1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
/* @(#)e_fmod.c 1.3 95/01/18 */
/*-
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include <sys/types.h>
#include <machine/ieee.h>
#include <float.h>
#include <math.h>
#include <stdint.h>
#include "math_private.h"
#define BIAS (LDBL_MAX_EXP - 1)
/*
* These macros add and remove an explicit integer bit in front of the
* fractional mantissa, if the architecture doesn't have such a bit by
* default already.
*/
#ifdef LDBL_IMPLICIT_NBIT
#define LDBL_NBIT 0
#define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE))
#define HFRAC_BITS EXT_FRACHBITS
#else
#define LDBL_NBIT 0x80000000
#define SET_NBIT(hx) (hx)
#define HFRAC_BITS (EXT_FRACHBITS - 1)
#endif
#define MANL_SHIFT (EXT_FRACLBITS - 1)
static const long double one = 1.0, Zero[] = {0.0, -0.0,};
/*
* fmodl(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*
* Assumptions:
* - The low part of the mantissa fits in a manl_t exactly.
* - The high part of the mantissa fits in an int64_t with enough room
* for an explicit integer bit in front of the fractional bits.
*/
long double
fmodl(long double x, long double y)
{
union {
long double e;
struct ieee_ext bits;
} ux, uy;
int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */
uint32_t hy;
uint32_t lx,ly,lz;
int ix,iy,n,sx;
ux.e = x;
uy.e = y;
sx = ux.bits.ext_sign;
/* purge off exception values */
if((uy.bits.ext_exp|uy.bits.ext_frach|uy.bits.ext_fracl)==0 || /* y=0 */
(ux.bits.ext_exp == BIAS + LDBL_MAX_EXP) || /* or x not finite */
(uy.bits.ext_exp == BIAS + LDBL_MAX_EXP &&
((uy.bits.ext_frach&~LDBL_NBIT)|uy.bits.ext_fracl)!=0)) /* or y is NaN */
return (x*y)/(x*y);
if(ux.bits.ext_exp<=uy.bits.ext_exp) {
if((ux.bits.ext_exp<uy.bits.ext_exp) ||
(ux.bits.ext_frach<=uy.bits.ext_frach &&
(ux.bits.ext_frach<uy.bits.ext_frach ||
ux.bits.ext_fracl<uy.bits.ext_fracl))) {
return x; /* |x|<|y| return x or x-y */
}
if(ux.bits.ext_frach==uy.bits.ext_frach &&
ux.bits.ext_fracl==uy.bits.ext_fracl) {
return Zero[sx]; /* |x|=|y| return x*0*/
}
}
/* determine ix = ilogb(x) */
if(ux.bits.ext_exp == 0) { /* subnormal x */
ux.e *= 0x1.0p512;
ix = ux.bits.ext_exp - (BIAS + 512);
} else {
ix = ux.bits.ext_exp - BIAS;
}
/* determine iy = ilogb(y) */
if(uy.bits.ext_exp == 0) { /* subnormal y */
uy.e *= 0x1.0p512;
iy = uy.bits.ext_exp - (BIAS + 512);
} else {
iy = uy.bits.ext_exp - BIAS;
}
/* set up {hx,lx}, {hy,ly} and align y to x */
hx = SET_NBIT(ux.bits.ext_frach);
hy = SET_NBIT(uy.bits.ext_frach);
lx = ux.bits.ext_fracl;
ly = uy.bits.ext_fracl;
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz<0){hx = hx+hx+(lx>>MANL_SHIFT); lx = lx+lx;}
else {
if ((hz|lz)==0) /* return sign(x)*0 */
return Zero[sx];
hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz;
}
}
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz>=0) {hx=hz;lx=lz;}
/* convert back to floating value and restore the sign */
if((hx|lx)==0) /* return sign(x)*0 */
return Zero[sx];
while(hx<(1ULL<<HFRAC_BITS)) { /* normalize x */
hx = hx+hx+(lx>>MANL_SHIFT); lx = lx+lx;
iy -= 1;
}
ux.bits.ext_frach = hx; /* The mantissa is truncated here if needed. */
ux.bits.ext_fracl = lx;
if (iy < LDBL_MIN_EXP) {
ux.bits.ext_exp = iy + (BIAS + 512);
ux.e *= 0x1p-512;
} else {
ux.bits.ext_exp = iy + BIAS;
}
x = ux.e * one; /* create necessary signal */
return x; /* exact output */
}
|