diff options
Diffstat (limited to 'gnu/llvm/tools/lld/ELF/Target.cpp')
| -rw-r--r-- | gnu/llvm/tools/lld/ELF/Target.cpp | 2120 |
1 files changed, 2120 insertions, 0 deletions
diff --git a/gnu/llvm/tools/lld/ELF/Target.cpp b/gnu/llvm/tools/lld/ELF/Target.cpp new file mode 100644 index 00000000000..0375eb96dc3 --- /dev/null +++ b/gnu/llvm/tools/lld/ELF/Target.cpp @@ -0,0 +1,2120 @@ +//===- Target.cpp ---------------------------------------------------------===// +// +// The LLVM Linker +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Machine-specific things, such as applying relocations, creation of +// GOT or PLT entries, etc., are handled in this file. +// +// Refer the ELF spec for the single letter varaibles, S, A or P, used +// in this file. +// +// Some functions defined in this file has "relaxTls" as part of their names. +// They do peephole optimization for TLS variables by rewriting instructions. +// They are not part of the ABI but optional optimization, so you can skip +// them if you are not interested in how TLS variables are optimized. +// See the following paper for the details. +// +// Ulrich Drepper, ELF Handling For Thread-Local Storage +// http://www.akkadia.org/drepper/tls.pdf +// +//===----------------------------------------------------------------------===// + +#include "Target.h" +#include "Error.h" +#include "InputFiles.h" +#include "OutputSections.h" +#include "Symbols.h" +#include "Thunks.h" + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/Object/ELF.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/ELF.h" + +using namespace llvm; +using namespace llvm::object; +using namespace llvm::support::endian; +using namespace llvm::ELF; + +namespace lld { +namespace elf { + +TargetInfo *Target; + +static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); } + +StringRef getRelName(uint32_t Type) { + return getELFRelocationTypeName(Config->EMachine, Type); +} + +template <unsigned N> static void checkInt(int64_t V, uint32_t Type) { + if (!isInt<N>(V)) + error("relocation " + getRelName(Type) + " out of range"); +} + +template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) { + if (!isUInt<N>(V)) + error("relocation " + getRelName(Type) + " out of range"); +} + +template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) { + if (!isInt<N>(V) && !isUInt<N>(V)) + error("relocation " + getRelName(Type) + " out of range"); +} + +template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) { + if ((V & (N - 1)) != 0) + error("improper alignment for relocation " + getRelName(Type)); +} + +static void errorDynRel(uint32_t Type) { + error("relocation " + getRelName(Type) + + " cannot be used against shared object; recompile with -fPIC."); +} + +namespace { +class X86TargetInfo final : public TargetInfo { +public: + X86TargetInfo(); + RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; + uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; + void writeGotPltHeader(uint8_t *Buf) const override; + uint32_t getDynRel(uint32_t Type) const override; + bool isTlsLocalDynamicRel(uint32_t Type) const override; + bool isTlsGlobalDynamicRel(uint32_t Type) const override; + bool isTlsInitialExecRel(uint32_t Type) const override; + void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; + void writePltHeader(uint8_t *Buf) const override; + void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, + int32_t Index, unsigned RelOff) const override; + void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + + RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, + RelExpr Expr) const override; + void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; +}; + +template <class ELFT> class X86_64TargetInfo final : public TargetInfo { +public: + X86_64TargetInfo(); + RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; + uint32_t getDynRel(uint32_t Type) const override; + bool isTlsLocalDynamicRel(uint32_t Type) const override; + bool isTlsGlobalDynamicRel(uint32_t Type) const override; + bool isTlsInitialExecRel(uint32_t Type) const override; + void writeGotPltHeader(uint8_t *Buf) const override; + void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; + void writePltHeader(uint8_t *Buf) const override; + void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, + int32_t Index, unsigned RelOff) const override; + void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + + RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, + RelExpr Expr) const override; + void relaxGot(uint8_t *Loc, uint64_t Val) const override; + void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + +private: + void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, + uint8_t ModRm) const; +}; + +class PPCTargetInfo final : public TargetInfo { +public: + PPCTargetInfo(); + void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; +}; + +class PPC64TargetInfo final : public TargetInfo { +public: + PPC64TargetInfo(); + RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; + void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, + int32_t Index, unsigned RelOff) const override; + void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; +}; + +class AArch64TargetInfo final : public TargetInfo { +public: + AArch64TargetInfo(); + RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; + uint32_t getDynRel(uint32_t Type) const override; + bool isTlsInitialExecRel(uint32_t Type) const override; + void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; + void writePltHeader(uint8_t *Buf) const override; + void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, + int32_t Index, unsigned RelOff) const override; + bool usesOnlyLowPageBits(uint32_t Type) const override; + void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, + RelExpr Expr) const override; + void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; +}; + +class AMDGPUTargetInfo final : public TargetInfo { +public: + AMDGPUTargetInfo(); + void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; +}; + +class ARMTargetInfo final : public TargetInfo { +public: + ARMTargetInfo(); + RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; + uint32_t getDynRel(uint32_t Type) const override; + uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; + void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; + void writePltHeader(uint8_t *Buf) const override; + void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, + int32_t Index, unsigned RelOff) const override; + RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, + const InputFile &File, + const SymbolBody &S) const override; + void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; +}; + +template <class ELFT> class MipsTargetInfo final : public TargetInfo { +public: + MipsTargetInfo(); + RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; + uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; + uint32_t getDynRel(uint32_t Type) const override; + bool isTlsLocalDynamicRel(uint32_t Type) const override; + bool isTlsGlobalDynamicRel(uint32_t Type) const override; + void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; + void writePltHeader(uint8_t *Buf) const override; + void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, + int32_t Index, unsigned RelOff) const override; + RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, + const InputFile &File, + const SymbolBody &S) const override; + void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; + bool usesOnlyLowPageBits(uint32_t Type) const override; +}; +} // anonymous namespace + +TargetInfo *createTarget() { + switch (Config->EMachine) { + case EM_386: + return new X86TargetInfo(); + case EM_AARCH64: + return new AArch64TargetInfo(); + case EM_AMDGPU: + return new AMDGPUTargetInfo(); + case EM_ARM: + return new ARMTargetInfo(); + case EM_MIPS: + switch (Config->EKind) { + case ELF32LEKind: + return new MipsTargetInfo<ELF32LE>(); + case ELF32BEKind: + return new MipsTargetInfo<ELF32BE>(); + case ELF64LEKind: + return new MipsTargetInfo<ELF64LE>(); + case ELF64BEKind: + return new MipsTargetInfo<ELF64BE>(); + default: + fatal("unsupported MIPS target"); + } + case EM_PPC: + return new PPCTargetInfo(); + case EM_PPC64: + return new PPC64TargetInfo(); + case EM_X86_64: + if (Config->EKind == ELF32LEKind) + return new X86_64TargetInfo<ELF32LE>(); + return new X86_64TargetInfo<ELF64LE>(); + } + fatal("unknown target machine"); +} + +TargetInfo::~TargetInfo() {} + +uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf, + uint32_t Type) const { + return 0; +} + +bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; } + +RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, + const InputFile &File, + const SymbolBody &S) const { + return Expr; +} + +bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; } + +bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; } + +bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { + return false; +} + +RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, + RelExpr Expr) const { + return Expr; +} + +void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const { + llvm_unreachable("Should not have claimed to be relaxable"); +} + +void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + llvm_unreachable("Should not have claimed to be relaxable"); +} + +void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + llvm_unreachable("Should not have claimed to be relaxable"); +} + +void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + llvm_unreachable("Should not have claimed to be relaxable"); +} + +void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + llvm_unreachable("Should not have claimed to be relaxable"); +} + +X86TargetInfo::X86TargetInfo() { + CopyRel = R_386_COPY; + GotRel = R_386_GLOB_DAT; + PltRel = R_386_JUMP_SLOT; + IRelativeRel = R_386_IRELATIVE; + RelativeRel = R_386_RELATIVE; + TlsGotRel = R_386_TLS_TPOFF; + TlsModuleIndexRel = R_386_TLS_DTPMOD32; + TlsOffsetRel = R_386_TLS_DTPOFF32; + GotEntrySize = 4; + GotPltEntrySize = 4; + PltEntrySize = 16; + PltHeaderSize = 16; + TlsGdRelaxSkip = 2; +} + +RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { + switch (Type) { + default: + return R_ABS; + case R_386_TLS_GD: + return R_TLSGD; + case R_386_TLS_LDM: + return R_TLSLD; + case R_386_PLT32: + return R_PLT_PC; + case R_386_PC32: + return R_PC; + case R_386_GOTPC: + return R_GOTONLY_PC; + case R_386_TLS_IE: + return R_GOT; + case R_386_GOT32: + case R_386_GOT32X: + case R_386_TLS_GOTIE: + return R_GOT_FROM_END; + case R_386_GOTOFF: + return R_GOTREL; + case R_386_TLS_LE: + return R_TLS; + case R_386_TLS_LE_32: + return R_NEG_TLS; + } +} + +RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, + RelExpr Expr) const { + switch (Expr) { + default: + return Expr; + case R_RELAX_TLS_GD_TO_IE: + return R_RELAX_TLS_GD_TO_IE_END; + case R_RELAX_TLS_GD_TO_LE: + return R_RELAX_TLS_GD_TO_LE_NEG; + } +} + +void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const { + write32le(Buf, Out<ELF32LE>::Dynamic->getVA()); +} + +void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const { + // Entries in .got.plt initially points back to the corresponding + // PLT entries with a fixed offset to skip the first instruction. + write32le(Buf, S.getPltVA<ELF32LE>() + 6); +} + +uint32_t X86TargetInfo::getDynRel(uint32_t Type) const { + if (Type == R_386_TLS_LE) + return R_386_TLS_TPOFF; + if (Type == R_386_TLS_LE_32) + return R_386_TLS_TPOFF32; + return Type; +} + +bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { + return Type == R_386_TLS_GD; +} + +bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { + return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM; +} + +bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const { + return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE; +} + +void X86TargetInfo::writePltHeader(uint8_t *Buf) const { + // Executable files and shared object files have + // separate procedure linkage tables. + if (Config->Pic) { + const uint8_t V[] = { + 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx) + 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx) + 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop + }; + memcpy(Buf, V, sizeof(V)); + return; + } + + const uint8_t PltData[] = { + 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4) + 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8) + 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop + }; + memcpy(Buf, PltData, sizeof(PltData)); + uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); + write32le(Buf + 2, Got + 4); + write32le(Buf + 8, Got + 8); +} + +void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, + uint64_t PltEntryAddr, int32_t Index, + unsigned RelOff) const { + const uint8_t Inst[] = { + 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx) + 0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset + 0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC + }; + memcpy(Buf, Inst, sizeof(Inst)); + + // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT + Buf[1] = Config->Pic ? 0xa3 : 0x25; + uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); + write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr); + write32le(Buf + 7, RelOff); + write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); +} + +uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf, + uint32_t Type) const { + switch (Type) { + default: + return 0; + case R_386_32: + case R_386_GOT32: + case R_386_GOT32X: + case R_386_GOTOFF: + case R_386_GOTPC: + case R_386_PC32: + case R_386_PLT32: + case R_386_TLS_LE: + return read32le(Buf); + } +} + +void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + checkInt<32>(Val, Type); + write32le(Loc, Val); +} + +void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + // Convert + // leal x@tlsgd(, %ebx, 1), + // call __tls_get_addr@plt + // to + // movl %gs:0,%eax + // subl $x@ntpoff,%eax + const uint8_t Inst[] = { + 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax + 0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax + }; + memcpy(Loc - 3, Inst, sizeof(Inst)); + relocateOne(Loc + 5, R_386_32, Val); +} + +void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + // Convert + // leal x@tlsgd(, %ebx, 1), + // call __tls_get_addr@plt + // to + // movl %gs:0, %eax + // addl x@gotntpoff(%ebx), %eax + const uint8_t Inst[] = { + 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax + 0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax + }; + memcpy(Loc - 3, Inst, sizeof(Inst)); + relocateOne(Loc + 5, R_386_32, Val); +} + +// In some conditions, relocations can be optimized to avoid using GOT. +// This function does that for Initial Exec to Local Exec case. +void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + // Ulrich's document section 6.2 says that @gotntpoff can + // be used with MOVL or ADDL instructions. + // @indntpoff is similar to @gotntpoff, but for use in + // position dependent code. + uint8_t Reg = (Loc[-1] >> 3) & 7; + + if (Type == R_386_TLS_IE) { + if (Loc[-1] == 0xa1) { + // "movl foo@indntpoff,%eax" -> "movl $foo,%eax" + // This case is different from the generic case below because + // this is a 5 byte instruction while below is 6 bytes. + Loc[-1] = 0xb8; + } else if (Loc[-2] == 0x8b) { + // "movl foo@indntpoff,%reg" -> "movl $foo,%reg" + Loc[-2] = 0xc7; + Loc[-1] = 0xc0 | Reg; + } else { + // "addl foo@indntpoff,%reg" -> "addl $foo,%reg" + Loc[-2] = 0x81; + Loc[-1] = 0xc0 | Reg; + } + } else { + assert(Type == R_386_TLS_GOTIE); + if (Loc[-2] == 0x8b) { + // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg" + Loc[-2] = 0xc7; + Loc[-1] = 0xc0 | Reg; + } else { + // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg" + Loc[-2] = 0x8d; + Loc[-1] = 0x80 | (Reg << 3) | Reg; + } + } + relocateOne(Loc, R_386_TLS_LE, Val); +} + +void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + if (Type == R_386_TLS_LDO_32) { + relocateOne(Loc, R_386_TLS_LE, Val); + return; + } + + // Convert + // leal foo(%reg),%eax + // call ___tls_get_addr + // to + // movl %gs:0,%eax + // nop + // leal 0(%esi,1),%esi + const uint8_t Inst[] = { + 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax + 0x90, // nop + 0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi + }; + memcpy(Loc - 2, Inst, sizeof(Inst)); +} + +template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() { + CopyRel = R_X86_64_COPY; + GotRel = R_X86_64_GLOB_DAT; + PltRel = R_X86_64_JUMP_SLOT; + RelativeRel = R_X86_64_RELATIVE; + IRelativeRel = R_X86_64_IRELATIVE; + TlsGotRel = R_X86_64_TPOFF64; + TlsModuleIndexRel = R_X86_64_DTPMOD64; + TlsOffsetRel = R_X86_64_DTPOFF64; + GotEntrySize = 8; + GotPltEntrySize = 8; + PltEntrySize = 16; + PltHeaderSize = 16; + TlsGdRelaxSkip = 2; +} + +template <class ELFT> +RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type, + const SymbolBody &S) const { + switch (Type) { + default: + return R_ABS; + case R_X86_64_TPOFF32: + return R_TLS; + case R_X86_64_TLSLD: + return R_TLSLD_PC; + case R_X86_64_TLSGD: + return R_TLSGD_PC; + case R_X86_64_SIZE32: + case R_X86_64_SIZE64: + return R_SIZE; + case R_X86_64_PLT32: + return R_PLT_PC; + case R_X86_64_PC32: + case R_X86_64_PC64: + return R_PC; + case R_X86_64_GOT32: + return R_GOT_FROM_END; + case R_X86_64_GOTPCREL: + case R_X86_64_GOTPCRELX: + case R_X86_64_REX_GOTPCRELX: + case R_X86_64_GOTTPOFF: + return R_GOT_PC; + } +} + +template <class ELFT> +void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const { + // The first entry holds the value of _DYNAMIC. It is not clear why that is + // required, but it is documented in the psabi and the glibc dynamic linker + // seems to use it (note that this is relevant for linking ld.so, not any + // other program). + write64le(Buf, Out<ELFT>::Dynamic->getVA()); +} + +template <class ELFT> +void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, + const SymbolBody &S) const { + // See comments in X86TargetInfo::writeGotPlt. + write32le(Buf, S.getPltVA<ELFT>() + 6); +} + +template <class ELFT> +void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { + const uint8_t PltData[] = { + 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip) + 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip) + 0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax) + }; + memcpy(Buf, PltData, sizeof(PltData)); + uint64_t Got = Out<ELFT>::GotPlt->getVA(); + uint64_t Plt = Out<ELFT>::Plt->getVA(); + write32le(Buf + 2, Got - Plt + 2); // GOT+8 + write32le(Buf + 8, Got - Plt + 4); // GOT+16 +} + +template <class ELFT> +void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, + uint64_t PltEntryAddr, int32_t Index, + unsigned RelOff) const { + const uint8_t Inst[] = { + 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip) + 0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index> + 0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0] + }; + memcpy(Buf, Inst, sizeof(Inst)); + + write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6); + write32le(Buf + 7, Index); + write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); +} + +template <class ELFT> +uint32_t X86_64TargetInfo<ELFT>::getDynRel(uint32_t Type) const { + if (Type == R_X86_64_PC32 || Type == R_X86_64_32) + errorDynRel(Type); + return Type; +} + +template <class ELFT> +bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const { + return Type == R_X86_64_GOTTPOFF; +} + +template <class ELFT> +bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { + return Type == R_X86_64_TLSGD; +} + +template <class ELFT> +bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { + return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 || + Type == R_X86_64_TLSLD; +} + +template <class ELFT> +void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + // Convert + // .byte 0x66 + // leaq x@tlsgd(%rip), %rdi + // .word 0x6666 + // rex64 + // call __tls_get_addr@plt + // to + // mov %fs:0x0,%rax + // lea x@tpoff,%rax + const uint8_t Inst[] = { + 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax + 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax + }; + memcpy(Loc - 4, Inst, sizeof(Inst)); + // The original code used a pc relative relocation and so we have to + // compensate for the -4 in had in the addend. + relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4); +} + +template <class ELFT> +void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + // Convert + // .byte 0x66 + // leaq x@tlsgd(%rip), %rdi + // .word 0x6666 + // rex64 + // call __tls_get_addr@plt + // to + // mov %fs:0x0,%rax + // addq x@tpoff,%rax + const uint8_t Inst[] = { + 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax + 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax + }; + memcpy(Loc - 4, Inst, sizeof(Inst)); + // Both code sequences are PC relatives, but since we are moving the constant + // forward by 8 bytes we have to subtract the value by 8. + relocateOne(Loc + 8, R_X86_64_PC32, Val - 8); +} + +// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to +// R_X86_64_TPOFF32 so that it does not use GOT. +template <class ELFT> +void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + uint8_t *Inst = Loc - 3; + uint8_t Reg = Loc[-1] >> 3; + uint8_t *RegSlot = Loc - 1; + + // Note that ADD with RSP or R12 is converted to ADD instead of LEA + // because LEA with these registers needs 4 bytes to encode and thus + // wouldn't fit the space. + + if (memcmp(Inst, "\x48\x03\x25", 3) == 0) { + // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" + memcpy(Inst, "\x48\x81\xc4", 3); + } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) { + // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" + memcpy(Inst, "\x49\x81\xc4", 3); + } else if (memcmp(Inst, "\x4c\x03", 2) == 0) { + // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" + memcpy(Inst, "\x4d\x8d", 2); + *RegSlot = 0x80 | (Reg << 3) | Reg; + } else if (memcmp(Inst, "\x48\x03", 2) == 0) { + // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" + memcpy(Inst, "\x48\x8d", 2); + *RegSlot = 0x80 | (Reg << 3) | Reg; + } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) { + // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" + memcpy(Inst, "\x49\xc7", 2); + *RegSlot = 0xc0 | Reg; + } else if (memcmp(Inst, "\x48\x8b", 2) == 0) { + // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" + memcpy(Inst, "\x48\xc7", 2); + *RegSlot = 0xc0 | Reg; + } else { + fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); + } + + // The original code used a PC relative relocation. + // Need to compensate for the -4 it had in the addend. + relocateOne(Loc, R_X86_64_TPOFF32, Val + 4); +} + +template <class ELFT> +void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + // Convert + // leaq bar@tlsld(%rip), %rdi + // callq __tls_get_addr@PLT + // leaq bar@dtpoff(%rax), %rcx + // to + // .word 0x6666 + // .byte 0x66 + // mov %fs:0,%rax + // leaq bar@tpoff(%rax), %rcx + if (Type == R_X86_64_DTPOFF64) { + write64le(Loc, Val); + return; + } + if (Type == R_X86_64_DTPOFF32) { + relocateOne(Loc, R_X86_64_TPOFF32, Val); + return; + } + + const uint8_t Inst[] = { + 0x66, 0x66, // .word 0x6666 + 0x66, // .byte 0x66 + 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax + }; + memcpy(Loc - 3, Inst, sizeof(Inst)); +} + +template <class ELFT> +void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + switch (Type) { + case R_X86_64_32: + checkUInt<32>(Val, Type); + write32le(Loc, Val); + break; + case R_X86_64_32S: + case R_X86_64_TPOFF32: + case R_X86_64_GOT32: + case R_X86_64_GOTPCREL: + case R_X86_64_GOTPCRELX: + case R_X86_64_REX_GOTPCRELX: + case R_X86_64_PC32: + case R_X86_64_GOTTPOFF: + case R_X86_64_PLT32: + case R_X86_64_TLSGD: + case R_X86_64_TLSLD: + case R_X86_64_DTPOFF32: + case R_X86_64_SIZE32: + checkInt<32>(Val, Type); + write32le(Loc, Val); + break; + case R_X86_64_64: + case R_X86_64_DTPOFF64: + case R_X86_64_SIZE64: + case R_X86_64_PC64: + write64le(Loc, Val); + break; + default: + fatal("unrecognized reloc " + Twine(Type)); + } +} + +template <class ELFT> +RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type, + const uint8_t *Data, + RelExpr RelExpr) const { + if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX) + return RelExpr; + const uint8_t Op = Data[-2]; + const uint8_t ModRm = Data[-1]; + // FIXME: When PIC is disabled and foo is defined locally in the + // lower 32 bit address space, memory operand in mov can be converted into + // immediate operand. Otherwise, mov must be changed to lea. We support only + // latter relaxation at this moment. + if (Op == 0x8b) + return R_RELAX_GOT_PC; + // Relax call and jmp. + if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25)) + return R_RELAX_GOT_PC; + + // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. + // If PIC then no relaxation is available. + // We also don't relax test/binop instructions without REX byte, + // they are 32bit operations and not common to have. + assert(Type == R_X86_64_REX_GOTPCRELX); + return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC; +} + +// A subset of relaxations can only be applied for no-PIC. This method +// handles such relaxations. Instructions encoding information was taken from: +// "Intel 64 and IA-32 Architectures Software Developer's Manual V2" +// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ +// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) +template <class ELFT> +void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val, + uint8_t Op, uint8_t ModRm) const { + const uint8_t Rex = Loc[-3]; + // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". + if (Op == 0x85) { + // See "TEST-Logical Compare" (4-428 Vol. 2B), + // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). + + // ModR/M byte has form XX YYY ZZZ, where + // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). + // XX has different meanings: + // 00: The operand's memory address is in reg1. + // 01: The operand's memory address is reg1 + a byte-sized displacement. + // 10: The operand's memory address is reg1 + a word-sized displacement. + // 11: The operand is reg1 itself. + // If an instruction requires only one operand, the unused reg2 field + // holds extra opcode bits rather than a register code + // 0xC0 == 11 000 000 binary. + // 0x38 == 00 111 000 binary. + // We transfer reg2 to reg1 here as operand. + // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). + Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte. + + // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 + // See "TEST-Logical Compare" (4-428 Vol. 2B). + Loc[-2] = 0xf7; + + // Move R bit to the B bit in REX byte. + // REX byte is encoded as 0100WRXB, where + // 0100 is 4bit fixed pattern. + // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the + // default operand size is used (which is 32-bit for most but not all + // instructions). + // REX.R This 1-bit value is an extension to the MODRM.reg field. + // REX.X This 1-bit value is an extension to the SIB.index field. + // REX.B This 1-bit value is an extension to the MODRM.rm field or the + // SIB.base field. + // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). + Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; + relocateOne(Loc, R_X86_64_PC32, Val); + return; + } + + // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub + // or xor operations. + + // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". + // Logic is close to one for test instruction above, but we also + // write opcode extension here, see below for details. + Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte. + + // Primary opcode is 0x81, opcode extension is one of: + // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, + // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. + // This value was wrote to MODRM.reg in a line above. + // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), + // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for + // descriptions about each operation. + Loc[-2] = 0x81; + Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; + relocateOne(Loc, R_X86_64_PC32, Val); +} + +template <class ELFT> +void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const { + const uint8_t Op = Loc[-2]; + const uint8_t ModRm = Loc[-1]; + + // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". + if (Op == 0x8b) { + Loc[-2] = 0x8d; + relocateOne(Loc, R_X86_64_PC32, Val); + return; + } + + if (Op != 0xff) { + // We are relaxing a rip relative to an absolute, so compensate + // for the old -4 addend. + assert(!Config->Pic); + relaxGotNoPic(Loc, Val + 4, Op, ModRm); + return; + } + + // Convert call/jmp instructions. + if (ModRm == 0x15) { + // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". + // Instead we convert to "addr32 call foo" where addr32 is an instruction + // prefix. That makes result expression to be a single instruction. + Loc[-2] = 0x67; // addr32 prefix + Loc[-1] = 0xe8; // call + relocateOne(Loc, R_X86_64_PC32, Val); + return; + } + + // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". + // jmp doesn't return, so it is fine to use nop here, it is just a stub. + assert(ModRm == 0x25); + Loc[-2] = 0xe9; // jmp + Loc[3] = 0x90; // nop + relocateOne(Loc - 1, R_X86_64_PC32, Val + 1); +} + +// Relocation masks following the #lo(value), #hi(value), #ha(value), +// #higher(value), #highera(value), #highest(value), and #highesta(value) +// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi +// document. +static uint16_t applyPPCLo(uint64_t V) { return V; } +static uint16_t applyPPCHi(uint64_t V) { return V >> 16; } +static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; } +static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; } +static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; } +static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; } +static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; } + +PPCTargetInfo::PPCTargetInfo() {} + +void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + switch (Type) { + case R_PPC_ADDR16_HA: + write16be(Loc, applyPPCHa(Val)); + break; + case R_PPC_ADDR16_LO: + write16be(Loc, applyPPCLo(Val)); + break; + default: + fatal("unrecognized reloc " + Twine(Type)); + } +} + +RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { + return R_ABS; +} + +PPC64TargetInfo::PPC64TargetInfo() { + PltRel = GotRel = R_PPC64_GLOB_DAT; + RelativeRel = R_PPC64_RELATIVE; + GotEntrySize = 8; + GotPltEntrySize = 8; + PltEntrySize = 32; + PltHeaderSize = 0; + + // We need 64K pages (at least under glibc/Linux, the loader won't + // set different permissions on a finer granularity than that). + PageSize = 65536; + + // The PPC64 ELF ABI v1 spec, says: + // + // It is normally desirable to put segments with different characteristics + // in separate 256 Mbyte portions of the address space, to give the + // operating system full paging flexibility in the 64-bit address space. + // + // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers + // use 0x10000000 as the starting address. + DefaultImageBase = 0x10000000; +} + +static uint64_t PPC64TocOffset = 0x8000; + +uint64_t getPPC64TocBase() { + // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The + // TOC starts where the first of these sections starts. We always create a + // .got when we see a relocation that uses it, so for us the start is always + // the .got. + uint64_t TocVA = Out<ELF64BE>::Got->getVA(); + + // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 + // thus permitting a full 64 Kbytes segment. Note that the glibc startup + // code (crt1.o) assumes that you can get from the TOC base to the + // start of the .toc section with only a single (signed) 16-bit relocation. + return TocVA + PPC64TocOffset; +} + +RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { + switch (Type) { + default: + return R_ABS; + case R_PPC64_TOC16: + case R_PPC64_TOC16_DS: + case R_PPC64_TOC16_HA: + case R_PPC64_TOC16_HI: + case R_PPC64_TOC16_LO: + case R_PPC64_TOC16_LO_DS: + return R_GOTREL; + case R_PPC64_TOC: + return R_PPC_TOC; + case R_PPC64_REL24: + return R_PPC_PLT_OPD; + } +} + +void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, + uint64_t PltEntryAddr, int32_t Index, + unsigned RelOff) const { + uint64_t Off = GotEntryAddr - getPPC64TocBase(); + + // FIXME: What we should do, in theory, is get the offset of the function + // descriptor in the .opd section, and use that as the offset from %r2 (the + // TOC-base pointer). Instead, we have the GOT-entry offset, and that will + // be a pointer to the function descriptor in the .opd section. Using + // this scheme is simpler, but requires an extra indirection per PLT dispatch. + + write32be(Buf, 0xf8410028); // std %r2, 40(%r1) + write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha + write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11) + write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12) + write32be(Buf + 16, 0x7d6903a6); // mtctr %r11 + write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12) + write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12) + write32be(Buf + 28, 0x4e800420); // bctr +} + +static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) { + uint64_t V = Val - PPC64TocOffset; + switch (Type) { + case R_PPC64_TOC16: return {R_PPC64_ADDR16, V}; + case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V}; + case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V}; + case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V}; + case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V}; + case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V}; + default: return {Type, Val}; + } +} + +void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + // For a TOC-relative relocation, proceed in terms of the corresponding + // ADDR16 relocation type. + std::tie(Type, Val) = toAddr16Rel(Type, Val); + + switch (Type) { + case R_PPC64_ADDR14: { + checkAlignment<4>(Val, Type); + // Preserve the AA/LK bits in the branch instruction + uint8_t AALK = Loc[3]; + write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc)); + break; + } + case R_PPC64_ADDR16: + checkInt<16>(Val, Type); + write16be(Loc, Val); + break; + case R_PPC64_ADDR16_DS: + checkInt<16>(Val, Type); + write16be(Loc, (read16be(Loc) & 3) | (Val & ~3)); + break; + case R_PPC64_ADDR16_HA: + case R_PPC64_REL16_HA: + write16be(Loc, applyPPCHa(Val)); + break; + case R_PPC64_ADDR16_HI: + case R_PPC64_REL16_HI: + write16be(Loc, applyPPCHi(Val)); + break; + case R_PPC64_ADDR16_HIGHER: + write16be(Loc, applyPPCHigher(Val)); + break; + case R_PPC64_ADDR16_HIGHERA: + write16be(Loc, applyPPCHighera(Val)); + break; + case R_PPC64_ADDR16_HIGHEST: + write16be(Loc, applyPPCHighest(Val)); + break; + case R_PPC64_ADDR16_HIGHESTA: + write16be(Loc, applyPPCHighesta(Val)); + break; + case R_PPC64_ADDR16_LO: + write16be(Loc, applyPPCLo(Val)); + break; + case R_PPC64_ADDR16_LO_DS: + case R_PPC64_REL16_LO: + write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3)); + break; + case R_PPC64_ADDR32: + case R_PPC64_REL32: + checkInt<32>(Val, Type); + write32be(Loc, Val); + break; + case R_PPC64_ADDR64: + case R_PPC64_REL64: + case R_PPC64_TOC: + write64be(Loc, Val); + break; + case R_PPC64_REL24: { + uint32_t Mask = 0x03FFFFFC; + checkInt<24>(Val, Type); + write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask)); + break; + } + default: + fatal("unrecognized reloc " + Twine(Type)); + } +} + +AArch64TargetInfo::AArch64TargetInfo() { + CopyRel = R_AARCH64_COPY; + RelativeRel = R_AARCH64_RELATIVE; + IRelativeRel = R_AARCH64_IRELATIVE; + GotRel = R_AARCH64_GLOB_DAT; + PltRel = R_AARCH64_JUMP_SLOT; + TlsDescRel = R_AARCH64_TLSDESC; + TlsGotRel = R_AARCH64_TLS_TPREL64; + GotEntrySize = 8; + GotPltEntrySize = 8; + PltEntrySize = 16; + PltHeaderSize = 32; + + // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant + // 1 of the tls structures and the tcb size is 16. + TcbSize = 16; +} + +RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type, + const SymbolBody &S) const { + switch (Type) { + default: + return R_ABS; + case R_AARCH64_TLSDESC_ADR_PAGE21: + return R_TLSDESC_PAGE; + case R_AARCH64_TLSDESC_LD64_LO12_NC: + case R_AARCH64_TLSDESC_ADD_LO12_NC: + return R_TLSDESC; + case R_AARCH64_TLSDESC_CALL: + return R_HINT; + case R_AARCH64_TLSLE_ADD_TPREL_HI12: + case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: + return R_TLS; + case R_AARCH64_CALL26: + case R_AARCH64_CONDBR19: + case R_AARCH64_JUMP26: + case R_AARCH64_TSTBR14: + return R_PLT_PC; + case R_AARCH64_PREL16: + case R_AARCH64_PREL32: + case R_AARCH64_PREL64: + case R_AARCH64_ADR_PREL_LO21: + return R_PC; + case R_AARCH64_ADR_PREL_PG_HI21: + return R_PAGE_PC; + case R_AARCH64_LD64_GOT_LO12_NC: + case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: + return R_GOT; + case R_AARCH64_ADR_GOT_PAGE: + case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: + return R_GOT_PAGE_PC; + } +} + +RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, + RelExpr Expr) const { + if (Expr == R_RELAX_TLS_GD_TO_IE) { + if (Type == R_AARCH64_TLSDESC_ADR_PAGE21) + return R_RELAX_TLS_GD_TO_IE_PAGE_PC; + return R_RELAX_TLS_GD_TO_IE_ABS; + } + return Expr; +} + +bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { + switch (Type) { + default: + return false; + case R_AARCH64_ADD_ABS_LO12_NC: + case R_AARCH64_LD64_GOT_LO12_NC: + case R_AARCH64_LDST128_ABS_LO12_NC: + case R_AARCH64_LDST16_ABS_LO12_NC: + case R_AARCH64_LDST32_ABS_LO12_NC: + case R_AARCH64_LDST64_ABS_LO12_NC: + case R_AARCH64_LDST8_ABS_LO12_NC: + case R_AARCH64_TLSDESC_ADD_LO12_NC: + case R_AARCH64_TLSDESC_LD64_LO12_NC: + case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: + return true; + } +} + +bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const { + return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 || + Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC; +} + +uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const { + if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64) + return Type; + // Keep it going with a dummy value so that we can find more reloc errors. + errorDynRel(Type); + return R_AARCH64_ABS32; +} + +void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { + write64le(Buf, Out<ELF64LE>::Plt->getVA()); +} + +static uint64_t getAArch64Page(uint64_t Expr) { + return Expr & (~static_cast<uint64_t>(0xFFF)); +} + +void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const { + const uint8_t PltData[] = { + 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! + 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2])) + 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))] + 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2])) + 0x20, 0x02, 0x1f, 0xd6, // br x17 + 0x1f, 0x20, 0x03, 0xd5, // nop + 0x1f, 0x20, 0x03, 0xd5, // nop + 0x1f, 0x20, 0x03, 0xd5 // nop + }; + memcpy(Buf, PltData, sizeof(PltData)); + + uint64_t Got = Out<ELF64LE>::GotPlt->getVA(); + uint64_t Plt = Out<ELF64LE>::Plt->getVA(); + relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, + getAArch64Page(Got + 16) - getAArch64Page(Plt + 4)); + relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16); + relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16); +} + +void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, + uint64_t PltEntryAddr, int32_t Index, + unsigned RelOff) const { + const uint8_t Inst[] = { + 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n])) + 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))] + 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n])) + 0x20, 0x02, 0x1f, 0xd6 // br x17 + }; + memcpy(Buf, Inst, sizeof(Inst)); + + relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21, + getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr)); + relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr); + relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr); +} + +static void updateAArch64Addr(uint8_t *L, uint64_t Imm) { + uint32_t ImmLo = (Imm & 0x3) << 29; + uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; + uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); + write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); +} + +static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) { + or32le(L, (Imm & 0xFFF) << 10); +} + +void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + switch (Type) { + case R_AARCH64_ABS16: + case R_AARCH64_PREL16: + checkIntUInt<16>(Val, Type); + write16le(Loc, Val); + break; + case R_AARCH64_ABS32: + case R_AARCH64_PREL32: + checkIntUInt<32>(Val, Type); + write32le(Loc, Val); + break; + case R_AARCH64_ABS64: + case R_AARCH64_PREL64: + write64le(Loc, Val); + break; + case R_AARCH64_ADD_ABS_LO12_NC: + // This relocation stores 12 bits and there's no instruction + // to do it. Instead, we do a 32 bits store of the value + // of r_addend bitwise-or'ed Loc. This assumes that the addend + // bits in Loc are zero. + or32le(Loc, (Val & 0xFFF) << 10); + break; + case R_AARCH64_ADR_GOT_PAGE: + case R_AARCH64_ADR_PREL_PG_HI21: + case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: + case R_AARCH64_TLSDESC_ADR_PAGE21: + checkInt<33>(Val, Type); + updateAArch64Addr(Loc, Val >> 12); + break; + case R_AARCH64_ADR_PREL_LO21: + checkInt<21>(Val, Type); + updateAArch64Addr(Loc, Val); + break; + case R_AARCH64_CALL26: + case R_AARCH64_JUMP26: + checkInt<28>(Val, Type); + or32le(Loc, (Val & 0x0FFFFFFC) >> 2); + break; + case R_AARCH64_CONDBR19: + checkInt<21>(Val, Type); + or32le(Loc, (Val & 0x1FFFFC) << 3); + break; + case R_AARCH64_LD64_GOT_LO12_NC: + case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: + case R_AARCH64_TLSDESC_LD64_LO12_NC: + checkAlignment<8>(Val, Type); + or32le(Loc, (Val & 0xFF8) << 7); + break; + case R_AARCH64_LDST128_ABS_LO12_NC: + or32le(Loc, (Val & 0x0FF8) << 6); + break; + case R_AARCH64_LDST16_ABS_LO12_NC: + or32le(Loc, (Val & 0x0FFC) << 9); + break; + case R_AARCH64_LDST8_ABS_LO12_NC: + or32le(Loc, (Val & 0xFFF) << 10); + break; + case R_AARCH64_LDST32_ABS_LO12_NC: + or32le(Loc, (Val & 0xFFC) << 8); + break; + case R_AARCH64_LDST64_ABS_LO12_NC: + or32le(Loc, (Val & 0xFF8) << 7); + break; + case R_AARCH64_TSTBR14: + checkInt<16>(Val, Type); + or32le(Loc, (Val & 0xFFFC) << 3); + break; + case R_AARCH64_TLSLE_ADD_TPREL_HI12: + checkInt<24>(Val, Type); + updateAArch64Add(Loc, Val >> 12); + break; + case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: + case R_AARCH64_TLSDESC_ADD_LO12_NC: + updateAArch64Add(Loc, Val); + break; + default: + fatal("unrecognized reloc " + Twine(Type)); + } +} + +void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + // TLSDESC Global-Dynamic relocation are in the form: + // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] + // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] + // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] + // .tlsdesccall [R_AARCH64_TLSDESC_CALL] + // blr x1 + // And it can optimized to: + // movz x0, #0x0, lsl #16 + // movk x0, #0x10 + // nop + // nop + checkUInt<32>(Val, Type); + + switch (Type) { + case R_AARCH64_TLSDESC_ADD_LO12_NC: + case R_AARCH64_TLSDESC_CALL: + write32le(Loc, 0xd503201f); // nop + return; + case R_AARCH64_TLSDESC_ADR_PAGE21: + write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz + return; + case R_AARCH64_TLSDESC_LD64_LO12_NC: + write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk + return; + default: + llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); + } +} + +void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + // TLSDESC Global-Dynamic relocation are in the form: + // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] + // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] + // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] + // .tlsdesccall [R_AARCH64_TLSDESC_CALL] + // blr x1 + // And it can optimized to: + // adrp x0, :gottprel:v + // ldr x0, [x0, :gottprel_lo12:v] + // nop + // nop + + switch (Type) { + case R_AARCH64_TLSDESC_ADD_LO12_NC: + case R_AARCH64_TLSDESC_CALL: + write32le(Loc, 0xd503201f); // nop + break; + case R_AARCH64_TLSDESC_ADR_PAGE21: + write32le(Loc, 0x90000000); // adrp + relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val); + break; + case R_AARCH64_TLSDESC_LD64_LO12_NC: + write32le(Loc, 0xf9400000); // ldr + relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val); + break; + default: + llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); + } +} + +void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + checkUInt<32>(Val, Type); + + if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { + // Generate MOVZ. + uint32_t RegNo = read32le(Loc) & 0x1f; + write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5)); + return; + } + if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { + // Generate MOVK. + uint32_t RegNo = read32le(Loc) & 0x1f; + write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5)); + return; + } + llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); +} + +AMDGPUTargetInfo::AMDGPUTargetInfo() { + GotRel = R_AMDGPU_ABS64; + GotEntrySize = 8; +} + +void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + switch (Type) { + case R_AMDGPU_GOTPCREL: + case R_AMDGPU_REL32: + write32le(Loc, Val); + break; + default: + fatal("unrecognized reloc " + Twine(Type)); + } +} + +RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { + switch (Type) { + case R_AMDGPU_REL32: + return R_PC; + case R_AMDGPU_GOTPCREL: + return R_GOT_PC; + default: + fatal("do not know how to handle relocation " + Twine(Type)); + } +} + +ARMTargetInfo::ARMTargetInfo() { + CopyRel = R_ARM_COPY; + RelativeRel = R_ARM_RELATIVE; + IRelativeRel = R_ARM_IRELATIVE; + GotRel = R_ARM_GLOB_DAT; + PltRel = R_ARM_JUMP_SLOT; + TlsGotRel = R_ARM_TLS_TPOFF32; + TlsModuleIndexRel = R_ARM_TLS_DTPMOD32; + TlsOffsetRel = R_ARM_TLS_DTPOFF32; + GotEntrySize = 4; + GotPltEntrySize = 4; + PltEntrySize = 16; + PltHeaderSize = 20; +} + +RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { + switch (Type) { + default: + return R_ABS; + case R_ARM_THM_JUMP11: + return R_PC; + case R_ARM_CALL: + case R_ARM_JUMP24: + case R_ARM_PC24: + case R_ARM_PLT32: + case R_ARM_THM_JUMP19: + case R_ARM_THM_JUMP24: + case R_ARM_THM_CALL: + return R_PLT_PC; + case R_ARM_GOTOFF32: + // (S + A) - GOT_ORG + return R_GOTREL; + case R_ARM_GOT_BREL: + // GOT(S) + A - GOT_ORG + return R_GOT_OFF; + case R_ARM_GOT_PREL: + // GOT(S) + - GOT_ORG + return R_GOT_PC; + case R_ARM_BASE_PREL: + // B(S) + A - P + // FIXME: currently B(S) assumed to be .got, this may not hold for all + // platforms. + return R_GOTONLY_PC; + case R_ARM_MOVW_PREL_NC: + case R_ARM_MOVT_PREL: + case R_ARM_PREL31: + case R_ARM_REL32: + case R_ARM_THM_MOVW_PREL_NC: + case R_ARM_THM_MOVT_PREL: + return R_PC; + } +} + +uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const { + if (Type == R_ARM_ABS32) + return Type; + // Keep it going with a dummy value so that we can find more reloc errors. + errorDynRel(Type); + return R_ARM_ABS32; +} + +void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { + write32le(Buf, Out<ELF32LE>::Plt->getVA()); +} + +void ARMTargetInfo::writePltHeader(uint8_t *Buf) const { + const uint8_t PltData[] = { + 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! + 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 + 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr + 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8] + 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8 + }; + memcpy(Buf, PltData, sizeof(PltData)); + uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA(); + uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8; + write32le(Buf + 16, GotPlt - L1 - 8); +} + +void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, + uint64_t PltEntryAddr, int32_t Index, + unsigned RelOff) const { + // FIXME: Using simple code sequence with simple relocations. + // There is a more optimal sequence but it requires support for the group + // relocations. See ELF for the ARM Architecture Appendix A.3 + const uint8_t PltData[] = { + 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 + 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc + 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] + 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 + }; + memcpy(Buf, PltData, sizeof(PltData)); + uint64_t L1 = PltEntryAddr + 4; + write32le(Buf + 12, GotEntryAddr - L1 - 8); +} + +RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, + const InputFile &File, + const SymbolBody &S) const { + // A state change from ARM to Thumb and vice versa must go through an + // interworking thunk if the relocation type is not R_ARM_CALL or + // R_ARM_THM_CALL. + switch (RelocType) { + case R_ARM_PC24: + case R_ARM_PLT32: + case R_ARM_JUMP24: + // Source is ARM, all PLT entries are ARM so no interworking required. + // Otherwise we need to interwork if Symbol has bit 0 set (Thumb). + if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1)) + return R_THUNK_PC; + break; + case R_ARM_THM_JUMP19: + case R_ARM_THM_JUMP24: + // Source is Thumb, all PLT entries are ARM so interworking is required. + // Otherwise we need to interwork if Symbol has bit 0 clear (ARM). + if (Expr == R_PLT_PC) + return R_THUNK_PLT_PC; + if ((S.getVA<ELF32LE>() & 1) == 0) + return R_THUNK_PC; + break; + } + return Expr; +} + +void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + switch (Type) { + case R_ARM_NONE: + break; + case R_ARM_ABS32: + case R_ARM_BASE_PREL: + case R_ARM_GOTOFF32: + case R_ARM_GOT_BREL: + case R_ARM_GOT_PREL: + case R_ARM_REL32: + write32le(Loc, Val); + break; + case R_ARM_PREL31: + checkInt<31>(Val, Type); + write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000)); + break; + case R_ARM_CALL: + // R_ARM_CALL is used for BL and BLX instructions, depending on the + // value of bit 0 of Val, we must select a BL or BLX instruction + if (Val & 1) { + // If bit 0 of Val is 1 the target is Thumb, we must select a BLX. + // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' + checkInt<26>(Val, Type); + write32le(Loc, 0xfa000000 | // opcode + ((Val & 2) << 23) | // H + ((Val >> 2) & 0x00ffffff)); // imm24 + break; + } + if ((read32le(Loc) & 0xfe000000) == 0xfa000000) + // BLX (always unconditional) instruction to an ARM Target, select an + // unconditional BL. + write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff)); + // fall through as BL encoding is shared with B + case R_ARM_JUMP24: + case R_ARM_PC24: + case R_ARM_PLT32: + checkInt<26>(Val, Type); + write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff)); + break; + case R_ARM_THM_JUMP11: + checkInt<12>(Val, Type); + write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff)); + break; + case R_ARM_THM_JUMP19: + // Encoding T3: Val = S:J2:J1:imm6:imm11:0 + checkInt<21>(Val, Type); + write16le(Loc, + (read16le(Loc) & 0xfbc0) | // opcode cond + ((Val >> 10) & 0x0400) | // S + ((Val >> 12) & 0x003f)); // imm6 + write16le(Loc + 2, + 0x8000 | // opcode + ((Val >> 8) & 0x0800) | // J2 + ((Val >> 5) & 0x2000) | // J1 + ((Val >> 1) & 0x07ff)); // imm11 + break; + case R_ARM_THM_CALL: + // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the + // value of bit 0 of Val, we must select a BL or BLX instruction + if ((Val & 1) == 0) { + // Ensure BLX destination is 4-byte aligned. As BLX instruction may + // only be two byte aligned. This must be done before overflow check + Val = alignTo(Val, 4); + } + // Bit 12 is 0 for BLX, 1 for BL + write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12); + // Fall through as rest of encoding is the same as B.W + case R_ARM_THM_JUMP24: + // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 + // FIXME: Use of I1 and I2 require v6T2ops + checkInt<25>(Val, Type); + write16le(Loc, + 0xf000 | // opcode + ((Val >> 14) & 0x0400) | // S + ((Val >> 12) & 0x03ff)); // imm10 + write16le(Loc + 2, + (read16le(Loc + 2) & 0xd000) | // opcode + (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1 + (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2 + ((Val >> 1) & 0x07ff)); // imm11 + break; + case R_ARM_MOVW_ABS_NC: + case R_ARM_MOVW_PREL_NC: + write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) | + (Val & 0x0fff)); + break; + case R_ARM_MOVT_ABS: + case R_ARM_MOVT_PREL: + checkInt<32>(Val, Type); + write32le(Loc, (read32le(Loc) & ~0x000f0fff) | + (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff)); + break; + case R_ARM_THM_MOVT_ABS: + case R_ARM_THM_MOVT_PREL: + // Encoding T1: A = imm4:i:imm3:imm8 + checkInt<32>(Val, Type); + write16le(Loc, + 0xf2c0 | // opcode + ((Val >> 17) & 0x0400) | // i + ((Val >> 28) & 0x000f)); // imm4 + write16le(Loc + 2, + (read16le(Loc + 2) & 0x8f00) | // opcode + ((Val >> 12) & 0x7000) | // imm3 + ((Val >> 16) & 0x00ff)); // imm8 + break; + case R_ARM_THM_MOVW_ABS_NC: + case R_ARM_THM_MOVW_PREL_NC: + // Encoding T3: A = imm4:i:imm3:imm8 + write16le(Loc, + 0xf240 | // opcode + ((Val >> 1) & 0x0400) | // i + ((Val >> 12) & 0x000f)); // imm4 + write16le(Loc + 2, + (read16le(Loc + 2) & 0x8f00) | // opcode + ((Val << 4) & 0x7000) | // imm3 + (Val & 0x00ff)); // imm8 + break; + default: + fatal("unrecognized reloc " + Twine(Type)); + } +} + +uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf, + uint32_t Type) const { + switch (Type) { + default: + return 0; + case R_ARM_ABS32: + case R_ARM_BASE_PREL: + case R_ARM_GOTOFF32: + case R_ARM_GOT_BREL: + case R_ARM_GOT_PREL: + case R_ARM_REL32: + return SignExtend64<32>(read32le(Buf)); + case R_ARM_PREL31: + return SignExtend64<31>(read32le(Buf)); + case R_ARM_CALL: + case R_ARM_JUMP24: + case R_ARM_PC24: + case R_ARM_PLT32: + return SignExtend64<26>(read32le(Buf) << 2); + case R_ARM_THM_JUMP11: + return SignExtend64<12>(read16le(Buf) << 1); + case R_ARM_THM_JUMP19: { + // Encoding T3: A = S:J2:J1:imm10:imm6:0 + uint16_t Hi = read16le(Buf); + uint16_t Lo = read16le(Buf + 2); + return SignExtend64<20>(((Hi & 0x0400) << 10) | // S + ((Lo & 0x0800) << 8) | // J2 + ((Lo & 0x2000) << 5) | // J1 + ((Hi & 0x003f) << 12) | // imm6 + ((Lo & 0x07ff) << 1)); // imm11:0 + } + case R_ARM_THM_CALL: + case R_ARM_THM_JUMP24: { + // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 + // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) + // FIXME: I1 and I2 require v6T2ops + uint16_t Hi = read16le(Buf); + uint16_t Lo = read16le(Buf + 2); + return SignExtend64<24>(((Hi & 0x0400) << 14) | // S + (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1 + (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2 + ((Hi & 0x003ff) << 12) | // imm0 + ((Lo & 0x007ff) << 1)); // imm11:0 + } + // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and + // MOVT is in the range -32768 <= A < 32768 + case R_ARM_MOVW_ABS_NC: + case R_ARM_MOVT_ABS: + case R_ARM_MOVW_PREL_NC: + case R_ARM_MOVT_PREL: { + uint64_t Val = read32le(Buf) & 0x000f0fff; + return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff)); + } + case R_ARM_THM_MOVW_ABS_NC: + case R_ARM_THM_MOVT_ABS: + case R_ARM_THM_MOVW_PREL_NC: + case R_ARM_THM_MOVT_PREL: { + // Encoding T3: A = imm4:i:imm3:imm8 + uint16_t Hi = read16le(Buf); + uint16_t Lo = read16le(Buf + 2); + return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4 + ((Hi & 0x0400) << 1) | // i + ((Lo & 0x7000) >> 4) | // imm3 + (Lo & 0x00ff)); // imm8 + } + } +} + +template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() { + GotPltHeaderEntriesNum = 2; + PageSize = 65536; + GotEntrySize = sizeof(typename ELFT::uint); + GotPltEntrySize = sizeof(typename ELFT::uint); + PltEntrySize = 16; + PltHeaderSize = 32; + CopyRel = R_MIPS_COPY; + PltRel = R_MIPS_JUMP_SLOT; + if (ELFT::Is64Bits) { + RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32; + TlsGotRel = R_MIPS_TLS_TPREL64; + TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64; + TlsOffsetRel = R_MIPS_TLS_DTPREL64; + } else { + RelativeRel = R_MIPS_REL32; + TlsGotRel = R_MIPS_TLS_TPREL32; + TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32; + TlsOffsetRel = R_MIPS_TLS_DTPREL32; + } +} + +template <class ELFT> +RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type, + const SymbolBody &S) const { + if (ELFT::Is64Bits) + // See comment in the calculateMips64RelChain. + Type &= 0xff; + switch (Type) { + default: + return R_ABS; + case R_MIPS_JALR: + return R_HINT; + case R_MIPS_GPREL16: + case R_MIPS_GPREL32: + return R_GOTREL; + case R_MIPS_26: + return R_PLT; + case R_MIPS_HI16: + case R_MIPS_LO16: + case R_MIPS_GOT_OFST: + // MIPS _gp_disp designates offset between start of function and 'gp' + // pointer into GOT. __gnu_local_gp is equal to the current value of + // the 'gp'. Therefore any relocations against them do not require + // dynamic relocation. + if (&S == ElfSym<ELFT>::MipsGpDisp) + return R_PC; + return R_ABS; + case R_MIPS_PC32: + case R_MIPS_PC16: + case R_MIPS_PC19_S2: + case R_MIPS_PC21_S2: + case R_MIPS_PC26_S2: + case R_MIPS_PCHI16: + case R_MIPS_PCLO16: + return R_PC; + case R_MIPS_GOT16: + if (S.isLocal()) + return R_MIPS_GOT_LOCAL_PAGE; + // fallthrough + case R_MIPS_CALL16: + case R_MIPS_GOT_DISP: + case R_MIPS_TLS_GOTTPREL: + return R_MIPS_GOT_OFF; + case R_MIPS_GOT_PAGE: + return R_MIPS_GOT_LOCAL_PAGE; + case R_MIPS_TLS_GD: + return R_MIPS_TLSGD; + case R_MIPS_TLS_LDM: + return R_MIPS_TLSLD; + } +} + +template <class ELFT> +uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const { + if (Type == R_MIPS_32 || Type == R_MIPS_64) + return RelativeRel; + // Keep it going with a dummy value so that we can find more reloc errors. + errorDynRel(Type); + return R_MIPS_32; +} + +template <class ELFT> +bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { + return Type == R_MIPS_TLS_LDM; +} + +template <class ELFT> +bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { + return Type == R_MIPS_TLS_GD; +} + +template <class ELFT> +void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { + write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA()); +} + +static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; } + +template <endianness E, uint8_t BSIZE, uint8_t SHIFT> +static int64_t getPcRelocAddend(const uint8_t *Loc) { + uint32_t Instr = read32<E>(Loc); + uint32_t Mask = 0xffffffff >> (32 - BSIZE); + return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT); +} + +template <endianness E, uint8_t BSIZE, uint8_t SHIFT> +static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) { + uint32_t Mask = 0xffffffff >> (32 - BSIZE); + uint32_t Instr = read32<E>(Loc); + if (SHIFT > 0) + checkAlignment<(1 << SHIFT)>(V, Type); + checkInt<BSIZE + SHIFT>(V, Type); + write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask)); +} + +template <endianness E> +static void writeMipsHi16(uint8_t *Loc, uint64_t V) { + uint32_t Instr = read32<E>(Loc); + write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(V)); +} + +template <endianness E> +static void writeMipsLo16(uint8_t *Loc, uint64_t V) { + uint32_t Instr = read32<E>(Loc); + write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff)); +} + +template <class ELFT> +void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { + const endianness E = ELFT::TargetEndianness; + write32<E>(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0]) + write32<E>(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28) + write32<E>(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0]) + write32<E>(Buf + 12, 0x031cc023); // subu $24, $24, $28 + write32<E>(Buf + 16, 0x03e07825); // move $15, $31 + write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2 + write32<E>(Buf + 24, 0x0320f809); // jalr $25 + write32<E>(Buf + 28, 0x2718fffe); // subu $24, $24, 2 + uint64_t Got = Out<ELFT>::GotPlt->getVA(); + writeMipsHi16<E>(Buf, Got); + writeMipsLo16<E>(Buf + 4, Got); + writeMipsLo16<E>(Buf + 8, Got); +} + +template <class ELFT> +void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, + uint64_t PltEntryAddr, int32_t Index, + unsigned RelOff) const { + const endianness E = ELFT::TargetEndianness; + write32<E>(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry) + write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15) + write32<E>(Buf + 8, 0x03200008); // jr $25 + write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry) + writeMipsHi16<E>(Buf, GotEntryAddr); + writeMipsLo16<E>(Buf + 4, GotEntryAddr); + writeMipsLo16<E>(Buf + 12, GotEntryAddr); +} + +template <class ELFT> +RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type, + const InputFile &File, + const SymbolBody &S) const { + // Any MIPS PIC code function is invoked with its address in register $t9. + // So if we have a branch instruction from non-PIC code to the PIC one + // we cannot make the jump directly and need to create a small stubs + // to save the target function address. + // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf + if (Type != R_MIPS_26) + return Expr; + auto *F = dyn_cast<ELFFileBase<ELFT>>(&File); + if (!F) + return Expr; + // If current file has PIC code, LA25 stub is not required. + if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC) + return Expr; + auto *D = dyn_cast<DefinedRegular<ELFT>>(&S); + if (!D || !D->Section) + return Expr; + // LA25 is required if target file has PIC code + // or target symbol is a PIC symbol. + const ELFFile<ELFT> &DefFile = D->Section->getFile()->getObj(); + bool PicFile = DefFile.getHeader()->e_flags & EF_MIPS_PIC; + bool PicSym = (D->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC; + return (PicFile || PicSym) ? R_THUNK_ABS : Expr; +} + +template <class ELFT> +uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf, + uint32_t Type) const { + const endianness E = ELFT::TargetEndianness; + switch (Type) { + default: + return 0; + case R_MIPS_32: + case R_MIPS_GPREL32: + return read32<E>(Buf); + case R_MIPS_26: + // FIXME (simon): If the relocation target symbol is not a PLT entry + // we should use another expression for calculation: + // ((A << 2) | (P & 0xf0000000)) >> 2 + return SignExtend64<28>(read32<E>(Buf) << 2); + case R_MIPS_GPREL16: + case R_MIPS_LO16: + case R_MIPS_PCLO16: + case R_MIPS_TLS_DTPREL_HI16: + case R_MIPS_TLS_DTPREL_LO16: + case R_MIPS_TLS_TPREL_HI16: + case R_MIPS_TLS_TPREL_LO16: + return SignExtend64<16>(read32<E>(Buf)); + case R_MIPS_PC16: + return getPcRelocAddend<E, 16, 2>(Buf); + case R_MIPS_PC19_S2: + return getPcRelocAddend<E, 19, 2>(Buf); + case R_MIPS_PC21_S2: + return getPcRelocAddend<E, 21, 2>(Buf); + case R_MIPS_PC26_S2: + return getPcRelocAddend<E, 26, 2>(Buf); + case R_MIPS_PC32: + return getPcRelocAddend<E, 32, 0>(Buf); + } +} + +static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type, + uint64_t Val) { + // MIPS N64 ABI packs multiple relocations into the single relocation + // record. In general, all up to three relocations can have arbitrary + // types. In fact, Clang and GCC uses only a few combinations. For now, + // we support two of them. That is allow to pass at least all LLVM + // test suite cases. + // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16 + // <any relocation> / R_MIPS_64 / R_MIPS_NONE + // The first relocation is a 'real' relocation which is calculated + // using the corresponding symbol's value. The second and the third + // relocations used to modify result of the first one: extend it to + // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation + // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf + uint32_t Type2 = (Type >> 8) & 0xff; + uint32_t Type3 = (Type >> 16) & 0xff; + if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE) + return std::make_pair(Type, Val); + if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE) + return std::make_pair(Type2, Val); + if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16)) + return std::make_pair(Type3, -Val); + error("unsupported relocations combination " + Twine(Type)); + return std::make_pair(Type & 0xff, Val); +} + +template <class ELFT> +void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, + uint64_t Val) const { + const endianness E = ELFT::TargetEndianness; + // Thread pointer and DRP offsets from the start of TLS data area. + // https://www.linux-mips.org/wiki/NPTL + if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16) + Val -= 0x8000; + else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16) + Val -= 0x7000; + if (ELFT::Is64Bits) + std::tie(Type, Val) = calculateMips64RelChain(Type, Val); + switch (Type) { + case R_MIPS_32: + case R_MIPS_GPREL32: + write32<E>(Loc, Val); + break; + case R_MIPS_64: + write64<E>(Loc, Val); + break; + case R_MIPS_26: + write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | (Val >> 2)); + break; + case R_MIPS_GOT_DISP: + case R_MIPS_GOT_PAGE: + case R_MIPS_GOT16: + case R_MIPS_GPREL16: + case R_MIPS_TLS_GD: + case R_MIPS_TLS_LDM: + checkInt<16>(Val, Type); + // fallthrough + case R_MIPS_CALL16: + case R_MIPS_GOT_OFST: + case R_MIPS_LO16: + case R_MIPS_PCLO16: + case R_MIPS_TLS_DTPREL_LO16: + case R_MIPS_TLS_GOTTPREL: + case R_MIPS_TLS_TPREL_LO16: + writeMipsLo16<E>(Loc, Val); + break; + case R_MIPS_HI16: + case R_MIPS_PCHI16: + case R_MIPS_TLS_DTPREL_HI16: + case R_MIPS_TLS_TPREL_HI16: + writeMipsHi16<E>(Loc, Val); + break; + case R_MIPS_JALR: + // Ignore this optimization relocation for now + break; + case R_MIPS_PC16: + applyMipsPcReloc<E, 16, 2>(Loc, Type, Val); + break; + case R_MIPS_PC19_S2: + applyMipsPcReloc<E, 19, 2>(Loc, Type, Val); + break; + case R_MIPS_PC21_S2: + applyMipsPcReloc<E, 21, 2>(Loc, Type, Val); + break; + case R_MIPS_PC26_S2: + applyMipsPcReloc<E, 26, 2>(Loc, Type, Val); + break; + case R_MIPS_PC32: + applyMipsPcReloc<E, 32, 0>(Loc, Type, Val); + break; + default: + fatal("unrecognized reloc " + Twine(Type)); + } +} + +template <class ELFT> +bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const { + return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST; +} +} +} |
