386_GOT32X:
+ case R_386_TLS_GOTIE:
+ return R_GOT_FROM_END;
+ case R_386_GOTOFF:
+ return R_GOTREL;
+ case R_386_TLS_LE:
+ return R_TLS;
+ case R_386_TLS_LE_32:
+ return R_NEG_TLS;
+ }
+}
+
+RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
+ RelExpr Expr) const {
+ switch (Expr) {
+ default:
+ return Expr;
+ case R_RELAX_TLS_GD_TO_IE:
+ return R_RELAX_TLS_GD_TO_IE_END;
+ case R_RELAX_TLS_GD_TO_LE:
+ return R_RELAX_TLS_GD_TO_LE_NEG;
+ }
+}
+
+void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
+ write32le(Buf, Out<ELF32LE>::Dynamic->getVA());
+}
+
+void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
+ // Entries in .got.plt initially points back to the corresponding
+ // PLT entries with a fixed offset to skip the first instruction.
+ write32le(Buf, S.getPltVA<ELF32LE>() + 6);
+}
+
+uint32_t X86TargetInfo::getDynRel(uint32_t Type) const {
+ if (Type == R_386_TLS_LE)
+ return R_386_TLS_TPOFF;
+ if (Type == R_386_TLS_LE_32)
+ return R_386_TLS_TPOFF32;
+ return Type;
+}
+
+bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
+ return Type == R_386_TLS_GD;
+}
+
+bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
+ return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM;
+}
+
+bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
+ return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE;
+}
+
+void X86TargetInfo::writePltHeader(uint8_t *Buf) const {
+ // Executable files and shared object files have
+ // separate procedure linkage tables.
+ if (Config->Pic) {
+ const uint8_t V[] = {
+ 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
+ 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
+ 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop
+ };
+ memcpy(Buf, V, sizeof(V));
+ return;
+ }
+
+ const uint8_t PltData[] = {
+ 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
+ 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8)
+ 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop
+ };
+ memcpy(Buf, PltData, sizeof(PltData));
+ uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
+ write32le(Buf + 2, Got + 4);
+ write32le(Buf + 8, Got + 8);
+}
+
+void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
+ uint64_t PltEntryAddr, int32_t Index,
+ unsigned RelOff) const {
+ const uint8_t Inst[] = {
+ 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
+ 0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset
+ 0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC
+ };
+ memcpy(Buf, Inst, sizeof(Inst));
+
+ // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
+ Buf[1] = Config->Pic ? 0xa3 : 0x25;
+ uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
+ write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr);
+ write32le(Buf + 7, RelOff);
+ write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
+}
+
+uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf,
+ uint32_t Type) const {
+ switch (Type) {
+ default:
+ return 0;
+ case R_386_32:
+ case R_386_GOT32:
+ case R_386_GOT32X:
+ case R_386_GOTOFF:
+ case R_386_GOTPC:
+ case R_386_PC32:
+ case R_386_PLT32:
+ case R_386_TLS_LE:
+ return read32le(Buf);
+ }
+}
+
+void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ checkInt<32>(Val, Type);
+ write32le(Loc, Val);
+}
+
+void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ // Convert
+ // leal x@tlsgd(, %ebx, 1),
+ // call __tls_get_addr@plt
+ // to
+ // movl %gs:0,%eax
+ // subl $x@ntpoff,%eax
+ const uint8_t Inst[] = {
+ 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
+ 0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax
+ };
+ memcpy(Loc - 3, Inst, sizeof(Inst));
+ relocateOne(Loc + 5, R_386_32, Val);
+}
+
+void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ // Convert
+ // leal x@tlsgd(, %ebx, 1),
+ // call __tls_get_addr@plt
+ // to
+ // movl %gs:0, %eax
+ // addl x@gotntpoff(%ebx), %eax
+ const uint8_t Inst[] = {
+ 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
+ 0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax
+ };
+ memcpy(Loc - 3, Inst, sizeof(Inst));
+ relocateOne(Loc + 5, R_386_32, Val);
+}
+
+// In some conditions, relocations can be optimized to avoid using GOT.
+// This function does that for Initial Exec to Local Exec case.
+void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ // Ulrich's document section 6.2 says that @gotntpoff can
+ // be used with MOVL or ADDL instructions.
+ // @indntpoff is similar to @gotntpoff, but for use in
+ // position dependent code.
+ uint8_t Reg = (Loc[-1] >> 3) & 7;
+
+ if (Type == R_386_TLS_IE) {
+ if (Loc[-1] == 0xa1) {
+ // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
+ // This case is different from the generic case below because
+ // this is a 5 byte instruction while below is 6 bytes.
+ Loc[-1] = 0xb8;
+ } else if (Loc[-2] == 0x8b) {
+ // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
+ Loc[-2] = 0xc7;
+ Loc[-1] = 0xc0 | Reg;
+ } else {
+ // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
+ Loc[-2] = 0x81;
+ Loc[-1] = 0xc0 | Reg;
+ }
+ } else {
+ assert(Type == R_386_TLS_GOTIE);
+ if (Loc[-2] == 0x8b) {
+ // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
+ Loc[-2] = 0xc7;
+ Loc[-1] = 0xc0 | Reg;
+ } else {
+ // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
+ Loc[-2] = 0x8d;
+ Loc[-1] = 0x80 | (Reg << 3) | Reg;
+ }
+ }
+ relocateOne(Loc, R_386_TLS_LE, Val);
+}
+
+void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ if (Type == R_386_TLS_LDO_32) {
+ relocateOne(Loc, R_386_TLS_LE, Val);
+ return;
+ }
+
+ // Convert
+ // leal foo(%reg),%eax
+ // call ___tls_get_addr
+ // to
+ // movl %gs:0,%eax
+ // nop
+ // leal 0(%esi,1),%esi
+ const uint8_t Inst[] = {
+ 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
+ 0x90, // nop
+ 0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi
+ };
+ memcpy(Loc - 2, Inst, sizeof(Inst));
+}
+
+template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() {
+ CopyRel = R_X86_64_COPY;
+ GotRel = R_X86_64_GLOB_DAT;
+ PltRel = R_X86_64_JUMP_SLOT;
+ RelativeRel = R_X86_64_RELATIVE;
+ IRelativeRel = R_X86_64_IRELATIVE;
+ TlsGotRel = R_X86_64_TPOFF64;
+ TlsModuleIndexRel = R_X86_64_DTPMOD64;
+ TlsOffsetRel = R_X86_64_DTPOFF64;
+ GotEntrySize = 8;
+ GotPltEntrySize = 8;
+ PltEntrySize = 16;
+ PltHeaderSize = 16;
+ TlsGdRelaxSkip = 2;
+}
+
+template <class ELFT>
+RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type,
+ const SymbolBody &S) const {
+ switch (Type) {
+ default:
+ return R_ABS;
+ case R_X86_64_TPOFF32:
+ return R_TLS;
+ case R_X86_64_TLSLD:
+ return R_TLSLD_PC;
+ case R_X86_64_TLSGD:
+ return R_TLSGD_PC;
+ case R_X86_64_SIZE32:
+ case R_X86_64_SIZE64:
+ return R_SIZE;
+ case R_X86_64_PLT32:
+ return R_PLT_PC;
+ case R_X86_64_PC32:
+ case R_X86_64_PC64:
+ return R_PC;
+ case R_X86_64_GOT32:
+ return R_GOT_FROM_END;
+ case R_X86_64_GOTPCREL:
+ case R_X86_64_GOTPCRELX:
+ case R_X86_64_REX_GOTPCRELX:
+ case R_X86_64_GOTTPOFF:
+ return R_GOT_PC;
+ }
+}
+
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const {
+ // The first entry holds the value of _DYNAMIC. It is not clear why that is
+ // required, but it is documented in the psabi and the glibc dynamic linker
+ // seems to use it (note that this is relevant for linking ld.so, not any
+ // other program).
+ write64le(Buf, Out<ELFT>::Dynamic->getVA());
+}
+
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf,
+ const SymbolBody &S) const {
+ // See comments in X86TargetInfo::writeGotPlt.
+ write32le(Buf, S.getPltVA<ELFT>() + 6);
+}
+
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
+ const uint8_t PltData[] = {
+ 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
+ 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
+ 0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax)
+ };
+ memcpy(Buf, PltData, sizeof(PltData));
+ uint64_t Got = Out<ELFT>::GotPlt->getVA();
+ uint64_t Plt = Out<ELFT>::Plt->getVA();
+ write32le(Buf + 2, Got - Plt + 2); // GOT+8
+ write32le(Buf + 8, Got - Plt + 4); // GOT+16
+}
+
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
+ uint64_t PltEntryAddr, int32_t Index,
+ unsigned RelOff) const {
+ const uint8_t Inst[] = {
+ 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
+ 0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index>
+ 0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0]
+ };
+ memcpy(Buf, Inst, sizeof(Inst));
+
+ write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
+ write32le(Buf + 7, Index);
+ write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
+}
+
+template <class ELFT>
+uint32_t X86_64TargetInfo<ELFT>::getDynRel(uint32_t Type) const {
+ if (Type == R_X86_64_PC32 || Type == R_X86_64_32)
+ errorDynRel(Type);
+ return Type;
+}
+
+template <class ELFT>
+bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const {
+ return Type == R_X86_64_GOTTPOFF;
+}
+
+template <class ELFT>
+bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
+ return Type == R_X86_64_TLSGD;
+}
+
+template <class ELFT>
+bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
+ return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 ||
+ Type == R_X86_64_TLSLD;
+}
+
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ // Convert
+ // .byte 0x66
+ // leaq x@tlsgd(%rip), %rdi
+ // .word 0x6666
+ // rex64
+ // call __tls_get_addr@plt
+ // to
+ // mov %fs:0x0,%rax
+ // lea x@tpoff,%rax
+ const uint8_t Inst[] = {
+ 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
+ 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax
+ };
+ memcpy(Loc - 4, Inst, sizeof(Inst));
+ // The original code used a pc relative relocation and so we have to
+ // compensate for the -4 in had in the addend.
+ relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4);
+}
+
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ // Convert
+ // .byte 0x66
+ // leaq x@tlsgd(%rip), %rdi
+ // .word 0x6666
+ // rex64
+ // call __tls_get_addr@plt
+ // to
+ // mov %fs:0x0,%rax
+ // addq x@tpoff,%rax
+ const uint8_t Inst[] = {
+ 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
+ 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax
+ };
+ memcpy(Loc - 4, Inst, sizeof(Inst));
+ // Both code sequences are PC relatives, but since we are moving the constant
+ // forward by 8 bytes we have to subtract the value by 8.
+ relocateOne(Loc + 8, R_X86_64_PC32, Val - 8);
+}
+
+// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
+// R_X86_64_TPOFF32 so that it does not use GOT.
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ uint8_t *Inst = Loc - 3;
+ uint8_t Reg = Loc[-1] >> 3;
+ uint8_t *RegSlot = Loc - 1;
+
+ // Note that ADD with RSP or R12 is converted to ADD instead of LEA
+ // because LEA with these registers needs 4 bytes to encode and thus
+ // wouldn't fit the space.
+
+ if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
+ // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
+ memcpy(Inst, "\x48\x81\xc4", 3);
+ } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
+ // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
+ memcpy(Inst, "\x49\x81\xc4", 3);
+ } else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
+ // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
+ memcpy(Inst, "\x4d\x8d", 2);
+ *RegSlot = 0x80 | (Reg << 3) | Reg;
+ } else if (memcmp(Inst, "\x48\x03", 2) == 0) {
+ // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
+ memcpy(Inst, "\x48\x8d", 2);
+ *RegSlot = 0x80 | (Reg << 3) | Reg;
+ } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
+ // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
+ memcpy(Inst, "\x49\xc7", 2);
+ *RegSlot = 0xc0 | Reg;
+ } else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
+ // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
+ memcpy(Inst, "\x48\xc7", 2);
+ *RegSlot = 0xc0 | Reg;
+ } else {
+ fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
+ }
+
+ // The original code used a PC relative relocation.
+ // Need to compensate for the -4 it had in the addend.
+ relocateOne(Loc, R_X86_64_TPOFF32, Val + 4);
+}
+
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ // Convert
+ // leaq bar@tlsld(%rip), %rdi
+ // callq __tls_get_addr@PLT
+ // leaq bar@dtpoff(%rax), %rcx
+ // to
+ // .word 0x6666
+ // .byte 0x66
+ // mov %fs:0,%rax
+ // leaq bar@tpoff(%rax), %rcx
+ if (Type == R_X86_64_DTPOFF64) {
+ write64le(Loc, Val);
+ return;
+ }
+ if (Type == R_X86_64_DTPOFF32) {
+ relocateOne(Loc, R_X86_64_TPOFF32, Val);
+ return;
+ }
+
+ const uint8_t Inst[] = {
+ 0x66, 0x66, // .word 0x6666
+ 0x66, // .byte 0x66
+ 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
+ };
+ memcpy(Loc - 3, Inst, sizeof(Inst));
+}
+
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ switch (Type) {
+ case R_X86_64_32:
+ checkUInt<32>(Val, Type);
+ write32le(Loc, Val);
+ break;
+ case R_X86_64_32S:
+ case R_X86_64_TPOFF32:
+ case R_X86_64_GOT32:
+ case R_X86_64_GOTPCREL:
+ case R_X86_64_GOTPCRELX:
+ case R_X86_64_REX_GOTPCRELX:
+ case R_X86_64_PC32:
+ case R_X86_64_GOTTPOFF:
+ case R_X86_64_PLT32:
+ case R_X86_64_TLSGD:
+ case R_X86_64_TLSLD:
+ case R_X86_64_DTPOFF32:
+ case R_X86_64_SIZE32:
+ checkInt<32>(Val, Type);
+ write32le(Loc, Val);
+ break;
+ case R_X86_64_64:
+ case R_X86_64_DTPOFF64:
+ case R_X86_64_SIZE64:
+ case R_X86_64_PC64:
+ write64le(Loc, Val);
+ break;
+ default:
+ fatal("unrecognized reloc " + Twine(Type));
+ }
+}
+
+template <class ELFT>
+RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type,
+ const uint8_t *Data,
+ RelExpr RelExpr) const {
+ if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
+ return RelExpr;
+ const uint8_t Op = Data[-2];
+ const uint8_t ModRm = Data[-1];
+ // FIXME: When PIC is disabled and foo is defined locally in the
+ // lower 32 bit address space, memory operand in mov can be converted into
+ // immediate operand. Otherwise, mov must be changed to lea. We support only
+ // latter relaxation at this moment.
+ if (Op == 0x8b)
+ return R_RELAX_GOT_PC;
+ // Relax call and jmp.
+ if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
+ return R_RELAX_GOT_PC;
+
+ // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
+ // If PIC then no relaxation is available.
+ // We also don't relax test/binop instructions without REX byte,
+ // they are 32bit operations and not common to have.
+ assert(Type == R_X86_64_REX_GOTPCRELX);
+ return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC;
+}
+
+// A subset of relaxations can only be applied for no-PIC. This method
+// handles such relaxations. Instructions encoding information was taken from:
+// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
+// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
+// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val,
+ uint8_t Op, uint8_t ModRm) const {
+ const uint8_t Rex = Loc[-3];
+ // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
+ if (Op == 0x85) {
+ // See "TEST-Logical Compare" (4-428 Vol. 2B),
+ // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
+
+ // ModR/M byte has form XX YYY ZZZ, where
+ // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
+ // XX has different meanings:
+ // 00: The operand's memory address is in reg1.
+ // 01: The operand's memory address is reg1 + a byte-sized displacement.
+ // 10: The operand's memory address is reg1 + a word-sized displacement.
+ // 11: The operand is reg1 itself.
+ // If an instruction requires only one operand, the unused reg2 field
+ // holds extra opcode bits rather than a register code
+ // 0xC0 == 11 000 000 binary.
+ // 0x38 == 00 111 000 binary.
+ // We transfer reg2 to reg1 here as operand.
+ // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
+ Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.
+
+ // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
+ // See "TEST-Logical Compare" (4-428 Vol. 2B).
+ Loc[-2] = 0xf7;
+
+ // Move R bit to the B bit in REX byte.
+ // REX byte is encoded as 0100WRXB, where
+ // 0100 is 4bit fixed pattern.
+ // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
+ // default operand size is used (which is 32-bit for most but not all
+ // instructions).
+ // REX.R This 1-bit value is an extension to the MODRM.reg field.
+ // REX.X This 1-bit value is an extension to the SIB.index field.
+ // REX.B This 1-bit value is an extension to the MODRM.rm field or the
+ // SIB.base field.
+ // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
+ Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
+ relocateOne(Loc, R_X86_64_PC32, Val);
+ return;
+ }
+
+ // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
+ // or xor operations.
+
+ // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
+ // Logic is close to one for test instruction above, but we also
+ // write opcode extension here, see below for details.
+ Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.
+
+ // Primary opcode is 0x81, opcode extension is one of:
+ // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
+ // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
+ // This value was wrote to MODRM.reg in a line above.
+ // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
+ // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
+ // descriptions about each operation.
+ Loc[-2] = 0x81;
+ Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
+ relocateOne(Loc, R_X86_64_PC32, Val);
+}
+
+template <class ELFT>
+void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const {
+ const uint8_t Op = Loc[-2];
+ const uint8_t ModRm = Loc[-1];
+
+ // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
+ if (Op == 0x8b) {
+ Loc[-2] = 0x8d;
+ relocateOne(Loc, R_X86_64_PC32, Val);
+ return;
+ }
+
+ if (Op != 0xff) {
+ // We are relaxing a rip relative to an absolute, so compensate
+ // for the old -4 addend.
+ assert(!Config->Pic);
+ relaxGotNoPic(Loc, Val + 4, Op, ModRm);
+ return;
+ }
+
+ // Convert call/jmp instructions.
+ if (ModRm == 0x15) {
+ // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
+ // Instead we convert to "addr32 call foo" where addr32 is an instruction
+ // prefix. That makes result expression to be a single instruction.
+ Loc[-2] = 0x67; // addr32 prefix
+ Loc[-1] = 0xe8; // call
+ relocateOne(Loc, R_X86_64_PC32, Val);
+ return;
+ }
+
+ // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
+ // jmp doesn't return, so it is fine to use nop here, it is just a stub.
+ assert(ModRm == 0x25);
+ Loc[-2] = 0xe9; // jmp
+ Loc[3] = 0x90; // nop
+ relocateOne(Loc - 1, R_X86_64_PC32, Val + 1);
+}
+
+// Relocation masks following the #lo(value), #hi(value), #ha(value),
+// #higher(value), #highera(value), #highest(value), and #highesta(value)
+// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
+// document.
+static uint16_t applyPPCLo(uint64_t V) { return V; }
+static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
+static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
+static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
+static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
+static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
+static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
+
+PPCTargetInfo::PPCTargetInfo() {}
+
+void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ switch (Type) {
+ case R_PPC_ADDR16_HA:
+ write16be(Loc, applyPPCHa(Val));
+ break;
+ case R_PPC_ADDR16_LO:
+ write16be(Loc, applyPPCLo(Val));
+ break;
+ default:
+ fatal("unrecognized reloc " + Twine(Type));
+ }
+}
+
+RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
+ return R_ABS;
+}
+
+PPC64TargetInfo::PPC64TargetInfo() {
+ PltRel = GotRel = R_PPC64_GLOB_DAT;
+ RelativeRel = R_PPC64_RELATIVE;
+ GotEntrySize = 8;
+ GotPltEntrySize = 8;
+ PltEntrySize = 32;
+ PltHeaderSize = 0;
+
+ // We need 64K pages (at least under glibc/Linux, the loader won't
+ // set different permissions on a finer granularity than that).
+ PageSize = 65536;
+
+ // The PPC64 ELF ABI v1 spec, says:
+ //
+ // It is normally desirable to put segments with different characteristics
+ // in separate 256 Mbyte portions of the address space, to give the
+ // operating system full paging flexibility in the 64-bit address space.
+ //
+ // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
+ // use 0x10000000 as the starting address.
+ DefaultImageBase = 0x10000000;
+}
+
+static uint64_t PPC64TocOffset = 0x8000;
+
+uint64_t getPPC64TocBase() {
+ // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
+ // TOC starts where the first of these sections starts. We always create a
+ // .got when we see a relocation that uses it, so for us the start is always
+ // the .got.
+ uint64_t TocVA = Out<ELF64BE>::Got->getVA();
+
+ // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
+ // thus permitting a full 64 Kbytes segment. Note that the glibc startup
+ // code (crt1.o) assumes that you can get from the TOC base to the
+ // start of the .toc section with only a single (signed) 16-bit relocation.
+ return TocVA + PPC64TocOffset;
+}
+
+RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
+ switch (Type) {
+ default:
+ return R_ABS;
+ case R_PPC64_TOC16:
+ case R_PPC64_TOC16_DS:
+ case R_PPC64_TOC16_HA:
+ case R_PPC64_TOC16_HI:
+ case R_PPC64_TOC16_LO:
+ case R_PPC64_TOC16_LO_DS:
+ return R_GOTREL;
+ case R_PPC64_TOC:
+ return R_PPC_TOC;
+ case R_PPC64_REL24:
+ return R_PPC_PLT_OPD;
+ }
+}
+
+void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
+ uint64_t PltEntryAddr, int32_t Index,
+ unsigned RelOff) const {
+ uint64_t Off = GotEntryAddr - getPPC64TocBase();
+
+ // FIXME: What we should do, in theory, is get the offset of the function
+ // descriptor in the .opd section, and use that as the offset from %r2 (the
+ // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
+ // be a pointer to the function descriptor in the .opd section. Using
+ // this scheme is simpler, but requires an extra indirection per PLT dispatch.
+
+ write32be(Buf, 0xf8410028); // std %r2, 40(%r1)
+ write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
+ write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
+ write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12)
+ write32be(Buf + 16, 0x7d6903a6); // mtctr %r11
+ write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12)
+ write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12)
+ write32be(Buf + 28, 0x4e800420); // bctr
+}
+
+static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) {
+ uint64_t V = Val - PPC64TocOffset;
+ switch (Type) {
+ case R_PPC64_TOC16: return {R_PPC64_ADDR16, V};
+ case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V};
+ case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V};
+ case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V};
+ case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V};
+ case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V};
+ default: return {Type, Val};
+ }
+}
+
+void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ // For a TOC-relative relocation, proceed in terms of the corresponding
+ // ADDR16 relocation type.
+ std::tie(Type, Val) = toAddr16Rel(Type, Val);
+
+ switch (Type) {
+ case R_PPC64_ADDR14: {
+ checkAlignment<4>(Val, Type);
+ // Preserve the AA/LK bits in the branch instruction
+ uint8_t AALK = Loc[3];
+ write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc));
+ break;
+ }
+ case R_PPC64_ADDR16:
+ checkInt<16>(Val, Type);
+ write16be(Loc, Val);
+ break;
+ case R_PPC64_ADDR16_DS:
+ checkInt<16>(Val, Type);
+ write16be(Loc, (read16be(Loc) & 3) | (Val & ~3));
+ break;
+ case R_PPC64_ADDR16_HA:
+ case R_PPC64_REL16_HA:
+ write16be(Loc, applyPPCHa(Val));
+ break;
+ case R_PPC64_ADDR16_HI:
+ case R_PPC64_REL16_HI:
+ write16be(Loc, applyPPCHi(Val));
+ break;
+ case R_PPC64_ADDR16_HIGHER:
+ write16be(Loc, applyPPCHigher(Val));
+ break;
+ case R_PPC64_ADDR16_HIGHERA:
+ write16be(Loc, applyPPCHighera(Val));
+ break;
+ case R_PPC64_ADDR16_HIGHEST:
+ write16be(Loc, applyPPCHighest(Val));
+ break;
+ case R_PPC64_ADDR16_HIGHESTA:
+ write16be(Loc, applyPPCHighesta(Val));
+ break;
+ case R_PPC64_ADDR16_LO:
+ write16be(Loc, applyPPCLo(Val));
+ break;
+ case R_PPC64_ADDR16_LO_DS:
+ case R_PPC64_REL16_LO:
+ write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3));
+ break;
+ case R_PPC64_ADDR32:
+ case R_PPC64_REL32:
+ checkInt<32>(Val, Type);
+ write32be(Loc, Val);
+ break;
+ case R_PPC64_ADDR64:
+ case R_PPC64_REL64:
+ case R_PPC64_TOC:
+ write64be(Loc, Val);
+ break;
+ case R_PPC64_REL24: {
+ uint32_t Mask = 0x03FFFFFC;
+ checkInt<24>(Val, Type);
+ write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask));
+ break;
+ }
+ default:
+ fatal("unrecognized reloc " + Twine(Type));
+ }
+}
+
+AArch64TargetInfo::AArch64TargetInfo() {
+ CopyRel = R_AARCH64_COPY;
+ RelativeRel = R_AARCH64_RELATIVE;
+ IRelativeRel = R_AARCH64_IRELATIVE;
+ GotRel = R_AARCH64_GLOB_DAT;
+ PltRel = R_AARCH64_JUMP_SLOT;
+ TlsDescRel = R_AARCH64_TLSDESC;
+ TlsGotRel = R_AARCH64_TLS_TPREL64;
+ GotEntrySize = 8;
+ GotPltEntrySize = 8;
+ PltEntrySize = 16;
+ PltHeaderSize = 32;
+
+ // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant
+ // 1 of the tls structures and the tcb size is 16.
+ TcbSize = 16;
+}
+
+RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type,
+ const SymbolBody &S) const {
+ switch (Type) {
+ default:
+ return R_ABS;
+ case R_AARCH64_TLSDESC_ADR_PAGE21:
+ return R_TLSDESC_PAGE;
+ case R_AARCH64_TLSDESC_LD64_LO12_NC:
+ case R_AARCH64_TLSDESC_ADD_LO12_NC:
+ return R_TLSDESC;
+ case R_AARCH64_TLSDESC_CALL:
+ return R_HINT;
+ case R_AARCH64_TLSLE_ADD_TPREL_HI12:
+ case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
+ return R_TLS;
+ case R_AARCH64_CALL26:
+ case R_AARCH64_CONDBR19:
+ case R_AARCH64_JUMP26:
+ case R_AARCH64_TSTBR14:
+ return R_PLT_PC;
+ case R_AARCH64_PREL16:
+ case R_AARCH64_PREL32:
+ case R_AARCH64_PREL64:
+ case R_AARCH64_ADR_PREL_LO21:
+ return R_PC;
+ case R_AARCH64_ADR_PREL_PG_HI21:
+ return R_PAGE_PC;
+ case R_AARCH64_LD64_GOT_LO12_NC:
+ case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
+ return R_GOT;
+ case R_AARCH64_ADR_GOT_PAGE:
+ case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
+ return R_GOT_PAGE_PC;
+ }
+}
+
+RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
+ RelExpr Expr) const {
+ if (Expr == R_RELAX_TLS_GD_TO_IE) {
+ if (Type == R_AARCH64_TLSDESC_ADR_PAGE21)
+ return R_RELAX_TLS_GD_TO_IE_PAGE_PC;
+ return R_RELAX_TLS_GD_TO_IE_ABS;
+ }
+ return Expr;
+}
+
+bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const {
+ switch (Type) {
+ default:
+ return false;
+ case R_AARCH64_ADD_ABS_LO12_NC:
+ case R_AARCH64_LD64_GOT_LO12_NC:
+ case R_AARCH64_LDST128_ABS_LO12_NC:
+ case R_AARCH64_LDST16_ABS_LO12_NC:
+ case R_AARCH64_LDST32_ABS_LO12_NC:
+ case R_AARCH64_LDST64_ABS_LO12_NC:
+ case R_AARCH64_LDST8_ABS_LO12_NC:
+ case R_AARCH64_TLSDESC_ADD_LO12_NC:
+ case R_AARCH64_TLSDESC_LD64_LO12_NC:
+ case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
+ return true;
+ }
+}
+
+bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
+ return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
+ Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
+}
+
+uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const {
+ if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64)
+ return Type;
+ // Keep it going with a dummy value so that we can find more reloc errors.
+ errorDynRel(Type);
+ return R_AARCH64_ABS32;
+}
+
+void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
+ write64le(Buf, Out<ELF64LE>::Plt->getVA());
+}
+
+static uint64_t getAArch64Page(uint64_t Expr) {
+ return Expr & (~static_cast<uint64_t>(0xFFF));
+}
+
+void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const {
+ const uint8_t PltData[] = {
+ 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
+ 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
+ 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
+ 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
+ 0x20, 0x02, 0x1f, 0xd6, // br x17
+ 0x1f, 0x20, 0x03, 0xd5, // nop
+ 0x1f, 0x20, 0x03, 0xd5, // nop
+ 0x1f, 0x20, 0x03, 0xd5 // nop
+ };
+ memcpy(Buf, PltData, sizeof(PltData));
+
+ uint64_t Got = Out<ELF64LE>::GotPlt->getVA();
+ uint64_t Plt = Out<ELF64LE>::Plt->getVA();
+ relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
+ getAArch64Page(Got + 16) - getAArch64Page(Plt + 4));
+ relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16);
+ relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16);
+}
+
+void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
+ uint64_t PltEntryAddr, int32_t Index,
+ unsigned RelOff) const {
+ const uint8_t Inst[] = {
+ 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
+ 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
+ 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n]))
+ 0x20, 0x02, 0x1f, 0xd6 // br x17
+ };
+ memcpy(Buf, Inst, sizeof(Inst));
+
+ relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21,
+ getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr));
+ relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr);
+ relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr);
+}
+
+static void updateAArch64Addr(uint8_t *L, uint64_t Imm) {
+ uint32_t ImmLo = (Imm & 0x3) << 29;
+ uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
+ uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
+ write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
+}
+
+static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) {
+ or32le(L, (Imm & 0xFFF) << 10);
+}
+
+void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ switch (Type) {
+ case R_AARCH64_ABS16:
+ case R_AARCH64_PREL16:
+ checkIntUInt<16>(Val, Type);
+ write16le(Loc, Val);
+ break;
+ case R_AARCH64_ABS32:
+ case R_AARCH64_PREL32:
+ checkIntUInt<32>(Val, Type);
+ write32le(Loc, Val);
+ break;
+ case R_AARCH64_ABS64:
+ case R_AARCH64_PREL64:
+ write64le(Loc, Val);
+ break;
+ case R_AARCH64_ADD_ABS_LO12_NC:
+ // This relocation stores 12 bits and there's no instruction
+ // to do it. Instead, we do a 32 bits store of the value
+ // of r_addend bitwise-or'ed Loc. This assumes that the addend
+ // bits in Loc are zero.
+ or32le(Loc, (Val & 0xFFF) << 10);
+ break;
+ case R_AARCH64_ADR_GOT_PAGE:
+ case R_AARCH64_ADR_PREL_PG_HI21:
+ case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
+ case R_AARCH64_TLSDESC_ADR_PAGE21:
+ checkInt<33>(Val, Type);
+ updateAArch64Addr(Loc, Val >> 12);
+ break;
+ case R_AARCH64_ADR_PREL_LO21:
+ checkInt<21>(Val, Type);
+ updateAArch64Addr(Loc, Val);
+ break;
+ case R_AARCH64_CALL26:
+ case R_AARCH64_JUMP26:
+ checkInt<28>(Val, Type);
+ or32le(Loc, (Val & 0x0FFFFFFC) >> 2);
+ break;
+ case R_AARCH64_CONDBR19:
+ checkInt<21>(Val, Type);
+ or32le(Loc, (Val & 0x1FFFFC) << 3);
+ break;
+ case R_AARCH64_LD64_GOT_LO12_NC:
+ case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
+ case R_AARCH64_TLSDESC_LD64_LO12_NC:
+ checkAlignment<8>(Val, Type);
+ or32le(Loc, (Val & 0xFF8) << 7);
+ break;
+ case R_AARCH64_LDST128_ABS_LO12_NC:
+ or32le(Loc, (Val & 0x0FF8) << 6);
+ break;
+ case R_AARCH64_LDST16_ABS_LO12_NC:
+ or32le(Loc, (Val & 0x0FFC) << 9);
+ break;
+ case R_AARCH64_LDST8_ABS_LO12_NC:
+ or32le(Loc, (Val & 0xFFF) << 10);
+ break;
+ case R_AARCH64_LDST32_ABS_LO12_NC:
+ or32le(Loc, (Val & 0xFFC) << 8);
+ break;
+ case R_AARCH64_LDST64_ABS_LO12_NC:
+ or32le(Loc, (Val & 0xFF8) << 7);
+ break;
+ case R_AARCH64_TSTBR14:
+ checkInt<16>(Val, Type);
+ or32le(Loc, (Val & 0xFFFC) << 3);
+ break;
+ case R_AARCH64_TLSLE_ADD_TPREL_HI12:
+ checkInt<24>(Val, Type);
+ updateAArch64Add(Loc, Val >> 12);
+ break;
+ case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
+ case R_AARCH64_TLSDESC_ADD_LO12_NC:
+ updateAArch64Add(Loc, Val);
+ break;
+ default:
+ fatal("unrecognized reloc " + Twine(Type));
+ }
+}
+
+void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ // TLSDESC Global-Dynamic relocation are in the form:
+ // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
+ // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC]
+ // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC]
+ // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
+ // blr x1
+ // And it can optimized to:
+ // movz x0, #0x0, lsl #16
+ // movk x0, #0x10
+ // nop
+ // nop
+ checkUInt<32>(Val, Type);
+
+ switch (Type) {
+ case R_AARCH64_TLSDESC_ADD_LO12_NC:
+ case R_AARCH64_TLSDESC_CALL:
+ write32le(Loc, 0xd503201f); // nop
+ return;
+ case R_AARCH64_TLSDESC_ADR_PAGE21:
+ write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz
+ return;
+ case R_AARCH64_TLSDESC_LD64_LO12_NC:
+ write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk
+ return;
+ default:
+ llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
+ }
+}
+
+void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ // TLSDESC Global-Dynamic relocation are in the form:
+ // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
+ // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC]
+ // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC]
+ // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
+ // blr x1
+ // And it can optimized to:
+ // adrp x0, :gottprel:v
+ // ldr x0, [x0, :gottprel_lo12:v]
+ // nop
+ // nop
+
+ switch (Type) {
+ case R_AARCH64_TLSDESC_ADD_LO12_NC:
+ case R_AARCH64_TLSDESC_CALL:
+ write32le(Loc, 0xd503201f); // nop
+ break;
+ case R_AARCH64_TLSDESC_ADR_PAGE21:
+ write32le(Loc, 0x90000000); // adrp
+ relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val);
+ break;
+ case R_AARCH64_TLSDESC_LD64_LO12_NC:
+ write32le(Loc, 0xf9400000); // ldr
+ relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val);
+ break;
+ default:
+ llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
+ }
+}
+
+void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ checkUInt<32>(Val, Type);
+
+ if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
+ // Generate MOVZ.
+ uint32_t RegNo = read32le(Loc) & 0x1f;
+ write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5));
+ return;
+ }
+ if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
+ // Generate MOVK.
+ uint32_t RegNo = read32le(Loc) & 0x1f;
+ write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5));
+ return;
+ }
+ llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
+}
+
+AMDGPUTargetInfo::AMDGPUTargetInfo() {
+ GotRel = R_AMDGPU_ABS64;
+ GotEntrySize = 8;
+}
+
+void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ switch (Type) {
+ case R_AMDGPU_GOTPCREL:
+ case R_AMDGPU_REL32:
+ write32le(Loc, Val);
+ break;
+ default:
+ fatal("unrecognized reloc " + Twine(Type));
+ }
+}
+
+RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
+ switch (Type) {
+ case R_AMDGPU_REL32:
+ return R_PC;
+ case R_AMDGPU_GOTPCREL:
+ return R_GOT_PC;
+ default:
+ fatal("do not know how to handle relocation " + Twine(Type));
+ }
+}
+
+ARMTargetInfo::ARMTargetInfo() {
+ CopyRel = R_ARM_COPY;
+ RelativeRel = R_ARM_RELATIVE;
+ IRelativeRel = R_ARM_IRELATIVE;
+ GotRel = R_ARM_GLOB_DAT;
+ PltRel = R_ARM_JUMP_SLOT;
+ TlsGotRel = R_ARM_TLS_TPOFF32;
+ TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
+ TlsOffsetRel = R_ARM_TLS_DTPOFF32;
+ GotEntrySize = 4;
+ GotPltEntrySize = 4;
+ PltEntrySize = 16;
+ PltHeaderSize = 20;
+}
+
+RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
+ switch (Type) {
+ default:
+ return R_ABS;
+ case R_ARM_THM_JUMP11:
+ return R_PC;
+ case R_ARM_CALL:
+ case R_ARM_JUMP24:
+ case R_ARM_PC24:
+ case R_ARM_PLT32:
+ case R_ARM_THM_JUMP19:
+ case R_ARM_THM_JUMP24:
+ case R_ARM_THM_CALL:
+ return R_PLT_PC;
+ case R_ARM_GOTOFF32:
+ // (S + A) - GOT_ORG
+ return R_GOTREL;
+ case R_ARM_GOT_BREL:
+ // GOT(S) + A - GOT_ORG
+ return R_GOT_OFF;
+ case R_ARM_GOT_PREL:
+ // GOT(S) + - GOT_ORG
+ return R_GOT_PC;
+ case R_ARM_BASE_PREL:
+ // B(S) + A - P
+ // FIXME: currently B(S) assumed to be .got, this may not hold for all
+ // platforms.
+ return R_GOTONLY_PC;
+ case R_ARM_MOVW_PREL_NC:
+ case R_ARM_MOVT_PREL:
+ case R_ARM_PREL31:
+ case R_ARM_REL32:
+ case R_ARM_THM_MOVW_PREL_NC:
+ case R_ARM_THM_MOVT_PREL:
+ return R_PC;
+ }
+}
+
+uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const {
+ if (Type == R_ARM_ABS32)
+ return Type;
+ // Keep it going with a dummy value so that we can find more reloc errors.
+ errorDynRel(Type);
+ return R_ARM_ABS32;
+}
+
+void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
+ write32le(Buf, Out<ELF32LE>::Plt->getVA());
+}
+
+void ARMTargetInfo::writePltHeader(uint8_t *Buf) const {
+ const uint8_t PltData[] = {
+ 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
+ 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
+ 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
+ 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
+ 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
+ };
+ memcpy(Buf, PltData, sizeof(PltData));
+ uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA();
+ uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8;
+ write32le(Buf + 16, GotPlt - L1 - 8);
+}
+
+void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
+ uint64_t PltEntryAddr, int32_t Index,
+ unsigned RelOff) const {
+ // FIXME: Using simple code sequence with simple relocations.
+ // There is a more optimal sequence but it requires support for the group
+ // relocations. See ELF for the ARM Architecture Appendix A.3
+ const uint8_t PltData[] = {
+ 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
+ 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
+ 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
+ 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
+ };
+ memcpy(Buf, PltData, sizeof(PltData));
+ uint64_t L1 = PltEntryAddr + 4;
+ write32le(Buf + 12, GotEntryAddr - L1 - 8);
+}
+
+RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
+ const InputFile &File,
+ const SymbolBody &S) const {
+ // A state change from ARM to Thumb and vice versa must go through an
+ // interworking thunk if the relocation type is not R_ARM_CALL or
+ // R_ARM_THM_CALL.
+ switch (RelocType) {
+ case R_ARM_PC24:
+ case R_ARM_PLT32:
+ case R_ARM_JUMP24:
+ // Source is ARM, all PLT entries are ARM so no interworking required.
+ // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
+ if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1))
+ return R_THUNK_PC;
+ break;
+ case R_ARM_THM_JUMP19:
+ case R_ARM_THM_JUMP24:
+ // Source is Thumb, all PLT entries are ARM so interworking is required.
+ // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
+ if (Expr == R_PLT_PC)
+ return R_THUNK_PLT_PC;
+ if ((S.getVA<ELF32LE>() & 1) == 0)
+ return R_THUNK_PC;
+ break;
+ }
+ return Expr;
+}
+
+void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ switch (Type) {
+ case R_ARM_NONE:
+ break;
+ case R_ARM_ABS32:
+ case R_ARM_BASE_PREL:
+ case R_ARM_GOTOFF32:
+ case R_ARM_GOT_BREL:
+ case R_ARM_GOT_PREL:
+ case R_ARM_REL32:
+ write32le(Loc, Val);
+ break;
+ case R_ARM_PREL31:
+ checkInt<31>(Val, Type);
+ write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
+ break;
+ case R_ARM_CALL:
+ // R_ARM_CALL is used for BL and BLX instructions, depending on the
+ // value of bit 0 of Val, we must select a BL or BLX instruction
+ if (Val & 1) {
+ // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
+ // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
+ checkInt<26>(Val, Type);
+ write32le(Loc, 0xfa000000 | // opcode
+ ((Val & 2) << 23) | // H
+ ((Val >> 2) & 0x00ffffff)); // imm24
+ break;
+ }
+ if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
+ // BLX (always unconditional) instruction to an ARM Target, select an
+ // unconditional BL.
+ write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
+ // fall through as BL encoding is shared with B
+ case R_ARM_JUMP24:
+ case R_ARM_PC24:
+ case R_ARM_PLT32:
+ checkInt<26>(Val, Type);
+ write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
+ break;
+ case R_ARM_THM_JUMP11:
+ checkInt<12>(Val, Type);
+ write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
+ break;
+ case R_ARM_THM_JUMP19:
+ // Encoding T3: Val = S:J2:J1:imm6:imm11:0
+ checkInt<21>(Val, Type);
+ write16le(Loc,
+ (read16le(Loc) & 0xfbc0) | // opcode cond
+ ((Val >> 10) & 0x0400) | // S
+ ((Val >> 12) & 0x003f)); // imm6
+ write16le(Loc + 2,
+ 0x8000 | // opcode
+ ((Val >> 8) & 0x0800) | // J2
+ ((Val >> 5) & 0x2000) | // J1
+ ((Val >> 1) & 0x07ff)); // imm11
+ break;
+ case R_ARM_THM_CALL:
+ // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
+ // value of bit 0 of Val, we must select a BL or BLX instruction
+ if ((Val & 1) == 0) {
+ // Ensure BLX destination is 4-byte aligned. As BLX instruction may
+ // only be two byte aligned. This must be done before overflow check
+ Val = alignTo(Val, 4);
+ }
+ // Bit 12 is 0 for BLX, 1 for BL
+ write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
+ // Fall through as rest of encoding is the same as B.W
+ case R_ARM_THM_JUMP24:
+ // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
+ // FIXME: Use of I1 and I2 require v6T2ops
+ checkInt<25>(Val, Type);
+ write16le(Loc,
+ 0xf000 | // opcode
+ ((Val >> 14) & 0x0400) | // S
+ ((Val >> 12) & 0x03ff)); // imm10
+ write16le(Loc + 2,
+ (read16le(Loc + 2) & 0xd000) | // opcode
+ (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
+ (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
+ ((Val >> 1) & 0x07ff)); // imm11
+ break;
+ case R_ARM_MOVW_ABS_NC:
+ case R_ARM_MOVW_PREL_NC:
+ write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
+ (Val & 0x0fff));
+ break;
+ case R_ARM_MOVT_ABS:
+ case R_ARM_MOVT_PREL:
+ checkInt<32>(Val, Type);
+ write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
+ (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
+ break;
+ case R_ARM_THM_MOVT_ABS:
+ case R_ARM_THM_MOVT_PREL:
+ // Encoding T1: A = imm4:i:imm3:imm8
+ checkInt<32>(Val, Type);
+ write16le(Loc,
+ 0xf2c0 | // opcode
+ ((Val >> 17) & 0x0400) | // i
+ ((Val >> 28) & 0x000f)); // imm4
+ write16le(Loc + 2,
+ (read16le(Loc + 2) & 0x8f00) | // opcode
+ ((Val >> 12) & 0x7000) | // imm3
+ ((Val >> 16) & 0x00ff)); // imm8
+ break;
+ case R_ARM_THM_MOVW_ABS_NC:
+ case R_ARM_THM_MOVW_PREL_NC:
+ // Encoding T3: A = imm4:i:imm3:imm8
+ write16le(Loc,
+ 0xf240 | // opcode
+ ((Val >> 1) & 0x0400) | // i
+ ((Val >> 12) & 0x000f)); // imm4
+ write16le(Loc + 2,
+ (read16le(Loc + 2) & 0x8f00) | // opcode
+ ((Val << 4) & 0x7000) | // imm3
+ (Val & 0x00ff)); // imm8
+ break;
+ default:
+ fatal("unrecognized reloc " + Twine(Type));
+ }
+}
+
+uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf,
+ uint32_t Type) const {
+ switch (Type) {
+ default:
+ return 0;
+ case R_ARM_ABS32:
+ case R_ARM_BASE_PREL:
+ case R_ARM_GOTOFF32:
+ case R_ARM_GOT_BREL:
+ case R_ARM_GOT_PREL:
+ case R_ARM_REL32:
+ return SignExtend64<32>(read32le(Buf));
+ case R_ARM_PREL31:
+ return SignExtend64<31>(read32le(Buf));
+ case R_ARM_CALL:
+ case R_ARM_JUMP24:
+ case R_ARM_PC24:
+ case R_ARM_PLT32:
+ return SignExtend64<26>(read32le(Buf) << 2);
+ case R_ARM_THM_JUMP11:
+ return SignExtend64<12>(read16le(Buf) << 1);
+ case R_ARM_THM_JUMP19: {
+ // Encoding T3: A = S:J2:J1:imm10:imm6:0
+ uint16_t Hi = read16le(Buf);
+ uint16_t Lo = read16le(Buf + 2);
+ return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
+ ((Lo & 0x0800) << 8) | // J2
+ ((Lo & 0x2000) << 5) | // J1
+ ((Hi & 0x003f) << 12) | // imm6
+ ((Lo & 0x07ff) << 1)); // imm11:0
+ }
+ case R_ARM_THM_CALL:
+ case R_ARM_THM_JUMP24: {
+ // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
+ // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
+ // FIXME: I1 and I2 require v6T2ops
+ uint16_t Hi = read16le(Buf);
+ uint16_t Lo = read16le(Buf + 2);
+ return SignExtend64<24>(((Hi & 0x0400) << 14) | // S
+ (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
+ (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
+ ((Hi & 0x003ff) << 12) | // imm0
+ ((Lo & 0x007ff) << 1)); // imm11:0
+ }
+ // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
+ // MOVT is in the range -32768 <= A < 32768
+ case R_ARM_MOVW_ABS_NC:
+ case R_ARM_MOVT_ABS:
+ case R_ARM_MOVW_PREL_NC:
+ case R_ARM_MOVT_PREL: {
+ uint64_t Val = read32le(Buf) & 0x000f0fff;
+ return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
+ }
+ case R_ARM_THM_MOVW_ABS_NC:
+ case R_ARM_THM_MOVT_ABS:
+ case R_ARM_THM_MOVW_PREL_NC:
+ case R_ARM_THM_MOVT_PREL: {
+ // Encoding T3: A = imm4:i:imm3:imm8
+ uint16_t Hi = read16le(Buf);
+ uint16_t Lo = read16le(Buf + 2);
+ return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
+ ((Hi & 0x0400) << 1) | // i
+ ((Lo & 0x7000) >> 4) | // imm3
+ (Lo & 0x00ff)); // imm8
+ }
+ }
+}
+
+template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
+ GotPltHeaderEntriesNum = 2;
+ PageSize = 65536;
+ GotEntrySize = sizeof(typename ELFT::uint);
+ GotPltEntrySize = sizeof(typename ELFT::uint);
+ PltEntrySize = 16;
+ PltHeaderSize = 32;
+ CopyRel = R_MIPS_COPY;
+ PltRel = R_MIPS_JUMP_SLOT;
+ if (ELFT::Is64Bits) {
+ RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
+ TlsGotRel = R_MIPS_TLS_TPREL64;
+ TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64;
+ TlsOffsetRel = R_MIPS_TLS_DTPREL64;
+ } else {
+ RelativeRel = R_MIPS_REL32;
+ TlsGotRel = R_MIPS_TLS_TPREL32;
+ TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32;
+ TlsOffsetRel = R_MIPS_TLS_DTPREL32;
+ }
+}
+
+template <class ELFT>
+RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type,
+ const SymbolBody &S) const {
+ if (ELFT::Is64Bits)
+ // See comment in the calculateMips64RelChain.
+ Type &= 0xff;
+ switch (Type) {
+ default:
+ return R_ABS;
+ case R_MIPS_JALR:
+ return R_HINT;
+ case R_MIPS_GPREL16:
+ case R_MIPS_GPREL32:
+ return R_GOTREL;
+ case R_MIPS_26:
+ return R_PLT;
+ case R_MIPS_HI16:
+ case R_MIPS_LO16:
+ case R_MIPS_GOT_OFST:
+ // MIPS _gp_disp designates offset between start of function and 'gp'
+ // pointer into GOT. __gnu_local_gp is equal to the current value of
+ // the 'gp'. Therefore any relocations against them do not require
+ // dynamic relocation.
+ if (&S == ElfSym<ELFT>::MipsGpDisp)
+ return R_PC;
+ return R_ABS;
+ case R_MIPS_PC32:
+ case R_MIPS_PC16:
+ case R_MIPS_PC19_S2:
+ case R_MIPS_PC21_S2:
+ case R_MIPS_PC26_S2:
+ case R_MIPS_PCHI16:
+ case R_MIPS_PCLO16:
+ return R_PC;
+ case R_MIPS_GOT16:
+ if (S.isLocal())
+ return R_MIPS_GOT_LOCAL_PAGE;
+ // fallthrough
+ case R_MIPS_CALL16:
+ case R_MIPS_GOT_DISP:
+ case R_MIPS_TLS_GOTTPREL:
+ return R_MIPS_GOT_OFF;
+ case R_MIPS_GOT_PAGE:
+ return R_MIPS_GOT_LOCAL_PAGE;
+ case R_MIPS_TLS_GD:
+ return R_MIPS_TLSGD;
+ case R_MIPS_TLS_LDM:
+ return R_MIPS_TLSLD;
+ }
+}
+
+template <class ELFT>
+uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const {
+ if (Type == R_MIPS_32 || Type == R_MIPS_64)
+ return RelativeRel;
+ // Keep it going with a dummy value so that we can find more reloc errors.
+ errorDynRel(Type);
+ return R_MIPS_32;
+}
+
+template <class ELFT>
+bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
+ return Type == R_MIPS_TLS_LDM;
+}
+
+template <class ELFT>
+bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
+ return Type == R_MIPS_TLS_GD;
+}
+
+template <class ELFT>
+void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
+ write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA());
+}
+
+static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; }
+
+template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
+static int64_t getPcRelocAddend(const uint8_t *Loc) {
+ uint32_t Instr = read32<E>(Loc);
+ uint32_t Mask = 0xffffffff >> (32 - BSIZE);
+ return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
+}
+
+template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
+static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) {
+ uint32_t Mask = 0xffffffff >> (32 - BSIZE);
+ uint32_t Instr = read32<E>(Loc);
+ if (SHIFT > 0)
+ checkAlignment<(1 << SHIFT)>(V, Type);
+ checkInt<BSIZE + SHIFT>(V, Type);
+ write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
+}
+
+template <endianness E>
+static void writeMipsHi16(uint8_t *Loc, uint64_t V) {
+ uint32_t Instr = read32<E>(Loc);
+ write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(V));
+}
+
+template <endianness E>
+static void writeMipsLo16(uint8_t *Loc, uint64_t V) {
+ uint32_t Instr = read32<E>(Loc);
+ write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
+}
+
+template <class ELFT>
+void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
+ const endianness E = ELFT::TargetEndianness;
+ write32<E>(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0])
+ write32<E>(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28)
+ write32<E>(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0])
+ write32<E>(Buf + 12, 0x031cc023); // subu $24, $24, $28
+ write32<E>(Buf + 16, 0x03e07825); // move $15, $31
+ write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2
+ write32<E>(Buf + 24, 0x0320f809); // jalr $25
+ write32<E>(Buf + 28, 0x2718fffe); // subu $24, $24, 2
+ uint64_t Got = Out<ELFT>::GotPlt->getVA();
+ writeMipsHi16<E>(Buf, Got);
+ writeMipsLo16<E>(Buf + 4, Got);
+ writeMipsLo16<E>(Buf + 8, Got);
+}
+
+template <class ELFT>
+void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
+ uint64_t PltEntryAddr, int32_t Index,
+ unsigned RelOff) const {
+ const endianness E = ELFT::TargetEndianness;
+ write32<E>(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry)
+ write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15)
+ write32<E>(Buf + 8, 0x03200008); // jr $25
+ write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
+ writeMipsHi16<E>(Buf, GotEntryAddr);
+ writeMipsLo16<E>(Buf + 4, GotEntryAddr);
+ writeMipsLo16<E>(Buf + 12, GotEntryAddr);
+}
+
+template <class ELFT>
+RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type,
+ const InputFile &File,
+ const SymbolBody &S) const {
+ // Any MIPS PIC code function is invoked with its address in register $t9.
+ // So if we have a branch instruction from non-PIC code to the PIC one
+ // we cannot make the jump directly and need to create a small stubs
+ // to save the target function address.
+ // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ if (Type != R_MIPS_26)
+ return Expr;
+ auto *F = dyn_cast<ELFFileBase<ELFT>>(&File);
+ if (!F)
+ return Expr;
+ // If current file has PIC code, LA25 stub is not required.
+ if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
+ return Expr;
+ auto *D = dyn_cast<DefinedRegular<ELFT>>(&S);
+ if (!D || !D->Section)
+ return Expr;
+ // LA25 is required if target file has PIC code
+ // or target symbol is a PIC symbol.
+ const ELFFile<ELFT> &DefFile = D->Section->getFile()->getObj();
+ bool PicFile = DefFile.getHeader()->e_flags & EF_MIPS_PIC;
+ bool PicSym = (D->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC;
+ return (PicFile || PicSym) ? R_THUNK_ABS : Expr;
+}
+
+template <class ELFT>
+uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf,
+ uint32_t Type) const {
+ const endianness E = ELFT::TargetEndianness;
+ switch (Type) {
+ default:
+ return 0;
+ case R_MIPS_32:
+ case R_MIPS_GPREL32:
+ return read32<E>(Buf);
+ case R_MIPS_26:
+ // FIXME (simon): If the relocation target symbol is not a PLT entry
+ // we should use another expression for calculation:
+ // ((A << 2) | (P & 0xf0000000)) >> 2
+ return SignExtend64<28>(read32<E>(Buf) << 2);
+ case R_MIPS_GPREL16:
+ case R_MIPS_LO16:
+ case R_MIPS_PCLO16:
+ case R_MIPS_TLS_DTPREL_HI16:
+ case R_MIPS_TLS_DTPREL_LO16:
+ case R_MIPS_TLS_TPREL_HI16:
+ case R_MIPS_TLS_TPREL_LO16:
+ return SignExtend64<16>(read32<E>(Buf));
+ case R_MIPS_PC16:
+ return getPcRelocAddend<E, 16, 2>(Buf);
+ case R_MIPS_PC19_S2:
+ return getPcRelocAddend<E, 19, 2>(Buf);
+ case R_MIPS_PC21_S2:
+ return getPcRelocAddend<E, 21, 2>(Buf);
+ case R_MIPS_PC26_S2:
+ return getPcRelocAddend<E, 26, 2>(Buf);
+ case R_MIPS_PC32:
+ return getPcRelocAddend<E, 32, 0>(Buf);
+ }
+}
+
+static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type,
+ uint64_t Val) {
+ // MIPS N64 ABI packs multiple relocations into the single relocation
+ // record. In general, all up to three relocations can have arbitrary
+ // types. In fact, Clang and GCC uses only a few combinations. For now,
+ // we support two of them. That is allow to pass at least all LLVM
+ // test suite cases.
+ // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
+ // <any relocation> / R_MIPS_64 / R_MIPS_NONE
+ // The first relocation is a 'real' relocation which is calculated
+ // using the corresponding symbol's value. The second and the third
+ // relocations used to modify result of the first one: extend it to
+ // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
+ // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
+ uint32_t Type2 = (Type >> 8) & 0xff;
+ uint32_t Type3 = (Type >> 16) & 0xff;
+ if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
+ return std::make_pair(Type, Val);
+ if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
+ return std::make_pair(Type2, Val);
+ if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
+ return std::make_pair(Type3, -Val);
+ error("unsupported relocations combination " + Twine(Type));
+ return std::make_pair(Type & 0xff, Val);
+}
+
+template <class ELFT>
+void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
+ uint64_t Val) const {
+ const endianness E = ELFT::TargetEndianness;
+ // Thread pointer and DRP offsets from the start of TLS data area.
+ // https://www.linux-mips.org/wiki/NPTL
+ if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16)
+ Val -= 0x8000;
+ else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16)
+ Val -= 0x7000;
+ if (ELFT::Is64Bits)
+ std::tie(Type, Val) = calculateMips64RelChain(Type, Val);
+ switch (Type) {
+ case R_MIPS_32:
+ case R_MIPS_GPREL32:
+ write32<E>(Loc, Val);
+ break;
+ case R_MIPS_64:
+ write64<E>(Loc, Val);
+ break;
+ case R_MIPS_26:
+ write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | (Val >> 2));
+ break;
+ case R_MIPS_GOT_DISP:
+ case R_MIPS_GOT_PAGE:
+ case R_MIPS_GOT16:
+ case R_MIPS_GPREL16:
+ case R_MIPS_TLS_GD:
+ case R_MIPS_TLS_LDM:
+ checkInt<16>(Val, Type);
+ // fallthrough
+ case R_MIPS_CALL16:
+ case R_MIPS_GOT_OFST:
+ case R_MIPS_LO16:
+ case R_MIPS_PCLO16:
+ case R_MIPS_TLS_DTPREL_LO16:
+ case R_MIPS_TLS_GOTTPREL:
+ case R_MIPS_TLS_TPREL_LO16:
+ writeMipsLo16<E>(Loc, Val);
+ break;
+ case R_MIPS_HI16:
+ case R_MIPS_PCHI16:
+ case R_MIPS_TLS_DTPREL_HI16:
+ case R_MIPS_TLS_TPREL_HI16:
+ writeMipsHi16<E>(Loc, Val);
+ break;
+ case R_MIPS_JALR:
+ // Ignore this optimization relocation for now
+ break;
+ case R_MIPS_PC16:
+ applyMipsPcReloc<E, 16, 2>(Loc, Type, Val);
+ break;
+ case R_MIPS_PC19_S2:
+ applyMipsPcReloc<E, 19, 2>(Loc, Type, Val);
+ break;
+ case R_MIPS_PC21_S2:
+ applyMipsPcReloc<E, 21, 2>(Loc, Type, Val);
+ break;
+ case R_MIPS_PC26_S2:
+ applyMipsPcReloc<E, 26, 2>(Loc, Type, Val);
+ break;
+ case R_MIPS_PC32:
+ applyMipsPcReloc<E, 32, 0>(Loc, Type, Val);
+ break;
+ default:
+ fatal("unrecognized reloc " + Twine(Type));
+ }
+}
+
+template <class ELFT>
+bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const {
+ return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST;
+}
+}
+}