diff options
Diffstat (limited to 'lib/libssl/src/doc/rand.doc')
-rw-r--r-- | lib/libssl/src/doc/rand.doc | 141 |
1 files changed, 0 insertions, 141 deletions
diff --git a/lib/libssl/src/doc/rand.doc b/lib/libssl/src/doc/rand.doc deleted file mode 100644 index da02a07f64f..00000000000 --- a/lib/libssl/src/doc/rand.doc +++ /dev/null @@ -1,141 +0,0 @@ -My Random number library. - -These routines can be used to generate pseudo random numbers and can be -used to 'seed' the pseudo random number generator (RNG). The RNG make no -effort to reproduce the same random number stream with each execution. -Various other routines in the SSLeay library 'seed' the RNG when suitable -'random' input data is available. Read the section at the end for details -on the design of the RNG. - -void RAND_bytes( -unsigned char *buf, -int num); - This routine puts 'num' random bytes into 'buf'. One should make - sure RAND_seed() has been called before using this routine. - -void RAND_seed( -unsigned char *buf, -int num); - This routine adds more 'seed' data the RNG state. 'num' bytes - are added to the RNG state, they are taken from 'buf'. This - routine can be called with sensitive data such as user entered - passwords. This sensitive data is in no way recoverable from - the RAND library routines or state. Try to pass as much data - from 'random' sources as possible into the RNG via this function. - Also strongly consider using the RAND_load_file() and - RAND_write_file() routines. - -void RAND_cleanup(); - When a program has finished with the RAND library, if it so - desires, it can 'zero' all RNG state. - -The following 3 routines are convenience routines that can be used to -'save' and 'restore' data from/to the RNG and it's state. -Since the more 'random' data that is feed as seed data the better, why not -keep it around between executions of the program? Of course the -application should pass more 'random' data in via RAND_seed() and -make sure no-one can read the 'random' data file. - -char *RAND_file_name( -char *buf, -int size); - This routine returns a 'default' name for the location of a 'rand' - file. The 'rand' file should keep a sequence of random bytes used - to initialise the RNG. The filename is put in 'buf'. Buf is 'size' - bytes long. Buf is returned if things go well, if they do not, - NULL is returned. The 'rand' file name is generated in the - following way. First, if there is a 'RANDFILE' environment - variable, it is returned. Second, if there is a 'HOME' environment - variable, $HOME/.rand is returned. Third, NULL is returned. NULL - is also returned if a buf would overflow. - -int RAND_load_file( -char *file, -long number); - This function 'adds' the 'file' into the RNG state. It does this by - doing a RAND_seed() on the value returned from a stat() system call - on the file and if 'number' is non-zero, upto 'number' bytes read - from the file. The number of bytes passed to RAND_seed() is returned. - -int RAND_write_file( -char *file), - RAND_write_file() writes N random bytes to the file 'file', where - N is the size of the internal RND state (currently 1k). - This is a suitable method of saving RNG state for reloading via - RAND_load_file(). - -What follows is a description of this RNG and a description of the rational -behind it's design. - -It should be noted that this RNG is intended to be used to generate -'random' keys for various ciphers including generation of DH and RSA keys. - -It should also be noted that I have just created a system that I am happy with. -It may be overkill but that does not worry me. I have not spent that much -time on this algorithm so if there are glaring errors, please let me know. -Speed has not been a consideration in the design of these routines. - -First up I will state the things I believe I need for a good RNG. -1) A good hashing algorithm to mix things up and to convert the RNG 'state' - to random numbers. -2) An initial source of random 'state'. -3) The state should be very large. If the RNG is being used to generate - 4096 bit RSA keys, 2 2048 bit random strings are required (at a minimum). - If your RNG state only has 128 bits, you are obviously limiting the - search space to 128 bits, not 2048. I'm probably getting a little - carried away on this last point but it does indicate that it may not be - a bad idea to keep quite a lot of RNG state. It should be easier to - break a cipher than guess the RNG seed data. -4) Any RNG seed data should influence all subsequent random numbers - generated. This implies that any random seed data entered will have - an influence on all subsequent random numbers generated. -5) When using data to seed the RNG state, the data used should not be - extractable from the RNG state. I believe this should be a - requirement because one possible source of 'secret' semi random - data would be a private key or a password. This data must - not be disclosed by either subsequent random numbers or a - 'core' dump left by a program crash. -6) Given the same initial 'state', 2 systems should deviate in their RNG state - (and hence the random numbers generated) over time if at all possible. -7) Given the random number output stream, it should not be possible to determine - the RNG state or the next random number. - - -The algorithm is as follows. - -There is global state made up of a 1023 byte buffer (the 'state'), a -working message digest ('md') and a counter ('count'). - -Whenever seed data is added, it is inserted into the 'state' as -follows. - The input is chopped up into units of 16 bytes (or less for - the last block). Each of these blocks is run through the MD5 - message digest. The data passed to the MD5 digest is the - current 'md', the same number of bytes from the 'state' - (the location determined by in incremented looping index) as - the current 'block' and the new key data 'block'. The result - of this is kept in 'md' and also xored into the 'state' at the - same locations that were used as input into the MD5. - I believe this system addresses points 1 (MD5), 3 (the 'state'), - 4 (via the 'md'), 5 (by the use of MD5 and xor). - -When bytes are extracted from the RNG, the following process is used. -For each group of 8 bytes (or less), we do the following, - Input into MD5, the top 8 bytes from 'md', the byte that are - to be overwritten by the random bytes and bytes from the - 'state' (incrementing looping index). From this digest output - (which is kept in 'md'), the top (upto) 8 bytes are - returned to the caller and the bottom (upto) 8 bytes are xored - into the 'state'. - Finally, after we have finished 'generation' random bytes for the - called, 'count' (which is incremented) and 'md' are fed into MD5 and - the results are kept in 'md'. - I believe the above addressed points 1 (use of MD5), 6 (by - hashing into the 'state' the 'old' data from the caller that - is about to be overwritten) and 7 (by not using the 8 bytes - given to the caller to update the 'state', but they are used - to update 'md'). - -So of the points raised, only 2 is not addressed, but sources of -random data will always be a problem. - |