diff options
Diffstat (limited to 'lib/libm/src/s_casinf.c')
| -rw-r--r-- | lib/libm/src/s_casinf.c | 132 |
1 files changed, 132 insertions, 0 deletions
diff --git a/lib/libm/src/s_casinf.c b/lib/libm/src/s_casinf.c new file mode 100644 index 00000000000..84b2096a4fc --- /dev/null +++ b/lib/libm/src/s_casinf.c @@ -0,0 +1,132 @@ +/* $OpenBSD: s_casinf.c,v 1.1 2008/09/07 20:36:09 martynas Exp $ */ +/* + * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* casinf() + * + * Complex circular arc sine + * + * + * + * SYNOPSIS: + * + * void casinf(); + * cmplxf z, w; + * + * casinf( &z, &w ); + * + * + * + * DESCRIPTION: + * + * Inverse complex sine: + * + * 2 + * w = -i clog( iz + csqrt( 1 - z ) ). + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -10,+10 30000 1.1e-5 1.5e-6 + * Larger relative error can be observed for z near zero. + * + */ + +#include <complex.h> +#include <math.h> + +float complex +casinf(float complex z) +{ + float complex w; + float x, y; + static float complex ca, ct, zz, z2; + /* + float cn, n; + static float a, b, s, t, u, v, y2; + static cmplxf sum; + */ + + x = creal(z); + y = cimag(z); + + if(y == 0.0f) { + if(fabsf(x) > 1.0f) { + w = M_PI_2 + 0.0f * I; + /*mtherr( "casinf", DOMAIN );*/ + } + else { + w = asinf (x) + 0.0f * I; + } + return (w); + } + + /* Power series expansion */ + /* + b = cabsf(z); + if(b < 0.125) { + z2.r = (x - y) * (x + y); + z2.i = 2.0 * x * y; + + cn = 1.0; + n = 1.0; + ca.r = x; + ca.i = y; + sum.r = x; + sum.i = y; + do { + ct.r = z2.r * ca.r - z2.i * ca.i; + ct.i = z2.r * ca.i + z2.i * ca.r; + ca.r = ct.r; + ca.i = ct.i; + + cn *= n; + n += 1.0; + cn /= n; + n += 1.0; + b = cn/n; + + ct.r *= b; + ct.i *= b; + sum.r += ct.r; + sum.i += ct.i; + b = fabsf(ct.r) + fabsf(ct.i); + } + while(b > MACHEPF); + w->r = sum.r; + w->i = sum.i; + return; + } + */ + + + ca = x + y * I; + ct = ca * I; /* iz */ + /* sqrt( 1 - z*z) */ + /* cmul( &ca, &ca, &zz ) */ + /*x * x - y * y */ + zz = (x - y) * (x + y) + (2.0f * x * y) * I; + zz = 1.0f - creal(zz) - cimag(zz) * I; + z2 = csqrtf (zz); + + zz = ct + z2; + zz = clogf (zz); + /* multiply by 1/i = -i */ + w = zz * (-1.0f * I); + return (w); +} |
