1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
/* $OpenBSD: e_expl.c,v 1.4 2016/09/12 19:47:02 guenther Exp $ */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* expl.c
*
* Exponential function, 128-bit long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, expl();
*
* y = expl( x );
*
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
* x k f
* e = 2 e.
*
* A Pade' form of degree 2/3 is used to approximate exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +-MAXLOG 100,000 2.6e-34 8.6e-35
*
*
* Error amplification in the exponential function can be
* a serious matter. The error propagation involves
* exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
* which shows that a 1 lsb error in representing X produces
* a relative error of X times 1 lsb in the function.
* While the routine gives an accurate result for arguments
* that are exactly represented by a long double precision
* computer number, the result contains amplified roundoff
* error for large arguments not exactly represented.
*
*
* ERROR MESSAGES:
*
* message condition value returned
* exp underflow x < MINLOG 0.0
* exp overflow x > MAXLOG MAXNUM
*
*/
/* Exponential function */
#include <float.h>
#include <math.h>
#include "math_private.h"
/* Pade' coefficients for exp(x) - 1
Theoretical peak relative error = 2.2e-37,
relative peak error spread = 9.2e-38
*/
static long double P[5] = {
3.279723985560247033712687707263393506266E-10L,
6.141506007208645008909088812338454698548E-7L,
2.708775201978218837374512615596512792224E-4L,
3.508710990737834361215404761139478627390E-2L,
9.999999999999999999999999999999999998502E-1L
};
static long double Q[6] = {
2.980756652081995192255342779918052538681E-12L,
1.771372078166251484503904874657985291164E-8L,
1.504792651814944826817779302637284053660E-5L,
3.611828913847589925056132680618007270344E-3L,
2.368408864814233538909747618894558968880E-1L,
2.000000000000000000000000000000000000150E0L
};
/* C1 + C2 = ln 2 */
static const long double C1 = -6.93145751953125E-1L;
static const long double C2 = -1.428606820309417232121458176568075500134E-6L;
static const long double LOG2EL = 1.442695040888963407359924681001892137426646L;
static const long double MAXLOGL = 1.1356523406294143949491931077970764891253E4L;
static const long double MINLOGL = -1.143276959615573793352782661133116431383730e4L;
static const long double huge = 0x1p10000L;
#if 0 /* XXX Prevent gcc from erroneously constant folding this. */
static const long double twom10000 = 0x1p-10000L;
#else
static volatile long double twom10000 = 0x1p-10000L;
#endif
long double
expl(long double x)
{
long double px, xx;
int n;
if( x > MAXLOGL)
return (huge*huge); /* overflow */
if( x < MINLOGL )
return (twom10000*twom10000); /* underflow */
/* Express e**x = e**g 2**n
* = e**g e**( n loge(2) )
* = e**( g + n loge(2) )
*/
px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
n = px;
x += px * C1;
x += px * C2;
/* rational approximation for exponential
* of the fractional part:
* e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
*/
xx = x * x;
px = x * __polevll( xx, P, 4 );
xx = __polevll( xx, Q, 5 );
x = px/( xx - px );
x = 1.0L + x + x;
x = ldexpl( x, n );
return(x);
}
DEF_STD(expl);
|