summaryrefslogtreecommitdiffstats
path: root/lib/libkvm/kvm_proc.c
diff options
context:
space:
mode:
authorderaadt <deraadt@openbsd.org>1995-10-18 08:37:01 +0000
committerderaadt <deraadt@openbsd.org>1995-10-18 08:37:01 +0000
commitdf930be708d50e9715f173caa26ffe1b7599b157 (patch)
treeaa317e49e28cb999c9cf3db7f00c20903fe6010a /lib/libkvm/kvm_proc.c
downloadwireguard-openbsd-df930be708d50e9715f173caa26ffe1b7599b157.tar.xz
wireguard-openbsd-df930be708d50e9715f173caa26ffe1b7599b157.zip
initial import of NetBSD tree
Diffstat (limited to 'lib/libkvm/kvm_proc.c')
-rw-r--r--lib/libkvm/kvm_proc.c832
1 files changed, 832 insertions, 0 deletions
diff --git a/lib/libkvm/kvm_proc.c b/lib/libkvm/kvm_proc.c
new file mode 100644
index 00000000000..2e92a482980
--- /dev/null
+++ b/lib/libkvm/kvm_proc.c
@@ -0,0 +1,832 @@
+/*-
+ * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
+ * Copyright (c) 1989, 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software developed by the Computer Systems
+ * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
+ * BG 91-66 and contributed to Berkeley.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#if defined(LIBC_SCCS) && !defined(lint)
+static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
+#endif /* LIBC_SCCS and not lint */
+
+/*
+ * Proc traversal interface for kvm. ps and w are (probably) the exclusive
+ * users of this code, so we've factored it out into a separate module.
+ * Thus, we keep this grunge out of the other kvm applications (i.e.,
+ * most other applications are interested only in open/close/read/nlist).
+ */
+
+#include <sys/param.h>
+#include <sys/user.h>
+#include <sys/proc.h>
+#include <sys/exec.h>
+#include <sys/stat.h>
+#include <sys/ioctl.h>
+#include <sys/tty.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+#include <nlist.h>
+#include <kvm.h>
+
+#include <vm/vm.h>
+#include <vm/vm_param.h>
+#include <vm/swap_pager.h>
+
+#include <sys/sysctl.h>
+
+#include <limits.h>
+#include <db.h>
+#include <paths.h>
+
+#include "kvm_private.h"
+
+#define KREAD(kd, addr, obj) \
+ (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
+
+int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
+int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
+ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
+ size_t));
+
+static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
+ int));
+static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
+static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
+ void (*)(struct ps_strings *, u_long *, int *)));
+static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
+ struct kinfo_proc *, int));
+static int proc_verify __P((kvm_t *, u_long, const struct proc *));
+static void ps_str_a __P((struct ps_strings *, u_long *, int *));
+static void ps_str_e __P((struct ps_strings *, u_long *, int *));
+
+char *
+_kvm_uread(kd, p, va, cnt)
+ kvm_t *kd;
+ const struct proc *p;
+ u_long va;
+ u_long *cnt;
+{
+ register u_long addr, head;
+ register u_long offset;
+ struct vm_map_entry vme;
+ struct vm_object vmo;
+ int rv;
+
+ if (kd->swapspc == 0) {
+ kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
+ if (kd->swapspc == 0)
+ return (0);
+ }
+
+ /*
+ * Look through the address map for the memory object
+ * that corresponds to the given virtual address.
+ * The header just has the entire valid range.
+ */
+ head = (u_long)&p->p_vmspace->vm_map.header;
+ addr = head;
+ while (1) {
+ if (KREAD(kd, addr, &vme))
+ return (0);
+
+ if (va >= vme.start && va < vme.end &&
+ vme.object.vm_object != 0)
+ break;
+
+ addr = (u_long)vme.next;
+ if (addr == head)
+ return (0);
+ }
+
+ /*
+ * We found the right object -- follow shadow links.
+ */
+ offset = va - vme.start + vme.offset;
+ addr = (u_long)vme.object.vm_object;
+
+ while (1) {
+ /* Try reading the page from core first. */
+ if ((rv = _kvm_readfromcore(kd, addr, offset)))
+ break;
+
+ if (KREAD(kd, addr, &vmo))
+ return (0);
+
+ /* If there is a pager here, see if it has the page. */
+ if (vmo.pager != 0 &&
+ (rv = _kvm_readfrompager(kd, &vmo, offset)))
+ break;
+
+ /* Move down the shadow chain. */
+ addr = (u_long)vmo.shadow;
+ if (addr == 0)
+ return (0);
+ offset += vmo.shadow_offset;
+ }
+
+ if (rv == -1)
+ return (0);
+
+ /* Found the page. */
+ offset %= kd->nbpg;
+ *cnt = kd->nbpg - offset;
+ return (&kd->swapspc[offset]);
+}
+
+#define vm_page_hash(kd, object, offset) \
+ (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
+
+int
+_kvm_coreinit(kd)
+ kvm_t *kd;
+{
+ struct nlist nlist[3];
+
+ nlist[0].n_name = "_vm_page_buckets";
+ nlist[1].n_name = "_vm_page_hash_mask";
+ nlist[2].n_name = 0;
+ if (kvm_nlist(kd, nlist) != 0)
+ return (-1);
+
+ if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
+ KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
+ return (-1);
+
+ return (0);
+}
+
+int
+_kvm_readfromcore(kd, object, offset)
+ kvm_t *kd;
+ u_long object, offset;
+{
+ u_long addr;
+ struct pglist bucket;
+ struct vm_page mem;
+ off_t seekpoint;
+
+ if (kd->vm_page_buckets == 0 &&
+ _kvm_coreinit(kd))
+ return (-1);
+
+ addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
+ if (KREAD(kd, addr, &bucket))
+ return (-1);
+
+ addr = (u_long)bucket.tqh_first;
+ offset &= ~(kd->nbpg -1);
+ while (1) {
+ if (addr == 0)
+ return (0);
+
+ if (KREAD(kd, addr, &mem))
+ return (-1);
+
+ if ((u_long)mem.object == object &&
+ (u_long)mem.offset == offset)
+ break;
+
+ addr = (u_long)mem.hashq.tqe_next;
+ }
+
+ seekpoint = mem.phys_addr;
+
+ if (lseek(kd->pmfd, seekpoint, 0) == -1)
+ return (-1);
+ if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
+ return (-1);
+
+ return (1);
+}
+
+int
+_kvm_readfrompager(kd, vmop, offset)
+ kvm_t *kd;
+ struct vm_object *vmop;
+ u_long offset;
+{
+ u_long addr;
+ struct pager_struct pager;
+ struct swpager swap;
+ int ix;
+ struct swblock swb;
+ off_t seekpoint;
+
+ /* Read in the pager info and make sure it's a swap device. */
+ addr = (u_long)vmop->pager;
+ if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
+ return (-1);
+
+ /* Read in the swap_pager private data. */
+ addr = (u_long)pager.pg_data;
+ if (KREAD(kd, addr, &swap))
+ return (-1);
+
+ /*
+ * Calculate the paging offset, and make sure it's within the
+ * bounds of the pager.
+ */
+ offset += vmop->paging_offset;
+ ix = offset / dbtob(swap.sw_bsize);
+#if 0
+ if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
+ return (-1);
+#else
+ if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
+ int i;
+ printf("BUG BUG BUG BUG:\n");
+ printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
+ vmop, offset - vmop->paging_offset, vmop->paging_offset,
+ vmop->pager, pager.pg_data);
+ printf("osize %x bsize %x blocks %x nblocks %x\n",
+ swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
+ swap.sw_nblocks);
+ for (ix = 0; ix < swap.sw_nblocks; ix++) {
+ addr = (u_long)&swap.sw_blocks[ix];
+ if (KREAD(kd, addr, &swb))
+ return (0);
+ printf("sw_blocks[%d]: block %x mask %x\n", ix,
+ swb.swb_block, swb.swb_mask);
+ }
+ return (-1);
+ }
+#endif
+
+ /* Read in the swap records. */
+ addr = (u_long)&swap.sw_blocks[ix];
+ if (KREAD(kd, addr, &swb))
+ return (-1);
+
+ /* Calculate offset within pager. */
+ offset %= dbtob(swap.sw_bsize);
+
+ /* Check that the page is actually present. */
+ if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
+ return (0);
+
+ if (!ISALIVE(kd))
+ return (-1);
+
+ /* Calculate the physical address and read the page. */
+ seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
+
+ if (lseek(kd->swfd, seekpoint, 0) == -1)
+ return (-1);
+ if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
+ return (-1);
+
+ return (1);
+}
+
+/*
+ * Read proc's from memory file into buffer bp, which has space to hold
+ * at most maxcnt procs.
+ */
+static int
+kvm_proclist(kd, what, arg, p, bp, maxcnt)
+ kvm_t *kd;
+ int what, arg;
+ struct proc *p;
+ struct kinfo_proc *bp;
+ int maxcnt;
+{
+ register int cnt = 0;
+ struct eproc eproc;
+ struct pgrp pgrp;
+ struct session sess;
+ struct tty tty;
+ struct proc proc;
+
+ for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
+ if (KREAD(kd, (u_long)p, &proc)) {
+ _kvm_err(kd, kd->program, "can't read proc at %x", p);
+ return (-1);
+ }
+ if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
+ KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
+ &eproc.e_ucred);
+
+ switch(what) {
+
+ case KERN_PROC_PID:
+ if (proc.p_pid != (pid_t)arg)
+ continue;
+ break;
+
+ case KERN_PROC_UID:
+ if (eproc.e_ucred.cr_uid != (uid_t)arg)
+ continue;
+ break;
+
+ case KERN_PROC_RUID:
+ if (eproc.e_pcred.p_ruid != (uid_t)arg)
+ continue;
+ break;
+ }
+ /*
+ * We're going to add another proc to the set. If this
+ * will overflow the buffer, assume the reason is because
+ * nprocs (or the proc list) is corrupt and declare an error.
+ */
+ if (cnt >= maxcnt) {
+ _kvm_err(kd, kd->program, "nprocs corrupt");
+ return (-1);
+ }
+ /*
+ * gather eproc
+ */
+ eproc.e_paddr = p;
+ if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
+ _kvm_err(kd, kd->program, "can't read pgrp at %x",
+ proc.p_pgrp);
+ return (-1);
+ }
+ eproc.e_sess = pgrp.pg_session;
+ eproc.e_pgid = pgrp.pg_id;
+ eproc.e_jobc = pgrp.pg_jobc;
+ if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
+ _kvm_err(kd, kd->program, "can't read session at %x",
+ pgrp.pg_session);
+ return (-1);
+ }
+ if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
+ if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
+ _kvm_err(kd, kd->program,
+ "can't read tty at %x", sess.s_ttyp);
+ return (-1);
+ }
+ eproc.e_tdev = tty.t_dev;
+ eproc.e_tsess = tty.t_session;
+ if (tty.t_pgrp != NULL) {
+ if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
+ _kvm_err(kd, kd->program,
+ "can't read tpgrp at &x",
+ tty.t_pgrp);
+ return (-1);
+ }
+ eproc.e_tpgid = pgrp.pg_id;
+ } else
+ eproc.e_tpgid = -1;
+ } else
+ eproc.e_tdev = NODEV;
+ eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
+ if (sess.s_leader == p)
+ eproc.e_flag |= EPROC_SLEADER;
+ if (proc.p_wmesg)
+ (void)kvm_read(kd, (u_long)proc.p_wmesg,
+ eproc.e_wmesg, WMESGLEN);
+
+ (void)kvm_read(kd, (u_long)proc.p_vmspace,
+ (char *)&eproc.e_vm, sizeof(eproc.e_vm));
+
+ eproc.e_xsize = eproc.e_xrssize = 0;
+ eproc.e_xccount = eproc.e_xswrss = 0;
+
+ switch (what) {
+
+ case KERN_PROC_PGRP:
+ if (eproc.e_pgid != (pid_t)arg)
+ continue;
+ break;
+
+ case KERN_PROC_TTY:
+ if ((proc.p_flag & P_CONTROLT) == 0 ||
+ eproc.e_tdev != (dev_t)arg)
+ continue;
+ break;
+ }
+ bcopy(&proc, &bp->kp_proc, sizeof(proc));
+ bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
+ ++bp;
+ ++cnt;
+ }
+ return (cnt);
+}
+
+/*
+ * Build proc info array by reading in proc list from a crash dump.
+ * Return number of procs read. maxcnt is the max we will read.
+ */
+static int
+kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
+ kvm_t *kd;
+ int what, arg;
+ u_long a_allproc;
+ u_long a_zombproc;
+ int maxcnt;
+{
+ register struct kinfo_proc *bp = kd->procbase;
+ register int acnt, zcnt;
+ struct proc *p;
+
+ if (KREAD(kd, a_allproc, &p)) {
+ _kvm_err(kd, kd->program, "cannot read allproc");
+ return (-1);
+ }
+ acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
+ if (acnt < 0)
+ return (acnt);
+
+ if (KREAD(kd, a_zombproc, &p)) {
+ _kvm_err(kd, kd->program, "cannot read zombproc");
+ return (-1);
+ }
+ zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
+ if (zcnt < 0)
+ zcnt = 0;
+
+ return (acnt + zcnt);
+}
+
+struct kinfo_proc *
+kvm_getprocs(kd, op, arg, cnt)
+ kvm_t *kd;
+ int op, arg;
+ int *cnt;
+{
+ size_t size;
+ int mib[4], st, nprocs;
+
+ if (kd->procbase != 0) {
+ free((void *)kd->procbase);
+ /*
+ * Clear this pointer in case this call fails. Otherwise,
+ * kvm_close() will free it again.
+ */
+ kd->procbase = 0;
+ }
+ if (ISALIVE(kd)) {
+ size = 0;
+ mib[0] = CTL_KERN;
+ mib[1] = KERN_PROC;
+ mib[2] = op;
+ mib[3] = arg;
+ st = sysctl(mib, 4, NULL, &size, NULL, 0);
+ if (st == -1) {
+ _kvm_syserr(kd, kd->program, "kvm_getprocs");
+ return (0);
+ }
+ kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
+ if (kd->procbase == 0)
+ return (0);
+ st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
+ if (st == -1) {
+ _kvm_syserr(kd, kd->program, "kvm_getprocs");
+ return (0);
+ }
+ if (size % sizeof(struct kinfo_proc) != 0) {
+ _kvm_err(kd, kd->program,
+ "proc size mismatch (%d total, %d chunks)",
+ size, sizeof(struct kinfo_proc));
+ return (0);
+ }
+ nprocs = size / sizeof(struct kinfo_proc);
+ } else {
+ struct nlist nl[4], *p;
+
+ nl[0].n_name = "_nprocs";
+ nl[1].n_name = "_allproc";
+ nl[2].n_name = "_zombproc";
+ nl[3].n_name = 0;
+
+ if (kvm_nlist(kd, nl) != 0) {
+ for (p = nl; p->n_type != 0; ++p)
+ ;
+ _kvm_err(kd, kd->program,
+ "%s: no such symbol", p->n_name);
+ return (0);
+ }
+ if (KREAD(kd, nl[0].n_value, &nprocs)) {
+ _kvm_err(kd, kd->program, "can't read nprocs");
+ return (0);
+ }
+ size = nprocs * sizeof(struct kinfo_proc);
+ kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
+ if (kd->procbase == 0)
+ return (0);
+
+ nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
+ nl[2].n_value, nprocs);
+#ifdef notdef
+ size = nprocs * sizeof(struct kinfo_proc);
+ (void)realloc(kd->procbase, size);
+#endif
+ }
+ *cnt = nprocs;
+ return (kd->procbase);
+}
+
+void
+_kvm_freeprocs(kd)
+ kvm_t *kd;
+{
+ if (kd->procbase) {
+ free(kd->procbase);
+ kd->procbase = 0;
+ }
+}
+
+void *
+_kvm_realloc(kd, p, n)
+ kvm_t *kd;
+ void *p;
+ size_t n;
+{
+ void *np = (void *)realloc(p, n);
+
+ if (np == 0)
+ _kvm_err(kd, kd->program, "out of memory");
+ return (np);
+}
+
+#ifndef MAX
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#endif
+
+/*
+ * Read in an argument vector from the user address space of process p.
+ * addr if the user-space base address of narg null-terminated contiguous
+ * strings. This is used to read in both the command arguments and
+ * environment strings. Read at most maxcnt characters of strings.
+ */
+static char **
+kvm_argv(kd, p, addr, narg, maxcnt)
+ kvm_t *kd;
+ const struct proc *p;
+ register u_long addr;
+ register int narg;
+ register int maxcnt;
+{
+ register char *np, *cp, *ep, *ap;
+ register u_long oaddr = -1;
+ register int len, cc;
+ register char **argv;
+
+ /*
+ * Check that there aren't an unreasonable number of agruments,
+ * and that the address is in user space.
+ */
+ if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
+ return (0);
+
+ if (kd->argv == 0) {
+ /*
+ * Try to avoid reallocs.
+ */
+ kd->argc = MAX(narg + 1, 32);
+ kd->argv = (char **)_kvm_malloc(kd, kd->argc *
+ sizeof(*kd->argv));
+ if (kd->argv == 0)
+ return (0);
+ } else if (narg + 1 > kd->argc) {
+ kd->argc = MAX(2 * kd->argc, narg + 1);
+ kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
+ sizeof(*kd->argv));
+ if (kd->argv == 0)
+ return (0);
+ }
+ if (kd->argspc == 0) {
+ kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
+ if (kd->argspc == 0)
+ return (0);
+ kd->arglen = kd->nbpg;
+ }
+ if (kd->argbuf == 0) {
+ kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
+ if (kd->argbuf == 0)
+ return (0);
+ }
+ cc = sizeof(char *) * narg;
+ if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
+ return (0);
+ ap = np = kd->argspc;
+ argv = kd->argv;
+ len = 0;
+ /*
+ * Loop over pages, filling in the argument vector.
+ */
+ while (argv < kd->argv + narg && *argv != 0) {
+ addr = (u_long)*argv & ~(kd->nbpg - 1);
+ if (addr != oaddr) {
+ if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
+ kd->nbpg)
+ return (0);
+ oaddr = addr;
+ }
+ addr = (u_long)*argv & (kd->nbpg - 1);
+ cp = kd->argbuf + addr;
+ cc = kd->nbpg - addr;
+ if (maxcnt > 0 && cc > maxcnt - len)
+ cc = maxcnt - len;;
+ ep = memchr(cp, '\0', cc);
+ if (ep != 0)
+ cc = ep - cp + 1;
+ if (len + cc > kd->arglen) {
+ register int off;
+ register char **pp;
+ register char *op = kd->argspc;
+
+ kd->arglen *= 2;
+ kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
+ kd->arglen);
+ if (kd->argspc == 0)
+ return (0);
+ /*
+ * Adjust argv pointers in case realloc moved
+ * the string space.
+ */
+ off = kd->argspc - op;
+ for (pp = kd->argv; pp < argv; pp++)
+ *pp += off;
+ ap += off;
+ np += off;
+ }
+ memcpy(np, cp, cc);
+ np += cc;
+ len += cc;
+ if (ep != 0) {
+ *argv++ = ap;
+ ap = np;
+ } else
+ *argv += cc;
+ if (maxcnt > 0 && len >= maxcnt) {
+ /*
+ * We're stopping prematurely. Terminate the
+ * current string.
+ */
+ if (ep == 0) {
+ *np = '\0';
+ *argv++ = ap;
+ }
+ break;
+ }
+ }
+ /* Make sure argv is terminated. */
+ *argv = 0;
+ return (kd->argv);
+}
+
+static void
+ps_str_a(p, addr, n)
+ struct ps_strings *p;
+ u_long *addr;
+ int *n;
+{
+ *addr = (u_long)p->ps_argvstr;
+ *n = p->ps_nargvstr;
+}
+
+static void
+ps_str_e(p, addr, n)
+ struct ps_strings *p;
+ u_long *addr;
+ int *n;
+{
+ *addr = (u_long)p->ps_envstr;
+ *n = p->ps_nenvstr;
+}
+
+/*
+ * Determine if the proc indicated by p is still active.
+ * This test is not 100% foolproof in theory, but chances of
+ * being wrong are very low.
+ */
+static int
+proc_verify(kd, kernp, p)
+ kvm_t *kd;
+ u_long kernp;
+ const struct proc *p;
+{
+ struct proc kernproc;
+
+ /*
+ * Just read in the whole proc. It's not that big relative
+ * to the cost of the read system call.
+ */
+ if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
+ sizeof(kernproc))
+ return (0);
+ return (p->p_pid == kernproc.p_pid &&
+ (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
+}
+
+static char **
+kvm_doargv(kd, kp, nchr, info)
+ kvm_t *kd;
+ const struct kinfo_proc *kp;
+ int nchr;
+ void (*info)(struct ps_strings *, u_long *, int *);
+{
+ register const struct proc *p = &kp->kp_proc;
+ register char **ap;
+ u_long addr;
+ int cnt;
+ struct ps_strings arginfo;
+
+ /*
+ * Pointers are stored at the top of the user stack.
+ */
+ if (p->p_stat == SZOMB ||
+ kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
+ sizeof(arginfo)) != sizeof(arginfo))
+ return (0);
+
+ (*info)(&arginfo, &addr, &cnt);
+ if (cnt == 0)
+ return (0);
+ ap = kvm_argv(kd, p, addr, cnt, nchr);
+ /*
+ * For live kernels, make sure this process didn't go away.
+ */
+ if (ap != 0 && ISALIVE(kd) &&
+ !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
+ ap = 0;
+ return (ap);
+}
+
+/*
+ * Get the command args. This code is now machine independent.
+ */
+char **
+kvm_getargv(kd, kp, nchr)
+ kvm_t *kd;
+ const struct kinfo_proc *kp;
+ int nchr;
+{
+ return (kvm_doargv(kd, kp, nchr, ps_str_a));
+}
+
+char **
+kvm_getenvv(kd, kp, nchr)
+ kvm_t *kd;
+ const struct kinfo_proc *kp;
+ int nchr;
+{
+ return (kvm_doargv(kd, kp, nchr, ps_str_e));
+}
+
+/*
+ * Read from user space. The user context is given by p.
+ */
+ssize_t
+kvm_uread(kd, p, uva, buf, len)
+ kvm_t *kd;
+ register const struct proc *p;
+ register u_long uva;
+ register char *buf;
+ register size_t len;
+{
+ register char *cp;
+
+ cp = buf;
+ while (len > 0) {
+ register int cc;
+ register char *dp;
+ u_long cnt;
+
+ dp = _kvm_uread(kd, p, uva, &cnt);
+ if (dp == 0) {
+ _kvm_err(kd, 0, "invalid address (%x)", uva);
+ return (0);
+ }
+ cc = MIN(cnt, len);
+ bcopy(dp, cp, cc);
+
+ cp += cc;
+ uva += cc;
+ len -= cc;
+ }
+ return (ssize_t)(cp - buf);
+}