summaryrefslogtreecommitdiffstats
path: root/lib/libsqlite3/src/where.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libsqlite3/src/where.c')
-rw-r--r--lib/libsqlite3/src/where.c1431
1 files changed, 1009 insertions, 422 deletions
diff --git a/lib/libsqlite3/src/where.c b/lib/libsqlite3/src/where.c
index d8389a4d699..9c30136e876 100644
--- a/lib/libsqlite3/src/where.c
+++ b/lib/libsqlite3/src/where.c
@@ -39,7 +39,7 @@ int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
** Return FALSE if the output needs to be sorted.
*/
int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
- return pWInfo->bOBSat!=0;
+ return pWInfo->nOBSat;
}
/*
@@ -47,6 +47,7 @@ int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
** immediately with the next row of a WHERE clause.
*/
int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
+ assert( pWInfo->iContinue!=0 );
return pWInfo->iContinue;
}
@@ -226,7 +227,7 @@ static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
if( p && ExprHasProperty(p, EP_Unlikely) ){
pTerm->truthProb = sqlite3LogEst(p->iTable) - 99;
}else{
- pTerm->truthProb = -1;
+ pTerm->truthProb = 1;
}
pTerm->pExpr = sqlite3ExprSkipCollate(p);
pTerm->wtFlags = wtFlags;
@@ -543,7 +544,7 @@ static WhereTerm *whereScanInit(
if( pIdx && iColumn>=0 ){
pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
- if( NEVER(j>=pIdx->nKeyCol) ) return 0;
+ if( NEVER(j>pIdx->nColumn) ) return 0;
}
pScan->zCollName = pIdx->azColl[j];
}else{
@@ -1469,7 +1470,7 @@ static int isDistinctRedundant(
** contain a "col=X" term are subject to a NOT NULL constraint.
*/
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- if( pIdx->onError==OE_None ) continue;
+ if( !IsUniqueIndex(pIdx) ) continue;
for(i=0; i<pIdx->nKeyCol; i++){
i16 iCol = pIdx->aiColumn[i];
if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){
@@ -1493,8 +1494,7 @@ static int isDistinctRedundant(
** Estimate the logarithm of the input value to base 2.
*/
static LogEst estLog(LogEst N){
- LogEst x = sqlite3LogEst(N);
- return x>33 ? x - 33 : 0;
+ return N<=10 ? 0 : sqlite3LogEst(N) - 33;
}
/*
@@ -1955,10 +1955,11 @@ static void whereKeyStats(
iLower = 0;
iUpper = aSample[0].anLt[iCol];
}else{
- iUpper = i>=pIdx->nSample ? pIdx->aiRowEst[0] : aSample[i].anLt[iCol];
+ i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
+ iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol];
iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol];
}
- aStat[1] = (pIdx->nKeyCol>iCol ? pIdx->aAvgEq[iCol] : 1);
+ aStat[1] = pIdx->aAvgEq[iCol];
if( iLower>=iUpper ){
iGap = 0;
}else{
@@ -1975,6 +1976,138 @@ static void whereKeyStats(
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
/*
+** If it is not NULL, pTerm is a term that provides an upper or lower
+** bound on a range scan. Without considering pTerm, it is estimated
+** that the scan will visit nNew rows. This function returns the number
+** estimated to be visited after taking pTerm into account.
+**
+** If the user explicitly specified a likelihood() value for this term,
+** then the return value is the likelihood multiplied by the number of
+** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
+** has a likelihood of 0.50, and any other term a likelihood of 0.25.
+*/
+static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
+ LogEst nRet = nNew;
+ if( pTerm ){
+ if( pTerm->truthProb<=0 ){
+ nRet += pTerm->truthProb;
+ }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
+ nRet -= 20; assert( 20==sqlite3LogEst(4) );
+ }
+ }
+ return nRet;
+}
+
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+/*
+** This function is called to estimate the number of rows visited by a
+** range-scan on a skip-scan index. For example:
+**
+** CREATE INDEX i1 ON t1(a, b, c);
+** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
+**
+** Value pLoop->nOut is currently set to the estimated number of rows
+** visited for scanning (a=? AND b=?). This function reduces that estimate
+** by some factor to account for the (c BETWEEN ? AND ?) expression based
+** on the stat4 data for the index. this scan will be peformed multiple
+** times (once for each (a,b) combination that matches a=?) is dealt with
+** by the caller.
+**
+** It does this by scanning through all stat4 samples, comparing values
+** extracted from pLower and pUpper with the corresponding column in each
+** sample. If L and U are the number of samples found to be less than or
+** equal to the values extracted from pLower and pUpper respectively, and
+** N is the total number of samples, the pLoop->nOut value is adjusted
+** as follows:
+**
+** nOut = nOut * ( min(U - L, 1) / N )
+**
+** If pLower is NULL, or a value cannot be extracted from the term, L is
+** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
+** U is set to N.
+**
+** Normally, this function sets *pbDone to 1 before returning. However,
+** if no value can be extracted from either pLower or pUpper (and so the
+** estimate of the number of rows delivered remains unchanged), *pbDone
+** is left as is.
+**
+** If an error occurs, an SQLite error code is returned. Otherwise,
+** SQLITE_OK.
+*/
+static int whereRangeSkipScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
+ WhereLoop *pLoop, /* Update the .nOut value of this loop */
+ int *pbDone /* Set to true if at least one expr. value extracted */
+){
+ Index *p = pLoop->u.btree.pIndex;
+ int nEq = pLoop->u.btree.nEq;
+ sqlite3 *db = pParse->db;
+ int nLower = -1;
+ int nUpper = p->nSample+1;
+ int rc = SQLITE_OK;
+ int iCol = p->aiColumn[nEq];
+ u8 aff = iCol>=0 ? p->pTable->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
+ CollSeq *pColl;
+
+ sqlite3_value *p1 = 0; /* Value extracted from pLower */
+ sqlite3_value *p2 = 0; /* Value extracted from pUpper */
+ sqlite3_value *pVal = 0; /* Value extracted from record */
+
+ pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
+ if( pLower ){
+ rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
+ nLower = 0;
+ }
+ if( pUpper && rc==SQLITE_OK ){
+ rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
+ nUpper = p2 ? 0 : p->nSample;
+ }
+
+ if( p1 || p2 ){
+ int i;
+ int nDiff;
+ for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
+ rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
+ if( rc==SQLITE_OK && p1 ){
+ int res = sqlite3MemCompare(p1, pVal, pColl);
+ if( res>=0 ) nLower++;
+ }
+ if( rc==SQLITE_OK && p2 ){
+ int res = sqlite3MemCompare(p2, pVal, pColl);
+ if( res>=0 ) nUpper++;
+ }
+ }
+ nDiff = (nUpper - nLower);
+ if( nDiff<=0 ) nDiff = 1;
+
+ /* If there is both an upper and lower bound specified, and the
+ ** comparisons indicate that they are close together, use the fallback
+ ** method (assume that the scan visits 1/64 of the rows) for estimating
+ ** the number of rows visited. Otherwise, estimate the number of rows
+ ** using the method described in the header comment for this function. */
+ if( nDiff!=1 || pUpper==0 || pLower==0 ){
+ int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
+ pLoop->nOut -= nAdjust;
+ *pbDone = 1;
+ WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
+ nLower, nUpper, nAdjust*-1, pLoop->nOut));
+ }
+
+ }else{
+ assert( *pbDone==0 );
+ }
+
+ sqlite3ValueFree(p1);
+ sqlite3ValueFree(p2);
+ sqlite3ValueFree(pVal);
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
+
+/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
@@ -2010,9 +2143,9 @@ static void whereKeyStats(
** to account for the range contraints pLower and pUpper.
**
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
-** used, each range inequality reduces the search space by a factor of 4.
-** Hence a pair of constraints (x>? AND x<?) reduces the expected number of
-** rows visited by a factor of 16.
+** used, a single range inequality reduces the search space by a factor of 4.
+** and a pair of constraints (x>? AND x<?) reduces the expected number of
+** rows visited by a factor of 64.
*/
static int whereRangeScanEst(
Parse *pParse, /* Parsing & code generating context */
@@ -2030,95 +2163,100 @@ static int whereRangeScanEst(
int nEq = pLoop->u.btree.nEq;
if( p->nSample>0
- && nEq==pBuilder->nRecValid
&& nEq<p->nSampleCol
&& OptimizationEnabled(pParse->db, SQLITE_Stat3)
){
- UnpackedRecord *pRec = pBuilder->pRec;
- tRowcnt a[2];
- u8 aff;
-
- /* Variable iLower will be set to the estimate of the number of rows in
- ** the index that are less than the lower bound of the range query. The
- ** lower bound being the concatenation of $P and $L, where $P is the
- ** key-prefix formed by the nEq values matched against the nEq left-most
- ** columns of the index, and $L is the value in pLower.
- **
- ** Or, if pLower is NULL or $L cannot be extracted from it (because it
- ** is not a simple variable or literal value), the lower bound of the
- ** range is $P. Due to a quirk in the way whereKeyStats() works, even
- ** if $L is available, whereKeyStats() is called for both ($P) and
- ** ($P:$L) and the larger of the two returned values used.
- **
- ** Similarly, iUpper is to be set to the estimate of the number of rows
- ** less than the upper bound of the range query. Where the upper bound
- ** is either ($P) or ($P:$U). Again, even if $U is available, both values
- ** of iUpper are requested of whereKeyStats() and the smaller used.
- */
- tRowcnt iLower;
- tRowcnt iUpper;
+ if( nEq==pBuilder->nRecValid ){
+ UnpackedRecord *pRec = pBuilder->pRec;
+ tRowcnt a[2];
+ u8 aff;
+
+ /* Variable iLower will be set to the estimate of the number of rows in
+ ** the index that are less than the lower bound of the range query. The
+ ** lower bound being the concatenation of $P and $L, where $P is the
+ ** key-prefix formed by the nEq values matched against the nEq left-most
+ ** columns of the index, and $L is the value in pLower.
+ **
+ ** Or, if pLower is NULL or $L cannot be extracted from it (because it
+ ** is not a simple variable or literal value), the lower bound of the
+ ** range is $P. Due to a quirk in the way whereKeyStats() works, even
+ ** if $L is available, whereKeyStats() is called for both ($P) and
+ ** ($P:$L) and the larger of the two returned values used.
+ **
+ ** Similarly, iUpper is to be set to the estimate of the number of rows
+ ** less than the upper bound of the range query. Where the upper bound
+ ** is either ($P) or ($P:$U). Again, even if $U is available, both values
+ ** of iUpper are requested of whereKeyStats() and the smaller used.
+ */
+ tRowcnt iLower;
+ tRowcnt iUpper;
- if( nEq==p->nKeyCol ){
- aff = SQLITE_AFF_INTEGER;
- }else{
- aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
- }
- /* Determine iLower and iUpper using ($P) only. */
- if( nEq==0 ){
- iLower = 0;
- iUpper = p->aiRowEst[0];
- }else{
- /* Note: this call could be optimized away - since the same values must
- ** have been requested when testing key $P in whereEqualScanEst(). */
- whereKeyStats(pParse, p, pRec, 0, a);
- iLower = a[0];
- iUpper = a[0] + a[1];
- }
-
- /* If possible, improve on the iLower estimate using ($P:$L). */
- if( pLower ){
- int bOk; /* True if value is extracted from pExpr */
- Expr *pExpr = pLower->pExpr->pRight;
- assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
- rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
- if( rc==SQLITE_OK && bOk ){
- tRowcnt iNew;
+ if( nEq==p->nKeyCol ){
+ aff = SQLITE_AFF_INTEGER;
+ }else{
+ aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
+ }
+ /* Determine iLower and iUpper using ($P) only. */
+ if( nEq==0 ){
+ iLower = 0;
+ iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]);
+ }else{
+ /* Note: this call could be optimized away - since the same values must
+ ** have been requested when testing key $P in whereEqualScanEst(). */
whereKeyStats(pParse, p, pRec, 0, a);
- iNew = a[0] + ((pLower->eOperator & WO_GT) ? a[1] : 0);
- if( iNew>iLower ) iLower = iNew;
- nOut--;
+ iLower = a[0];
+ iUpper = a[0] + a[1];
}
- }
- /* If possible, improve on the iUpper estimate using ($P:$U). */
- if( pUpper ){
- int bOk; /* True if value is extracted from pExpr */
- Expr *pExpr = pUpper->pExpr->pRight;
- assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
- rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
- if( rc==SQLITE_OK && bOk ){
- tRowcnt iNew;
- whereKeyStats(pParse, p, pRec, 1, a);
- iNew = a[0] + ((pUpper->eOperator & WO_LE) ? a[1] : 0);
- if( iNew<iUpper ) iUpper = iNew;
- nOut--;
+ /* If possible, improve on the iLower estimate using ($P:$L). */
+ if( pLower ){
+ int bOk; /* True if value is extracted from pExpr */
+ Expr *pExpr = pLower->pExpr->pRight;
+ assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
+ if( rc==SQLITE_OK && bOk ){
+ tRowcnt iNew;
+ whereKeyStats(pParse, p, pRec, 0, a);
+ iNew = a[0] + ((pLower->eOperator & WO_GT) ? a[1] : 0);
+ if( iNew>iLower ) iLower = iNew;
+ nOut--;
+ }
}
- }
- pBuilder->pRec = pRec;
- if( rc==SQLITE_OK ){
- if( iUpper>iLower ){
- nNew = sqlite3LogEst(iUpper - iLower);
- }else{
- nNew = 10; assert( 10==sqlite3LogEst(2) );
+ /* If possible, improve on the iUpper estimate using ($P:$U). */
+ if( pUpper ){
+ int bOk; /* True if value is extracted from pExpr */
+ Expr *pExpr = pUpper->pExpr->pRight;
+ assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
+ if( rc==SQLITE_OK && bOk ){
+ tRowcnt iNew;
+ whereKeyStats(pParse, p, pRec, 1, a);
+ iNew = a[0] + ((pUpper->eOperator & WO_LE) ? a[1] : 0);
+ if( iNew<iUpper ) iUpper = iNew;
+ nOut--;
+ }
}
- if( nNew<nOut ){
- nOut = nNew;
+
+ pBuilder->pRec = pRec;
+ if( rc==SQLITE_OK ){
+ if( iUpper>iLower ){
+ nNew = sqlite3LogEst(iUpper - iLower);
+ }else{
+ nNew = 10; assert( 10==sqlite3LogEst(2) );
+ }
+ if( nNew<nOut ){
+ nOut = nNew;
+ }
+ pLoop->nOut = (LogEst)nOut;
+ WHERETRACE(0x10, ("range scan regions: %u..%u est=%d\n",
+ (u32)iLower, (u32)iUpper, nOut));
+ return SQLITE_OK;
}
- pLoop->nOut = (LogEst)nOut;
- WHERETRACE(0x10, ("range scan regions: %u..%u est=%d\n",
- (u32)iLower, (u32)iUpper, nOut));
- return SQLITE_OK;
+ }else{
+ int bDone = 0;
+ rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
+ if( bDone ) return rc;
}
}
#else
@@ -2126,17 +2264,18 @@ static int whereRangeScanEst(
UNUSED_PARAMETER(pBuilder);
#endif
assert( pLower || pUpper );
- /* TUNING: Each inequality constraint reduces the search space 4-fold.
- ** A BETWEEN operator, therefore, reduces the search space 16-fold */
- nNew = nOut;
- if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ){
- nNew -= 20; assert( 20==sqlite3LogEst(4) );
- nOut--;
- }
- if( pUpper ){
- nNew -= 20; assert( 20==sqlite3LogEst(4) );
- nOut--;
- }
+ assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
+ nNew = whereRangeAdjust(pLower, nOut);
+ nNew = whereRangeAdjust(pUpper, nNew);
+
+ /* TUNING: If there is both an upper and lower limit, assume the range is
+ ** reduced by an additional 75%. This means that, by default, an open-ended
+ ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
+ ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
+ ** match 1/64 of the index. */
+ if( pLower && pUpper ) nNew -= 20;
+
+ nOut -= (pLower!=0) + (pUpper!=0);
if( nNew<10 ) nNew = 10;
if( nNew<nOut ) nOut = nNew;
pLoop->nOut = (LogEst)nOut;
@@ -2176,7 +2315,7 @@ static int whereEqualScanEst(
int bOk;
assert( nEq>=1 );
- assert( nEq<=(p->nKeyCol+1) );
+ assert( nEq<=p->nColumn );
assert( p->aSample!=0 );
assert( p->nSample>0 );
assert( pBuilder->nRecValid<nEq );
@@ -2189,7 +2328,7 @@ static int whereEqualScanEst(
/* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
** below would return the same value. */
- if( nEq>p->nKeyCol ){
+ if( nEq>=p->nColumn ){
*pnRow = 1;
return SQLITE_OK;
}
@@ -2233,6 +2372,7 @@ static int whereInScanEst(
tRowcnt *pnRow /* Write the revised row estimate here */
){
Index *p = pBuilder->pNew->u.btree.pIndex;
+ i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
int nRecValid = pBuilder->nRecValid;
int rc = SQLITE_OK; /* Subfunction return code */
tRowcnt nEst; /* Number of rows for a single term */
@@ -2241,14 +2381,14 @@ static int whereInScanEst(
assert( p->aSample!=0 );
for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
- nEst = p->aiRowEst[0];
+ nEst = nRow0;
rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
nRowEst += nEst;
pBuilder->nRecValid = nRecValid;
}
if( rc==SQLITE_OK ){
- if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
+ if( nRowEst > nRow0 ) nRowEst = nRow0;
*pnRow = nRowEst;
WHERETRACE(0x10,("IN row estimate: est=%g\n", nRowEst));
}
@@ -2382,7 +2522,7 @@ static int codeEqualityTerm(
}
assert( pX->op==TK_IN );
iReg = iTarget;
- eType = sqlite3FindInIndex(pParse, pX, 0);
+ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
if( eType==IN_INDEX_INDEX_DESC ){
testcase( bRev );
bRev = !bRev;
@@ -2619,7 +2759,7 @@ static char *explainIndexRange(sqlite3 *db, WhereLoop *pLoop, Table *pTab){
txt.db = db;
sqlite3StrAccumAppend(&txt, " (", 2);
for(i=0; i<nEq; i++){
- char *z = (i==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[i]].zName;
+ char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName;
if( i>=nSkip ){
explainAppendTerm(&txt, i, z, "=");
}else{
@@ -2632,11 +2772,11 @@ static char *explainIndexRange(sqlite3 *db, WhereLoop *pLoop, Table *pTab){
j = i;
if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
- char *z = (j==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[j]].zName;
+ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
explainAppendTerm(&txt, i++, z, ">");
}
if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
- char *z = (j==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[j]].zName;
+ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
explainAppendTerm(&txt, i, z, "<");
}
sqlite3StrAccumAppend(&txt, ")", 1);
@@ -2691,13 +2831,20 @@ static void explainOneScan(
if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0
&& ALWAYS(pLoop->u.btree.pIndex!=0)
){
+ const char *zFmt;
+ Index *pIdx = pLoop->u.btree.pIndex;
char *zWhere = explainIndexRange(db, pLoop, pItem->pTab);
- zMsg = sqlite3MAppendf(db, zMsg,
- ((flags & WHERE_AUTO_INDEX) ?
- "%s USING AUTOMATIC %sINDEX%.0s%s" :
- "%s USING %sINDEX %s%s"),
- zMsg, ((flags & WHERE_IDX_ONLY) ? "COVERING " : ""),
- pLoop->u.btree.pIndex->zName, zWhere);
+ assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
+ if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
+ zFmt = zWhere ? "%s USING PRIMARY KEY%.0s%s" : "%s%.0s%s";
+ }else if( flags & WHERE_AUTO_INDEX ){
+ zFmt = "%s USING AUTOMATIC COVERING INDEX%.0s%s";
+ }else if( flags & WHERE_IDX_ONLY ){
+ zFmt = "%s USING COVERING INDEX %s%s";
+ }else{
+ zFmt = "%s USING INDEX %s%s";
+ }
+ zMsg = sqlite3MAppendf(db, zMsg, zFmt, zMsg, pIdx->zName, zWhere);
sqlite3DbFree(db, zWhere);
}else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
@@ -2840,7 +2987,7 @@ static Bitmask codeOneLoopStart(
pLevel->p1 = iCur;
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
- sqlite3ExprCachePop(pParse, 1);
+ sqlite3ExprCachePop(pParse);
}else
#endif /* SQLITE_OMIT_VIRTUALTABLE */
@@ -3036,8 +3183,11 @@ static Bitmask codeOneLoopStart(
** the first one after the nEq equality constraints in the index,
** this requires some special handling.
*/
+ assert( pWInfo->pOrderBy==0
+ || pWInfo->pOrderBy->nExpr==1
+ || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
- && (pWInfo->bOBSat!=0)
+ && pWInfo->nOBSat>0
&& (pIdx->nKeyCol>nEq)
){
assert( pLoop->u.btree.nSkip==0 );
@@ -3186,7 +3336,7 @@ static Bitmask codeOneLoopStart(
sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
- }else{
+ }else if( iCur!=iIdxCur ){
Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
for(j=0; j<pPk->nKeyCol; j++){
@@ -3208,8 +3358,7 @@ static Bitmask codeOneLoopStart(
pLevel->op = OP_Next;
}
pLevel->p1 = iIdxCur;
- assert( (WHERE_UNQ_WANTED>>16)==1 );
- pLevel->p3 = (pLoop->wsFlags>>16)&1;
+ pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
}else{
@@ -3257,6 +3406,10 @@ static Bitmask codeOneLoopStart(
**
** B: <after the loop>
**
+ ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
+ ** use an ephermeral index instead of a RowSet to record the primary
+ ** keys of the rows we have already seen.
+ **
*/
WhereClause *pOrWc; /* The OR-clause broken out into subterms */
SrcList *pOrTab; /* Shortened table list or OR-clause generation */
@@ -3270,7 +3423,9 @@ static Bitmask codeOneLoopStart(
int iRetInit; /* Address of regReturn init */
int untestedTerms = 0; /* Some terms not completely tested */
int ii; /* Loop counter */
+ u16 wctrlFlags; /* Flags for sub-WHERE clause */
Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
+ Table *pTab = pTabItem->pTab;
pTerm = pLoop->aLTerm[0];
assert( pTerm!=0 );
@@ -3303,7 +3458,8 @@ static Bitmask codeOneLoopStart(
}
/* Initialize the rowset register to contain NULL. An SQL NULL is
- ** equivalent to an empty rowset.
+ ** equivalent to an empty rowset. Or, create an ephermeral index
+ ** capable of holding primary keys in the case of a WITHOUT ROWID.
**
** Also initialize regReturn to contain the address of the instruction
** immediately following the OP_Return at the bottom of the loop. This
@@ -3314,9 +3470,16 @@ static Bitmask codeOneLoopStart(
** called on an uninitialized cursor.
*/
if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
- regRowset = ++pParse->nMem;
+ if( HasRowid(pTab) ){
+ regRowset = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ regRowset = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ }
regRowid = ++pParse->nMem;
- sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
}
iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
@@ -3352,36 +3515,88 @@ static Bitmask codeOneLoopStart(
}
}
+ /* Run a separate WHERE clause for each term of the OR clause. After
+ ** eliminating duplicates from other WHERE clauses, the action for each
+ ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
+ */
+ wctrlFlags = WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
+ WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY;
for(ii=0; ii<pOrWc->nTerm; ii++){
WhereTerm *pOrTerm = &pOrWc->a[ii];
if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
- WhereInfo *pSubWInfo; /* Info for single OR-term scan */
- Expr *pOrExpr = pOrTerm->pExpr;
+ WhereInfo *pSubWInfo; /* Info for single OR-term scan */
+ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
+ int j1 = 0; /* Address of jump operation */
if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
pAndExpr->pLeft = pOrExpr;
pOrExpr = pAndExpr;
}
/* Loop through table entries that match term pOrTerm. */
pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
- WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
- WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
+ wctrlFlags, iCovCur);
assert( pSubWInfo || pParse->nErr || db->mallocFailed );
if( pSubWInfo ){
WhereLoop *pSubLoop;
explainOneScan(
pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
);
+ /* This is the sub-WHERE clause body. First skip over
+ ** duplicate rows from prior sub-WHERE clauses, and record the
+ ** rowid (or PRIMARY KEY) for the current row so that the same
+ ** row will be skipped in subsequent sub-WHERE clauses.
+ */
if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
- int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
int r;
- r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
- regRowid, 0);
- sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
- sqlite3VdbeCurrentAddr(v)+2, r, iSet);
- VdbeCoverage(v);
+ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
+ if( HasRowid(pTab) ){
+ r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
+ j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet);
+ VdbeCoverage(v);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ int nPk = pPk->nKeyCol;
+ int iPk;
+
+ /* Read the PK into an array of temp registers. */
+ r = sqlite3GetTempRange(pParse, nPk);
+ for(iPk=0; iPk<nPk; iPk++){
+ int iCol = pPk->aiColumn[iPk];
+ sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0);
+ }
+
+ /* Check if the temp table already contains this key. If so,
+ ** the row has already been included in the result set and
+ ** can be ignored (by jumping past the Gosub below). Otherwise,
+ ** insert the key into the temp table and proceed with processing
+ ** the row.
+ **
+ ** Use some of the same optimizations as OP_RowSetTest: If iSet
+ ** is zero, assume that the key cannot already be present in
+ ** the temp table. And if iSet is -1, assume that there is no
+ ** need to insert the key into the temp table, as it will never
+ ** be tested for. */
+ if( iSet ){
+ j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
+ VdbeCoverage(v);
+ }
+ if( iSet>=0 ){
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
+ sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
+ if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ }
+
+ /* Release the array of temp registers */
+ sqlite3ReleaseTempRange(pParse, r, nPk);
+ }
}
+
+ /* Invoke the main loop body as a subroutine */
sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
+ /* Jump here (skipping the main loop body subroutine) if the
+ ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
+ if( j1 ) sqlite3VdbeJumpHere(v, j1);
+
/* The pSubWInfo->untestedTerms flag means that this OR term
** contained one or more AND term from a notReady table. The
** terms from the notReady table could not be tested and will
@@ -3405,9 +3620,11 @@ static Bitmask codeOneLoopStart(
assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
&& (ii==0 || pSubLoop->u.btree.pIndex==pCov)
+ && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
){
assert( pSubWInfo->a[0].iIdxCur==iCovCur );
pCov = pSubLoop->u.btree.pIndex;
+ wctrlFlags |= WHERE_REOPEN_IDX;
}else{
pCov = 0;
}
@@ -3586,7 +3803,7 @@ static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
sqlite3DebugPrintf(" %-19s", z);
sqlite3_free(z);
}
- sqlite3DebugPrintf(" f %04x N %d", p->wsFlags, p->nLTerm);
+ sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
#ifdef SQLITE_ENABLE_TREE_EXPLAIN
/* If the 0x100 bit of wheretracing is set, then show all of the constraint
@@ -3709,6 +3926,161 @@ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
}
/*
+** Return TRUE if both of the following are true:
+**
+** (1) X has the same or lower cost that Y
+** (2) X is a proper subset of Y
+**
+** By "proper subset" we mean that X uses fewer WHERE clause terms
+** than Y and that every WHERE clause term used by X is also used
+** by Y.
+**
+** If X is a proper subset of Y then Y is a better choice and ought
+** to have a lower cost. This routine returns TRUE when that cost
+** relationship is inverted and needs to be adjusted.
+*/
+static int whereLoopCheaperProperSubset(
+ const WhereLoop *pX, /* First WhereLoop to compare */
+ const WhereLoop *pY /* Compare against this WhereLoop */
+){
+ int i, j;
+ if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */
+ if( pX->rRun >= pY->rRun ){
+ if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */
+ if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */
+ }
+ for(i=pX->nLTerm-1; i>=0; i--){
+ for(j=pY->nLTerm-1; j>=0; j--){
+ if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
+ }
+ if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
+ }
+ return 1; /* All conditions meet */
+}
+
+/*
+** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
+** that:
+**
+** (1) pTemplate costs less than any other WhereLoops that are a proper
+** subset of pTemplate
+**
+** (2) pTemplate costs more than any other WhereLoops for which pTemplate
+** is a proper subset.
+**
+** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
+** WHERE clause terms than Y and that every WHERE clause term used by X is
+** also used by Y.
+**
+** This adjustment is omitted for SKIPSCAN loops. In a SKIPSCAN loop, the
+** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE
+** clause terms covered, since some of the first nLTerm entries in aLTerm[]
+** will be NULL (because they are skipped). That makes it more difficult
+** to compare the loops. We could add extra code to do the comparison, and
+** perhaps we will someday. But SKIPSCAN is sufficiently uncommon, and this
+** adjustment is sufficient minor, that it is very difficult to construct
+** a test case where the extra code would improve the query plan. Better
+** to avoid the added complexity and just omit cost adjustments to SKIPSCAN
+** loops.
+*/
+static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
+ if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
+ if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return;
+ for(; p; p=p->pNextLoop){
+ if( p->iTab!=pTemplate->iTab ) continue;
+ if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
+ if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue;
+ if( whereLoopCheaperProperSubset(p, pTemplate) ){
+ /* Adjust pTemplate cost downward so that it is cheaper than its
+ ** subset p */
+ pTemplate->rRun = p->rRun;
+ pTemplate->nOut = p->nOut - 1;
+ }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
+ /* Adjust pTemplate cost upward so that it is costlier than p since
+ ** pTemplate is a proper subset of p */
+ pTemplate->rRun = p->rRun;
+ pTemplate->nOut = p->nOut + 1;
+ }
+ }
+}
+
+/*
+** Search the list of WhereLoops in *ppPrev looking for one that can be
+** supplanted by pTemplate.
+**
+** Return NULL if the WhereLoop list contains an entry that can supplant
+** pTemplate, in other words if pTemplate does not belong on the list.
+**
+** If pX is a WhereLoop that pTemplate can supplant, then return the
+** link that points to pX.
+**
+** If pTemplate cannot supplant any existing element of the list but needs
+** to be added to the list, then return a pointer to the tail of the list.
+*/
+static WhereLoop **whereLoopFindLesser(
+ WhereLoop **ppPrev,
+ const WhereLoop *pTemplate
+){
+ WhereLoop *p;
+ for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
+ if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
+ /* If either the iTab or iSortIdx values for two WhereLoop are different
+ ** then those WhereLoops need to be considered separately. Neither is
+ ** a candidate to replace the other. */
+ continue;
+ }
+ /* In the current implementation, the rSetup value is either zero
+ ** or the cost of building an automatic index (NlogN) and the NlogN
+ ** is the same for compatible WhereLoops. */
+ assert( p->rSetup==0 || pTemplate->rSetup==0
+ || p->rSetup==pTemplate->rSetup );
+
+ /* whereLoopAddBtree() always generates and inserts the automatic index
+ ** case first. Hence compatible candidate WhereLoops never have a larger
+ ** rSetup. Call this SETUP-INVARIANT */
+ assert( p->rSetup>=pTemplate->rSetup );
+
+ /* Any loop using an appliation-defined index (or PRIMARY KEY or
+ ** UNIQUE constraint) with one or more == constraints is better
+ ** than an automatic index. */
+ if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
+ && (pTemplate->wsFlags & WHERE_INDEXED)!=0
+ && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
+ && (p->prereq & pTemplate->prereq)==pTemplate->prereq
+ ){
+ break;
+ }
+
+ /* If existing WhereLoop p is better than pTemplate, pTemplate can be
+ ** discarded. WhereLoop p is better if:
+ ** (1) p has no more dependencies than pTemplate, and
+ ** (2) p has an equal or lower cost than pTemplate
+ */
+ if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
+ && p->rSetup<=pTemplate->rSetup /* (2a) */
+ && p->rRun<=pTemplate->rRun /* (2b) */
+ && p->nOut<=pTemplate->nOut /* (2c) */
+ ){
+ return 0; /* Discard pTemplate */
+ }
+
+ /* If pTemplate is always better than p, then cause p to be overwritten
+ ** with pTemplate. pTemplate is better than p if:
+ ** (1) pTemplate has no more dependences than p, and
+ ** (2) pTemplate has an equal or lower cost than p.
+ */
+ if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
+ && p->rRun>=pTemplate->rRun /* (2a) */
+ && p->nOut>=pTemplate->nOut /* (2b) */
+ ){
+ assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
+ break; /* Cause p to be overwritten by pTemplate */
+ }
+ }
+ return ppPrev;
+}
+
+/*
** Insert or replace a WhereLoop entry using the template supplied.
**
** An existing WhereLoop entry might be overwritten if the new template
@@ -3717,25 +4089,23 @@ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
** fewer dependencies than the template. Otherwise a new WhereLoop is
** added based on the template.
**
-** If pBuilder->pOrSet is not NULL then we only care about only the
+** If pBuilder->pOrSet is not NULL then we care about only the
** prerequisites and rRun and nOut costs of the N best loops. That
** information is gathered in the pBuilder->pOrSet object. This special
** processing mode is used only for OR clause processing.
**
** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
** still might overwrite similar loops with the new template if the
-** template is better. Loops may be overwritten if the following
+** new template is better. Loops may be overwritten if the following
** conditions are met:
**
** (1) They have the same iTab.
** (2) They have the same iSortIdx.
** (3) The template has same or fewer dependencies than the current loop
** (4) The template has the same or lower cost than the current loop
-** (5) The template uses more terms of the same index but has no additional
-** dependencies
*/
static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
- WhereLoop **ppPrev, *p, *pNext = 0;
+ WhereLoop **ppPrev, *p;
WhereInfo *pWInfo = pBuilder->pWInfo;
sqlite3 *db = pWInfo->pParse->db;
@@ -3758,64 +4128,23 @@ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
return SQLITE_OK;
}
- /* Search for an existing WhereLoop to overwrite, or which takes
- ** priority over pTemplate.
+ /* Look for an existing WhereLoop to replace with pTemplate
*/
- for(ppPrev=&pWInfo->pLoops, p=*ppPrev; p; ppPrev=&p->pNextLoop, p=*ppPrev){
- if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
- /* If either the iTab or iSortIdx values for two WhereLoop are different
- ** then those WhereLoops need to be considered separately. Neither is
- ** a candidate to replace the other. */
- continue;
- }
- /* In the current implementation, the rSetup value is either zero
- ** or the cost of building an automatic index (NlogN) and the NlogN
- ** is the same for compatible WhereLoops. */
- assert( p->rSetup==0 || pTemplate->rSetup==0
- || p->rSetup==pTemplate->rSetup );
-
- /* whereLoopAddBtree() always generates and inserts the automatic index
- ** case first. Hence compatible candidate WhereLoops never have a larger
- ** rSetup. Call this SETUP-INVARIANT */
- assert( p->rSetup>=pTemplate->rSetup );
+ whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
+ ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
- if( (p->prereq & pTemplate->prereq)==p->prereq
- && p->rSetup<=pTemplate->rSetup
- && p->rRun<=pTemplate->rRun
- && p->nOut<=pTemplate->nOut
- ){
- /* This branch taken when p is equal or better than pTemplate in
- ** all of (1) dependencies (2) setup-cost, (3) run-cost, and
- ** (4) number of output rows. */
- assert( p->rSetup==pTemplate->rSetup );
- if( p->prereq==pTemplate->prereq
- && p->nLTerm<pTemplate->nLTerm
- && (p->wsFlags & pTemplate->wsFlags & WHERE_INDEXED)!=0
- && (p->u.btree.pIndex==pTemplate->u.btree.pIndex
- || pTemplate->rRun+p->nLTerm<=p->rRun+pTemplate->nLTerm)
- ){
- /* Overwrite an existing WhereLoop with an similar one that uses
- ** more terms of the index */
- pNext = p->pNextLoop;
- break;
- }else{
- /* pTemplate is not helpful.
- ** Return without changing or adding anything */
- goto whereLoopInsert_noop;
- }
- }
- if( (p->prereq & pTemplate->prereq)==pTemplate->prereq
- && p->rRun>=pTemplate->rRun
- && p->nOut>=pTemplate->nOut
- ){
- /* Overwrite an existing WhereLoop with a better one: one that is
- ** better at one of (1) dependencies, (2) setup-cost, (3) run-cost
- ** or (4) number of output rows, and is no worse in any of those
- ** categories. */
- assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
- pNext = p->pNextLoop;
- break;
+ if( ppPrev==0 ){
+ /* There already exists a WhereLoop on the list that is better
+ ** than pTemplate, so just ignore pTemplate */
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf("ins-noop: ");
+ whereLoopPrint(pTemplate, pBuilder->pWC);
}
+#endif
+ return SQLITE_OK;
+ }else{
+ p = *ppPrev;
}
/* If we reach this point it means that either p[] should be overwritten
@@ -3833,13 +4162,33 @@ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
}
#endif
if( p==0 ){
- p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
+ /* Allocate a new WhereLoop to add to the end of the list */
+ *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
if( p==0 ) return SQLITE_NOMEM;
whereLoopInit(p);
+ p->pNextLoop = 0;
+ }else{
+ /* We will be overwriting WhereLoop p[]. But before we do, first
+ ** go through the rest of the list and delete any other entries besides
+ ** p[] that are also supplated by pTemplate */
+ WhereLoop **ppTail = &p->pNextLoop;
+ WhereLoop *pToDel;
+ while( *ppTail ){
+ ppTail = whereLoopFindLesser(ppTail, pTemplate);
+ if( ppTail==0 ) break;
+ pToDel = *ppTail;
+ if( pToDel==0 ) break;
+ *ppTail = pToDel->pNextLoop;
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf("ins-del: ");
+ whereLoopPrint(pToDel, pBuilder->pWC);
+ }
+#endif
+ whereLoopDelete(db, pToDel);
+ }
}
whereLoopXfer(db, p, pTemplate);
- p->pNextLoop = pNext;
- *ppPrev = p;
if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
Index *pIndex = p->u.btree.pIndex;
if( pIndex && pIndex->tnum==0 ){
@@ -3847,16 +4196,6 @@ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
}
}
return SQLITE_OK;
-
- /* Jump here if the insert is a no-op */
-whereLoopInsert_noop:
-#if WHERETRACE_ENABLED /* 0x8 */
- if( sqlite3WhereTrace & 0x8 ){
- sqlite3DebugPrintf("ins-noop: ");
- whereLoopPrint(pTemplate, pBuilder->pWC);
- }
-#endif
- return SQLITE_OK;
}
/*
@@ -3886,13 +4225,30 @@ static void whereLoopOutputAdjust(WhereClause *pWC, WhereLoop *pLoop){
if( pX==pTerm ) break;
if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
}
- if( j<0 ) pLoop->nOut += pTerm->truthProb;
+ if( j<0 ){
+ pLoop->nOut += (pTerm->truthProb<=0 ? pTerm->truthProb : -1);
+ }
}
}
/*
-** We have so far matched pBuilder->pNew->u.btree.nEq terms of the index pIndex.
-** Try to match one more.
+** Adjust the cost C by the costMult facter T. This only occurs if
+** compiled with -DSQLITE_ENABLE_COSTMULT
+*/
+#ifdef SQLITE_ENABLE_COSTMULT
+# define ApplyCostMultiplier(C,T) C += T
+#else
+# define ApplyCostMultiplier(C,T)
+#endif
+
+/*
+** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
+** index pIndex. Try to match one more.
+**
+** When this function is called, pBuilder->pNew->nOut contains the
+** number of rows expected to be visited by filtering using the nEq
+** terms only. If it is modified, this value is restored before this
+** function returns.
**
** If pProbe->tnum==0, that means pIndex is a fake index used for the
** INTEGER PRIMARY KEY.
@@ -3918,7 +4274,6 @@ static int whereLoopAddBtreeIndex(
LogEst saved_nOut; /* Original value of pNew->nOut */
int iCol; /* Index of the column in the table */
int rc = SQLITE_OK; /* Return code */
- LogEst nRowEst; /* Estimated index selectivity */
LogEst rLogSize; /* Logarithm of table size */
WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
@@ -3936,15 +4291,9 @@ static int whereLoopAddBtreeIndex(
}
if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
- assert( pNew->u.btree.nEq<=pProbe->nKeyCol );
- if( pNew->u.btree.nEq < pProbe->nKeyCol ){
- iCol = pProbe->aiColumn[pNew->u.btree.nEq];
- nRowEst = sqlite3LogEst(pProbe->aiRowEst[pNew->u.btree.nEq+1]);
- if( nRowEst==0 && pProbe->onError==OE_None ) nRowEst = 1;
- }else{
- iCol = -1;
- nRowEst = 0;
- }
+ assert( pNew->u.btree.nEq<pProbe->nColumn );
+ iCol = pProbe->aiColumn[pNew->u.btree.nEq];
+
pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol,
opMask, pProbe);
saved_nEq = pNew->u.btree.nEq;
@@ -3954,18 +4303,23 @@ static int whereLoopAddBtreeIndex(
saved_prereq = pNew->prereq;
saved_nOut = pNew->nOut;
pNew->rSetup = 0;
- rLogSize = estLog(sqlite3LogEst(pProbe->aiRowEst[0]));
+ rLogSize = estLog(pProbe->aiRowLogEst[0]);
/* Consider using a skip-scan if there are no WHERE clause constraints
** available for the left-most terms of the index, and if the average
- ** number of repeats in the left-most terms is at least 18. The magic
- ** number 18 was found by experimentation to be the payoff point where
- ** skip-scan become faster than a full-scan.
- */
+ ** number of repeats in the left-most terms is at least 18.
+ **
+ ** The magic number 18 is selected on the basis that scanning 17 rows
+ ** is almost always quicker than an index seek (even though if the index
+ ** contains fewer than 2^17 rows we assume otherwise in other parts of
+ ** the code). And, even if it is not, it should not be too much slower.
+ ** On the other hand, the extra seeks could end up being significantly
+ ** more expensive. */
+ assert( 42==sqlite3LogEst(18) );
if( pTerm==0
&& saved_nEq==saved_nSkip
&& saved_nEq+1<pProbe->nKeyCol
- && pProbe->aiRowEst[saved_nEq+1]>=18 /* TUNING: Minimum for skip-scan */
+ && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
&& (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
){
LogEst nIter;
@@ -3973,34 +4327,40 @@ static int whereLoopAddBtreeIndex(
pNew->u.btree.nSkip++;
pNew->aLTerm[pNew->nLTerm++] = 0;
pNew->wsFlags |= WHERE_SKIPSCAN;
- nIter = sqlite3LogEst(pProbe->aiRowEst[0]/pProbe->aiRowEst[saved_nEq+1]);
- pNew->rRun = rLogSize + nIter;
- pNew->nOut += nIter;
- whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter);
+ nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
+ pNew->nOut -= nIter;
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
pNew->nOut = saved_nOut;
}
for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
+ u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
+ LogEst rCostIdx;
+ LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
int nIn = 0;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
int nRecValid = pBuilder->nRecValid;
#endif
- if( (pTerm->eOperator==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
+ if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
&& (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
){
continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
}
if( pTerm->prereqRight & pNew->maskSelf ) continue;
- assert( pNew->nOut==saved_nOut );
-
pNew->wsFlags = saved_wsFlags;
pNew->u.btree.nEq = saved_nEq;
pNew->nLTerm = saved_nLTerm;
if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
pNew->aLTerm[pNew->nLTerm++] = pTerm;
pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
- pNew->rRun = rLogSize; /* Baseline cost is log2(N). Adjustments below */
- if( pTerm->eOperator & WO_IN ){
+
+ assert( nInMul==0
+ || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
+ || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
+ || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
+ );
+
+ if( eOp & WO_IN ){
Expr *pExpr = pTerm->pExpr;
pNew->wsFlags |= WHERE_COLUMN_IN;
if( ExprHasProperty(pExpr, EP_xIsSelect) ){
@@ -4010,85 +4370,120 @@ static int whereLoopAddBtreeIndex(
/* "x IN (value, value, ...)" */
nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
}
- pNew->rRun += nIn;
- pNew->u.btree.nEq++;
- pNew->nOut = nRowEst + nInMul + nIn;
- }else if( pTerm->eOperator & (WO_EQ) ){
- assert(
- (pNew->wsFlags & (WHERE_COLUMN_NULL|WHERE_COLUMN_IN|WHERE_SKIPSCAN))!=0
- || nInMul==0
- );
+ assert( nIn>0 ); /* RHS always has 2 or more terms... The parser
+ ** changes "x IN (?)" into "x=?". */
+
+ }else if( eOp & (WO_EQ) ){
pNew->wsFlags |= WHERE_COLUMN_EQ;
- if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1)){
- assert( (pNew->wsFlags & WHERE_COLUMN_IN)==0 || iCol<0 );
- if( iCol>=0 && pProbe->onError==OE_None ){
+ if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){
+ if( iCol>=0 && !IsUniqueIndex(pProbe) ){
pNew->wsFlags |= WHERE_UNQ_WANTED;
}else{
pNew->wsFlags |= WHERE_ONEROW;
}
}
- pNew->u.btree.nEq++;
- pNew->nOut = nRowEst + nInMul;
- }else if( pTerm->eOperator & (WO_ISNULL) ){
+ }else if( eOp & WO_ISNULL ){
pNew->wsFlags |= WHERE_COLUMN_NULL;
- pNew->u.btree.nEq++;
- /* TUNING: IS NULL selects 2 rows */
- nIn = 10; assert( 10==sqlite3LogEst(2) );
- pNew->nOut = nRowEst + nInMul + nIn;
- }else if( pTerm->eOperator & (WO_GT|WO_GE) ){
- testcase( pTerm->eOperator & WO_GT );
- testcase( pTerm->eOperator & WO_GE );
+ }else if( eOp & (WO_GT|WO_GE) ){
+ testcase( eOp & WO_GT );
+ testcase( eOp & WO_GE );
pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
pBtm = pTerm;
pTop = 0;
}else{
- assert( pTerm->eOperator & (WO_LT|WO_LE) );
- testcase( pTerm->eOperator & WO_LT );
- testcase( pTerm->eOperator & WO_LE );
+ assert( eOp & (WO_LT|WO_LE) );
+ testcase( eOp & WO_LT );
+ testcase( eOp & WO_LE );
pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
pTop = pTerm;
pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
pNew->aLTerm[pNew->nLTerm-2] : 0;
}
+
+ /* At this point pNew->nOut is set to the number of rows expected to
+ ** be visited by the index scan before considering term pTerm, or the
+ ** values of nIn and nInMul. In other words, assuming that all
+ ** "x IN(...)" terms are replaced with "x = ?". This block updates
+ ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
+ assert( pNew->nOut==saved_nOut );
if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
- /* Adjust nOut and rRun for STAT3 range values */
- assert( pNew->nOut==saved_nOut );
+ /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
+ ** data, using some other estimate. */
whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
- }
+ }else{
+ int nEq = ++pNew->u.btree.nEq;
+ assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) );
+
+ assert( pNew->nOut==saved_nOut );
+ if( pTerm->truthProb<=0 && iCol>=0 ){
+ assert( (eOp & WO_IN) || nIn==0 );
+ testcase( eOp & WO_IN );
+ pNew->nOut += pTerm->truthProb;
+ pNew->nOut -= nIn;
+ }else{
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
- if( nInMul==0
- && pProbe->nSample
- && pNew->u.btree.nEq<=pProbe->nSampleCol
- && OptimizationEnabled(db, SQLITE_Stat3)
- ){
- Expr *pExpr = pTerm->pExpr;
- tRowcnt nOut = 0;
- if( (pTerm->eOperator & (WO_EQ|WO_ISNULL))!=0 ){
- testcase( pTerm->eOperator & WO_EQ );
- testcase( pTerm->eOperator & WO_ISNULL );
- rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
- }else if( (pTerm->eOperator & WO_IN)
- && !ExprHasProperty(pExpr, EP_xIsSelect) ){
- rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
- }
- assert( nOut==0 || rc==SQLITE_OK );
- if( nOut ){
- pNew->nOut = sqlite3LogEst(nOut);
- if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
+ tRowcnt nOut = 0;
+ if( nInMul==0
+ && pProbe->nSample
+ && pNew->u.btree.nEq<=pProbe->nSampleCol
+ && OptimizationEnabled(db, SQLITE_Stat3)
+ && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
+ ){
+ Expr *pExpr = pTerm->pExpr;
+ if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){
+ testcase( eOp & WO_EQ );
+ testcase( eOp & WO_ISNULL );
+ rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
+ }else{
+ rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
+ }
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
+ if( nOut ){
+ pNew->nOut = sqlite3LogEst(nOut);
+ if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
+ pNew->nOut -= nIn;
+ }
+ }
+ if( nOut==0 )
+#endif
+ {
+ pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
+ if( eOp & WO_ISNULL ){
+ /* TUNING: If there is no likelihood() value, assume that a
+ ** "col IS NULL" expression matches twice as many rows
+ ** as (col=?). */
+ pNew->nOut += 10;
+ }
+ }
}
}
-#endif
+
+ /* Set rCostIdx to the cost of visiting selected rows in index. Add
+ ** it to pNew->rRun, which is currently set to the cost of the index
+ ** seek only. Then, if this is a non-covering index, add the cost of
+ ** visiting the rows in the main table. */
+ rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
+ pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
- /* Each row involves a step of the index, then a binary search of
- ** the main table */
- pNew->rRun = sqlite3LogEstAdd(pNew->rRun,rLogSize>27 ? rLogSize-17 : 10);
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
}
- /* Step cost for each output row */
- pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut);
+ ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
+
+ nOutUnadjusted = pNew->nOut;
+ pNew->rRun += nInMul + nIn;
+ pNew->nOut += nInMul + nIn;
whereLoopOutputAdjust(pBuilder->pWC, pNew);
rc = whereLoopInsert(pBuilder, pNew);
+
+ if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
+ pNew->nOut = saved_nOut;
+ }else{
+ pNew->nOut = nOutUnadjusted;
+ }
+
if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
- && pNew->u.btree.nEq<(pProbe->nKeyCol + (pProbe->zName!=0))
+ && pNew->u.btree.nEq<pProbe->nColumn
){
whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
}
@@ -4170,6 +4565,37 @@ static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
** Add all WhereLoop objects for a single table of the join where the table
** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be
** a b-tree table, not a virtual table.
+**
+** The costs (WhereLoop.rRun) of the b-tree loops added by this function
+** are calculated as follows:
+**
+** For a full scan, assuming the table (or index) contains nRow rows:
+**
+** cost = nRow * 3.0 // full-table scan
+** cost = nRow * K // scan of covering index
+** cost = nRow * (K+3.0) // scan of non-covering index
+**
+** where K is a value between 1.1 and 3.0 set based on the relative
+** estimated average size of the index and table records.
+**
+** For an index scan, where nVisit is the number of index rows visited
+** by the scan, and nSeek is the number of seek operations required on
+** the index b-tree:
+**
+** cost = nSeek * (log(nRow) + K * nVisit) // covering index
+** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
+**
+** Normally, nSeek is 1. nSeek values greater than 1 come about if the
+** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
+** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
+**
+** The estimated values (nRow, nVisit, nSeek) often contain a large amount
+** of uncertainty. For this reason, scoring is designed to pick plans that
+** "do the least harm" if the estimates are inaccurate. For example, a
+** log(nRow) factor is omitted from a non-covering index scan in order to
+** bias the scoring in favor of using an index, since the worst-case
+** performance of using an index is far better than the worst-case performance
+** of a full table scan.
*/
static int whereLoopAddBtree(
WhereLoopBuilder *pBuilder, /* WHERE clause information */
@@ -4178,7 +4604,7 @@ static int whereLoopAddBtree(
WhereInfo *pWInfo; /* WHERE analysis context */
Index *pProbe; /* An index we are evaluating */
Index sPk; /* A fake index object for the primary key */
- tRowcnt aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
+ LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
SrcList *pTabList; /* The FROM clause */
struct SrcList_item *pSrc; /* The FROM clause btree term to add */
@@ -4212,12 +4638,14 @@ static int whereLoopAddBtree(
Index *pFirst; /* First of real indices on the table */
memset(&sPk, 0, sizeof(Index));
sPk.nKeyCol = 1;
+ sPk.nColumn = 1;
sPk.aiColumn = &aiColumnPk;
- sPk.aiRowEst = aiRowEstPk;
+ sPk.aiRowLogEst = aiRowEstPk;
sPk.onError = OE_Replace;
sPk.pTable = pTab;
- aiRowEstPk[0] = pTab->nRowEst;
- aiRowEstPk[1] = 1;
+ sPk.szIdxRow = pTab->szTabRow;
+ aiRowEstPk[0] = pTab->nRowLogEst;
+ aiRowEstPk[1] = 0;
pFirst = pSrc->pTab->pIndex;
if( pSrc->notIndexed==0 ){
/* The real indices of the table are only considered if the
@@ -4226,7 +4654,7 @@ static int whereLoopAddBtree(
}
pProbe = &sPk;
}
- rSize = sqlite3LogEst(pTab->nRowEst);
+ rSize = pTab->nRowLogEst;
rLogSize = estLog(rSize);
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
@@ -4255,6 +4683,7 @@ static int whereLoopAddBtree(
** approximately 7*N*log2(N) where N is the number of rows in
** the table being indexed. */
pNew->rSetup = rLogSize + rSize + 28; assert( 28==sqlite3LogEst(7) );
+ ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
/* TUNING: Each index lookup yields 20 rows in the table. This
** is more than the usual guess of 10 rows, since we have no way
** of knowning how selective the index will ultimately be. It would
@@ -4276,6 +4705,7 @@ static int whereLoopAddBtree(
&& !whereUsablePartialIndex(pNew->iTab, pWC, pProbe->pPartIdxWhere) ){
continue; /* Partial index inappropriate for this query */
}
+ rSize = pProbe->aiRowLogEst[0];
pNew->u.btree.nEq = 0;
pNew->u.btree.nSkip = 0;
pNew->nLTerm = 0;
@@ -4293,10 +4723,9 @@ static int whereLoopAddBtree(
/* Full table scan */
pNew->iSortIdx = b ? iSortIdx : 0;
- /* TUNING: Cost of full table scan is 3*(N + log2(N)).
- ** + The extra 3 factor is to encourage the use of indexed lookups
- ** over full scans. FIXME */
- pNew->rRun = sqlite3LogEstAdd(rSize,rLogSize) + 16;
+ /* TUNING: Cost of full table scan is (N*3.0). */
+ pNew->rRun = rSize + 16;
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult);
whereLoopOutputAdjust(pWC, pNew);
rc = whereLoopInsert(pBuilder, pNew);
pNew->nOut = rSize;
@@ -4323,19 +4752,16 @@ static int whereLoopAddBtree(
)
){
pNew->iSortIdx = b ? iSortIdx : 0;
- if( m==0 ){
- /* TUNING: Cost of a covering index scan is K*(N + log2(N)).
- ** + The extra factor K of between 1.1 and 3.0 that depends
- ** on the relative sizes of the table and the index. K
- ** is smaller for smaller indices, thus favoring them.
- */
- pNew->rRun = sqlite3LogEstAdd(rSize,rLogSize) + 1 +
- (15*pProbe->szIdxRow)/pTab->szTabRow;
- }else{
- /* TUNING: Cost of scanning a non-covering index is (N+1)*log2(N)
- ** which we will simplify to just N*log2(N) */
- pNew->rRun = rSize + rLogSize;
+
+ /* The cost of visiting the index rows is N*K, where K is
+ ** between 1.1 and 3.0, depending on the relative sizes of the
+ ** index and table rows. If this is a non-covering index scan,
+ ** also add the cost of visiting table rows (N*3.0). */
+ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
+ if( m!=0 ){
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
}
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult);
whereLoopOutputAdjust(pWC, pNew);
rc = whereLoopInsert(pBuilder, pNew);
pNew->nOut = rSize;
@@ -4506,8 +4932,8 @@ static int whereLoopAddVirtual(
pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
pIdxInfo->needToFreeIdxStr = 0;
pNew->u.vtab.idxStr = pIdxInfo->idxStr;
- pNew->u.vtab.isOrdered = (u8)((pIdxInfo->nOrderBy!=0)
- && pIdxInfo->orderByConsumed);
+ pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
+ pIdxInfo->nOrderBy : 0);
pNew->rSetup = 0;
pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
@@ -4539,7 +4965,7 @@ static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){
int iCur;
WhereClause tempWC;
WhereLoopBuilder sSubBuild;
- WhereOrSet sSum, sCur, sPrev;
+ WhereOrSet sSum, sCur;
struct SrcList_item *pItem;
pWC = pBuilder->pWC;
@@ -4548,7 +4974,6 @@ static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){
pNew = pBuilder->pNew;
memset(&sSum, 0, sizeof(sSum));
pItem = pWInfo->pTabList->a + pNew->iTab;
- if( !HasRowid(pItem->pTab) ) return SQLITE_OK;
iCur = pItem->iCursor;
for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
@@ -4595,6 +5020,7 @@ static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){
whereOrMove(&sSum, &sCur);
once = 0;
}else{
+ WhereOrSet sPrev;
whereOrMove(&sPrev, &sSum);
sSum.n = 0;
for(i=0; i<sPrev.n; i++){
@@ -4613,8 +5039,19 @@ static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){
pNew->iSortIdx = 0;
memset(&pNew->u, 0, sizeof(pNew->u));
for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
- /* TUNING: Multiple by 3.5 for the secondary table lookup */
- pNew->rRun = sSum.a[i].rRun + 18;
+ /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
+ ** of all sub-scans required by the OR-scan. However, due to rounding
+ ** errors, it may be that the cost of the OR-scan is equal to its
+ ** most expensive sub-scan. Add the smallest possible penalty
+ ** (equivalent to multiplying the cost by 1.07) to ensure that
+ ** this does not happen. Otherwise, for WHERE clauses such as the
+ ** following where there is an index on "y":
+ **
+ ** WHERE likelihood(x=?, 0.99) OR y=?
+ **
+ ** the planner may elect to "OR" together a full-table scan and an
+ ** index lookup. And other similarly odd results. */
+ pNew->rRun = sSum.a[i].rRun + 1;
pNew->nOut = sSum.a[i].nOut;
pNew->prereq = sSum.a[i].prereq;
rc = whereLoopInsert(pBuilder, pNew);
@@ -4668,21 +5105,21 @@ static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
** parameters) to see if it outputs rows in the requested ORDER BY
-** (or GROUP BY) without requiring a separate sort operation. Return:
+** (or GROUP BY) without requiring a separate sort operation. Return N:
**
-** 0: ORDER BY is not satisfied. Sorting required
-** 1: ORDER BY is satisfied. Omit sorting
-** -1: Unknown at this time
+** N>0: N terms of the ORDER BY clause are satisfied
+** N==0: No terms of the ORDER BY clause are satisfied
+** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
**
** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
** strict. With GROUP BY and DISTINCT the only requirement is that
** equivalent rows appear immediately adjacent to one another. GROUP BY
-** and DISTINT do not require rows to appear in any particular order as long
+** and DISTINCT do not require rows to appear in any particular order as long
** as equivelent rows are grouped together. Thus for GROUP BY and DISTINCT
** the pOrderBy terms can be matched in any order. With ORDER BY, the
** pOrderBy terms must be matched in strict left-to-right order.
*/
-static int wherePathSatisfiesOrderBy(
+static i8 wherePathSatisfiesOrderBy(
WhereInfo *pWInfo, /* The WHERE clause */
ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
WherePath *pPath, /* The WherePath to check */
@@ -4738,14 +5175,6 @@ static int wherePathSatisfiesOrderBy(
*/
assert( pOrderBy!=0 );
-
- /* Sortability of virtual tables is determined by the xBestIndex method
- ** of the virtual table itself */
- if( pLast->wsFlags & WHERE_VIRTUALTABLE ){
- testcase( nLoop>0 ); /* True when outer loops are one-row and match
- ** no ORDER BY terms */
- return pLast->u.vtab.isOrdered;
- }
if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
nOrderBy = pOrderBy->nExpr;
@@ -4758,7 +5187,10 @@ static int wherePathSatisfiesOrderBy(
for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
if( iLoop>0 ) ready |= pLoop->maskSelf;
pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast;
- assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
+ if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
+ if( pLoop->u.vtab.isOrdered ) obSat = obDone;
+ break;
+ }
iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
/* Mark off any ORDER BY term X that is a column in the table of
@@ -4799,7 +5231,7 @@ static int wherePathSatisfiesOrderBy(
nColumn = pIndex->nColumn;
assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable));
- isOrderDistinct = pIndex->onError!=OE_None;
+ isOrderDistinct = IsUniqueIndex(pIndex);
}
/* Loop through all columns of the index and deal with the ones
@@ -4846,7 +5278,7 @@ static int wherePathSatisfiesOrderBy(
}
/* Find the ORDER BY term that corresponds to the j-th column
- ** of the index and and mark that ORDER BY term off
+ ** of the index and mark that ORDER BY term off
*/
bOnce = 1;
isMatch = 0;
@@ -4867,23 +5299,23 @@ static int wherePathSatisfiesOrderBy(
isMatch = 1;
break;
}
+ if( isMatch && (pWInfo->wctrlFlags & WHERE_GROUPBY)==0 ){
+ /* Make sure the sort order is compatible in an ORDER BY clause.
+ ** Sort order is irrelevant for a GROUP BY clause. */
+ if( revSet ){
+ if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
+ }else{
+ rev = revIdx ^ pOrderBy->a[i].sortOrder;
+ if( rev ) *pRevMask |= MASKBIT(iLoop);
+ revSet = 1;
+ }
+ }
if( isMatch ){
if( iColumn<0 ){
testcase( distinctColumns==0 );
distinctColumns = 1;
}
obSat |= MASKBIT(i);
- if( (pWInfo->wctrlFlags & WHERE_GROUPBY)==0 ){
- /* Make sure the sort order is compatible in an ORDER BY clause.
- ** Sort order is irrelevant for a GROUP BY clause. */
- if( revSet ){
- if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) return 0;
- }else{
- rev = revIdx ^ pOrderBy->a[i].sortOrder;
- if( rev ) *pRevMask |= MASKBIT(iLoop);
- revSet = 1;
- }
- }
}else{
/* No match found */
if( j==0 || j<nKeyCol ){
@@ -4915,11 +5347,47 @@ static int wherePathSatisfiesOrderBy(
}
}
} /* End the loop over all WhereLoops from outer-most down to inner-most */
- if( obSat==obDone ) return 1;
- if( !isOrderDistinct ) return 0;
+ if( obSat==obDone ) return (i8)nOrderBy;
+ if( !isOrderDistinct ){
+ for(i=nOrderBy-1; i>0; i--){
+ Bitmask m = MASKBIT(i) - 1;
+ if( (obSat&m)==m ) return i;
+ }
+ return 0;
+ }
return -1;
}
+
+/*
+** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
+** the planner assumes that the specified pOrderBy list is actually a GROUP
+** BY clause - and so any order that groups rows as required satisfies the
+** request.
+**
+** Normally, in this case it is not possible for the caller to determine
+** whether or not the rows are really being delivered in sorted order, or
+** just in some other order that provides the required grouping. However,
+** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
+** this function may be called on the returned WhereInfo object. It returns
+** true if the rows really will be sorted in the specified order, or false
+** otherwise.
+**
+** For example, assuming:
+**
+** CREATE INDEX i1 ON t1(x, Y);
+**
+** then
+**
+** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
+** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
+*/
+int sqlite3WhereIsSorted(WhereInfo *pWInfo){
+ assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
+ assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
+ return pWInfo->sorted;
+}
+
#ifdef WHERETRACE_ENABLED
/* For debugging use only: */
static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
@@ -4932,6 +5400,44 @@ static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
}
#endif
+/*
+** Return the cost of sorting nRow rows, assuming that the keys have
+** nOrderby columns and that the first nSorted columns are already in
+** order.
+*/
+static LogEst whereSortingCost(
+ WhereInfo *pWInfo,
+ LogEst nRow,
+ int nOrderBy,
+ int nSorted
+){
+ /* TUNING: Estimated cost of a full external sort, where N is
+ ** the number of rows to sort is:
+ **
+ ** cost = (3.0 * N * log(N)).
+ **
+ ** Or, if the order-by clause has X terms but only the last Y
+ ** terms are out of order, then block-sorting will reduce the
+ ** sorting cost to:
+ **
+ ** cost = (3.0 * N * log(N)) * (Y/X)
+ **
+ ** The (Y/X) term is implemented using stack variable rScale
+ ** below. */
+ LogEst rScale, rSortCost;
+ assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
+ rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
+ rSortCost = nRow + estLog(nRow) + rScale + 16;
+
+ /* TUNING: The cost of implementing DISTINCT using a B-TREE is
+ ** similar but with a larger constant of proportionality.
+ ** Multiply by an additional factor of 3.0. */
+ if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
+ rSortCost += 16;
+ }
+
+ return rSortCost;
+}
/*
** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
@@ -4953,11 +5459,9 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
int iLoop; /* Loop counter over the terms of the join */
int ii, jj; /* Loop counters */
int mxI = 0; /* Index of next entry to replace */
- LogEst rCost; /* Cost of a path */
- LogEst nOut; /* Number of outputs */
+ int nOrderBy; /* Number of ORDER BY clause terms */
LogEst mxCost = 0; /* Maximum cost of a set of paths */
- LogEst mxOut = 0; /* Maximum nOut value on the set of paths */
- LogEst rSortCost; /* Cost to do a sort */
+ LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
WherePath *aFrom; /* All nFrom paths at the previous level */
WherePath *aTo; /* The nTo best paths at the current level */
@@ -4965,7 +5469,9 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
WherePath *pTo; /* An element of aTo[] that we are working on */
WhereLoop *pWLoop; /* One of the WhereLoop objects */
WhereLoop **pX; /* Used to divy up the pSpace memory */
+ LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
char *pSpace; /* Temporary memory used by this routine */
+ int nSpace; /* Bytes of space allocated at pSpace */
pParse = pWInfo->pParse;
db = pParse->db;
@@ -4973,13 +5479,25 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
/* TUNING: For simple queries, only the best path is tracked.
** For 2-way joins, the 5 best paths are followed.
** For joins of 3 or more tables, track the 10 best paths */
- mxChoice = (nLoop==1) ? 1 : (nLoop==2 ? 5 : 10);
+ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
assert( nLoop<=pWInfo->pTabList->nSrc );
- WHERETRACE(0x002, ("---- begin solver\n"));
+ WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
+
+ /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
+ ** case the purpose of this call is to estimate the number of rows returned
+ ** by the overall query. Once this estimate has been obtained, the caller
+ ** will invoke this function a second time, passing the estimate as the
+ ** nRowEst parameter. */
+ if( pWInfo->pOrderBy==0 || nRowEst==0 ){
+ nOrderBy = 0;
+ }else{
+ nOrderBy = pWInfo->pOrderBy->nExpr;
+ }
- /* Allocate and initialize space for aTo and aFrom */
- ii = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
- pSpace = sqlite3DbMallocRaw(db, ii);
+ /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
+ nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
+ nSpace += sizeof(LogEst) * nOrderBy;
+ pSpace = sqlite3DbMallocRaw(db, nSpace);
if( pSpace==0 ) return SQLITE_NOMEM;
aTo = (WherePath*)pSpace;
aFrom = aTo+mxChoice;
@@ -4988,6 +5506,18 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
pFrom->aLoop = pX;
}
+ if( nOrderBy ){
+ /* If there is an ORDER BY clause and it is not being ignored, set up
+ ** space for the aSortCost[] array. Each element of the aSortCost array
+ ** is either zero - meaning it has not yet been initialized - or the
+ ** cost of sorting nRowEst rows of data where the first X terms of
+ ** the ORDER BY clause are already in order, where X is the array
+ ** index. */
+ aSortCost = (LogEst*)pX;
+ memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
+ }
+ assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
+ assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
/* Seed the search with a single WherePath containing zero WhereLoops.
**
@@ -4996,19 +5526,15 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
** rows, then do not use the automatic index. */
aFrom[0].nRow = MIN(pParse->nQueryLoop, 46); assert( 46==sqlite3LogEst(25) );
nFrom = 1;
-
- /* Precompute the cost of sorting the final result set, if the caller
- ** to sqlite3WhereBegin() was concerned about sorting */
- rSortCost = 0;
- if( pWInfo->pOrderBy==0 || nRowEst==0 ){
- aFrom[0].isOrderedValid = 1;
- }else{
- /* TUNING: Estimated cost of sorting is 48*N*log2(N) where N is the
- ** number of output rows. The 48 is the expected size of a row to sort.
- ** FIXME: compute a better estimate of the 48 multiplier based on the
- ** result set expressions. */
- rSortCost = nRowEst + estLog(nRowEst);
- WHERETRACE(0x002,("---- sort cost=%-3d\n", rSortCost));
+ assert( aFrom[0].isOrdered==0 );
+ if( nOrderBy ){
+ /* If nLoop is zero, then there are no FROM terms in the query. Since
+ ** in this case the query may return a maximum of one row, the results
+ ** are already in the requested order. Set isOrdered to nOrderBy to
+ ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
+ ** -1, indicating that the result set may or may not be ordered,
+ ** depending on the loops added to the current plan. */
+ aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
}
/* Compute successively longer WherePaths using the previous generation
@@ -5018,60 +5544,82 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
nTo = 0;
for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
- Bitmask maskNew;
- Bitmask revMask = 0;
- u8 isOrderedValid = pFrom->isOrderedValid;
- u8 isOrdered = pFrom->isOrdered;
+ LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
+ LogEst rCost; /* Cost of path (pFrom+pWLoop) */
+ LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
+ i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
+ Bitmask maskNew; /* Mask of src visited by (..) */
+ Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
+
if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
/* At this point, pWLoop is a candidate to be the next loop.
** Compute its cost */
- rCost = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
- rCost = sqlite3LogEstAdd(rCost, pFrom->rCost);
+ rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
+ rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
nOut = pFrom->nRow + pWLoop->nOut;
maskNew = pFrom->maskLoop | pWLoop->maskSelf;
- if( !isOrderedValid ){
- switch( wherePathSatisfiesOrderBy(pWInfo,
+ if( isOrdered<0 ){
+ isOrdered = wherePathSatisfiesOrderBy(pWInfo,
pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
- iLoop, pWLoop, &revMask) ){
- case 1: /* Yes. pFrom+pWLoop does satisfy the ORDER BY clause */
- isOrdered = 1;
- isOrderedValid = 1;
- break;
- case 0: /* No. pFrom+pWLoop will require a separate sort */
- isOrdered = 0;
- isOrderedValid = 1;
- rCost = sqlite3LogEstAdd(rCost, rSortCost);
- break;
- default: /* Cannot tell yet. Try again on the next iteration */
- break;
- }
+ iLoop, pWLoop, &revMask);
}else{
revMask = pFrom->revLoop;
}
- /* Check to see if pWLoop should be added to the mxChoice best so far */
+ if( isOrdered>=0 && isOrdered<nOrderBy ){
+ if( aSortCost[isOrdered]==0 ){
+ aSortCost[isOrdered] = whereSortingCost(
+ pWInfo, nRowEst, nOrderBy, isOrdered
+ );
+ }
+ rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
+
+ WHERETRACE(0x002,
+ ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
+ aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
+ rUnsorted, rCost));
+ }else{
+ rCost = rUnsorted;
+ }
+
+ /* Check to see if pWLoop should be added to the set of
+ ** mxChoice best-so-far paths.
+ **
+ ** First look for an existing path among best-so-far paths
+ ** that covers the same set of loops and has the same isOrdered
+ ** setting as the current path candidate.
+ **
+ ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
+ ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
+ ** of legal values for isOrdered, -1..64.
+ */
for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
if( pTo->maskLoop==maskNew
- && pTo->isOrderedValid==isOrderedValid
- && ((pTo->rCost<=rCost && pTo->nRow<=nOut) ||
- (pTo->rCost>=rCost && pTo->nRow>=nOut))
+ && ((pTo->isOrdered^isOrdered)&0x80)==0
){
testcase( jj==nTo-1 );
break;
}
}
if( jj>=nTo ){
- if( nTo>=mxChoice && rCost>=mxCost ){
+ /* None of the existing best-so-far paths match the candidate. */
+ if( nTo>=mxChoice
+ && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
+ ){
+ /* The current candidate is no better than any of the mxChoice
+ ** paths currently in the best-so-far buffer. So discard
+ ** this candidate as not viable. */
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
- isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
+ isOrdered>=0 ? isOrdered+'0' : '?');
}
#endif
continue;
}
- /* Add a new Path to the aTo[] set */
+ /* If we reach this points it means that the new candidate path
+ ** needs to be added to the set of best-so-far paths. */
if( nTo<mxChoice ){
/* Increase the size of the aTo set by one */
jj = nTo++;
@@ -5084,36 +5632,42 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
- isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
+ isOrdered>=0 ? isOrdered+'0' : '?');
}
#endif
}else{
- if( pTo->rCost<=rCost && pTo->nRow<=nOut ){
+ /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
+ ** same set of loops and has the sam isOrdered setting as the
+ ** candidate path. Check to see if the candidate should replace
+ ** pTo or if the candidate should be skipped */
+ if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf(
"Skip %s cost=%-3d,%3d order=%c",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
- isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
+ isOrdered>=0 ? isOrdered+'0' : '?');
sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n",
wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
- pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
+ pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
}
#endif
+ /* Discard the candidate path from further consideration */
testcase( pTo->rCost==rCost );
continue;
}
testcase( pTo->rCost==rCost+1 );
- /* A new and better score for a previously created equivalent path */
+ /* Control reaches here if the candidate path is better than the
+ ** pTo path. Replace pTo with the candidate. */
#ifdef WHERETRACE_ENABLED /* 0x4 */
if( sqlite3WhereTrace&0x4 ){
sqlite3DebugPrintf(
"Update %s cost=%-3d,%3d order=%c",
wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
- isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
+ isOrdered>=0 ? isOrdered+'0' : '?');
sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n",
wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
- pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
+ pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
}
#endif
}
@@ -5122,18 +5676,20 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
pTo->revLoop = revMask;
pTo->nRow = nOut;
pTo->rCost = rCost;
- pTo->isOrderedValid = isOrderedValid;
+ pTo->rUnsorted = rUnsorted;
pTo->isOrdered = isOrdered;
memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
pTo->aLoop[iLoop] = pWLoop;
if( nTo>=mxChoice ){
mxI = 0;
mxCost = aTo[0].rCost;
- mxOut = aTo[0].nRow;
+ mxUnsorted = aTo[0].nRow;
for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
- if( pTo->rCost>mxCost || (pTo->rCost==mxCost && pTo->nRow>mxOut) ){
+ if( pTo->rCost>mxCost
+ || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
+ ){
mxCost = pTo->rCost;
- mxOut = pTo->nRow;
+ mxUnsorted = pTo->rUnsorted;
mxI = jj;
}
}
@@ -5147,8 +5703,8 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
- pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
- if( pTo->isOrderedValid && pTo->isOrdered ){
+ pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
+ if( pTo->isOrdered>0 ){
sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
}else{
sqlite3DebugPrintf("\n");
@@ -5191,16 +5747,33 @@ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
Bitmask notUsed;
int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
- if( rc==1 ) pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ if( rc==pWInfo->pResultSet->nExpr ){
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ }
}
- if( pFrom->isOrdered ){
+ if( pWInfo->pOrderBy ){
if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
- pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ }
}else{
- pWInfo->bOBSat = 1;
+ pWInfo->nOBSat = pFrom->isOrdered;
+ if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
pWInfo->revMask = pFrom->revLoop;
}
+ if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
+ && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr
+ ){
+ Bitmask notUsed = 0;
+ int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
+ pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed
+ );
+ assert( pWInfo->sorted==0 );
+ pWInfo->sorted = (nOrder==pWInfo->pOrderBy->nExpr);
+ }
}
+
+
pWInfo->nRowOut = pFrom->nRow;
/* Free temporary memory and return success */
@@ -5254,7 +5827,7 @@ static int whereShortCut(WhereLoopBuilder *pBuilder){
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
assert( pLoop->aLTermSpace==pLoop->aLTerm );
assert( ArraySize(pLoop->aLTermSpace)==4 );
- if( pIdx->onError==OE_None
+ if( !IsUniqueIndex(pIdx)
|| pIdx->pPartIdxWhere!=0
|| pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
) continue;
@@ -5282,7 +5855,7 @@ static int whereShortCut(WhereLoopBuilder *pBuilder){
pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur);
pWInfo->a[0].iTabCur = iCur;
pWInfo->nRowOut = 1;
- if( pWInfo->pOrderBy ) pWInfo->bOBSat = 1;
+ if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
}
@@ -5386,7 +5959,7 @@ WhereInfo *sqlite3WhereBegin(
Parse *pParse, /* The parser context */
SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
Expr *pWhere, /* The WHERE clause */
- ExprList *pOrderBy, /* An ORDER BY clause, or NULL */
+ ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
ExprList *pResultSet, /* Result set of the query */
u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */
@@ -5408,6 +5981,10 @@ WhereInfo *sqlite3WhereBegin(
/* Variable initialization */
db = pParse->db;
memset(&sWLB, 0, sizeof(sWLB));
+
+ /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
+ testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
+ if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
sWLB.pOrderBy = pOrderBy;
/* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
@@ -5452,7 +6029,7 @@ WhereInfo *sqlite3WhereBegin(
pWInfo->pTabList = pTabList;
pWInfo->pOrderBy = pOrderBy;
pWInfo->pResultSet = pResultSet;
- pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
+ pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
pWInfo->wctrlFlags = wctrlFlags;
pWInfo->savedNQueryLoop = pParse->nQueryLoop;
pMaskSet = &pWInfo->sMaskSet;
@@ -5486,7 +6063,7 @@ WhereInfo *sqlite3WhereBegin(
/* Special case: No FROM clause
*/
if( nTabList==0 ){
- if( pOrderBy ) pWInfo->bOBSat = 1;
+ if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
if( wctrlFlags & WHERE_WANT_DISTINCT ){
pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
}
@@ -5597,8 +6174,8 @@ WhereInfo *sqlite3WhereBegin(
if( sqlite3WhereTrace ){
int ii;
sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
- if( pWInfo->bOBSat ){
- sqlite3DebugPrintf(" ORDERBY=0x%llx", pWInfo->revMask);
+ if( pWInfo->nOBSat>0 ){
+ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
}
switch( pWInfo->eDistinct ){
case WHERE_DISTINCT_UNIQUE: {
@@ -5721,7 +6298,14 @@ WhereInfo *sqlite3WhereBegin(
int op = OP_OpenRead;
/* iIdxCur is always set if to a positive value if ONEPASS is possible */
assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
- if( pWInfo->okOnePass ){
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
+ && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0
+ ){
+ /* This is one term of an OR-optimization using the PRIMARY KEY of a
+ ** WITHOUT ROWID table. No need for a separate index */
+ iIndexCur = pLevel->iTabCur;
+ op = 0;
+ }else if( pWInfo->okOnePass ){
Index *pJ = pTabItem->pTab->pIndex;
iIndexCur = iIdxCur;
assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
@@ -5733,15 +6317,18 @@ WhereInfo *sqlite3WhereBegin(
pWInfo->aiCurOnePass[1] = iIndexCur;
}else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){
iIndexCur = iIdxCur;
+ if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx;
}else{
iIndexCur = pParse->nTab++;
}
pLevel->iIdxCur = iIndexCur;
assert( pIx->pSchema==pTab->pSchema );
assert( iIndexCur>=0 );
- sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
- sqlite3VdbeSetP4KeyInfo(pParse, pIx);
- VdbeComment((v, "%s", pIx->zName));
+ if( op ){
+ sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIx);
+ VdbeComment((v, "%s", pIx->zName));
+ }
}
if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor);