summaryrefslogtreecommitdiffstats
path: root/lib/libcxx/utils/google-benchmark/src/complexity.cc
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libcxx/utils/google-benchmark/src/complexity.cc')
-rw-r--r--lib/libcxx/utils/google-benchmark/src/complexity.cc131
1 files changed, 15 insertions, 116 deletions
diff --git a/lib/libcxx/utils/google-benchmark/src/complexity.cc b/lib/libcxx/utils/google-benchmark/src/complexity.cc
index 02adbef6292..aafd538df21 100644
--- a/lib/libcxx/utils/google-benchmark/src/complexity.cc
+++ b/lib/libcxx/utils/google-benchmark/src/complexity.cc
@@ -15,32 +15,34 @@
// Source project : https://github.com/ismaelJimenez/cpp.leastsq
// Adapted to be used with google benchmark
-#include "benchmark/benchmark_api.h"
+#include "benchmark/benchmark.h"
#include <algorithm>
#include <cmath>
#include "check.h"
#include "complexity.h"
-#include "stat.h"
namespace benchmark {
// Internal function to calculate the different scalability forms
BigOFunc* FittingCurve(BigO complexity) {
+ static const double kLog2E = 1.44269504088896340736;
switch (complexity) {
case oN:
- return [](int n) -> double { return n; };
+ return [](int64_t n) -> double { return static_cast<double>(n); };
case oNSquared:
- return [](int n) -> double { return std::pow(n, 2); };
+ return [](int64_t n) -> double { return std::pow(n, 2); };
case oNCubed:
- return [](int n) -> double { return std::pow(n, 3); };
+ return [](int64_t n) -> double { return std::pow(n, 3); };
case oLogN:
- return [](int n) { return std::log2(n); };
+ /* Note: can't use log2 because Android's GNU STL lacks it */
+ return [](int64_t n) { return kLog2E * log(static_cast<double>(n)); };
case oNLogN:
- return [](int n) { return n * std::log2(n); };
+ /* Note: can't use log2 because Android's GNU STL lacks it */
+ return [](int64_t n) { return kLog2E * n * log(static_cast<double>(n)); };
case o1:
default:
- return [](int) { return 1.0; };
+ return [](int64_t) { return 1.0; };
}
}
@@ -66,15 +68,15 @@ std::string GetBigOString(BigO complexity) {
// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error, for the fitting curve
-// given by the lambda expresion.
+// given by the lambda expression.
// - n : Vector containing the size of the benchmark tests.
// - time : Vector containing the times for the benchmark tests.
-// - fitting_curve : lambda expresion (e.g. [](int n) {return n; };).
+// - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };).
// For a deeper explanation on the algorithm logic, look the README file at
// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit
-LeastSq MinimalLeastSq(const std::vector<int>& n,
+LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
const std::vector<double>& time,
BigOFunc* fitting_curve) {
double sigma_gn = 0.0;
@@ -118,7 +120,7 @@ LeastSq MinimalLeastSq(const std::vector<int>& n,
// - complexity : If different than oAuto, the fitting curve will stick to
// this one. If it is oAuto, it will be calculated the best
// fitting curve.
-LeastSq MinimalLeastSq(const std::vector<int>& n,
+LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
const std::vector<double>& time, const BigO complexity) {
CHECK_EQ(n.size(), time.size());
CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two
@@ -150,109 +152,6 @@ LeastSq MinimalLeastSq(const std::vector<int>& n,
return best_fit;
}
-std::vector<BenchmarkReporter::Run> ComputeStats(
- const std::vector<BenchmarkReporter::Run>& reports) {
- typedef BenchmarkReporter::Run Run;
- std::vector<Run> results;
-
- auto error_count =
- std::count_if(reports.begin(), reports.end(),
- [](Run const& run) { return run.error_occurred; });
-
- if (reports.size() - error_count < 2) {
- // We don't report aggregated data if there was a single run.
- return results;
- }
- // Accumulators.
- Stat1_d real_accumulated_time_stat;
- Stat1_d cpu_accumulated_time_stat;
- Stat1_d bytes_per_second_stat;
- Stat1_d items_per_second_stat;
- // All repetitions should be run with the same number of iterations so we
- // can take this information from the first benchmark.
- int64_t const run_iterations = reports.front().iterations;
- // create stats for user counters
- struct CounterStat {
- Counter c;
- Stat1_d s;
- };
- std::map< std::string, CounterStat > counter_stats;
- for(Run const& r : reports) {
- for(auto const& cnt : r.counters) {
- auto it = counter_stats.find(cnt.first);
- if(it == counter_stats.end()) {
- counter_stats.insert({cnt.first, {cnt.second, Stat1_d{}}});
- } else {
- CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
- }
- }
- }
-
- // Populate the accumulators.
- for (Run const& run : reports) {
- CHECK_EQ(reports[0].benchmark_name, run.benchmark_name);
- CHECK_EQ(run_iterations, run.iterations);
- if (run.error_occurred) continue;
- real_accumulated_time_stat +=
- Stat1_d(run.real_accumulated_time / run.iterations, run.iterations);
- cpu_accumulated_time_stat +=
- Stat1_d(run.cpu_accumulated_time / run.iterations, run.iterations);
- items_per_second_stat += Stat1_d(run.items_per_second, run.iterations);
- bytes_per_second_stat += Stat1_d(run.bytes_per_second, run.iterations);
- // user counters
- for(auto const& cnt : run.counters) {
- auto it = counter_stats.find(cnt.first);
- CHECK_NE(it, counter_stats.end());
- it->second.s += Stat1_d(cnt.second, run.iterations);
- }
- }
-
- // Get the data from the accumulator to BenchmarkReporter::Run's.
- Run mean_data;
- mean_data.benchmark_name = reports[0].benchmark_name + "_mean";
- mean_data.iterations = run_iterations;
- mean_data.real_accumulated_time =
- real_accumulated_time_stat.Mean() * run_iterations;
- mean_data.cpu_accumulated_time =
- cpu_accumulated_time_stat.Mean() * run_iterations;
- mean_data.bytes_per_second = bytes_per_second_stat.Mean();
- mean_data.items_per_second = items_per_second_stat.Mean();
- mean_data.time_unit = reports[0].time_unit;
- // user counters
- for(auto const& kv : counter_stats) {
- auto c = Counter(kv.second.s.Mean(), counter_stats[kv.first].c.flags);
- mean_data.counters[kv.first] = c;
- }
-
- // Only add label to mean/stddev if it is same for all runs
- mean_data.report_label = reports[0].report_label;
- for (std::size_t i = 1; i < reports.size(); i++) {
- if (reports[i].report_label != reports[0].report_label) {
- mean_data.report_label = "";
- break;
- }
- }
-
- Run stddev_data;
- stddev_data.benchmark_name = reports[0].benchmark_name + "_stddev";
- stddev_data.report_label = mean_data.report_label;
- stddev_data.iterations = 0;
- stddev_data.real_accumulated_time = real_accumulated_time_stat.StdDev();
- stddev_data.cpu_accumulated_time = cpu_accumulated_time_stat.StdDev();
- stddev_data.bytes_per_second = bytes_per_second_stat.StdDev();
- stddev_data.items_per_second = items_per_second_stat.StdDev();
- stddev_data.time_unit = reports[0].time_unit;
- // user counters
- for(auto const& kv : counter_stats) {
- auto c = Counter(kv.second.s.StdDev(), counter_stats[kv.first].c.flags);
- stddev_data.counters[kv.first] = c;
- }
-
- results.push_back(mean_data);
- results.push_back(stddev_data);
- return results;
-}
-
std::vector<BenchmarkReporter::Run> ComputeBigO(
const std::vector<BenchmarkReporter::Run>& reports) {
typedef BenchmarkReporter::Run Run;
@@ -261,7 +160,7 @@ std::vector<BenchmarkReporter::Run> ComputeBigO(
if (reports.size() < 2) return results;
// Accumulators.
- std::vector<int> n;
+ std::vector<int64_t> n;
std::vector<double> real_time;
std::vector<double> cpu_time;