summaryrefslogtreecommitdiffstats
path: root/gnu/usr.bin/perl/numeric.c
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/perl/numeric.c')
-rw-r--r--gnu/usr.bin/perl/numeric.c944
1 files changed, 944 insertions, 0 deletions
diff --git a/gnu/usr.bin/perl/numeric.c b/gnu/usr.bin/perl/numeric.c
new file mode 100644
index 00000000000..b193e0c2e4a
--- /dev/null
+++ b/gnu/usr.bin/perl/numeric.c
@@ -0,0 +1,944 @@
+/* numeric.c
+ *
+ * Copyright (c) 2001-2002, Larry Wall
+ *
+ * You may distribute under the terms of either the GNU General Public
+ * License or the Artistic License, as specified in the README file.
+ *
+ */
+
+/*
+ * "That only makes eleven (plus one mislaid) and not fourteen, unless
+ * wizards count differently to other people."
+ */
+
+/*
+=head1 Numeric functions
+*/
+
+#include "EXTERN.h"
+#define PERL_IN_NUMERIC_C
+#include "perl.h"
+
+U32
+Perl_cast_ulong(pTHX_ NV f)
+{
+ if (f < 0.0)
+ return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
+ if (f < U32_MAX_P1) {
+#if CASTFLAGS & 2
+ if (f < U32_MAX_P1_HALF)
+ return (U32) f;
+ f -= U32_MAX_P1_HALF;
+ return ((U32) f) | (1 + U32_MAX >> 1);
+#else
+ return (U32) f;
+#endif
+ }
+ return f > 0 ? U32_MAX : 0 /* NaN */;
+}
+
+I32
+Perl_cast_i32(pTHX_ NV f)
+{
+ if (f < I32_MAX_P1)
+ return f < I32_MIN ? I32_MIN : (I32) f;
+ if (f < U32_MAX_P1) {
+#if CASTFLAGS & 2
+ if (f < U32_MAX_P1_HALF)
+ return (I32)(U32) f;
+ f -= U32_MAX_P1_HALF;
+ return (I32)(((U32) f) | (1 + U32_MAX >> 1));
+#else
+ return (I32)(U32) f;
+#endif
+ }
+ return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
+}
+
+IV
+Perl_cast_iv(pTHX_ NV f)
+{
+ if (f < IV_MAX_P1)
+ return f < IV_MIN ? IV_MIN : (IV) f;
+ if (f < UV_MAX_P1) {
+#if CASTFLAGS & 2
+ /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
+ if (f < UV_MAX_P1_HALF)
+ return (IV)(UV) f;
+ f -= UV_MAX_P1_HALF;
+ return (IV)(((UV) f) | (1 + UV_MAX >> 1));
+#else
+ return (IV)(UV) f;
+#endif
+ }
+ return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
+}
+
+UV
+Perl_cast_uv(pTHX_ NV f)
+{
+ if (f < 0.0)
+ return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
+ if (f < UV_MAX_P1) {
+#if CASTFLAGS & 2
+ if (f < UV_MAX_P1_HALF)
+ return (UV) f;
+ f -= UV_MAX_P1_HALF;
+ return ((UV) f) | (1 + UV_MAX >> 1);
+#else
+ return (UV) f;
+#endif
+ }
+ return f > 0 ? UV_MAX : 0 /* NaN */;
+}
+
+#if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL))
+/*
+ * This hack is to force load of "huge" support from libm.a
+ * So it is in perl for (say) POSIX to use.
+ * Needed for SunOS with Sun's 'acc' for example.
+ */
+NV
+Perl_huge(void)
+{
+# if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)
+ return HUGE_VALL;
+# endif
+ return HUGE_VAL;
+}
+#endif
+
+/*
+=for apidoc grok_bin
+
+converts a string representing a binary number to numeric form.
+
+On entry I<start> and I<*len> give the string to scan, I<*flags> gives
+conversion flags, and I<result> should be NULL or a pointer to an NV.
+The scan stops at the end of the string, or the first invalid character.
+On return I<*len> is set to the length scanned string, and I<*flags> gives
+output flags.
+
+If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
+and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
+returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
+and writes the value to I<*result> (or the value is discarded if I<result>
+is NULL).
+
+The hex number may optionally be prefixed with "0b" or "b" unless
+C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
+C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
+number may use '_' characters to separate digits.
+
+=cut
+ */
+
+UV
+Perl_grok_bin(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
+ const char *s = start;
+ STRLEN len = *len_p;
+ UV value = 0;
+ NV value_nv = 0;
+
+ const UV max_div_2 = UV_MAX / 2;
+ bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES;
+ bool overflowed = FALSE;
+
+ if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
+ /* strip off leading b or 0b.
+ for compatibility silently suffer "b" and "0b" as valid binary
+ numbers. */
+ if (len >= 1) {
+ if (s[0] == 'b') {
+ s++;
+ len--;
+ }
+ else if (len >= 2 && s[0] == '0' && s[1] == 'b') {
+ s+=2;
+ len-=2;
+ }
+ }
+ }
+
+ for (; len-- && *s; s++) {
+ char bit = *s;
+ if (bit == '0' || bit == '1') {
+ /* Write it in this wonky order with a goto to attempt to get the
+ compiler to make the common case integer-only loop pretty tight.
+ With gcc seems to be much straighter code than old scan_bin. */
+ redo:
+ if (!overflowed) {
+ if (value <= max_div_2) {
+ value = (value << 1) | (bit - '0');
+ continue;
+ }
+ /* Bah. We're just overflowed. */
+ if (ckWARN_d(WARN_OVERFLOW))
+ Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
+ "Integer overflow in binary number");
+ overflowed = TRUE;
+ value_nv = (NV) value;
+ }
+ value_nv *= 2.0;
+ /* If an NV has not enough bits in its mantissa to
+ * represent a UV this summing of small low-order numbers
+ * is a waste of time (because the NV cannot preserve
+ * the low-order bits anyway): we could just remember when
+ * did we overflow and in the end just multiply value_nv by the
+ * right amount. */
+ value_nv += (NV)(bit - '0');
+ continue;
+ }
+ if (bit == '_' && len && allow_underscores && (bit = s[1])
+ && (bit == '0' || bit == '1'))
+ {
+ --len;
+ ++s;
+ goto redo;
+ }
+ if (ckWARN(WARN_DIGIT))
+ Perl_warner(aTHX_ packWARN(WARN_DIGIT),
+ "Illegal binary digit '%c' ignored", *s);
+ break;
+ }
+
+ if ( ( overflowed && value_nv > 4294967295.0)
+#if UVSIZE > 4
+ || (!overflowed && value > 0xffffffff )
+#endif
+ ) {
+ if (ckWARN(WARN_PORTABLE))
+ Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
+ "Binary number > 0b11111111111111111111111111111111 non-portable");
+ }
+ *len_p = s - start;
+ if (!overflowed) {
+ *flags = 0;
+ return value;
+ }
+ *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
+ if (result)
+ *result = value_nv;
+ return UV_MAX;
+}
+
+/*
+=for apidoc grok_hex
+
+converts a string representing a hex number to numeric form.
+
+On entry I<start> and I<*len> give the string to scan, I<*flags> gives
+conversion flags, and I<result> should be NULL or a pointer to an NV.
+The scan stops at the end of the string, or the first non-hex-digit character.
+On return I<*len> is set to the length scanned string, and I<*flags> gives
+output flags.
+
+If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
+and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
+returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
+and writes the value to I<*result> (or the value is discarded if I<result>
+is NULL).
+
+The hex number may optionally be prefixed with "0x" or "x" unless
+C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
+C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
+number may use '_' characters to separate digits.
+
+=cut
+ */
+
+UV
+Perl_grok_hex(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
+ const char *s = start;
+ STRLEN len = *len_p;
+ UV value = 0;
+ NV value_nv = 0;
+
+ const UV max_div_16 = UV_MAX / 16;
+ bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES;
+ bool overflowed = FALSE;
+ const char *hexdigit;
+
+ if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
+ /* strip off leading x or 0x.
+ for compatibility silently suffer "x" and "0x" as valid hex numbers.
+ */
+ if (len >= 1) {
+ if (s[0] == 'x') {
+ s++;
+ len--;
+ }
+ else if (len >= 2 && s[0] == '0' && s[1] == 'x') {
+ s+=2;
+ len-=2;
+ }
+ }
+ }
+
+ for (; len-- && *s; s++) {
+ hexdigit = strchr((char *) PL_hexdigit, *s);
+ if (hexdigit) {
+ /* Write it in this wonky order with a goto to attempt to get the
+ compiler to make the common case integer-only loop pretty tight.
+ With gcc seems to be much straighter code than old scan_hex. */
+ redo:
+ if (!overflowed) {
+ if (value <= max_div_16) {
+ value = (value << 4) | ((hexdigit - PL_hexdigit) & 15);
+ continue;
+ }
+ /* Bah. We're just overflowed. */
+ if (ckWARN_d(WARN_OVERFLOW))
+ Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
+ "Integer overflow in hexadecimal number");
+ overflowed = TRUE;
+ value_nv = (NV) value;
+ }
+ value_nv *= 16.0;
+ /* If an NV has not enough bits in its mantissa to
+ * represent a UV this summing of small low-order numbers
+ * is a waste of time (because the NV cannot preserve
+ * the low-order bits anyway): we could just remember when
+ * did we overflow and in the end just multiply value_nv by the
+ * right amount of 16-tuples. */
+ value_nv += (NV)((hexdigit - PL_hexdigit) & 15);
+ continue;
+ }
+ if (*s == '_' && len && allow_underscores && s[1]
+ && (hexdigit = strchr((char *) PL_hexdigit, s[1])))
+ {
+ --len;
+ ++s;
+ goto redo;
+ }
+ if (ckWARN(WARN_DIGIT))
+ Perl_warner(aTHX_ packWARN(WARN_DIGIT),
+ "Illegal hexadecimal digit '%c' ignored", *s);
+ break;
+ }
+
+ if ( ( overflowed && value_nv > 4294967295.0)
+#if UVSIZE > 4
+ || (!overflowed && value > 0xffffffff )
+#endif
+ ) {
+ if (ckWARN(WARN_PORTABLE))
+ Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
+ "Hexadecimal number > 0xffffffff non-portable");
+ }
+ *len_p = s - start;
+ if (!overflowed) {
+ *flags = 0;
+ return value;
+ }
+ *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
+ if (result)
+ *result = value_nv;
+ return UV_MAX;
+}
+
+/*
+=for apidoc grok_oct
+
+
+=cut
+ */
+
+UV
+Perl_grok_oct(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
+ const char *s = start;
+ STRLEN len = *len_p;
+ UV value = 0;
+ NV value_nv = 0;
+
+ const UV max_div_8 = UV_MAX / 8;
+ bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES;
+ bool overflowed = FALSE;
+
+ for (; len-- && *s; s++) {
+ /* gcc 2.95 optimiser not smart enough to figure that this subtraction
+ out front allows slicker code. */
+ int digit = *s - '0';
+ if (digit >= 0 && digit <= 7) {
+ /* Write it in this wonky order with a goto to attempt to get the
+ compiler to make the common case integer-only loop pretty tight.
+ */
+ redo:
+ if (!overflowed) {
+ if (value <= max_div_8) {
+ value = (value << 3) | digit;
+ continue;
+ }
+ /* Bah. We're just overflowed. */
+ if (ckWARN_d(WARN_OVERFLOW))
+ Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
+ "Integer overflow in octal number");
+ overflowed = TRUE;
+ value_nv = (NV) value;
+ }
+ value_nv *= 8.0;
+ /* If an NV has not enough bits in its mantissa to
+ * represent a UV this summing of small low-order numbers
+ * is a waste of time (because the NV cannot preserve
+ * the low-order bits anyway): we could just remember when
+ * did we overflow and in the end just multiply value_nv by the
+ * right amount of 8-tuples. */
+ value_nv += (NV)digit;
+ continue;
+ }
+ if (digit == ('_' - '0') && len && allow_underscores
+ && (digit = s[1] - '0') && (digit >= 0 && digit <= 7))
+ {
+ --len;
+ ++s;
+ goto redo;
+ }
+ /* Allow \octal to work the DWIM way (that is, stop scanning
+ * as soon as non-octal characters are seen, complain only iff
+ * someone seems to want to use the digits eight and nine). */
+ if (digit == 8 || digit == 9) {
+ if (ckWARN(WARN_DIGIT))
+ Perl_warner(aTHX_ packWARN(WARN_DIGIT),
+ "Illegal octal digit '%c' ignored", *s);
+ }
+ break;
+ }
+
+ if ( ( overflowed && value_nv > 4294967295.0)
+#if UVSIZE > 4
+ || (!overflowed && value > 0xffffffff )
+#endif
+ ) {
+ if (ckWARN(WARN_PORTABLE))
+ Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
+ "Octal number > 037777777777 non-portable");
+ }
+ *len_p = s - start;
+ if (!overflowed) {
+ *flags = 0;
+ return value;
+ }
+ *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
+ if (result)
+ *result = value_nv;
+ return UV_MAX;
+}
+
+/*
+=for apidoc scan_bin
+
+For backwards compatibility. Use C<grok_bin> instead.
+
+=for apidoc scan_hex
+
+For backwards compatibility. Use C<grok_hex> instead.
+
+=for apidoc scan_oct
+
+For backwards compatibility. Use C<grok_oct> instead.
+
+=cut
+ */
+
+NV
+Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen)
+{
+ NV rnv;
+ I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
+ UV ruv = grok_bin (start, &len, &flags, &rnv);
+
+ *retlen = len;
+ return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
+}
+
+NV
+Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen)
+{
+ NV rnv;
+ I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
+ UV ruv = grok_oct (start, &len, &flags, &rnv);
+
+ *retlen = len;
+ return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
+}
+
+NV
+Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen)
+{
+ NV rnv;
+ I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
+ UV ruv = grok_hex (start, &len, &flags, &rnv);
+
+ *retlen = len;
+ return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
+}
+
+/*
+=for apidoc grok_numeric_radix
+
+Scan and skip for a numeric decimal separator (radix).
+
+=cut
+ */
+bool
+Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
+{
+#ifdef USE_LOCALE_NUMERIC
+ if (PL_numeric_radix_sv && IN_LOCALE) {
+ STRLEN len;
+ char* radix = SvPV(PL_numeric_radix_sv, len);
+ if (*sp + len <= send && memEQ(*sp, radix, len)) {
+ *sp += len;
+ return TRUE;
+ }
+ }
+ /* always try "." if numeric radix didn't match because
+ * we may have data from different locales mixed */
+#endif
+ if (*sp < send && **sp == '.') {
+ ++*sp;
+ return TRUE;
+ }
+ return FALSE;
+}
+
+/*
+=for apidoc grok_number
+
+Recognise (or not) a number. The type of the number is returned
+(0 if unrecognised), otherwise it is a bit-ORed combination of
+IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
+IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
+
+If the value of the number can fit an in UV, it is returned in the *valuep
+IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
+will never be set unless *valuep is valid, but *valuep may have been assigned
+to during processing even though IS_NUMBER_IN_UV is not set on return.
+If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
+valuep is non-NULL, but no actual assignment (or SEGV) will occur.
+
+IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
+seen (in which case *valuep gives the true value truncated to an integer), and
+IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
+absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
+number is larger than a UV.
+
+=cut
+ */
+int
+Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
+{
+ const char *s = pv;
+ const char *send = pv + len;
+ const UV max_div_10 = UV_MAX / 10;
+ const char max_mod_10 = UV_MAX % 10;
+ int numtype = 0;
+ int sawinf = 0;
+ int sawnan = 0;
+
+ while (s < send && isSPACE(*s))
+ s++;
+ if (s == send) {
+ return 0;
+ } else if (*s == '-') {
+ s++;
+ numtype = IS_NUMBER_NEG;
+ }
+ else if (*s == '+')
+ s++;
+
+ if (s == send)
+ return 0;
+
+ /* next must be digit or the radix separator or beginning of infinity */
+ if (isDIGIT(*s)) {
+ /* UVs are at least 32 bits, so the first 9 decimal digits cannot
+ overflow. */
+ UV value = *s - '0';
+ /* This construction seems to be more optimiser friendly.
+ (without it gcc does the isDIGIT test and the *s - '0' separately)
+ With it gcc on arm is managing 6 instructions (6 cycles) per digit.
+ In theory the optimiser could deduce how far to unroll the loop
+ before checking for overflow. */
+ if (++s < send) {
+ int digit = *s - '0';
+ if (digit >= 0 && digit <= 9) {
+ value = value * 10 + digit;
+ if (++s < send) {
+ digit = *s - '0';
+ if (digit >= 0 && digit <= 9) {
+ value = value * 10 + digit;
+ if (++s < send) {
+ digit = *s - '0';
+ if (digit >= 0 && digit <= 9) {
+ value = value * 10 + digit;
+ if (++s < send) {
+ digit = *s - '0';
+ if (digit >= 0 && digit <= 9) {
+ value = value * 10 + digit;
+ if (++s < send) {
+ digit = *s - '0';
+ if (digit >= 0 && digit <= 9) {
+ value = value * 10 + digit;
+ if (++s < send) {
+ digit = *s - '0';
+ if (digit >= 0 && digit <= 9) {
+ value = value * 10 + digit;
+ if (++s < send) {
+ digit = *s - '0';
+ if (digit >= 0 && digit <= 9) {
+ value = value * 10 + digit;
+ if (++s < send) {
+ digit = *s - '0';
+ if (digit >= 0 && digit <= 9) {
+ value = value * 10 + digit;
+ if (++s < send) {
+ /* Now got 9 digits, so need to check
+ each time for overflow. */
+ digit = *s - '0';
+ while (digit >= 0 && digit <= 9
+ && (value < max_div_10
+ || (value == max_div_10
+ && digit <= max_mod_10))) {
+ value = value * 10 + digit;
+ if (++s < send)
+ digit = *s - '0';
+ else
+ break;
+ }
+ if (digit >= 0 && digit <= 9
+ && (s < send)) {
+ /* value overflowed.
+ skip the remaining digits, don't
+ worry about setting *valuep. */
+ do {
+ s++;
+ } while (s < send && isDIGIT(*s));
+ numtype |=
+ IS_NUMBER_GREATER_THAN_UV_MAX;
+ goto skip_value;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ numtype |= IS_NUMBER_IN_UV;
+ if (valuep)
+ *valuep = value;
+
+ skip_value:
+ if (GROK_NUMERIC_RADIX(&s, send)) {
+ numtype |= IS_NUMBER_NOT_INT;
+ while (s < send && isDIGIT(*s)) /* optional digits after the radix */
+ s++;
+ }
+ }
+ else if (GROK_NUMERIC_RADIX(&s, send)) {
+ numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
+ /* no digits before the radix means we need digits after it */
+ if (s < send && isDIGIT(*s)) {
+ do {
+ s++;
+ } while (s < send && isDIGIT(*s));
+ if (valuep) {
+ /* integer approximation is valid - it's 0. */
+ *valuep = 0;
+ }
+ }
+ else
+ return 0;
+ } else if (*s == 'I' || *s == 'i') {
+ s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
+ s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
+ s++; if (s < send && (*s == 'I' || *s == 'i')) {
+ s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
+ s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
+ s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
+ s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
+ s++;
+ }
+ sawinf = 1;
+ } else if (*s == 'N' || *s == 'n') {
+ /* XXX TODO: There are signaling NaNs and quiet NaNs. */
+ s++; if (s == send || (*s != 'A' && *s != 'a')) return 0;
+ s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
+ s++;
+ sawnan = 1;
+ } else
+ return 0;
+
+ if (sawinf) {
+ numtype &= IS_NUMBER_NEG; /* Keep track of sign */
+ numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
+ } else if (sawnan) {
+ numtype &= IS_NUMBER_NEG; /* Keep track of sign */
+ numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
+ } else if (s < send) {
+ /* we can have an optional exponent part */
+ if (*s == 'e' || *s == 'E') {
+ /* The only flag we keep is sign. Blow away any "it's UV" */
+ numtype &= IS_NUMBER_NEG;
+ numtype |= IS_NUMBER_NOT_INT;
+ s++;
+ if (s < send && (*s == '-' || *s == '+'))
+ s++;
+ if (s < send && isDIGIT(*s)) {
+ do {
+ s++;
+ } while (s < send && isDIGIT(*s));
+ }
+ else
+ return 0;
+ }
+ }
+ while (s < send && isSPACE(*s))
+ s++;
+ if (s >= send)
+ return numtype;
+ if (len == 10 && memEQ(pv, "0 but true", 10)) {
+ if (valuep)
+ *valuep = 0;
+ return IS_NUMBER_IN_UV;
+ }
+ return 0;
+}
+
+NV
+S_mulexp10(NV value, I32 exponent)
+{
+ NV result = 1.0;
+ NV power = 10.0;
+ bool negative = 0;
+ I32 bit;
+
+ if (exponent == 0)
+ return value;
+
+ /* On OpenVMS VAX we by default use the D_FLOAT double format,
+ * and that format does not have *easy* capabilities [1] for
+ * overflowing doubles 'silently' as IEEE fp does. We also need
+ * to support G_FLOAT on both VAX and Alpha, and though the exponent
+ * range is much larger than D_FLOAT it still doesn't do silent
+ * overflow. Therefore we need to detect early whether we would
+ * overflow (this is the behaviour of the native string-to-float
+ * conversion routines, and therefore of native applications, too).
+ *
+ * [1] Trying to establish a condition handler to trap floating point
+ * exceptions is not a good idea. */
+
+ /* In UNICOS and in certain Cray models (such as T90) there is no
+ * IEEE fp, and no way at all from C to catch fp overflows gracefully.
+ * There is something you can do if you are willing to use some
+ * inline assembler: the instruction is called DFI-- but that will
+ * disable *all* floating point interrupts, a little bit too large
+ * a hammer. Therefore we need to catch potential overflows before
+ * it's too late. */
+
+#if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
+ STMT_START {
+ NV exp_v = log10(value);
+ if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
+ return NV_MAX;
+ if (exponent < 0) {
+ if (-(exponent + exp_v) >= NV_MAX_10_EXP)
+ return 0.0;
+ while (-exponent >= NV_MAX_10_EXP) {
+ /* combination does not overflow, but 10^(-exponent) does */
+ value /= 10;
+ ++exponent;
+ }
+ }
+ } STMT_END;
+#endif
+
+ if (exponent < 0) {
+ negative = 1;
+ exponent = -exponent;
+ }
+ for (bit = 1; exponent; bit <<= 1) {
+ if (exponent & bit) {
+ exponent ^= bit;
+ result *= power;
+ /* Floating point exceptions are supposed to be turned off,
+ * but if we're obviously done, don't risk another iteration.
+ */
+ if (exponent == 0) break;
+ }
+ power *= power;
+ }
+ return negative ? value / result : value * result;
+}
+
+NV
+Perl_my_atof(pTHX_ const char* s)
+{
+ NV x = 0.0;
+#ifdef USE_LOCALE_NUMERIC
+ if (PL_numeric_local && IN_LOCALE) {
+ NV y;
+
+ /* Scan the number twice; once using locale and once without;
+ * choose the larger result (in absolute value). */
+ Perl_atof2(s, x);
+ SET_NUMERIC_STANDARD();
+ Perl_atof2(s, y);
+ SET_NUMERIC_LOCAL();
+ if ((y < 0.0 && y < x) || (y > 0.0 && y > x))
+ return y;
+ }
+ else
+ Perl_atof2(s, x);
+#else
+ Perl_atof2(s, x);
+#endif
+ return x;
+}
+
+char*
+Perl_my_atof2(pTHX_ const char* orig, NV* value)
+{
+ NV result = 0.0;
+ char* s = (char*)orig;
+#ifdef USE_PERL_ATOF
+ bool negative = 0;
+ char* send = s + strlen(orig) - 1;
+ bool seendigit = 0;
+ I32 expextra = 0;
+ I32 exponent = 0;
+ I32 i;
+/* this is arbitrary */
+#define PARTLIM 6
+/* we want the largest integers we can usefully use */
+#if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
+# define PARTSIZE ((int)TYPE_DIGITS(U64)-1)
+ U64 part[PARTLIM];
+#else
+# define PARTSIZE ((int)TYPE_DIGITS(U32)-1)
+ U32 part[PARTLIM];
+#endif
+ I32 ipart = 0; /* index into part[] */
+ I32 offcount; /* number of digits in least significant part */
+
+ /* leading whitespace */
+ while (isSPACE(*s))
+ ++s;
+
+ /* sign */
+ switch (*s) {
+ case '-':
+ negative = 1;
+ /* fall through */
+ case '+':
+ ++s;
+ }
+
+ part[0] = offcount = 0;
+ if (isDIGIT(*s)) {
+ seendigit = 1; /* get this over with */
+
+ /* skip leading zeros */
+ while (*s == '0')
+ ++s;
+ }
+
+ /* integer digits */
+ while (isDIGIT(*s)) {
+ if (++offcount > PARTSIZE) {
+ if (++ipart < PARTLIM) {
+ part[ipart] = 0;
+ offcount = 1; /* ++0 */
+ }
+ else {
+ /* limits of precision reached */
+ --ipart;
+ --offcount;
+ if (*s >= '5')
+ ++part[ipart];
+ while (isDIGIT(*s)) {
+ ++expextra;
+ ++s;
+ }
+ /* warn of loss of precision? */
+ break;
+ }
+ }
+ part[ipart] = part[ipart] * 10 + (*s++ - '0');
+ }
+
+ /* decimal point */
+ if (GROK_NUMERIC_RADIX((const char **)&s, send)) {
+ if (isDIGIT(*s))
+ seendigit = 1; /* get this over with */
+
+ /* decimal digits */
+ while (isDIGIT(*s)) {
+ if (++offcount > PARTSIZE) {
+ if (++ipart < PARTLIM) {
+ part[ipart] = 0;
+ offcount = 1; /* ++0 */
+ }
+ else {
+ /* limits of precision reached */
+ --ipart;
+ --offcount;
+ if (*s >= '5')
+ ++part[ipart];
+ while (isDIGIT(*s))
+ ++s;
+ /* warn of loss of precision? */
+ break;
+ }
+ }
+ --expextra;
+ part[ipart] = part[ipart] * 10 + (*s++ - '0');
+ }
+ }
+
+ /* combine components of mantissa */
+ for (i = 0; i <= ipart; ++i)
+ result += S_mulexp10((NV)part[ipart - i],
+ i ? offcount + (i - 1) * PARTSIZE : 0);
+
+ if (seendigit && (*s == 'e' || *s == 'E')) {
+ bool expnegative = 0;
+
+ ++s;
+ switch (*s) {
+ case '-':
+ expnegative = 1;
+ /* fall through */
+ case '+':
+ ++s;
+ }
+ while (isDIGIT(*s))
+ exponent = exponent * 10 + (*s++ - '0');
+ if (expnegative)
+ exponent = -exponent;
+ }
+
+ /* now apply the exponent */
+ exponent += expextra;
+ result = S_mulexp10(result, exponent);
+
+ /* now apply the sign */
+ if (negative)
+ result = -result;
+#endif /* USE_PERL_ATOF */
+ *value = result;
+ return s;
+}
+