summaryrefslogtreecommitdiffstats
path: root/lib/libsqlite3/src/vdbeaux.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libsqlite3/src/vdbeaux.c')
-rw-r--r--lib/libsqlite3/src/vdbeaux.c4263
1 files changed, 0 insertions, 4263 deletions
diff --git a/lib/libsqlite3/src/vdbeaux.c b/lib/libsqlite3/src/vdbeaux.c
deleted file mode 100644
index 9fed69127a7..00000000000
--- a/lib/libsqlite3/src/vdbeaux.c
+++ /dev/null
@@ -1,4263 +0,0 @@
-/*
-** 2003 September 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used for creating, destroying, and populating
-** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
-*/
-#include "sqliteInt.h"
-#include "vdbeInt.h"
-
-/*
-** Create a new virtual database engine.
-*/
-Vdbe *sqlite3VdbeCreate(Parse *pParse){
- sqlite3 *db = pParse->db;
- Vdbe *p;
- p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
- if( p==0 ) return 0;
- p->db = db;
- if( db->pVdbe ){
- db->pVdbe->pPrev = p;
- }
- p->pNext = db->pVdbe;
- p->pPrev = 0;
- db->pVdbe = p;
- p->magic = VDBE_MAGIC_INIT;
- p->pParse = pParse;
- assert( pParse->aLabel==0 );
- assert( pParse->nLabel==0 );
- assert( pParse->nOpAlloc==0 );
- return p;
-}
-
-/*
-** Change the error string stored in Vdbe.zErrMsg
-*/
-void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
- va_list ap;
- sqlite3DbFree(p->db, p->zErrMsg);
- va_start(ap, zFormat);
- p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
- va_end(ap);
-}
-
-/*
-** Remember the SQL string for a prepared statement.
-*/
-void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
- assert( isPrepareV2==1 || isPrepareV2==0 );
- if( p==0 ) return;
-#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
- if( !isPrepareV2 ) return;
-#endif
- assert( p->zSql==0 );
- p->zSql = sqlite3DbStrNDup(p->db, z, n);
- p->isPrepareV2 = (u8)isPrepareV2;
-}
-
-/*
-** Return the SQL associated with a prepared statement
-*/
-const char *sqlite3_sql(sqlite3_stmt *pStmt){
- Vdbe *p = (Vdbe *)pStmt;
- return p ? p->zSql : 0;
-}
-
-/*
-** Swap all content between two VDBE structures.
-*/
-void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
- Vdbe tmp, *pTmp;
- char *zTmp;
- tmp = *pA;
- *pA = *pB;
- *pB = tmp;
- pTmp = pA->pNext;
- pA->pNext = pB->pNext;
- pB->pNext = pTmp;
- pTmp = pA->pPrev;
- pA->pPrev = pB->pPrev;
- pB->pPrev = pTmp;
- zTmp = pA->zSql;
- pA->zSql = pB->zSql;
- pB->zSql = zTmp;
- pB->isPrepareV2 = pA->isPrepareV2;
-}
-
-/*
-** Resize the Vdbe.aOp array so that it is at least nOp elements larger
-** than its current size. nOp is guaranteed to be less than or equal
-** to 1024/sizeof(Op).
-**
-** If an out-of-memory error occurs while resizing the array, return
-** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
-** unchanged (this is so that any opcodes already allocated can be
-** correctly deallocated along with the rest of the Vdbe).
-*/
-static int growOpArray(Vdbe *v, int nOp){
- VdbeOp *pNew;
- Parse *p = v->pParse;
-
- /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
- ** more frequent reallocs and hence provide more opportunities for
- ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
- ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
- ** by the minimum* amount required until the size reaches 512. Normal
- ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
- ** size of the op array or add 1KB of space, whichever is smaller. */
-#ifdef SQLITE_TEST_REALLOC_STRESS
- int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
-#else
- int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
- UNUSED_PARAMETER(nOp);
-#endif
-
- assert( nOp<=(1024/sizeof(Op)) );
- assert( nNew>=(p->nOpAlloc+nOp) );
- pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
- if( pNew ){
- p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
- v->aOp = pNew;
- }
- return (pNew ? SQLITE_OK : SQLITE_NOMEM);
-}
-
-#ifdef SQLITE_DEBUG
-/* This routine is just a convenient place to set a breakpoint that will
-** fire after each opcode is inserted and displayed using
-** "PRAGMA vdbe_addoptrace=on".
-*/
-static void test_addop_breakpoint(void){
- static int n = 0;
- n++;
-}
-#endif
-
-/*
-** Add a new instruction to the list of instructions current in the
-** VDBE. Return the address of the new instruction.
-**
-** Parameters:
-**
-** p Pointer to the VDBE
-**
-** op The opcode for this instruction
-**
-** p1, p2, p3 Operands
-**
-** Use the sqlite3VdbeResolveLabel() function to fix an address and
-** the sqlite3VdbeChangeP4() function to change the value of the P4
-** operand.
-*/
-int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
- int i;
- VdbeOp *pOp;
-
- i = p->nOp;
- assert( p->magic==VDBE_MAGIC_INIT );
- assert( op>0 && op<0xff );
- if( p->pParse->nOpAlloc<=i ){
- if( growOpArray(p, 1) ){
- return 1;
- }
- }
- p->nOp++;
- pOp = &p->aOp[i];
- pOp->opcode = (u8)op;
- pOp->p5 = 0;
- pOp->p1 = p1;
- pOp->p2 = p2;
- pOp->p3 = p3;
- pOp->p4.p = 0;
- pOp->p4type = P4_NOTUSED;
-#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
- pOp->zComment = 0;
-#endif
-#ifdef SQLITE_DEBUG
- if( p->db->flags & SQLITE_VdbeAddopTrace ){
- int jj, kk;
- Parse *pParse = p->pParse;
- for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
- struct yColCache *x = pParse->aColCache + jj;
- if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
- printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
- kk++;
- }
- if( kk ) printf("\n");
- sqlite3VdbePrintOp(0, i, &p->aOp[i]);
- test_addop_breakpoint();
- }
-#endif
-#ifdef VDBE_PROFILE
- pOp->cycles = 0;
- pOp->cnt = 0;
-#endif
-#ifdef SQLITE_VDBE_COVERAGE
- pOp->iSrcLine = 0;
-#endif
- return i;
-}
-int sqlite3VdbeAddOp0(Vdbe *p, int op){
- return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
-}
-int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
- return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
-}
-int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
- return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
-}
-
-/* Generate code for an unconditional jump to instruction iDest
-*/
-int sqlite3VdbeGoto(Vdbe *p, int iDest){
- return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
-}
-
-/* Generate code to cause the string zStr to be loaded into
-** register iDest
-*/
-int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
- return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
-}
-
-/*
-** Generate code that initializes multiple registers to string or integer
-** constants. The registers begin with iDest and increase consecutively.
-** One register is initialized for each characgter in zTypes[]. For each
-** "s" character in zTypes[], the register is a string if the argument is
-** not NULL, or OP_Null if the value is a null pointer. For each "i" character
-** in zTypes[], the register is initialized to an integer.
-*/
-void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
- va_list ap;
- int i;
- char c;
- va_start(ap, zTypes);
- for(i=0; (c = zTypes[i])!=0; i++){
- if( c=='s' ){
- const char *z = va_arg(ap, const char*);
- int addr = sqlite3VdbeAddOp2(p, z==0 ? OP_Null : OP_String8, 0, iDest++);
- if( z ) sqlite3VdbeChangeP4(p, addr, z, 0);
- }else{
- assert( c=='i' );
- sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
- }
- }
- va_end(ap);
-}
-
-/*
-** Add an opcode that includes the p4 value as a pointer.
-*/
-int sqlite3VdbeAddOp4(
- Vdbe *p, /* Add the opcode to this VM */
- int op, /* The new opcode */
- int p1, /* The P1 operand */
- int p2, /* The P2 operand */
- int p3, /* The P3 operand */
- const char *zP4, /* The P4 operand */
- int p4type /* P4 operand type */
-){
- int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
- sqlite3VdbeChangeP4(p, addr, zP4, p4type);
- return addr;
-}
-
-/*
-** Add an opcode that includes the p4 value with a P4_INT64 or
-** P4_REAL type.
-*/
-int sqlite3VdbeAddOp4Dup8(
- Vdbe *p, /* Add the opcode to this VM */
- int op, /* The new opcode */
- int p1, /* The P1 operand */
- int p2, /* The P2 operand */
- int p3, /* The P3 operand */
- const u8 *zP4, /* The P4 operand */
- int p4type /* P4 operand type */
-){
- char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8);
- if( p4copy ) memcpy(p4copy, zP4, 8);
- return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
-}
-
-/*
-** Add an OP_ParseSchema opcode. This routine is broken out from
-** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
-** as having been used.
-**
-** The zWhere string must have been obtained from sqlite3_malloc().
-** This routine will take ownership of the allocated memory.
-*/
-void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
- int j;
- int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
- sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
- for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
-}
-
-/*
-** Add an opcode that includes the p4 value as an integer.
-*/
-int sqlite3VdbeAddOp4Int(
- Vdbe *p, /* Add the opcode to this VM */
- int op, /* The new opcode */
- int p1, /* The P1 operand */
- int p2, /* The P2 operand */
- int p3, /* The P3 operand */
- int p4 /* The P4 operand as an integer */
-){
- int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
- sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
- return addr;
-}
-
-/*
-** Create a new symbolic label for an instruction that has yet to be
-** coded. The symbolic label is really just a negative number. The
-** label can be used as the P2 value of an operation. Later, when
-** the label is resolved to a specific address, the VDBE will scan
-** through its operation list and change all values of P2 which match
-** the label into the resolved address.
-**
-** The VDBE knows that a P2 value is a label because labels are
-** always negative and P2 values are suppose to be non-negative.
-** Hence, a negative P2 value is a label that has yet to be resolved.
-**
-** Zero is returned if a malloc() fails.
-*/
-int sqlite3VdbeMakeLabel(Vdbe *v){
- Parse *p = v->pParse;
- int i = p->nLabel++;
- assert( v->magic==VDBE_MAGIC_INIT );
- if( (i & (i-1))==0 ){
- p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
- (i*2+1)*sizeof(p->aLabel[0]));
- }
- if( p->aLabel ){
- p->aLabel[i] = -1;
- }
- return -1-i;
-}
-
-/*
-** Resolve label "x" to be the address of the next instruction to
-** be inserted. The parameter "x" must have been obtained from
-** a prior call to sqlite3VdbeMakeLabel().
-*/
-void sqlite3VdbeResolveLabel(Vdbe *v, int x){
- Parse *p = v->pParse;
- int j = -1-x;
- assert( v->magic==VDBE_MAGIC_INIT );
- assert( j<p->nLabel );
- assert( j>=0 );
- if( p->aLabel ){
- p->aLabel[j] = v->nOp;
- }
- p->iFixedOp = v->nOp - 1;
-}
-
-/*
-** Mark the VDBE as one that can only be run one time.
-*/
-void sqlite3VdbeRunOnlyOnce(Vdbe *p){
- p->runOnlyOnce = 1;
-}
-
-#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
-
-/*
-** The following type and function are used to iterate through all opcodes
-** in a Vdbe main program and each of the sub-programs (triggers) it may
-** invoke directly or indirectly. It should be used as follows:
-**
-** Op *pOp;
-** VdbeOpIter sIter;
-**
-** memset(&sIter, 0, sizeof(sIter));
-** sIter.v = v; // v is of type Vdbe*
-** while( (pOp = opIterNext(&sIter)) ){
-** // Do something with pOp
-** }
-** sqlite3DbFree(v->db, sIter.apSub);
-**
-*/
-typedef struct VdbeOpIter VdbeOpIter;
-struct VdbeOpIter {
- Vdbe *v; /* Vdbe to iterate through the opcodes of */
- SubProgram **apSub; /* Array of subprograms */
- int nSub; /* Number of entries in apSub */
- int iAddr; /* Address of next instruction to return */
- int iSub; /* 0 = main program, 1 = first sub-program etc. */
-};
-static Op *opIterNext(VdbeOpIter *p){
- Vdbe *v = p->v;
- Op *pRet = 0;
- Op *aOp;
- int nOp;
-
- if( p->iSub<=p->nSub ){
-
- if( p->iSub==0 ){
- aOp = v->aOp;
- nOp = v->nOp;
- }else{
- aOp = p->apSub[p->iSub-1]->aOp;
- nOp = p->apSub[p->iSub-1]->nOp;
- }
- assert( p->iAddr<nOp );
-
- pRet = &aOp[p->iAddr];
- p->iAddr++;
- if( p->iAddr==nOp ){
- p->iSub++;
- p->iAddr = 0;
- }
-
- if( pRet->p4type==P4_SUBPROGRAM ){
- int nByte = (p->nSub+1)*sizeof(SubProgram*);
- int j;
- for(j=0; j<p->nSub; j++){
- if( p->apSub[j]==pRet->p4.pProgram ) break;
- }
- if( j==p->nSub ){
- p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
- if( !p->apSub ){
- pRet = 0;
- }else{
- p->apSub[p->nSub++] = pRet->p4.pProgram;
- }
- }
- }
- }
-
- return pRet;
-}
-
-/*
-** Check if the program stored in the VM associated with pParse may
-** throw an ABORT exception (causing the statement, but not entire transaction
-** to be rolled back). This condition is true if the main program or any
-** sub-programs contains any of the following:
-**
-** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
-** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
-** * OP_Destroy
-** * OP_VUpdate
-** * OP_VRename
-** * OP_FkCounter with P2==0 (immediate foreign key constraint)
-** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
-**
-** Then check that the value of Parse.mayAbort is true if an
-** ABORT may be thrown, or false otherwise. Return true if it does
-** match, or false otherwise. This function is intended to be used as
-** part of an assert statement in the compiler. Similar to:
-**
-** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
-*/
-int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
- int hasAbort = 0;
- int hasFkCounter = 0;
- int hasCreateTable = 0;
- int hasInitCoroutine = 0;
- Op *pOp;
- VdbeOpIter sIter;
- memset(&sIter, 0, sizeof(sIter));
- sIter.v = v;
-
- while( (pOp = opIterNext(&sIter))!=0 ){
- int opcode = pOp->opcode;
- if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
- || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
- && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
- ){
- hasAbort = 1;
- break;
- }
- if( opcode==OP_CreateTable ) hasCreateTable = 1;
- if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
- hasFkCounter = 1;
- }
-#endif
- }
- sqlite3DbFree(v->db, sIter.apSub);
-
- /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
- ** If malloc failed, then the while() loop above may not have iterated
- ** through all opcodes and hasAbort may be set incorrectly. Return
- ** true for this case to prevent the assert() in the callers frame
- ** from failing. */
- return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
- || (hasCreateTable && hasInitCoroutine) );
-}
-#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
-
-/*
-** This routine is called after all opcodes have been inserted. It loops
-** through all the opcodes and fixes up some details.
-**
-** (1) For each jump instruction with a negative P2 value (a label)
-** resolve the P2 value to an actual address.
-**
-** (2) Compute the maximum number of arguments used by any SQL function
-** and store that value in *pMaxFuncArgs.
-**
-** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
-** indicate what the prepared statement actually does.
-**
-** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
-**
-** (5) Reclaim the memory allocated for storing labels.
-*/
-static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
- int i;
- int nMaxArgs = *pMaxFuncArgs;
- Op *pOp;
- Parse *pParse = p->pParse;
- int *aLabel = pParse->aLabel;
- p->readOnly = 1;
- p->bIsReader = 0;
- for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
- u8 opcode = pOp->opcode;
-
- /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
- ** cases from this switch! */
- switch( opcode ){
- case OP_Transaction: {
- if( pOp->p2!=0 ) p->readOnly = 0;
- /* fall thru */
- }
- case OP_AutoCommit:
- case OP_Savepoint: {
- p->bIsReader = 1;
- break;
- }
-#ifndef SQLITE_OMIT_WAL
- case OP_Checkpoint:
-#endif
- case OP_Vacuum:
- case OP_JournalMode: {
- p->readOnly = 0;
- p->bIsReader = 1;
- break;
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- case OP_VUpdate: {
- if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
- break;
- }
- case OP_VFilter: {
- int n;
- assert( p->nOp - i >= 3 );
- assert( pOp[-1].opcode==OP_Integer );
- n = pOp[-1].p1;
- if( n>nMaxArgs ) nMaxArgs = n;
- break;
- }
-#endif
- case OP_Next:
- case OP_NextIfOpen:
- case OP_SorterNext: {
- pOp->p4.xAdvance = sqlite3BtreeNext;
- pOp->p4type = P4_ADVANCE;
- break;
- }
- case OP_Prev:
- case OP_PrevIfOpen: {
- pOp->p4.xAdvance = sqlite3BtreePrevious;
- pOp->p4type = P4_ADVANCE;
- break;
- }
- }
-
- pOp->opflags = sqlite3OpcodeProperty[opcode];
- if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
- assert( -1-pOp->p2<pParse->nLabel );
- pOp->p2 = aLabel[-1-pOp->p2];
- }
- }
- sqlite3DbFree(p->db, pParse->aLabel);
- pParse->aLabel = 0;
- pParse->nLabel = 0;
- *pMaxFuncArgs = nMaxArgs;
- assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
-}
-
-/*
-** Return the address of the next instruction to be inserted.
-*/
-int sqlite3VdbeCurrentAddr(Vdbe *p){
- assert( p->magic==VDBE_MAGIC_INIT );
- return p->nOp;
-}
-
-/*
-** This function returns a pointer to the array of opcodes associated with
-** the Vdbe passed as the first argument. It is the callers responsibility
-** to arrange for the returned array to be eventually freed using the
-** vdbeFreeOpArray() function.
-**
-** Before returning, *pnOp is set to the number of entries in the returned
-** array. Also, *pnMaxArg is set to the larger of its current value and
-** the number of entries in the Vdbe.apArg[] array required to execute the
-** returned program.
-*/
-VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
- VdbeOp *aOp = p->aOp;
- assert( aOp && !p->db->mallocFailed );
-
- /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
- assert( DbMaskAllZero(p->btreeMask) );
-
- resolveP2Values(p, pnMaxArg);
- *pnOp = p->nOp;
- p->aOp = 0;
- return aOp;
-}
-
-/*
-** Add a whole list of operations to the operation stack. Return the
-** address of the first operation added.
-*/
-int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
- int addr, i;
- VdbeOp *pOut;
- assert( nOp>0 );
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
- return 0;
- }
- addr = p->nOp;
- pOut = &p->aOp[addr];
- for(i=0; i<nOp; i++, aOp++, pOut++){
- int p2 = aOp->p2;
- pOut->opcode = aOp->opcode;
- pOut->p1 = aOp->p1;
- if( p2<0 ){
- assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
- pOut->p2 = addr + ADDR(p2);
- }else{
- pOut->p2 = p2;
- }
- pOut->p3 = aOp->p3;
- pOut->p4type = P4_NOTUSED;
- pOut->p4.p = 0;
- pOut->p5 = 0;
-#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
- pOut->zComment = 0;
-#endif
-#ifdef SQLITE_VDBE_COVERAGE
- pOut->iSrcLine = iLineno+i;
-#else
- (void)iLineno;
-#endif
-#ifdef SQLITE_DEBUG
- if( p->db->flags & SQLITE_VdbeAddopTrace ){
- sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
- }
-#endif
- }
- p->nOp += nOp;
- return addr;
-}
-
-#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
-/*
-** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
-*/
-void sqlite3VdbeScanStatus(
- Vdbe *p, /* VM to add scanstatus() to */
- int addrExplain, /* Address of OP_Explain (or 0) */
- int addrLoop, /* Address of loop counter */
- int addrVisit, /* Address of rows visited counter */
- LogEst nEst, /* Estimated number of output rows */
- const char *zName /* Name of table or index being scanned */
-){
- int nByte = (p->nScan+1) * sizeof(ScanStatus);
- ScanStatus *aNew;
- aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
- if( aNew ){
- ScanStatus *pNew = &aNew[p->nScan++];
- pNew->addrExplain = addrExplain;
- pNew->addrLoop = addrLoop;
- pNew->addrVisit = addrVisit;
- pNew->nEst = nEst;
- pNew->zName = sqlite3DbStrDup(p->db, zName);
- p->aScan = aNew;
- }
-}
-#endif
-
-
-/*
-** Change the value of the opcode, or P1, P2, P3, or P5 operands
-** for a specific instruction.
-*/
-void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
- sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
-}
-void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
- sqlite3VdbeGetOp(p,addr)->p1 = val;
-}
-void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
- sqlite3VdbeGetOp(p,addr)->p2 = val;
-}
-void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
- sqlite3VdbeGetOp(p,addr)->p3 = val;
-}
-void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
- sqlite3VdbeGetOp(p,-1)->p5 = p5;
-}
-
-/*
-** Change the P2 operand of instruction addr so that it points to
-** the address of the next instruction to be coded.
-*/
-void sqlite3VdbeJumpHere(Vdbe *p, int addr){
- p->pParse->iFixedOp = p->nOp - 1;
- sqlite3VdbeChangeP2(p, addr, p->nOp);
-}
-
-
-/*
-** If the input FuncDef structure is ephemeral, then free it. If
-** the FuncDef is not ephermal, then do nothing.
-*/
-static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
- if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
- sqlite3DbFree(db, pDef);
- }
-}
-
-static void vdbeFreeOpArray(sqlite3 *, Op *, int);
-
-/*
-** Delete a P4 value if necessary.
-*/
-static void freeP4(sqlite3 *db, int p4type, void *p4){
- if( p4 ){
- assert( db );
- switch( p4type ){
- case P4_FUNCCTX: {
- freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
- /* Fall through into the next case */
- }
- case P4_REAL:
- case P4_INT64:
- case P4_DYNAMIC:
- case P4_INTARRAY: {
- sqlite3DbFree(db, p4);
- break;
- }
- case P4_KEYINFO: {
- if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
- break;
- }
- case P4_MPRINTF: {
- if( db->pnBytesFreed==0 ) sqlite3_free(p4);
- break;
- }
- case P4_FUNCDEF: {
- freeEphemeralFunction(db, (FuncDef*)p4);
- break;
- }
- case P4_MEM: {
- if( db->pnBytesFreed==0 ){
- sqlite3ValueFree((sqlite3_value*)p4);
- }else{
- Mem *p = (Mem*)p4;
- if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
- sqlite3DbFree(db, p);
- }
- break;
- }
- case P4_VTAB : {
- if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
- break;
- }
- }
- }
-}
-
-/*
-** Free the space allocated for aOp and any p4 values allocated for the
-** opcodes contained within. If aOp is not NULL it is assumed to contain
-** nOp entries.
-*/
-static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
- if( aOp ){
- Op *pOp;
- for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
- freeP4(db, pOp->p4type, pOp->p4.p);
-#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
- sqlite3DbFree(db, pOp->zComment);
-#endif
- }
- }
- sqlite3DbFree(db, aOp);
-}
-
-/*
-** Link the SubProgram object passed as the second argument into the linked
-** list at Vdbe.pSubProgram. This list is used to delete all sub-program
-** objects when the VM is no longer required.
-*/
-void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
- p->pNext = pVdbe->pProgram;
- pVdbe->pProgram = p;
-}
-
-/*
-** Change the opcode at addr into OP_Noop
-*/
-void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
- if( addr<p->nOp ){
- VdbeOp *pOp = &p->aOp[addr];
- sqlite3 *db = p->db;
- freeP4(db, pOp->p4type, pOp->p4.p);
- memset(pOp, 0, sizeof(pOp[0]));
- pOp->opcode = OP_Noop;
- if( addr==p->nOp-1 ) p->nOp--;
- }
-}
-
-/*
-** If the last opcode is "op" and it is not a jump destination,
-** then remove it. Return true if and only if an opcode was removed.
-*/
-int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
- if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
- sqlite3VdbeChangeToNoop(p, p->nOp-1);
- return 1;
- }else{
- return 0;
- }
-}
-
-/*
-** Change the value of the P4 operand for a specific instruction.
-** This routine is useful when a large program is loaded from a
-** static array using sqlite3VdbeAddOpList but we want to make a
-** few minor changes to the program.
-**
-** If n>=0 then the P4 operand is dynamic, meaning that a copy of
-** the string is made into memory obtained from sqlite3_malloc().
-** A value of n==0 means copy bytes of zP4 up to and including the
-** first null byte. If n>0 then copy n+1 bytes of zP4.
-**
-** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
-** to a string or structure that is guaranteed to exist for the lifetime of
-** the Vdbe. In these cases we can just copy the pointer.
-**
-** If addr<0 then change P4 on the most recently inserted instruction.
-*/
-void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
- Op *pOp;
- sqlite3 *db;
- assert( p!=0 );
- db = p->db;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->aOp==0 || db->mallocFailed ){
- if( n!=P4_VTAB ){
- freeP4(db, n, (void*)*(char**)&zP4);
- }
- return;
- }
- assert( p->nOp>0 );
- assert( addr<p->nOp );
- if( addr<0 ){
- addr = p->nOp - 1;
- }
- pOp = &p->aOp[addr];
- assert( pOp->p4type==P4_NOTUSED
- || pOp->p4type==P4_INT32
- || pOp->p4type==P4_KEYINFO );
- freeP4(db, pOp->p4type, pOp->p4.p);
- pOp->p4.p = 0;
- if( n==P4_INT32 ){
- /* Note: this cast is safe, because the origin data point was an int
- ** that was cast to a (const char *). */
- pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
- pOp->p4type = P4_INT32;
- }else if( zP4==0 ){
- pOp->p4.p = 0;
- pOp->p4type = P4_NOTUSED;
- }else if( n==P4_KEYINFO ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = P4_KEYINFO;
- }else if( n==P4_VTAB ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = P4_VTAB;
- sqlite3VtabLock((VTable *)zP4);
- assert( ((VTable *)zP4)->db==p->db );
- }else if( n<0 ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = (signed char)n;
- }else{
- if( n==0 ) n = sqlite3Strlen30(zP4);
- pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
- pOp->p4type = P4_DYNAMIC;
- }
-}
-
-/*
-** Set the P4 on the most recently added opcode to the KeyInfo for the
-** index given.
-*/
-void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
- Vdbe *v = pParse->pVdbe;
- assert( v!=0 );
- assert( pIdx!=0 );
- sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
- P4_KEYINFO);
-}
-
-#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
-/*
-** Change the comment on the most recently coded instruction. Or
-** insert a No-op and add the comment to that new instruction. This
-** makes the code easier to read during debugging. None of this happens
-** in a production build.
-*/
-static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
- assert( p->nOp>0 || p->aOp==0 );
- assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
- if( p->nOp ){
- assert( p->aOp );
- sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
- p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
- }
-}
-void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
- va_list ap;
- if( p ){
- va_start(ap, zFormat);
- vdbeVComment(p, zFormat, ap);
- va_end(ap);
- }
-}
-void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
- va_list ap;
- if( p ){
- sqlite3VdbeAddOp0(p, OP_Noop);
- va_start(ap, zFormat);
- vdbeVComment(p, zFormat, ap);
- va_end(ap);
- }
-}
-#endif /* NDEBUG */
-
-#ifdef SQLITE_VDBE_COVERAGE
-/*
-** Set the value if the iSrcLine field for the previously coded instruction.
-*/
-void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
- sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
-}
-#endif /* SQLITE_VDBE_COVERAGE */
-
-/*
-** Return the opcode for a given address. If the address is -1, then
-** return the most recently inserted opcode.
-**
-** If a memory allocation error has occurred prior to the calling of this
-** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
-** is readable but not writable, though it is cast to a writable value.
-** The return of a dummy opcode allows the call to continue functioning
-** after an OOM fault without having to check to see if the return from
-** this routine is a valid pointer. But because the dummy.opcode is 0,
-** dummy will never be written to. This is verified by code inspection and
-** by running with Valgrind.
-*/
-VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
- /* C89 specifies that the constant "dummy" will be initialized to all
- ** zeros, which is correct. MSVC generates a warning, nevertheless. */
- static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
- assert( p->magic==VDBE_MAGIC_INIT );
- if( addr<0 ){
- addr = p->nOp - 1;
- }
- assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
- if( p->db->mallocFailed ){
- return (VdbeOp*)&dummy;
- }else{
- return &p->aOp[addr];
- }
-}
-
-#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
-/*
-** Return an integer value for one of the parameters to the opcode pOp
-** determined by character c.
-*/
-static int translateP(char c, const Op *pOp){
- if( c=='1' ) return pOp->p1;
- if( c=='2' ) return pOp->p2;
- if( c=='3' ) return pOp->p3;
- if( c=='4' ) return pOp->p4.i;
- return pOp->p5;
-}
-
-/*
-** Compute a string for the "comment" field of a VDBE opcode listing.
-**
-** The Synopsis: field in comments in the vdbe.c source file gets converted
-** to an extra string that is appended to the sqlite3OpcodeName(). In the
-** absence of other comments, this synopsis becomes the comment on the opcode.
-** Some translation occurs:
-**
-** "PX" -> "r[X]"
-** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
-** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
-** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
-*/
-static int displayComment(
- const Op *pOp, /* The opcode to be commented */
- const char *zP4, /* Previously obtained value for P4 */
- char *zTemp, /* Write result here */
- int nTemp /* Space available in zTemp[] */
-){
- const char *zOpName;
- const char *zSynopsis;
- int nOpName;
- int ii, jj;
- zOpName = sqlite3OpcodeName(pOp->opcode);
- nOpName = sqlite3Strlen30(zOpName);
- if( zOpName[nOpName+1] ){
- int seenCom = 0;
- char c;
- zSynopsis = zOpName += nOpName + 1;
- for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
- if( c=='P' ){
- c = zSynopsis[++ii];
- if( c=='4' ){
- sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
- }else if( c=='X' ){
- sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
- seenCom = 1;
- }else{
- int v1 = translateP(c, pOp);
- int v2;
- sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
- if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
- ii += 3;
- jj += sqlite3Strlen30(zTemp+jj);
- v2 = translateP(zSynopsis[ii], pOp);
- if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
- ii += 2;
- v2++;
- }
- if( v2>1 ){
- sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
- }
- }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
- ii += 4;
- }
- }
- jj += sqlite3Strlen30(zTemp+jj);
- }else{
- zTemp[jj++] = c;
- }
- }
- if( !seenCom && jj<nTemp-5 && pOp->zComment ){
- sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
- jj += sqlite3Strlen30(zTemp+jj);
- }
- if( jj<nTemp ) zTemp[jj] = 0;
- }else if( pOp->zComment ){
- sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
- jj = sqlite3Strlen30(zTemp);
- }else{
- zTemp[0] = 0;
- jj = 0;
- }
- return jj;
-}
-#endif /* SQLITE_DEBUG */
-
-
-#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
- || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-/*
-** Compute a string that describes the P4 parameter for an opcode.
-** Use zTemp for any required temporary buffer space.
-*/
-static char *displayP4(Op *pOp, char *zTemp, int nTemp){
- char *zP4 = zTemp;
- assert( nTemp>=20 );
- switch( pOp->p4type ){
- case P4_KEYINFO: {
- int i, j;
- KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
- assert( pKeyInfo->aSortOrder!=0 );
- sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
- i = sqlite3Strlen30(zTemp);
- for(j=0; j<pKeyInfo->nField; j++){
- CollSeq *pColl = pKeyInfo->aColl[j];
- const char *zColl = pColl ? pColl->zName : "nil";
- int n = sqlite3Strlen30(zColl);
- if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
- zColl = "B";
- n = 1;
- }
- if( i+n>nTemp-7 ){
- memcpy(&zTemp[i],",...",4);
- i += 4;
- break;
- }
- zTemp[i++] = ',';
- if( pKeyInfo->aSortOrder[j] ){
- zTemp[i++] = '-';
- }
- memcpy(&zTemp[i], zColl, n+1);
- i += n;
- }
- zTemp[i++] = ')';
- zTemp[i] = 0;
- assert( i<nTemp );
- break;
- }
- case P4_COLLSEQ: {
- CollSeq *pColl = pOp->p4.pColl;
- sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
- break;
- }
- case P4_FUNCDEF: {
- FuncDef *pDef = pOp->p4.pFunc;
- sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
- break;
- }
-#ifdef SQLITE_DEBUG
- case P4_FUNCCTX: {
- FuncDef *pDef = pOp->p4.pCtx->pFunc;
- sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
- break;
- }
-#endif
- case P4_INT64: {
- sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
- break;
- }
- case P4_INT32: {
- sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
- break;
- }
- case P4_REAL: {
- sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
- break;
- }
- case P4_MEM: {
- Mem *pMem = pOp->p4.pMem;
- if( pMem->flags & MEM_Str ){
- zP4 = pMem->z;
- }else if( pMem->flags & MEM_Int ){
- sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
- }else if( pMem->flags & MEM_Real ){
- sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
- }else if( pMem->flags & MEM_Null ){
- sqlite3_snprintf(nTemp, zTemp, "NULL");
- }else{
- assert( pMem->flags & MEM_Blob );
- zP4 = "(blob)";
- }
- break;
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- case P4_VTAB: {
- sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
- sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab);
- break;
- }
-#endif
- case P4_INTARRAY: {
- sqlite3_snprintf(nTemp, zTemp, "intarray");
- break;
- }
- case P4_SUBPROGRAM: {
- sqlite3_snprintf(nTemp, zTemp, "program");
- break;
- }
- case P4_ADVANCE: {
- zTemp[0] = 0;
- break;
- }
- default: {
- zP4 = pOp->p4.z;
- if( zP4==0 ){
- zP4 = zTemp;
- zTemp[0] = 0;
- }
- }
- }
- assert( zP4!=0 );
- return zP4;
-}
-#endif
-
-/*
-** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
-**
-** The prepared statements need to know in advance the complete set of
-** attached databases that will be use. A mask of these databases
-** is maintained in p->btreeMask. The p->lockMask value is the subset of
-** p->btreeMask of databases that will require a lock.
-*/
-void sqlite3VdbeUsesBtree(Vdbe *p, int i){
- assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
- assert( i<(int)sizeof(p->btreeMask)*8 );
- DbMaskSet(p->btreeMask, i);
- if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
- DbMaskSet(p->lockMask, i);
- }
-}
-
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
-/*
-** If SQLite is compiled to support shared-cache mode and to be threadsafe,
-** this routine obtains the mutex associated with each BtShared structure
-** that may be accessed by the VM passed as an argument. In doing so it also
-** sets the BtShared.db member of each of the BtShared structures, ensuring
-** that the correct busy-handler callback is invoked if required.
-**
-** If SQLite is not threadsafe but does support shared-cache mode, then
-** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
-** of all of BtShared structures accessible via the database handle
-** associated with the VM.
-**
-** If SQLite is not threadsafe and does not support shared-cache mode, this
-** function is a no-op.
-**
-** The p->btreeMask field is a bitmask of all btrees that the prepared
-** statement p will ever use. Let N be the number of bits in p->btreeMask
-** corresponding to btrees that use shared cache. Then the runtime of
-** this routine is N*N. But as N is rarely more than 1, this should not
-** be a problem.
-*/
-void sqlite3VdbeEnter(Vdbe *p){
- int i;
- sqlite3 *db;
- Db *aDb;
- int nDb;
- if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
- db = p->db;
- aDb = db->aDb;
- nDb = db->nDb;
- for(i=0; i<nDb; i++){
- if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
- sqlite3BtreeEnter(aDb[i].pBt);
- }
- }
-}
-#endif
-
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
-/*
-** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
-*/
-static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
- int i;
- sqlite3 *db;
- Db *aDb;
- int nDb;
- db = p->db;
- aDb = db->aDb;
- nDb = db->nDb;
- for(i=0; i<nDb; i++){
- if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
- sqlite3BtreeLeave(aDb[i].pBt);
- }
- }
-}
-void sqlite3VdbeLeave(Vdbe *p){
- if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
- vdbeLeave(p);
-}
-#endif
-
-#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-/*
-** Print a single opcode. This routine is used for debugging only.
-*/
-void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
- char *zP4;
- char zPtr[50];
- char zCom[100];
- static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
- if( pOut==0 ) pOut = stdout;
- zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
-#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
- displayComment(pOp, zP4, zCom, sizeof(zCom));
-#else
- zCom[0] = 0;
-#endif
- /* NB: The sqlite3OpcodeName() function is implemented by code created
- ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
- ** information from the vdbe.c source text */
- fprintf(pOut, zFormat1, pc,
- sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
- zCom
- );
- fflush(pOut);
-}
-#endif
-
-/*
-** Release an array of N Mem elements
-*/
-static void releaseMemArray(Mem *p, int N){
- if( p && N ){
- Mem *pEnd = &p[N];
- sqlite3 *db = p->db;
- u8 malloc_failed = db->mallocFailed;
- if( db->pnBytesFreed ){
- do{
- if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
- }while( (++p)<pEnd );
- return;
- }
- do{
- assert( (&p[1])==pEnd || p[0].db==p[1].db );
- assert( sqlite3VdbeCheckMemInvariants(p) );
-
- /* This block is really an inlined version of sqlite3VdbeMemRelease()
- ** that takes advantage of the fact that the memory cell value is
- ** being set to NULL after releasing any dynamic resources.
- **
- ** The justification for duplicating code is that according to
- ** callgrind, this causes a certain test case to hit the CPU 4.7
- ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
- ** sqlite3MemRelease() were called from here. With -O2, this jumps
- ** to 6.6 percent. The test case is inserting 1000 rows into a table
- ** with no indexes using a single prepared INSERT statement, bind()
- ** and reset(). Inserts are grouped into a transaction.
- */
- testcase( p->flags & MEM_Agg );
- testcase( p->flags & MEM_Dyn );
- testcase( p->flags & MEM_Frame );
- testcase( p->flags & MEM_RowSet );
- if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
- sqlite3VdbeMemRelease(p);
- }else if( p->szMalloc ){
- sqlite3DbFree(db, p->zMalloc);
- p->szMalloc = 0;
- }
-
- p->flags = MEM_Undefined;
- }while( (++p)<pEnd );
- db->mallocFailed = malloc_failed;
- }
-}
-
-/*
-** Delete a VdbeFrame object and its contents. VdbeFrame objects are
-** allocated by the OP_Program opcode in sqlite3VdbeExec().
-*/
-void sqlite3VdbeFrameDelete(VdbeFrame *p){
- int i;
- Mem *aMem = VdbeFrameMem(p);
- VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
- for(i=0; i<p->nChildCsr; i++){
- sqlite3VdbeFreeCursor(p->v, apCsr[i]);
- }
- releaseMemArray(aMem, p->nChildMem);
- sqlite3DbFree(p->v->db, p);
-}
-
-#ifndef SQLITE_OMIT_EXPLAIN
-/*
-** Give a listing of the program in the virtual machine.
-**
-** The interface is the same as sqlite3VdbeExec(). But instead of
-** running the code, it invokes the callback once for each instruction.
-** This feature is used to implement "EXPLAIN".
-**
-** When p->explain==1, each instruction is listed. When
-** p->explain==2, only OP_Explain instructions are listed and these
-** are shown in a different format. p->explain==2 is used to implement
-** EXPLAIN QUERY PLAN.
-**
-** When p->explain==1, first the main program is listed, then each of
-** the trigger subprograms are listed one by one.
-*/
-int sqlite3VdbeList(
- Vdbe *p /* The VDBE */
-){
- int nRow; /* Stop when row count reaches this */
- int nSub = 0; /* Number of sub-vdbes seen so far */
- SubProgram **apSub = 0; /* Array of sub-vdbes */
- Mem *pSub = 0; /* Memory cell hold array of subprogs */
- sqlite3 *db = p->db; /* The database connection */
- int i; /* Loop counter */
- int rc = SQLITE_OK; /* Return code */
- Mem *pMem = &p->aMem[1]; /* First Mem of result set */
-
- assert( p->explain );
- assert( p->magic==VDBE_MAGIC_RUN );
- assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
-
- /* Even though this opcode does not use dynamic strings for
- ** the result, result columns may become dynamic if the user calls
- ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
- */
- releaseMemArray(pMem, 8);
- p->pResultSet = 0;
-
- if( p->rc==SQLITE_NOMEM ){
- /* This happens if a malloc() inside a call to sqlite3_column_text() or
- ** sqlite3_column_text16() failed. */
- db->mallocFailed = 1;
- return SQLITE_ERROR;
- }
-
- /* When the number of output rows reaches nRow, that means the
- ** listing has finished and sqlite3_step() should return SQLITE_DONE.
- ** nRow is the sum of the number of rows in the main program, plus
- ** the sum of the number of rows in all trigger subprograms encountered
- ** so far. The nRow value will increase as new trigger subprograms are
- ** encountered, but p->pc will eventually catch up to nRow.
- */
- nRow = p->nOp;
- if( p->explain==1 ){
- /* The first 8 memory cells are used for the result set. So we will
- ** commandeer the 9th cell to use as storage for an array of pointers
- ** to trigger subprograms. The VDBE is guaranteed to have at least 9
- ** cells. */
- assert( p->nMem>9 );
- pSub = &p->aMem[9];
- if( pSub->flags&MEM_Blob ){
- /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
- ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
- nSub = pSub->n/sizeof(Vdbe*);
- apSub = (SubProgram **)pSub->z;
- }
- for(i=0; i<nSub; i++){
- nRow += apSub[i]->nOp;
- }
- }
-
- do{
- i = p->pc++;
- }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
- if( i>=nRow ){
- p->rc = SQLITE_OK;
- rc = SQLITE_DONE;
- }else if( db->u1.isInterrupted ){
- p->rc = SQLITE_INTERRUPT;
- rc = SQLITE_ERROR;
- sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
- }else{
- char *zP4;
- Op *pOp;
- if( i<p->nOp ){
- /* The output line number is small enough that we are still in the
- ** main program. */
- pOp = &p->aOp[i];
- }else{
- /* We are currently listing subprograms. Figure out which one and
- ** pick up the appropriate opcode. */
- int j;
- i -= p->nOp;
- for(j=0; i>=apSub[j]->nOp; j++){
- i -= apSub[j]->nOp;
- }
- pOp = &apSub[j]->aOp[i];
- }
- if( p->explain==1 ){
- pMem->flags = MEM_Int;
- pMem->u.i = i; /* Program counter */
- pMem++;
-
- pMem->flags = MEM_Static|MEM_Str|MEM_Term;
- pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
- assert( pMem->z!=0 );
- pMem->n = sqlite3Strlen30(pMem->z);
- pMem->enc = SQLITE_UTF8;
- pMem++;
-
- /* When an OP_Program opcode is encounter (the only opcode that has
- ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
- ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
- ** has not already been seen.
- */
- if( pOp->p4type==P4_SUBPROGRAM ){
- int nByte = (nSub+1)*sizeof(SubProgram*);
- int j;
- for(j=0; j<nSub; j++){
- if( apSub[j]==pOp->p4.pProgram ) break;
- }
- if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
- apSub = (SubProgram **)pSub->z;
- apSub[nSub++] = pOp->p4.pProgram;
- pSub->flags |= MEM_Blob;
- pSub->n = nSub*sizeof(SubProgram*);
- }
- }
- }
-
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p1; /* P1 */
- pMem++;
-
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p2; /* P2 */
- pMem++;
-
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p3; /* P3 */
- pMem++;
-
- if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
- assert( p->db->mallocFailed );
- return SQLITE_ERROR;
- }
- pMem->flags = MEM_Str|MEM_Term;
- zP4 = displayP4(pOp, pMem->z, 32);
- if( zP4!=pMem->z ){
- sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
- }else{
- assert( pMem->z!=0 );
- pMem->n = sqlite3Strlen30(pMem->z);
- pMem->enc = SQLITE_UTF8;
- }
- pMem++;
-
- if( p->explain==1 ){
- if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
- assert( p->db->mallocFailed );
- return SQLITE_ERROR;
- }
- pMem->flags = MEM_Str|MEM_Term;
- pMem->n = 2;
- sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
- pMem->enc = SQLITE_UTF8;
- pMem++;
-
-#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
- if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
- assert( p->db->mallocFailed );
- return SQLITE_ERROR;
- }
- pMem->flags = MEM_Str|MEM_Term;
- pMem->n = displayComment(pOp, zP4, pMem->z, 500);
- pMem->enc = SQLITE_UTF8;
-#else
- pMem->flags = MEM_Null; /* Comment */
-#endif
- }
-
- p->nResColumn = 8 - 4*(p->explain-1);
- p->pResultSet = &p->aMem[1];
- p->rc = SQLITE_OK;
- rc = SQLITE_ROW;
- }
- return rc;
-}
-#endif /* SQLITE_OMIT_EXPLAIN */
-
-#ifdef SQLITE_DEBUG
-/*
-** Print the SQL that was used to generate a VDBE program.
-*/
-void sqlite3VdbePrintSql(Vdbe *p){
- const char *z = 0;
- if( p->zSql ){
- z = p->zSql;
- }else if( p->nOp>=1 ){
- const VdbeOp *pOp = &p->aOp[0];
- if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
- z = pOp->p4.z;
- while( sqlite3Isspace(*z) ) z++;
- }
- }
- if( z ) printf("SQL: [%s]\n", z);
-}
-#endif
-
-#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
-/*
-** Print an IOTRACE message showing SQL content.
-*/
-void sqlite3VdbeIOTraceSql(Vdbe *p){
- int nOp = p->nOp;
- VdbeOp *pOp;
- if( sqlite3IoTrace==0 ) return;
- if( nOp<1 ) return;
- pOp = &p->aOp[0];
- if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
- int i, j;
- char z[1000];
- sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
- for(i=0; sqlite3Isspace(z[i]); i++){}
- for(j=0; z[i]; i++){
- if( sqlite3Isspace(z[i]) ){
- if( z[i-1]!=' ' ){
- z[j++] = ' ';
- }
- }else{
- z[j++] = z[i];
- }
- }
- z[j] = 0;
- sqlite3IoTrace("SQL %s\n", z);
- }
-}
-#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
-
-/*
-** Allocate space from a fixed size buffer and return a pointer to
-** that space. If insufficient space is available, return NULL.
-**
-** The pBuf parameter is the initial value of a pointer which will
-** receive the new memory. pBuf is normally NULL. If pBuf is not
-** NULL, it means that memory space has already been allocated and that
-** this routine should not allocate any new memory. When pBuf is not
-** NULL simply return pBuf. Only allocate new memory space when pBuf
-** is NULL.
-**
-** nByte is the number of bytes of space needed.
-**
-** *ppFrom points to available space and pEnd points to the end of the
-** available space. When space is allocated, *ppFrom is advanced past
-** the end of the allocated space.
-**
-** *pnByte is a counter of the number of bytes of space that have failed
-** to allocate. If there is insufficient space in *ppFrom to satisfy the
-** request, then increment *pnByte by the amount of the request.
-*/
-static void *allocSpace(
- void *pBuf, /* Where return pointer will be stored */
- int nByte, /* Number of bytes to allocate */
- u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
- u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
- int *pnByte /* If allocation cannot be made, increment *pnByte */
-){
- assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
- if( pBuf ) return pBuf;
- nByte = ROUND8(nByte);
- if( &(*ppFrom)[nByte] <= pEnd ){
- pBuf = (void*)*ppFrom;
- *ppFrom += nByte;
- }else{
- *pnByte += nByte;
- }
- return pBuf;
-}
-
-/*
-** Rewind the VDBE back to the beginning in preparation for
-** running it.
-*/
-void sqlite3VdbeRewind(Vdbe *p){
-#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
- int i;
-#endif
- assert( p!=0 );
- assert( p->magic==VDBE_MAGIC_INIT );
-
- /* There should be at least one opcode.
- */
- assert( p->nOp>0 );
-
- /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
- p->magic = VDBE_MAGIC_RUN;
-
-#ifdef SQLITE_DEBUG
- for(i=1; i<p->nMem; i++){
- assert( p->aMem[i].db==p->db );
- }
-#endif
- p->pc = -1;
- p->rc = SQLITE_OK;
- p->errorAction = OE_Abort;
- p->magic = VDBE_MAGIC_RUN;
- p->nChange = 0;
- p->cacheCtr = 1;
- p->minWriteFileFormat = 255;
- p->iStatement = 0;
- p->nFkConstraint = 0;
-#ifdef VDBE_PROFILE
- for(i=0; i<p->nOp; i++){
- p->aOp[i].cnt = 0;
- p->aOp[i].cycles = 0;
- }
-#endif
-}
-
-/*
-** Prepare a virtual machine for execution for the first time after
-** creating the virtual machine. This involves things such
-** as allocating registers and initializing the program counter.
-** After the VDBE has be prepped, it can be executed by one or more
-** calls to sqlite3VdbeExec().
-**
-** This function may be called exactly once on each virtual machine.
-** After this routine is called the VM has been "packaged" and is ready
-** to run. After this routine is called, further calls to
-** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
-** the Vdbe from the Parse object that helped generate it so that the
-** the Vdbe becomes an independent entity and the Parse object can be
-** destroyed.
-**
-** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
-** to its initial state after it has been run.
-*/
-void sqlite3VdbeMakeReady(
- Vdbe *p, /* The VDBE */
- Parse *pParse /* Parsing context */
-){
- sqlite3 *db; /* The database connection */
- int nVar; /* Number of parameters */
- int nMem; /* Number of VM memory registers */
- int nCursor; /* Number of cursors required */
- int nArg; /* Number of arguments in subprograms */
- int nOnce; /* Number of OP_Once instructions */
- int n; /* Loop counter */
- u8 *zCsr; /* Memory available for allocation */
- u8 *zEnd; /* First byte past allocated memory */
- int nByte; /* How much extra memory is needed */
-
- assert( p!=0 );
- assert( p->nOp>0 );
- assert( pParse!=0 );
- assert( p->magic==VDBE_MAGIC_INIT );
- assert( pParse==p->pParse );
- db = p->db;
- assert( db->mallocFailed==0 );
- nVar = pParse->nVar;
- nMem = pParse->nMem;
- nCursor = pParse->nTab;
- nArg = pParse->nMaxArg;
- nOnce = pParse->nOnce;
- if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
-
- /* For each cursor required, also allocate a memory cell. Memory
- ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
- ** the vdbe program. Instead they are used to allocate space for
- ** VdbeCursor/BtCursor structures. The blob of memory associated with
- ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
- ** stores the blob of memory associated with cursor 1, etc.
- **
- ** See also: allocateCursor().
- */
- nMem += nCursor;
-
- /* Allocate space for memory registers, SQL variables, VDBE cursors and
- ** an array to marshal SQL function arguments in.
- */
- zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
- zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
-
- resolveP2Values(p, &nArg);
- p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
- if( pParse->explain && nMem<10 ){
- nMem = 10;
- }
- memset(zCsr, 0, zEnd-zCsr);
- zCsr += (zCsr - (u8*)0)&7;
- assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
- p->expired = 0;
-
- /* Memory for registers, parameters, cursor, etc, is allocated in two
- ** passes. On the first pass, we try to reuse unused space at the
- ** end of the opcode array. If we are unable to satisfy all memory
- ** requirements by reusing the opcode array tail, then the second
- ** pass will fill in the rest using a fresh allocation.
- **
- ** This two-pass approach that reuses as much memory as possible from
- ** the leftover space at the end of the opcode array can significantly
- ** reduce the amount of memory held by a prepared statement.
- */
- do {
- nByte = 0;
- p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
- p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
- p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
- p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
- p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
- &zCsr, zEnd, &nByte);
- p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
-#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
- p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte);
-#endif
- if( nByte ){
- p->pFree = sqlite3DbMallocZero(db, nByte);
- }
- zCsr = p->pFree;
- zEnd = &zCsr[nByte];
- }while( nByte && !db->mallocFailed );
-
- p->nCursor = nCursor;
- p->nOnceFlag = nOnce;
- if( p->aVar ){
- p->nVar = (ynVar)nVar;
- for(n=0; n<nVar; n++){
- p->aVar[n].flags = MEM_Null;
- p->aVar[n].db = db;
- }
- }
- if( p->azVar && pParse->nzVar>0 ){
- p->nzVar = pParse->nzVar;
- memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
- memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
- }
- if( p->aMem ){
- p->aMem--; /* aMem[] goes from 1..nMem */
- p->nMem = nMem; /* not from 0..nMem-1 */
- for(n=1; n<=nMem; n++){
- p->aMem[n].flags = MEM_Undefined;
- p->aMem[n].db = db;
- }
- }
- p->explain = pParse->explain;
- sqlite3VdbeRewind(p);
-}
-
-/*
-** Close a VDBE cursor and release all the resources that cursor
-** happens to hold.
-*/
-void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
- if( pCx==0 ){
- return;
- }
- sqlite3VdbeSorterClose(p->db, pCx);
- if( pCx->pBt ){
- sqlite3BtreeClose(pCx->pBt);
- /* The pCx->pCursor will be close automatically, if it exists, by
- ** the call above. */
- }else if( pCx->pCursor ){
- sqlite3BtreeCloseCursor(pCx->pCursor);
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- else if( pCx->pVtabCursor ){
- sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
- const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
- assert( pVtabCursor->pVtab->nRef>0 );
- pVtabCursor->pVtab->nRef--;
- pModule->xClose(pVtabCursor);
- }
-#endif
-}
-
-/*
-** Close all cursors in the current frame.
-*/
-static void closeCursorsInFrame(Vdbe *p){
- if( p->apCsr ){
- int i;
- for(i=0; i<p->nCursor; i++){
- VdbeCursor *pC = p->apCsr[i];
- if( pC ){
- sqlite3VdbeFreeCursor(p, pC);
- p->apCsr[i] = 0;
- }
- }
- }
-}
-
-/*
-** Copy the values stored in the VdbeFrame structure to its Vdbe. This
-** is used, for example, when a trigger sub-program is halted to restore
-** control to the main program.
-*/
-int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
- Vdbe *v = pFrame->v;
- closeCursorsInFrame(v);
-#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
- v->anExec = pFrame->anExec;
-#endif
- v->aOnceFlag = pFrame->aOnceFlag;
- v->nOnceFlag = pFrame->nOnceFlag;
- v->aOp = pFrame->aOp;
- v->nOp = pFrame->nOp;
- v->aMem = pFrame->aMem;
- v->nMem = pFrame->nMem;
- v->apCsr = pFrame->apCsr;
- v->nCursor = pFrame->nCursor;
- v->db->lastRowid = pFrame->lastRowid;
- v->nChange = pFrame->nChange;
- v->db->nChange = pFrame->nDbChange;
- return pFrame->pc;
-}
-
-/*
-** Close all cursors.
-**
-** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
-** cell array. This is necessary as the memory cell array may contain
-** pointers to VdbeFrame objects, which may in turn contain pointers to
-** open cursors.
-*/
-static void closeAllCursors(Vdbe *p){
- if( p->pFrame ){
- VdbeFrame *pFrame;
- for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
- sqlite3VdbeFrameRestore(pFrame);
- p->pFrame = 0;
- p->nFrame = 0;
- }
- assert( p->nFrame==0 );
- closeCursorsInFrame(p);
- if( p->aMem ){
- releaseMemArray(&p->aMem[1], p->nMem);
- }
- while( p->pDelFrame ){
- VdbeFrame *pDel = p->pDelFrame;
- p->pDelFrame = pDel->pParent;
- sqlite3VdbeFrameDelete(pDel);
- }
-
- /* Delete any auxdata allocations made by the VM */
- if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
- assert( p->pAuxData==0 );
-}
-
-/*
-** Clean up the VM after a single run.
-*/
-static void Cleanup(Vdbe *p){
- sqlite3 *db = p->db;
-
-#ifdef SQLITE_DEBUG
- /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
- ** Vdbe.aMem[] arrays have already been cleaned up. */
- int i;
- if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
- if( p->aMem ){
- for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
- }
-#endif
-
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = 0;
- p->pResultSet = 0;
-}
-
-/*
-** Set the number of result columns that will be returned by this SQL
-** statement. This is now set at compile time, rather than during
-** execution of the vdbe program so that sqlite3_column_count() can
-** be called on an SQL statement before sqlite3_step().
-*/
-void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
- Mem *pColName;
- int n;
- sqlite3 *db = p->db;
-
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
- sqlite3DbFree(db, p->aColName);
- n = nResColumn*COLNAME_N;
- p->nResColumn = (u16)nResColumn;
- p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
- if( p->aColName==0 ) return;
- while( n-- > 0 ){
- pColName->flags = MEM_Null;
- pColName->db = p->db;
- pColName++;
- }
-}
-
-/*
-** Set the name of the idx'th column to be returned by the SQL statement.
-** zName must be a pointer to a nul terminated string.
-**
-** This call must be made after a call to sqlite3VdbeSetNumCols().
-**
-** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
-** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
-** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
-*/
-int sqlite3VdbeSetColName(
- Vdbe *p, /* Vdbe being configured */
- int idx, /* Index of column zName applies to */
- int var, /* One of the COLNAME_* constants */
- const char *zName, /* Pointer to buffer containing name */
- void (*xDel)(void*) /* Memory management strategy for zName */
-){
- int rc;
- Mem *pColName;
- assert( idx<p->nResColumn );
- assert( var<COLNAME_N );
- if( p->db->mallocFailed ){
- assert( !zName || xDel!=SQLITE_DYNAMIC );
- return SQLITE_NOMEM;
- }
- assert( p->aColName!=0 );
- pColName = &(p->aColName[idx+var*p->nResColumn]);
- rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
- assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
- return rc;
-}
-
-/*
-** A read or write transaction may or may not be active on database handle
-** db. If a transaction is active, commit it. If there is a
-** write-transaction spanning more than one database file, this routine
-** takes care of the master journal trickery.
-*/
-static int vdbeCommit(sqlite3 *db, Vdbe *p){
- int i;
- int nTrans = 0; /* Number of databases with an active write-transaction */
- int rc = SQLITE_OK;
- int needXcommit = 0;
-
-#ifdef SQLITE_OMIT_VIRTUALTABLE
- /* With this option, sqlite3VtabSync() is defined to be simply
- ** SQLITE_OK so p is not used.
- */
- UNUSED_PARAMETER(p);
-#endif
-
- /* Before doing anything else, call the xSync() callback for any
- ** virtual module tables written in this transaction. This has to
- ** be done before determining whether a master journal file is
- ** required, as an xSync() callback may add an attached database
- ** to the transaction.
- */
- rc = sqlite3VtabSync(db, p);
-
- /* This loop determines (a) if the commit hook should be invoked and
- ** (b) how many database files have open write transactions, not
- ** including the temp database. (b) is important because if more than
- ** one database file has an open write transaction, a master journal
- ** file is required for an atomic commit.
- */
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( sqlite3BtreeIsInTrans(pBt) ){
- needXcommit = 1;
- if( i!=1 ) nTrans++;
- sqlite3BtreeEnter(pBt);
- rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
- sqlite3BtreeLeave(pBt);
- }
- }
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- /* If there are any write-transactions at all, invoke the commit hook */
- if( needXcommit && db->xCommitCallback ){
- rc = db->xCommitCallback(db->pCommitArg);
- if( rc ){
- return SQLITE_CONSTRAINT_COMMITHOOK;
- }
- }
-
- /* The simple case - no more than one database file (not counting the
- ** TEMP database) has a transaction active. There is no need for the
- ** master-journal.
- **
- ** If the return value of sqlite3BtreeGetFilename() is a zero length
- ** string, it means the main database is :memory: or a temp file. In
- ** that case we do not support atomic multi-file commits, so use the
- ** simple case then too.
- */
- if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
- || nTrans<=1
- ){
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
- }
- }
-
- /* Do the commit only if all databases successfully complete phase 1.
- ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
- ** IO error while deleting or truncating a journal file. It is unlikely,
- ** but could happen. In this case abandon processing and return the error.
- */
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
- }
- }
- if( rc==SQLITE_OK ){
- sqlite3VtabCommit(db);
- }
- }
-
- /* The complex case - There is a multi-file write-transaction active.
- ** This requires a master journal file to ensure the transaction is
- ** committed atomically.
- */
-#ifndef SQLITE_OMIT_DISKIO
- else{
- sqlite3_vfs *pVfs = db->pVfs;
- int needSync = 0;
- char *zMaster = 0; /* File-name for the master journal */
- char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
- sqlite3_file *pMaster = 0;
- i64 offset = 0;
- int res;
- int retryCount = 0;
- int nMainFile;
-
- /* Select a master journal file name */
- nMainFile = sqlite3Strlen30(zMainFile);
- zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
- if( zMaster==0 ) return SQLITE_NOMEM;
- do {
- u32 iRandom;
- if( retryCount ){
- if( retryCount>100 ){
- sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
- sqlite3OsDelete(pVfs, zMaster, 0);
- break;
- }else if( retryCount==1 ){
- sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
- }
- }
- retryCount++;
- sqlite3_randomness(sizeof(iRandom), &iRandom);
- sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
- (iRandom>>8)&0xffffff, iRandom&0xff);
- /* The antipenultimate character of the master journal name must
- ** be "9" to avoid name collisions when using 8+3 filenames. */
- assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
- sqlite3FileSuffix3(zMainFile, zMaster);
- rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
- }while( rc==SQLITE_OK && res );
- if( rc==SQLITE_OK ){
- /* Open the master journal. */
- rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
- SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
- SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
- );
- }
- if( rc!=SQLITE_OK ){
- sqlite3DbFree(db, zMaster);
- return rc;
- }
-
- /* Write the name of each database file in the transaction into the new
- ** master journal file. If an error occurs at this point close
- ** and delete the master journal file. All the individual journal files
- ** still have 'null' as the master journal pointer, so they will roll
- ** back independently if a failure occurs.
- */
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( sqlite3BtreeIsInTrans(pBt) ){
- char const *zFile = sqlite3BtreeGetJournalname(pBt);
- if( zFile==0 ){
- continue; /* Ignore TEMP and :memory: databases */
- }
- assert( zFile[0]!=0 );
- if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
- needSync = 1;
- }
- rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
- offset += sqlite3Strlen30(zFile)+1;
- if( rc!=SQLITE_OK ){
- sqlite3OsCloseFree(pMaster);
- sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3DbFree(db, zMaster);
- return rc;
- }
- }
- }
-
- /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
- ** flag is set this is not required.
- */
- if( needSync
- && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
- && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
- ){
- sqlite3OsCloseFree(pMaster);
- sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3DbFree(db, zMaster);
- return rc;
- }
-
- /* Sync all the db files involved in the transaction. The same call
- ** sets the master journal pointer in each individual journal. If
- ** an error occurs here, do not delete the master journal file.
- **
- ** If the error occurs during the first call to
- ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
- ** master journal file will be orphaned. But we cannot delete it,
- ** in case the master journal file name was written into the journal
- ** file before the failure occurred.
- */
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
- }
- }
- sqlite3OsCloseFree(pMaster);
- assert( rc!=SQLITE_BUSY );
- if( rc!=SQLITE_OK ){
- sqlite3DbFree(db, zMaster);
- return rc;
- }
-
- /* Delete the master journal file. This commits the transaction. After
- ** doing this the directory is synced again before any individual
- ** transaction files are deleted.
- */
- rc = sqlite3OsDelete(pVfs, zMaster, needSync);
- sqlite3DbFree(db, zMaster);
- zMaster = 0;
- if( rc ){
- return rc;
- }
-
- /* All files and directories have already been synced, so the following
- ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
- ** deleting or truncating journals. If something goes wrong while
- ** this is happening we don't really care. The integrity of the
- ** transaction is already guaranteed, but some stray 'cold' journals
- ** may be lying around. Returning an error code won't help matters.
- */
- disable_simulated_io_errors();
- sqlite3BeginBenignMalloc();
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- sqlite3BtreeCommitPhaseTwo(pBt, 1);
- }
- }
- sqlite3EndBenignMalloc();
- enable_simulated_io_errors();
-
- sqlite3VtabCommit(db);
- }
-#endif
-
- return rc;
-}
-
-/*
-** This routine checks that the sqlite3.nVdbeActive count variable
-** matches the number of vdbe's in the list sqlite3.pVdbe that are
-** currently active. An assertion fails if the two counts do not match.
-** This is an internal self-check only - it is not an essential processing
-** step.
-**
-** This is a no-op if NDEBUG is defined.
-*/
-#ifndef NDEBUG
-static void checkActiveVdbeCnt(sqlite3 *db){
- Vdbe *p;
- int cnt = 0;
- int nWrite = 0;
- int nRead = 0;
- p = db->pVdbe;
- while( p ){
- if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
- cnt++;
- if( p->readOnly==0 ) nWrite++;
- if( p->bIsReader ) nRead++;
- }
- p = p->pNext;
- }
- assert( cnt==db->nVdbeActive );
- assert( nWrite==db->nVdbeWrite );
- assert( nRead==db->nVdbeRead );
-}
-#else
-#define checkActiveVdbeCnt(x)
-#endif
-
-/*
-** If the Vdbe passed as the first argument opened a statement-transaction,
-** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
-** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
-** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
-** statement transaction is committed.
-**
-** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
-** Otherwise SQLITE_OK.
-*/
-int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
- sqlite3 *const db = p->db;
- int rc = SQLITE_OK;
-
- /* If p->iStatement is greater than zero, then this Vdbe opened a
- ** statement transaction that should be closed here. The only exception
- ** is that an IO error may have occurred, causing an emergency rollback.
- ** In this case (db->nStatement==0), and there is nothing to do.
- */
- if( db->nStatement && p->iStatement ){
- int i;
- const int iSavepoint = p->iStatement-1;
-
- assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
- assert( db->nStatement>0 );
- assert( p->iStatement==(db->nStatement+db->nSavepoint) );
-
- for(i=0; i<db->nDb; i++){
- int rc2 = SQLITE_OK;
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- if( eOp==SAVEPOINT_ROLLBACK ){
- rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
- }
- if( rc2==SQLITE_OK ){
- rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
- }
- if( rc==SQLITE_OK ){
- rc = rc2;
- }
- }
- }
- db->nStatement--;
- p->iStatement = 0;
-
- if( rc==SQLITE_OK ){
- if( eOp==SAVEPOINT_ROLLBACK ){
- rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
- }
- if( rc==SQLITE_OK ){
- rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
- }
- }
-
- /* If the statement transaction is being rolled back, also restore the
- ** database handles deferred constraint counter to the value it had when
- ** the statement transaction was opened. */
- if( eOp==SAVEPOINT_ROLLBACK ){
- db->nDeferredCons = p->nStmtDefCons;
- db->nDeferredImmCons = p->nStmtDefImmCons;
- }
- }
- return rc;
-}
-
-/*
-** This function is called when a transaction opened by the database
-** handle associated with the VM passed as an argument is about to be
-** committed. If there are outstanding deferred foreign key constraint
-** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
-**
-** If there are outstanding FK violations and this function returns
-** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
-** and write an error message to it. Then return SQLITE_ERROR.
-*/
-#ifndef SQLITE_OMIT_FOREIGN_KEY
-int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
- sqlite3 *db = p->db;
- if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
- || (!deferred && p->nFkConstraint>0)
- ){
- p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
- p->errorAction = OE_Abort;
- sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
- return SQLITE_ERROR;
- }
- return SQLITE_OK;
-}
-#endif
-
-/*
-** This routine is called the when a VDBE tries to halt. If the VDBE
-** has made changes and is in autocommit mode, then commit those
-** changes. If a rollback is needed, then do the rollback.
-**
-** This routine is the only way to move the state of a VM from
-** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
-** call this on a VM that is in the SQLITE_MAGIC_HALT state.
-**
-** Return an error code. If the commit could not complete because of
-** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
-** means the close did not happen and needs to be repeated.
-*/
-int sqlite3VdbeHalt(Vdbe *p){
- int rc; /* Used to store transient return codes */
- sqlite3 *db = p->db;
-
- /* This function contains the logic that determines if a statement or
- ** transaction will be committed or rolled back as a result of the
- ** execution of this virtual machine.
- **
- ** If any of the following errors occur:
- **
- ** SQLITE_NOMEM
- ** SQLITE_IOERR
- ** SQLITE_FULL
- ** SQLITE_INTERRUPT
- **
- ** Then the internal cache might have been left in an inconsistent
- ** state. We need to rollback the statement transaction, if there is
- ** one, or the complete transaction if there is no statement transaction.
- */
-
- if( p->db->mallocFailed ){
- p->rc = SQLITE_NOMEM;
- }
- if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
- closeAllCursors(p);
- if( p->magic!=VDBE_MAGIC_RUN ){
- return SQLITE_OK;
- }
- checkActiveVdbeCnt(db);
-
- /* No commit or rollback needed if the program never started or if the
- ** SQL statement does not read or write a database file. */
- if( p->pc>=0 && p->bIsReader ){
- int mrc; /* Primary error code from p->rc */
- int eStatementOp = 0;
- int isSpecialError; /* Set to true if a 'special' error */
-
- /* Lock all btrees used by the statement */
- sqlite3VdbeEnter(p);
-
- /* Check for one of the special errors */
- mrc = p->rc & 0xff;
- isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
- || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
- if( isSpecialError ){
- /* If the query was read-only and the error code is SQLITE_INTERRUPT,
- ** no rollback is necessary. Otherwise, at least a savepoint
- ** transaction must be rolled back to restore the database to a
- ** consistent state.
- **
- ** Even if the statement is read-only, it is important to perform
- ** a statement or transaction rollback operation. If the error
- ** occurred while writing to the journal, sub-journal or database
- ** file as part of an effort to free up cache space (see function
- ** pagerStress() in pager.c), the rollback is required to restore
- ** the pager to a consistent state.
- */
- if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
- if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
- eStatementOp = SAVEPOINT_ROLLBACK;
- }else{
- /* We are forced to roll back the active transaction. Before doing
- ** so, abort any other statements this handle currently has active.
- */
- sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
- sqlite3CloseSavepoints(db);
- db->autoCommit = 1;
- p->nChange = 0;
- }
- }
- }
-
- /* Check for immediate foreign key violations. */
- if( p->rc==SQLITE_OK ){
- sqlite3VdbeCheckFk(p, 0);
- }
-
- /* If the auto-commit flag is set and this is the only active writer
- ** VM, then we do either a commit or rollback of the current transaction.
- **
- ** Note: This block also runs if one of the special errors handled
- ** above has occurred.
- */
- if( !sqlite3VtabInSync(db)
- && db->autoCommit
- && db->nVdbeWrite==(p->readOnly==0)
- ){
- if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
- rc = sqlite3VdbeCheckFk(p, 1);
- if( rc!=SQLITE_OK ){
- if( NEVER(p->readOnly) ){
- sqlite3VdbeLeave(p);
- return SQLITE_ERROR;
- }
- rc = SQLITE_CONSTRAINT_FOREIGNKEY;
- }else{
- /* The auto-commit flag is true, the vdbe program was successful
- ** or hit an 'OR FAIL' constraint and there are no deferred foreign
- ** key constraints to hold up the transaction. This means a commit
- ** is required. */
- rc = vdbeCommit(db, p);
- }
- if( rc==SQLITE_BUSY && p->readOnly ){
- sqlite3VdbeLeave(p);
- return SQLITE_BUSY;
- }else if( rc!=SQLITE_OK ){
- p->rc = rc;
- sqlite3RollbackAll(db, SQLITE_OK);
- p->nChange = 0;
- }else{
- db->nDeferredCons = 0;
- db->nDeferredImmCons = 0;
- db->flags &= ~SQLITE_DeferFKs;
- sqlite3CommitInternalChanges(db);
- }
- }else{
- sqlite3RollbackAll(db, SQLITE_OK);
- p->nChange = 0;
- }
- db->nStatement = 0;
- }else if( eStatementOp==0 ){
- if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
- eStatementOp = SAVEPOINT_RELEASE;
- }else if( p->errorAction==OE_Abort ){
- eStatementOp = SAVEPOINT_ROLLBACK;
- }else{
- sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
- sqlite3CloseSavepoints(db);
- db->autoCommit = 1;
- p->nChange = 0;
- }
- }
-
- /* If eStatementOp is non-zero, then a statement transaction needs to
- ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
- ** do so. If this operation returns an error, and the current statement
- ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
- ** current statement error code.
- */
- if( eStatementOp ){
- rc = sqlite3VdbeCloseStatement(p, eStatementOp);
- if( rc ){
- if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
- p->rc = rc;
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = 0;
- }
- sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
- sqlite3CloseSavepoints(db);
- db->autoCommit = 1;
- p->nChange = 0;
- }
- }
-
- /* If this was an INSERT, UPDATE or DELETE and no statement transaction
- ** has been rolled back, update the database connection change-counter.
- */
- if( p->changeCntOn ){
- if( eStatementOp!=SAVEPOINT_ROLLBACK ){
- sqlite3VdbeSetChanges(db, p->nChange);
- }else{
- sqlite3VdbeSetChanges(db, 0);
- }
- p->nChange = 0;
- }
-
- /* Release the locks */
- sqlite3VdbeLeave(p);
- }
-
- /* We have successfully halted and closed the VM. Record this fact. */
- if( p->pc>=0 ){
- db->nVdbeActive--;
- if( !p->readOnly ) db->nVdbeWrite--;
- if( p->bIsReader ) db->nVdbeRead--;
- assert( db->nVdbeActive>=db->nVdbeRead );
- assert( db->nVdbeRead>=db->nVdbeWrite );
- assert( db->nVdbeWrite>=0 );
- }
- p->magic = VDBE_MAGIC_HALT;
- checkActiveVdbeCnt(db);
- if( p->db->mallocFailed ){
- p->rc = SQLITE_NOMEM;
- }
-
- /* If the auto-commit flag is set to true, then any locks that were held
- ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
- ** to invoke any required unlock-notify callbacks.
- */
- if( db->autoCommit ){
- sqlite3ConnectionUnlocked(db);
- }
-
- assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
- return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
-}
-
-
-/*
-** Each VDBE holds the result of the most recent sqlite3_step() call
-** in p->rc. This routine sets that result back to SQLITE_OK.
-*/
-void sqlite3VdbeResetStepResult(Vdbe *p){
- p->rc = SQLITE_OK;
-}
-
-/*
-** Copy the error code and error message belonging to the VDBE passed
-** as the first argument to its database handle (so that they will be
-** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
-**
-** This function does not clear the VDBE error code or message, just
-** copies them to the database handle.
-*/
-int sqlite3VdbeTransferError(Vdbe *p){
- sqlite3 *db = p->db;
- int rc = p->rc;
- if( p->zErrMsg ){
- u8 mallocFailed = db->mallocFailed;
- sqlite3BeginBenignMalloc();
- if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
- sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
- sqlite3EndBenignMalloc();
- db->mallocFailed = mallocFailed;
- db->errCode = rc;
- }else{
- sqlite3Error(db, rc);
- }
- return rc;
-}
-
-#ifdef SQLITE_ENABLE_SQLLOG
-/*
-** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
-** invoke it.
-*/
-static void vdbeInvokeSqllog(Vdbe *v){
- if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
- char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
- assert( v->db->init.busy==0 );
- if( zExpanded ){
- sqlite3GlobalConfig.xSqllog(
- sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
- );
- sqlite3DbFree(v->db, zExpanded);
- }
- }
-}
-#else
-# define vdbeInvokeSqllog(x)
-#endif
-
-/*
-** Clean up a VDBE after execution but do not delete the VDBE just yet.
-** Write any error messages into *pzErrMsg. Return the result code.
-**
-** After this routine is run, the VDBE should be ready to be executed
-** again.
-**
-** To look at it another way, this routine resets the state of the
-** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
-** VDBE_MAGIC_INIT.
-*/
-int sqlite3VdbeReset(Vdbe *p){
- sqlite3 *db;
- db = p->db;
-
- /* If the VM did not run to completion or if it encountered an
- ** error, then it might not have been halted properly. So halt
- ** it now.
- */
- sqlite3VdbeHalt(p);
-
- /* If the VDBE has be run even partially, then transfer the error code
- ** and error message from the VDBE into the main database structure. But
- ** if the VDBE has just been set to run but has not actually executed any
- ** instructions yet, leave the main database error information unchanged.
- */
- if( p->pc>=0 ){
- vdbeInvokeSqllog(p);
- sqlite3VdbeTransferError(p);
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = 0;
- if( p->runOnlyOnce ) p->expired = 1;
- }else if( p->rc && p->expired ){
- /* The expired flag was set on the VDBE before the first call
- ** to sqlite3_step(). For consistency (since sqlite3_step() was
- ** called), set the database error in this case as well.
- */
- sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = 0;
- }
-
- /* Reclaim all memory used by the VDBE
- */
- Cleanup(p);
-
- /* Save profiling information from this VDBE run.
- */
-#ifdef VDBE_PROFILE
- {
- FILE *out = fopen("vdbe_profile.out", "a");
- if( out ){
- int i;
- fprintf(out, "---- ");
- for(i=0; i<p->nOp; i++){
- fprintf(out, "%02x", p->aOp[i].opcode);
- }
- fprintf(out, "\n");
- if( p->zSql ){
- char c, pc = 0;
- fprintf(out, "-- ");
- for(i=0; (c = p->zSql[i])!=0; i++){
- if( pc=='\n' ) fprintf(out, "-- ");
- putc(c, out);
- pc = c;
- }
- if( pc!='\n' ) fprintf(out, "\n");
- }
- for(i=0; i<p->nOp; i++){
- char zHdr[100];
- sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
- p->aOp[i].cnt,
- p->aOp[i].cycles,
- p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
- );
- fprintf(out, "%s", zHdr);
- sqlite3VdbePrintOp(out, i, &p->aOp[i]);
- }
- fclose(out);
- }
- }
-#endif
- p->iCurrentTime = 0;
- p->magic = VDBE_MAGIC_INIT;
- return p->rc & db->errMask;
-}
-
-/*
-** Clean up and delete a VDBE after execution. Return an integer which is
-** the result code. Write any error message text into *pzErrMsg.
-*/
-int sqlite3VdbeFinalize(Vdbe *p){
- int rc = SQLITE_OK;
- if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
- rc = sqlite3VdbeReset(p);
- assert( (rc & p->db->errMask)==rc );
- }
- sqlite3VdbeDelete(p);
- return rc;
-}
-
-/*
-** If parameter iOp is less than zero, then invoke the destructor for
-** all auxiliary data pointers currently cached by the VM passed as
-** the first argument.
-**
-** Or, if iOp is greater than or equal to zero, then the destructor is
-** only invoked for those auxiliary data pointers created by the user
-** function invoked by the OP_Function opcode at instruction iOp of
-** VM pVdbe, and only then if:
-**
-** * the associated function parameter is the 32nd or later (counting
-** from left to right), or
-**
-** * the corresponding bit in argument mask is clear (where the first
-** function parameter corresponds to bit 0 etc.).
-*/
-void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
- AuxData **pp = &pVdbe->pAuxData;
- while( *pp ){
- AuxData *pAux = *pp;
- if( (iOp<0)
- || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
- ){
- testcase( pAux->iArg==31 );
- if( pAux->xDelete ){
- pAux->xDelete(pAux->pAux);
- }
- *pp = pAux->pNext;
- sqlite3DbFree(pVdbe->db, pAux);
- }else{
- pp= &pAux->pNext;
- }
- }
-}
-
-/*
-** Free all memory associated with the Vdbe passed as the second argument,
-** except for object itself, which is preserved.
-**
-** The difference between this function and sqlite3VdbeDelete() is that
-** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
-** the database connection and frees the object itself.
-*/
-void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
- SubProgram *pSub, *pNext;
- int i;
- assert( p->db==0 || p->db==db );
- releaseMemArray(p->aVar, p->nVar);
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
- for(pSub=p->pProgram; pSub; pSub=pNext){
- pNext = pSub->pNext;
- vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
- sqlite3DbFree(db, pSub);
- }
- for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
- vdbeFreeOpArray(db, p->aOp, p->nOp);
- sqlite3DbFree(db, p->aColName);
- sqlite3DbFree(db, p->zSql);
- sqlite3DbFree(db, p->pFree);
-#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
- for(i=0; i<p->nScan; i++){
- sqlite3DbFree(db, p->aScan[i].zName);
- }
- sqlite3DbFree(db, p->aScan);
-#endif
-}
-
-/*
-** Delete an entire VDBE.
-*/
-void sqlite3VdbeDelete(Vdbe *p){
- sqlite3 *db;
-
- if( NEVER(p==0) ) return;
- db = p->db;
- assert( sqlite3_mutex_held(db->mutex) );
- sqlite3VdbeClearObject(db, p);
- if( p->pPrev ){
- p->pPrev->pNext = p->pNext;
- }else{
- assert( db->pVdbe==p );
- db->pVdbe = p->pNext;
- }
- if( p->pNext ){
- p->pNext->pPrev = p->pPrev;
- }
- p->magic = VDBE_MAGIC_DEAD;
- p->db = 0;
- sqlite3DbFree(db, p);
-}
-
-/*
-** The cursor "p" has a pending seek operation that has not yet been
-** carried out. Seek the cursor now. If an error occurs, return
-** the appropriate error code.
-*/
-static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
- int res, rc;
-#ifdef SQLITE_TEST
- extern int sqlite3_search_count;
-#endif
- assert( p->deferredMoveto );
- assert( p->isTable );
- rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
- if( rc ) return rc;
- if( res!=0 ) return SQLITE_CORRUPT_BKPT;
-#ifdef SQLITE_TEST
- sqlite3_search_count++;
-#endif
- p->deferredMoveto = 0;
- p->cacheStatus = CACHE_STALE;
- return SQLITE_OK;
-}
-
-/*
-** Something has moved cursor "p" out of place. Maybe the row it was
-** pointed to was deleted out from under it. Or maybe the btree was
-** rebalanced. Whatever the cause, try to restore "p" to the place it
-** is supposed to be pointing. If the row was deleted out from under the
-** cursor, set the cursor to point to a NULL row.
-*/
-static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
- int isDifferentRow, rc;
- assert( p->pCursor!=0 );
- assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
- rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
- p->cacheStatus = CACHE_STALE;
- if( isDifferentRow ) p->nullRow = 1;
- return rc;
-}
-
-/*
-** Check to ensure that the cursor is valid. Restore the cursor
-** if need be. Return any I/O error from the restore operation.
-*/
-int sqlite3VdbeCursorRestore(VdbeCursor *p){
- if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
- return handleMovedCursor(p);
- }
- return SQLITE_OK;
-}
-
-/*
-** Make sure the cursor p is ready to read or write the row to which it
-** was last positioned. Return an error code if an OOM fault or I/O error
-** prevents us from positioning the cursor to its correct position.
-**
-** If a MoveTo operation is pending on the given cursor, then do that
-** MoveTo now. If no move is pending, check to see if the row has been
-** deleted out from under the cursor and if it has, mark the row as
-** a NULL row.
-**
-** If the cursor is already pointing to the correct row and that row has
-** not been deleted out from under the cursor, then this routine is a no-op.
-*/
-int sqlite3VdbeCursorMoveto(VdbeCursor *p){
- if( p->deferredMoveto ){
- return handleDeferredMoveto(p);
- }
- if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
- return handleMovedCursor(p);
- }
- return SQLITE_OK;
-}
-
-/*
-** The following functions:
-**
-** sqlite3VdbeSerialType()
-** sqlite3VdbeSerialTypeLen()
-** sqlite3VdbeSerialLen()
-** sqlite3VdbeSerialPut()
-** sqlite3VdbeSerialGet()
-**
-** encapsulate the code that serializes values for storage in SQLite
-** data and index records. Each serialized value consists of a
-** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
-** integer, stored as a varint.
-**
-** In an SQLite index record, the serial type is stored directly before
-** the blob of data that it corresponds to. In a table record, all serial
-** types are stored at the start of the record, and the blobs of data at
-** the end. Hence these functions allow the caller to handle the
-** serial-type and data blob separately.
-**
-** The following table describes the various storage classes for data:
-**
-** serial type bytes of data type
-** -------------- --------------- ---------------
-** 0 0 NULL
-** 1 1 signed integer
-** 2 2 signed integer
-** 3 3 signed integer
-** 4 4 signed integer
-** 5 6 signed integer
-** 6 8 signed integer
-** 7 8 IEEE float
-** 8 0 Integer constant 0
-** 9 0 Integer constant 1
-** 10,11 reserved for expansion
-** N>=12 and even (N-12)/2 BLOB
-** N>=13 and odd (N-13)/2 text
-**
-** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
-** of SQLite will not understand those serial types.
-*/
-
-/*
-** Return the serial-type for the value stored in pMem.
-*/
-u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
- int flags = pMem->flags;
- u32 n;
-
- if( flags&MEM_Null ){
- return 0;
- }
- if( flags&MEM_Int ){
- /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
-# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
- i64 i = pMem->u.i;
- u64 u;
- if( i<0 ){
- u = ~i;
- }else{
- u = i;
- }
- if( u<=127 ){
- return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
- }
- if( u<=32767 ) return 2;
- if( u<=8388607 ) return 3;
- if( u<=2147483647 ) return 4;
- if( u<=MAX_6BYTE ) return 5;
- return 6;
- }
- if( flags&MEM_Real ){
- return 7;
- }
- assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
- assert( pMem->n>=0 );
- n = (u32)pMem->n;
- if( flags & MEM_Zero ){
- n += pMem->u.nZero;
- }
- return ((n*2) + 12 + ((flags&MEM_Str)!=0));
-}
-
-/*
-** The sizes for serial types less than 12
-*/
-static const u8 sqlite3SmallTypeSizes[] = {
- 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0
-};
-
-/*
-** Return the length of the data corresponding to the supplied serial-type.
-*/
-u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
- if( serial_type>=12 ){
- return (serial_type-12)/2;
- }else{
- return sqlite3SmallTypeSizes[serial_type];
- }
-}
-
-/*
-** If we are on an architecture with mixed-endian floating
-** points (ex: ARM7) then swap the lower 4 bytes with the
-** upper 4 bytes. Return the result.
-**
-** For most architectures, this is a no-op.
-**
-** (later): It is reported to me that the mixed-endian problem
-** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
-** that early versions of GCC stored the two words of a 64-bit
-** float in the wrong order. And that error has been propagated
-** ever since. The blame is not necessarily with GCC, though.
-** GCC might have just copying the problem from a prior compiler.
-** I am also told that newer versions of GCC that follow a different
-** ABI get the byte order right.
-**
-** Developers using SQLite on an ARM7 should compile and run their
-** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
-** enabled, some asserts below will ensure that the byte order of
-** floating point values is correct.
-**
-** (2007-08-30) Frank van Vugt has studied this problem closely
-** and has send his findings to the SQLite developers. Frank
-** writes that some Linux kernels offer floating point hardware
-** emulation that uses only 32-bit mantissas instead of a full
-** 48-bits as required by the IEEE standard. (This is the
-** CONFIG_FPE_FASTFPE option.) On such systems, floating point
-** byte swapping becomes very complicated. To avoid problems,
-** the necessary byte swapping is carried out using a 64-bit integer
-** rather than a 64-bit float. Frank assures us that the code here
-** works for him. We, the developers, have no way to independently
-** verify this, but Frank seems to know what he is talking about
-** so we trust him.
-*/
-#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
-static u64 floatSwap(u64 in){
- union {
- u64 r;
- u32 i[2];
- } u;
- u32 t;
-
- u.r = in;
- t = u.i[0];
- u.i[0] = u.i[1];
- u.i[1] = t;
- return u.r;
-}
-# define swapMixedEndianFloat(X) X = floatSwap(X)
-#else
-# define swapMixedEndianFloat(X)
-#endif
-
-/*
-** Write the serialized data blob for the value stored in pMem into
-** buf. It is assumed that the caller has allocated sufficient space.
-** Return the number of bytes written.
-**
-** nBuf is the amount of space left in buf[]. The caller is responsible
-** for allocating enough space to buf[] to hold the entire field, exclusive
-** of the pMem->u.nZero bytes for a MEM_Zero value.
-**
-** Return the number of bytes actually written into buf[]. The number
-** of bytes in the zero-filled tail is included in the return value only
-** if those bytes were zeroed in buf[].
-*/
-u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
- u32 len;
-
- /* Integer and Real */
- if( serial_type<=7 && serial_type>0 ){
- u64 v;
- u32 i;
- if( serial_type==7 ){
- assert( sizeof(v)==sizeof(pMem->u.r) );
- memcpy(&v, &pMem->u.r, sizeof(v));
- swapMixedEndianFloat(v);
- }else{
- v = pMem->u.i;
- }
- len = i = sqlite3SmallTypeSizes[serial_type];
- assert( i>0 );
- do{
- buf[--i] = (u8)(v&0xFF);
- v >>= 8;
- }while( i );
- return len;
- }
-
- /* String or blob */
- if( serial_type>=12 ){
- assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
- == (int)sqlite3VdbeSerialTypeLen(serial_type) );
- len = pMem->n;
- memcpy(buf, pMem->z, len);
- return len;
- }
-
- /* NULL or constants 0 or 1 */
- return 0;
-}
-
-/* Input "x" is a sequence of unsigned characters that represent a
-** big-endian integer. Return the equivalent native integer
-*/
-#define ONE_BYTE_INT(x) ((i8)(x)[0])
-#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
-#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
-#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
-#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
-
-/*
-** Deserialize the data blob pointed to by buf as serial type serial_type
-** and store the result in pMem. Return the number of bytes read.
-**
-** This function is implemented as two separate routines for performance.
-** The few cases that require local variables are broken out into a separate
-** routine so that in most cases the overhead of moving the stack pointer
-** is avoided.
-*/
-static u32 SQLITE_NOINLINE serialGet(
- const unsigned char *buf, /* Buffer to deserialize from */
- u32 serial_type, /* Serial type to deserialize */
- Mem *pMem /* Memory cell to write value into */
-){
- u64 x = FOUR_BYTE_UINT(buf);
- u32 y = FOUR_BYTE_UINT(buf+4);
- x = (x<<32) + y;
- if( serial_type==6 ){
- /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
- ** twos-complement integer. */
- pMem->u.i = *(i64*)&x;
- pMem->flags = MEM_Int;
- testcase( pMem->u.i<0 );
- }else{
- /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
- ** floating point number. */
-#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
- /* Verify that integers and floating point values use the same
- ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
- ** defined that 64-bit floating point values really are mixed
- ** endian.
- */
- static const u64 t1 = ((u64)0x3ff00000)<<32;
- static const double r1 = 1.0;
- u64 t2 = t1;
- swapMixedEndianFloat(t2);
- assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
-#endif
- assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
- swapMixedEndianFloat(x);
- memcpy(&pMem->u.r, &x, sizeof(x));
- pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
- }
- return 8;
-}
-u32 sqlite3VdbeSerialGet(
- const unsigned char *buf, /* Buffer to deserialize from */
- u32 serial_type, /* Serial type to deserialize */
- Mem *pMem /* Memory cell to write value into */
-){
- switch( serial_type ){
- case 10: /* Reserved for future use */
- case 11: /* Reserved for future use */
- case 0: { /* Null */
- /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
- pMem->flags = MEM_Null;
- break;
- }
- case 1: {
- /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
- ** integer. */
- pMem->u.i = ONE_BYTE_INT(buf);
- pMem->flags = MEM_Int;
- testcase( pMem->u.i<0 );
- return 1;
- }
- case 2: { /* 2-byte signed integer */
- /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
- ** twos-complement integer. */
- pMem->u.i = TWO_BYTE_INT(buf);
- pMem->flags = MEM_Int;
- testcase( pMem->u.i<0 );
- return 2;
- }
- case 3: { /* 3-byte signed integer */
- /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
- ** twos-complement integer. */
- pMem->u.i = THREE_BYTE_INT(buf);
- pMem->flags = MEM_Int;
- testcase( pMem->u.i<0 );
- return 3;
- }
- case 4: { /* 4-byte signed integer */
- /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
- ** twos-complement integer. */
- pMem->u.i = FOUR_BYTE_INT(buf);
- pMem->flags = MEM_Int;
- testcase( pMem->u.i<0 );
- return 4;
- }
- case 5: { /* 6-byte signed integer */
- /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
- ** twos-complement integer. */
- pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
- pMem->flags = MEM_Int;
- testcase( pMem->u.i<0 );
- return 6;
- }
- case 6: /* 8-byte signed integer */
- case 7: { /* IEEE floating point */
- /* These use local variables, so do them in a separate routine
- ** to avoid having to move the frame pointer in the common case */
- return serialGet(buf,serial_type,pMem);
- }
- case 8: /* Integer 0 */
- case 9: { /* Integer 1 */
- /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
- /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
- pMem->u.i = serial_type-8;
- pMem->flags = MEM_Int;
- return 0;
- }
- default: {
- /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
- ** length.
- ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
- ** (N-13)/2 bytes in length. */
- static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
- pMem->z = (char *)buf;
- pMem->n = (serial_type-12)/2;
- pMem->flags = aFlag[serial_type&1];
- return pMem->n;
- }
- }
- return 0;
-}
-/*
-** This routine is used to allocate sufficient space for an UnpackedRecord
-** structure large enough to be used with sqlite3VdbeRecordUnpack() if
-** the first argument is a pointer to KeyInfo structure pKeyInfo.
-**
-** The space is either allocated using sqlite3DbMallocRaw() or from within
-** the unaligned buffer passed via the second and third arguments (presumably
-** stack space). If the former, then *ppFree is set to a pointer that should
-** be eventually freed by the caller using sqlite3DbFree(). Or, if the
-** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
-** before returning.
-**
-** If an OOM error occurs, NULL is returned.
-*/
-UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
- KeyInfo *pKeyInfo, /* Description of the record */
- char *pSpace, /* Unaligned space available */
- int szSpace, /* Size of pSpace[] in bytes */
- char **ppFree /* OUT: Caller should free this pointer */
-){
- UnpackedRecord *p; /* Unpacked record to return */
- int nOff; /* Increment pSpace by nOff to align it */
- int nByte; /* Number of bytes required for *p */
-
- /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
- ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
- ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
- */
- nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
- nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
- if( nByte>szSpace+nOff ){
- p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
- *ppFree = (char *)p;
- if( !p ) return 0;
- }else{
- p = (UnpackedRecord*)&pSpace[nOff];
- *ppFree = 0;
- }
-
- p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
- assert( pKeyInfo->aSortOrder!=0 );
- p->pKeyInfo = pKeyInfo;
- p->nField = pKeyInfo->nField + 1;
- return p;
-}
-
-/*
-** Given the nKey-byte encoding of a record in pKey[], populate the
-** UnpackedRecord structure indicated by the fourth argument with the
-** contents of the decoded record.
-*/
-void sqlite3VdbeRecordUnpack(
- KeyInfo *pKeyInfo, /* Information about the record format */
- int nKey, /* Size of the binary record */
- const void *pKey, /* The binary record */
- UnpackedRecord *p /* Populate this structure before returning. */
-){
- const unsigned char *aKey = (const unsigned char *)pKey;
- int d;
- u32 idx; /* Offset in aKey[] to read from */
- u16 u; /* Unsigned loop counter */
- u32 szHdr;
- Mem *pMem = p->aMem;
-
- p->default_rc = 0;
- assert( EIGHT_BYTE_ALIGNMENT(pMem) );
- idx = getVarint32(aKey, szHdr);
- d = szHdr;
- u = 0;
- while( idx<szHdr && d<=nKey ){
- u32 serial_type;
-
- idx += getVarint32(&aKey[idx], serial_type);
- pMem->enc = pKeyInfo->enc;
- pMem->db = pKeyInfo->db;
- /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
- pMem->szMalloc = 0;
- d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
- pMem++;
- if( (++u)>=p->nField ) break;
- }
- assert( u<=pKeyInfo->nField + 1 );
- p->nField = u;
-}
-
-#if SQLITE_DEBUG
-/*
-** This function compares two index or table record keys in the same way
-** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
-** this function deserializes and compares values using the
-** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
-** in assert() statements to ensure that the optimized code in
-** sqlite3VdbeRecordCompare() returns results with these two primitives.
-**
-** Return true if the result of comparison is equivalent to desiredResult.
-** Return false if there is a disagreement.
-*/
-static int vdbeRecordCompareDebug(
- int nKey1, const void *pKey1, /* Left key */
- const UnpackedRecord *pPKey2, /* Right key */
- int desiredResult /* Correct answer */
-){
- u32 d1; /* Offset into aKey[] of next data element */
- u32 idx1; /* Offset into aKey[] of next header element */
- u32 szHdr1; /* Number of bytes in header */
- int i = 0;
- int rc = 0;
- const unsigned char *aKey1 = (const unsigned char *)pKey1;
- KeyInfo *pKeyInfo;
- Mem mem1;
-
- pKeyInfo = pPKey2->pKeyInfo;
- if( pKeyInfo->db==0 ) return 1;
- mem1.enc = pKeyInfo->enc;
- mem1.db = pKeyInfo->db;
- /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
- VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
-
- /* Compilers may complain that mem1.u.i is potentially uninitialized.
- ** We could initialize it, as shown here, to silence those complaints.
- ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
- ** the unnecessary initialization has a measurable negative performance
- ** impact, since this routine is a very high runner. And so, we choose
- ** to ignore the compiler warnings and leave this variable uninitialized.
- */
- /* mem1.u.i = 0; // not needed, here to silence compiler warning */
-
- idx1 = getVarint32(aKey1, szHdr1);
- if( szHdr1>98307 ) return SQLITE_CORRUPT;
- d1 = szHdr1;
- assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
- assert( pKeyInfo->aSortOrder!=0 );
- assert( pKeyInfo->nField>0 );
- assert( idx1<=szHdr1 || CORRUPT_DB );
- do{
- u32 serial_type1;
-
- /* Read the serial types for the next element in each key. */
- idx1 += getVarint32( aKey1+idx1, serial_type1 );
-
- /* Verify that there is enough key space remaining to avoid
- ** a buffer overread. The "d1+serial_type1+2" subexpression will
- ** always be greater than or equal to the amount of required key space.
- ** Use that approximation to avoid the more expensive call to
- ** sqlite3VdbeSerialTypeLen() in the common case.
- */
- if( d1+serial_type1+2>(u32)nKey1
- && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
- ){
- break;
- }
-
- /* Extract the values to be compared.
- */
- d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
-
- /* Do the comparison
- */
- rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
- if( rc!=0 ){
- assert( mem1.szMalloc==0 ); /* See comment below */
- if( pKeyInfo->aSortOrder[i] ){
- rc = -rc; /* Invert the result for DESC sort order. */
- }
- goto debugCompareEnd;
- }
- i++;
- }while( idx1<szHdr1 && i<pPKey2->nField );
-
- /* No memory allocation is ever used on mem1. Prove this using
- ** the following assert(). If the assert() fails, it indicates a
- ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
- */
- assert( mem1.szMalloc==0 );
-
- /* rc==0 here means that one of the keys ran out of fields and
- ** all the fields up to that point were equal. Return the default_rc
- ** value. */
- rc = pPKey2->default_rc;
-
-debugCompareEnd:
- if( desiredResult==0 && rc==0 ) return 1;
- if( desiredResult<0 && rc<0 ) return 1;
- if( desiredResult>0 && rc>0 ) return 1;
- if( CORRUPT_DB ) return 1;
- if( pKeyInfo->db->mallocFailed ) return 1;
- return 0;
-}
-#endif
-
-#if SQLITE_DEBUG
-/*
-** Count the number of fields (a.k.a. columns) in the record given by
-** pKey,nKey. The verify that this count is less than or equal to the
-** limit given by pKeyInfo->nField + pKeyInfo->nXField.
-**
-** If this constraint is not satisfied, it means that the high-speed
-** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
-** not work correctly. If this assert() ever fires, it probably means
-** that the KeyInfo.nField or KeyInfo.nXField values were computed
-** incorrectly.
-*/
-static void vdbeAssertFieldCountWithinLimits(
- int nKey, const void *pKey, /* The record to verify */
- const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
-){
- int nField = 0;
- u32 szHdr;
- u32 idx;
- u32 notUsed;
- const unsigned char *aKey = (const unsigned char*)pKey;
-
- if( CORRUPT_DB ) return;
- idx = getVarint32(aKey, szHdr);
- assert( nKey>=0 );
- assert( szHdr<=(u32)nKey );
- while( idx<szHdr ){
- idx += getVarint32(aKey+idx, notUsed);
- nField++;
- }
- assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
-}
-#else
-# define vdbeAssertFieldCountWithinLimits(A,B,C)
-#endif
-
-/*
-** Both *pMem1 and *pMem2 contain string values. Compare the two values
-** using the collation sequence pColl. As usual, return a negative , zero
-** or positive value if *pMem1 is less than, equal to or greater than
-** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
-*/
-static int vdbeCompareMemString(
- const Mem *pMem1,
- const Mem *pMem2,
- const CollSeq *pColl,
- u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
-){
- if( pMem1->enc==pColl->enc ){
- /* The strings are already in the correct encoding. Call the
- ** comparison function directly */
- return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
- }else{
- int rc;
- const void *v1, *v2;
- int n1, n2;
- Mem c1;
- Mem c2;
- sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
- sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
- sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
- sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
- v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
- n1 = v1==0 ? 0 : c1.n;
- v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
- n2 = v2==0 ? 0 : c2.n;
- rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
- sqlite3VdbeMemRelease(&c1);
- sqlite3VdbeMemRelease(&c2);
- if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
- return rc;
- }
-}
-
-/*
-** Compare two blobs. Return negative, zero, or positive if the first
-** is less than, equal to, or greater than the second, respectively.
-** If one blob is a prefix of the other, then the shorter is the lessor.
-*/
-static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
- int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
- if( c ) return c;
- return pB1->n - pB2->n;
-}
-
-
-/*
-** Compare the values contained by the two memory cells, returning
-** negative, zero or positive if pMem1 is less than, equal to, or greater
-** than pMem2. Sorting order is NULL's first, followed by numbers (integers
-** and reals) sorted numerically, followed by text ordered by the collating
-** sequence pColl and finally blob's ordered by memcmp().
-**
-** Two NULL values are considered equal by this function.
-*/
-int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
- int f1, f2;
- int combined_flags;
-
- f1 = pMem1->flags;
- f2 = pMem2->flags;
- combined_flags = f1|f2;
- assert( (combined_flags & MEM_RowSet)==0 );
-
- /* If one value is NULL, it is less than the other. If both values
- ** are NULL, return 0.
- */
- if( combined_flags&MEM_Null ){
- return (f2&MEM_Null) - (f1&MEM_Null);
- }
-
- /* If one value is a number and the other is not, the number is less.
- ** If both are numbers, compare as reals if one is a real, or as integers
- ** if both values are integers.
- */
- if( combined_flags&(MEM_Int|MEM_Real) ){
- double r1, r2;
- if( (f1 & f2 & MEM_Int)!=0 ){
- if( pMem1->u.i < pMem2->u.i ) return -1;
- if( pMem1->u.i > pMem2->u.i ) return 1;
- return 0;
- }
- if( (f1&MEM_Real)!=0 ){
- r1 = pMem1->u.r;
- }else if( (f1&MEM_Int)!=0 ){
- r1 = (double)pMem1->u.i;
- }else{
- return 1;
- }
- if( (f2&MEM_Real)!=0 ){
- r2 = pMem2->u.r;
- }else if( (f2&MEM_Int)!=0 ){
- r2 = (double)pMem2->u.i;
- }else{
- return -1;
- }
- if( r1<r2 ) return -1;
- if( r1>r2 ) return 1;
- return 0;
- }
-
- /* If one value is a string and the other is a blob, the string is less.
- ** If both are strings, compare using the collating functions.
- */
- if( combined_flags&MEM_Str ){
- if( (f1 & MEM_Str)==0 ){
- return 1;
- }
- if( (f2 & MEM_Str)==0 ){
- return -1;
- }
-
- assert( pMem1->enc==pMem2->enc );
- assert( pMem1->enc==SQLITE_UTF8 ||
- pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
-
- /* The collation sequence must be defined at this point, even if
- ** the user deletes the collation sequence after the vdbe program is
- ** compiled (this was not always the case).
- */
- assert( !pColl || pColl->xCmp );
-
- if( pColl ){
- return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
- }
- /* If a NULL pointer was passed as the collate function, fall through
- ** to the blob case and use memcmp(). */
- }
-
- /* Both values must be blobs. Compare using memcmp(). */
- return sqlite3BlobCompare(pMem1, pMem2);
-}
-
-
-/*
-** The first argument passed to this function is a serial-type that
-** corresponds to an integer - all values between 1 and 9 inclusive
-** except 7. The second points to a buffer containing an integer value
-** serialized according to serial_type. This function deserializes
-** and returns the value.
-*/
-static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
- u32 y;
- assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
- switch( serial_type ){
- case 0:
- case 1:
- testcase( aKey[0]&0x80 );
- return ONE_BYTE_INT(aKey);
- case 2:
- testcase( aKey[0]&0x80 );
- return TWO_BYTE_INT(aKey);
- case 3:
- testcase( aKey[0]&0x80 );
- return THREE_BYTE_INT(aKey);
- case 4: {
- testcase( aKey[0]&0x80 );
- y = FOUR_BYTE_UINT(aKey);
- return (i64)*(int*)&y;
- }
- case 5: {
- testcase( aKey[0]&0x80 );
- return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
- }
- case 6: {
- u64 x = FOUR_BYTE_UINT(aKey);
- testcase( aKey[0]&0x80 );
- x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
- return (i64)*(i64*)&x;
- }
- }
-
- return (serial_type - 8);
-}
-
-/*
-** This function compares the two table rows or index records
-** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
-** or positive integer if key1 is less than, equal to or
-** greater than key2. The {nKey1, pKey1} key must be a blob
-** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
-** key must be a parsed key such as obtained from
-** sqlite3VdbeParseRecord.
-**
-** If argument bSkip is non-zero, it is assumed that the caller has already
-** determined that the first fields of the keys are equal.
-**
-** Key1 and Key2 do not have to contain the same number of fields. If all
-** fields that appear in both keys are equal, then pPKey2->default_rc is
-** returned.
-**
-** If database corruption is discovered, set pPKey2->errCode to
-** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
-** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
-** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
-*/
-int sqlite3VdbeRecordCompareWithSkip(
- int nKey1, const void *pKey1, /* Left key */
- UnpackedRecord *pPKey2, /* Right key */
- int bSkip /* If true, skip the first field */
-){
- u32 d1; /* Offset into aKey[] of next data element */
- int i; /* Index of next field to compare */
- u32 szHdr1; /* Size of record header in bytes */
- u32 idx1; /* Offset of first type in header */
- int rc = 0; /* Return value */
- Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
- KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
- const unsigned char *aKey1 = (const unsigned char *)pKey1;
- Mem mem1;
-
- /* If bSkip is true, then the caller has already determined that the first
- ** two elements in the keys are equal. Fix the various stack variables so
- ** that this routine begins comparing at the second field. */
- if( bSkip ){
- u32 s1;
- idx1 = 1 + getVarint32(&aKey1[1], s1);
- szHdr1 = aKey1[0];
- d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
- i = 1;
- pRhs++;
- }else{
- idx1 = getVarint32(aKey1, szHdr1);
- d1 = szHdr1;
- if( d1>(unsigned)nKey1 ){
- pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
- return 0; /* Corruption */
- }
- i = 0;
- }
-
- VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
- assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
- || CORRUPT_DB );
- assert( pPKey2->pKeyInfo->aSortOrder!=0 );
- assert( pPKey2->pKeyInfo->nField>0 );
- assert( idx1<=szHdr1 || CORRUPT_DB );
- do{
- u32 serial_type;
-
- /* RHS is an integer */
- if( pRhs->flags & MEM_Int ){
- serial_type = aKey1[idx1];
- testcase( serial_type==12 );
- if( serial_type>=10 ){
- rc = +1;
- }else if( serial_type==0 ){
- rc = -1;
- }else if( serial_type==7 ){
- double rhs = (double)pRhs->u.i;
- sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
- if( mem1.u.r<rhs ){
- rc = -1;
- }else if( mem1.u.r>rhs ){
- rc = +1;
- }
- }else{
- i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
- i64 rhs = pRhs->u.i;
- if( lhs<rhs ){
- rc = -1;
- }else if( lhs>rhs ){
- rc = +1;
- }
- }
- }
-
- /* RHS is real */
- else if( pRhs->flags & MEM_Real ){
- serial_type = aKey1[idx1];
- if( serial_type>=10 ){
- /* Serial types 12 or greater are strings and blobs (greater than
- ** numbers). Types 10 and 11 are currently "reserved for future
- ** use", so it doesn't really matter what the results of comparing
- ** them to numberic values are. */
- rc = +1;
- }else if( serial_type==0 ){
- rc = -1;
- }else{
- double rhs = pRhs->u.r;
- double lhs;
- sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
- if( serial_type==7 ){
- lhs = mem1.u.r;
- }else{
- lhs = (double)mem1.u.i;
- }
- if( lhs<rhs ){
- rc = -1;
- }else if( lhs>rhs ){
- rc = +1;
- }
- }
- }
-
- /* RHS is a string */
- else if( pRhs->flags & MEM_Str ){
- getVarint32(&aKey1[idx1], serial_type);
- testcase( serial_type==12 );
- if( serial_type<12 ){
- rc = -1;
- }else if( !(serial_type & 0x01) ){
- rc = +1;
- }else{
- mem1.n = (serial_type - 12) / 2;
- testcase( (d1+mem1.n)==(unsigned)nKey1 );
- testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
- if( (d1+mem1.n) > (unsigned)nKey1 ){
- pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
- return 0; /* Corruption */
- }else if( pKeyInfo->aColl[i] ){
- mem1.enc = pKeyInfo->enc;
- mem1.db = pKeyInfo->db;
- mem1.flags = MEM_Str;
- mem1.z = (char*)&aKey1[d1];
- rc = vdbeCompareMemString(
- &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
- );
- }else{
- int nCmp = MIN(mem1.n, pRhs->n);
- rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
- if( rc==0 ) rc = mem1.n - pRhs->n;
- }
- }
- }
-
- /* RHS is a blob */
- else if( pRhs->flags & MEM_Blob ){
- getVarint32(&aKey1[idx1], serial_type);
- testcase( serial_type==12 );
- if( serial_type<12 || (serial_type & 0x01) ){
- rc = -1;
- }else{
- int nStr = (serial_type - 12) / 2;
- testcase( (d1+nStr)==(unsigned)nKey1 );
- testcase( (d1+nStr+1)==(unsigned)nKey1 );
- if( (d1+nStr) > (unsigned)nKey1 ){
- pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
- return 0; /* Corruption */
- }else{
- int nCmp = MIN(nStr, pRhs->n);
- rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
- if( rc==0 ) rc = nStr - pRhs->n;
- }
- }
- }
-
- /* RHS is null */
- else{
- serial_type = aKey1[idx1];
- rc = (serial_type!=0);
- }
-
- if( rc!=0 ){
- if( pKeyInfo->aSortOrder[i] ){
- rc = -rc;
- }
- assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
- assert( mem1.szMalloc==0 ); /* See comment below */
- return rc;
- }
-
- i++;
- pRhs++;
- d1 += sqlite3VdbeSerialTypeLen(serial_type);
- idx1 += sqlite3VarintLen(serial_type);
- }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
-
- /* No memory allocation is ever used on mem1. Prove this using
- ** the following assert(). If the assert() fails, it indicates a
- ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
- assert( mem1.szMalloc==0 );
-
- /* rc==0 here means that one or both of the keys ran out of fields and
- ** all the fields up to that point were equal. Return the default_rc
- ** value. */
- assert( CORRUPT_DB
- || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
- || pKeyInfo->db->mallocFailed
- );
- return pPKey2->default_rc;
-}
-int sqlite3VdbeRecordCompare(
- int nKey1, const void *pKey1, /* Left key */
- UnpackedRecord *pPKey2 /* Right key */
-){
- return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
-}
-
-
-/*
-** This function is an optimized version of sqlite3VdbeRecordCompare()
-** that (a) the first field of pPKey2 is an integer, and (b) the
-** size-of-header varint at the start of (pKey1/nKey1) fits in a single
-** byte (i.e. is less than 128).
-**
-** To avoid concerns about buffer overreads, this routine is only used
-** on schemas where the maximum valid header size is 63 bytes or less.
-*/
-static int vdbeRecordCompareInt(
- int nKey1, const void *pKey1, /* Left key */
- UnpackedRecord *pPKey2 /* Right key */
-){
- const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
- int serial_type = ((const u8*)pKey1)[1];
- int res;
- u32 y;
- u64 x;
- i64 v = pPKey2->aMem[0].u.i;
- i64 lhs;
-
- vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
- assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
- switch( serial_type ){
- case 1: { /* 1-byte signed integer */
- lhs = ONE_BYTE_INT(aKey);
- testcase( lhs<0 );
- break;
- }
- case 2: { /* 2-byte signed integer */
- lhs = TWO_BYTE_INT(aKey);
- testcase( lhs<0 );
- break;
- }
- case 3: { /* 3-byte signed integer */
- lhs = THREE_BYTE_INT(aKey);
- testcase( lhs<0 );
- break;
- }
- case 4: { /* 4-byte signed integer */
- y = FOUR_BYTE_UINT(aKey);
- lhs = (i64)*(int*)&y;
- testcase( lhs<0 );
- break;
- }
- case 5: { /* 6-byte signed integer */
- lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
- testcase( lhs<0 );
- break;
- }
- case 6: { /* 8-byte signed integer */
- x = FOUR_BYTE_UINT(aKey);
- x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
- lhs = *(i64*)&x;
- testcase( lhs<0 );
- break;
- }
- case 8:
- lhs = 0;
- break;
- case 9:
- lhs = 1;
- break;
-
- /* This case could be removed without changing the results of running
- ** this code. Including it causes gcc to generate a faster switch
- ** statement (since the range of switch targets now starts at zero and
- ** is contiguous) but does not cause any duplicate code to be generated
- ** (as gcc is clever enough to combine the two like cases). Other
- ** compilers might be similar. */
- case 0: case 7:
- return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
-
- default:
- return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
- }
-
- if( v>lhs ){
- res = pPKey2->r1;
- }else if( v<lhs ){
- res = pPKey2->r2;
- }else if( pPKey2->nField>1 ){
- /* The first fields of the two keys are equal. Compare the trailing
- ** fields. */
- res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
- }else{
- /* The first fields of the two keys are equal and there are no trailing
- ** fields. Return pPKey2->default_rc in this case. */
- res = pPKey2->default_rc;
- }
-
- assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
- return res;
-}
-
-/*
-** This function is an optimized version of sqlite3VdbeRecordCompare()
-** that (a) the first field of pPKey2 is a string, that (b) the first field
-** uses the collation sequence BINARY and (c) that the size-of-header varint
-** at the start of (pKey1/nKey1) fits in a single byte.
-*/
-static int vdbeRecordCompareString(
- int nKey1, const void *pKey1, /* Left key */
- UnpackedRecord *pPKey2 /* Right key */
-){
- const u8 *aKey1 = (const u8*)pKey1;
- int serial_type;
- int res;
-
- vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
- getVarint32(&aKey1[1], serial_type);
- if( serial_type<12 ){
- res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
- }else if( !(serial_type & 0x01) ){
- res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
- }else{
- int nCmp;
- int nStr;
- int szHdr = aKey1[0];
-
- nStr = (serial_type-12) / 2;
- if( (szHdr + nStr) > nKey1 ){
- pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
- return 0; /* Corruption */
- }
- nCmp = MIN( pPKey2->aMem[0].n, nStr );
- res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
-
- if( res==0 ){
- res = nStr - pPKey2->aMem[0].n;
- if( res==0 ){
- if( pPKey2->nField>1 ){
- res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
- }else{
- res = pPKey2->default_rc;
- }
- }else if( res>0 ){
- res = pPKey2->r2;
- }else{
- res = pPKey2->r1;
- }
- }else if( res>0 ){
- res = pPKey2->r2;
- }else{
- res = pPKey2->r1;
- }
- }
-
- assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
- || CORRUPT_DB
- || pPKey2->pKeyInfo->db->mallocFailed
- );
- return res;
-}
-
-/*
-** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
-** suitable for comparing serialized records to the unpacked record passed
-** as the only argument.
-*/
-RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
- /* varintRecordCompareInt() and varintRecordCompareString() both assume
- ** that the size-of-header varint that occurs at the start of each record
- ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
- ** also assumes that it is safe to overread a buffer by at least the
- ** maximum possible legal header size plus 8 bytes. Because there is
- ** guaranteed to be at least 74 (but not 136) bytes of padding following each
- ** buffer passed to varintRecordCompareInt() this makes it convenient to
- ** limit the size of the header to 64 bytes in cases where the first field
- ** is an integer.
- **
- ** The easiest way to enforce this limit is to consider only records with
- ** 13 fields or less. If the first field is an integer, the maximum legal
- ** header size is (12*5 + 1 + 1) bytes. */
- if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
- int flags = p->aMem[0].flags;
- if( p->pKeyInfo->aSortOrder[0] ){
- p->r1 = 1;
- p->r2 = -1;
- }else{
- p->r1 = -1;
- p->r2 = 1;
- }
- if( (flags & MEM_Int) ){
- return vdbeRecordCompareInt;
- }
- testcase( flags & MEM_Real );
- testcase( flags & MEM_Null );
- testcase( flags & MEM_Blob );
- if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
- assert( flags & MEM_Str );
- return vdbeRecordCompareString;
- }
- }
-
- return sqlite3VdbeRecordCompare;
-}
-
-/*
-** pCur points at an index entry created using the OP_MakeRecord opcode.
-** Read the rowid (the last field in the record) and store it in *rowid.
-** Return SQLITE_OK if everything works, or an error code otherwise.
-**
-** pCur might be pointing to text obtained from a corrupt database file.
-** So the content cannot be trusted. Do appropriate checks on the content.
-*/
-int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
- i64 nCellKey = 0;
- int rc;
- u32 szHdr; /* Size of the header */
- u32 typeRowid; /* Serial type of the rowid */
- u32 lenRowid; /* Size of the rowid */
- Mem m, v;
-
- /* Get the size of the index entry. Only indices entries of less
- ** than 2GiB are support - anything large must be database corruption.
- ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
- ** this code can safely assume that nCellKey is 32-bits
- */
- assert( sqlite3BtreeCursorIsValid(pCur) );
- VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
- assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
- assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
-
- /* Read in the complete content of the index entry */
- sqlite3VdbeMemInit(&m, db, 0);
- rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
- if( rc ){
- return rc;
- }
-
- /* The index entry must begin with a header size */
- (void)getVarint32((u8*)m.z, szHdr);
- testcase( szHdr==3 );
- testcase( szHdr==m.n );
- if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
- goto idx_rowid_corruption;
- }
-
- /* The last field of the index should be an integer - the ROWID.
- ** Verify that the last entry really is an integer. */
- (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
- testcase( typeRowid==1 );
- testcase( typeRowid==2 );
- testcase( typeRowid==3 );
- testcase( typeRowid==4 );
- testcase( typeRowid==5 );
- testcase( typeRowid==6 );
- testcase( typeRowid==8 );
- testcase( typeRowid==9 );
- if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
- goto idx_rowid_corruption;
- }
- lenRowid = sqlite3SmallTypeSizes[typeRowid];
- testcase( (u32)m.n==szHdr+lenRowid );
- if( unlikely((u32)m.n<szHdr+lenRowid) ){
- goto idx_rowid_corruption;
- }
-
- /* Fetch the integer off the end of the index record */
- sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
- *rowid = v.u.i;
- sqlite3VdbeMemRelease(&m);
- return SQLITE_OK;
-
- /* Jump here if database corruption is detected after m has been
- ** allocated. Free the m object and return SQLITE_CORRUPT. */
-idx_rowid_corruption:
- testcase( m.szMalloc!=0 );
- sqlite3VdbeMemRelease(&m);
- return SQLITE_CORRUPT_BKPT;
-}
-
-/*
-** Compare the key of the index entry that cursor pC is pointing to against
-** the key string in pUnpacked. Write into *pRes a number
-** that is negative, zero, or positive if pC is less than, equal to,
-** or greater than pUnpacked. Return SQLITE_OK on success.
-**
-** pUnpacked is either created without a rowid or is truncated so that it
-** omits the rowid at the end. The rowid at the end of the index entry
-** is ignored as well. Hence, this routine only compares the prefixes
-** of the keys prior to the final rowid, not the entire key.
-*/
-int sqlite3VdbeIdxKeyCompare(
- sqlite3 *db, /* Database connection */
- VdbeCursor *pC, /* The cursor to compare against */
- UnpackedRecord *pUnpacked, /* Unpacked version of key */
- int *res /* Write the comparison result here */
-){
- i64 nCellKey = 0;
- int rc;
- BtCursor *pCur = pC->pCursor;
- Mem m;
-
- assert( sqlite3BtreeCursorIsValid(pCur) );
- VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
- assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
- /* nCellKey will always be between 0 and 0xffffffff because of the way
- ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
- if( nCellKey<=0 || nCellKey>0x7fffffff ){
- *res = 0;
- return SQLITE_CORRUPT_BKPT;
- }
- sqlite3VdbeMemInit(&m, db, 0);
- rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
- if( rc ){
- return rc;
- }
- *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
- sqlite3VdbeMemRelease(&m);
- return SQLITE_OK;
-}
-
-/*
-** This routine sets the value to be returned by subsequent calls to
-** sqlite3_changes() on the database handle 'db'.
-*/
-void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
- assert( sqlite3_mutex_held(db->mutex) );
- db->nChange = nChange;
- db->nTotalChange += nChange;
-}
-
-/*
-** Set a flag in the vdbe to update the change counter when it is finalised
-** or reset.
-*/
-void sqlite3VdbeCountChanges(Vdbe *v){
- v->changeCntOn = 1;
-}
-
-/*
-** Mark every prepared statement associated with a database connection
-** as expired.
-**
-** An expired statement means that recompilation of the statement is
-** recommend. Statements expire when things happen that make their
-** programs obsolete. Removing user-defined functions or collating
-** sequences, or changing an authorization function are the types of
-** things that make prepared statements obsolete.
-*/
-void sqlite3ExpirePreparedStatements(sqlite3 *db){
- Vdbe *p;
- for(p = db->pVdbe; p; p=p->pNext){
- p->expired = 1;
- }
-}
-
-/*
-** Return the database associated with the Vdbe.
-*/
-sqlite3 *sqlite3VdbeDb(Vdbe *v){
- return v->db;
-}
-
-/*
-** Return a pointer to an sqlite3_value structure containing the value bound
-** parameter iVar of VM v. Except, if the value is an SQL NULL, return
-** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
-** constants) to the value before returning it.
-**
-** The returned value must be freed by the caller using sqlite3ValueFree().
-*/
-sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
- assert( iVar>0 );
- if( v ){
- Mem *pMem = &v->aVar[iVar-1];
- if( 0==(pMem->flags & MEM_Null) ){
- sqlite3_value *pRet = sqlite3ValueNew(v->db);
- if( pRet ){
- sqlite3VdbeMemCopy((Mem *)pRet, pMem);
- sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
- }
- return pRet;
- }
- }
- return 0;
-}
-
-/*
-** Configure SQL variable iVar so that binding a new value to it signals
-** to sqlite3_reoptimize() that re-preparing the statement may result
-** in a better query plan.
-*/
-void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
- assert( iVar>0 );
- if( iVar>32 ){
- v->expmask = 0xffffffff;
- }else{
- v->expmask |= ((u32)1 << (iVar-1));
- }
-}
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-/*
-** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
-** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
-** in memory obtained from sqlite3DbMalloc).
-*/
-void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
- sqlite3 *db = p->db;
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
- sqlite3_free(pVtab->zErrMsg);
- pVtab->zErrMsg = 0;
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */