summaryrefslogtreecommitdiffstats
path: root/lib/libm/src/ld80/s_expm1l.c
blob: 8c03cf585da1bfcb8e135695b935bb08299469bd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*	$OpenBSD: s_expm1l.c,v 1.3 2016/09/12 19:47:03 guenther Exp $	*/

/*
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/*							expm1l.c
 *
 *	Exponential function, minus 1
 *      Long double precision
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, expm1l();
 *
 * y = expm1l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns e (2.71828...) raised to the x power, minus 1.
 *
 * Range reduction is accomplished by separating the argument
 * into an integer k and fraction f such that
 *
 *     x    k  f
 *    e  = 2  e.
 *
 * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
 * in the basic range [-0.5 ln 2, 0.5 ln 2].
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE    -45,+MAXLOG   200,000     1.2e-19     2.5e-20
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * expm1l overflow   x > MAXLOG         MAXNUM
 *
 */

#include <math.h>

static const long double MAXLOGL = 1.1356523406294143949492E4L;

/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
   -.5 ln 2  <  x  <  .5 ln 2
   Theoretical peak relative error = 3.4e-22  */

static const long double
  P0 = -1.586135578666346600772998894928250240826E4L,
  P1 =  2.642771505685952966904660652518429479531E3L,
  P2 = -3.423199068835684263987132888286791620673E2L,
  P3 =  1.800826371455042224581246202420972737840E1L,
  P4 = -5.238523121205561042771939008061958820811E-1L,

  Q0 = -9.516813471998079611319047060563358064497E4L,
  Q1 =  3.964866271411091674556850458227710004570E4L,
  Q2 = -7.207678383830091850230366618190187434796E3L,
  Q3 =  7.206038318724600171970199625081491823079E2L,
  Q4 = -4.002027679107076077238836622982900945173E1L,
  /* Q5 = 1.000000000000000000000000000000000000000E0 */

/* C1 + C2 = ln 2 */
C1 = 6.93145751953125E-1L,
C2 = 1.428606820309417232121458176568075500134E-6L,
/* ln 2^-65 */
minarg = -4.5054566736396445112120088E1L;
static const long double huge = 0x1p10000L;

long double
expm1l(long double x)
{
long double px, qx, xx;
int k;

/* Overflow.  */
if (x > MAXLOGL)
  return (huge*huge);	/* overflow */

if (x == 0.0)
  return x;

/* Minimum value.  */
if (x < minarg)
  return -1.0L;

xx = C1 + C2;

/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
px = floorl (0.5 + x / xx);
k = px;
/* remainder times ln 2 */
x -= px * C1;
x -= px * C2;

/* Approximate exp(remainder ln 2).  */
px = (((( P4 * x
	 + P3) * x
	+ P2) * x
       + P1) * x
      + P0) * x;

qx = (((( x
	 + Q4) * x
	+ Q3) * x
       + Q2) * x
      + Q1) * x
     + Q0;

xx = x * x;
qx = x + (0.5 * xx + xx * px / qx);

/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
   We have qx = exp(remainder ln 2) - 1, so
   exp(x) - 1  =  2^k (qx + 1) - 1  =  2^k qx + 2^k - 1.  */
px = ldexpl(1.0L, k);
x = px * qx + (px - 1.0);
return x;
}
DEF_STD(expm1l);